Nothing Special   »   [go: up one dir, main page]

JP2004068084A - Non-grain-oriented electromagnetic steel sheet with high magnetic-flux density for rotating machine, and member for rotating machine - Google Patents

Non-grain-oriented electromagnetic steel sheet with high magnetic-flux density for rotating machine, and member for rotating machine Download PDF

Info

Publication number
JP2004068084A
JP2004068084A JP2002229251A JP2002229251A JP2004068084A JP 2004068084 A JP2004068084 A JP 2004068084A JP 2002229251 A JP2002229251 A JP 2002229251A JP 2002229251 A JP2002229251 A JP 2002229251A JP 2004068084 A JP2004068084 A JP 2004068084A
Authority
JP
Japan
Prior art keywords
steel sheet
rotating machine
flux density
oriented electrical
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002229251A
Other languages
Japanese (ja)
Other versions
JP4718749B2 (en
Inventor
Tadashi Nakanishi
中西 匡
Toshito Takamiya
高宮 俊人
Masaki Kono
河野 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002229251A priority Critical patent/JP4718749B2/en
Priority to CN 03801038 priority patent/CN1277945C/en
Priority to PCT/JP2003/009947 priority patent/WO2004013365A1/en
Priority to KR1020047004538A priority patent/KR100567239B1/en
Priority to TW92121498A priority patent/TWI276693B/en
Publication of JP2004068084A publication Critical patent/JP2004068084A/en
Application granted granted Critical
Publication of JP4718749B2 publication Critical patent/JP4718749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-grain-oriented electromagnetic steel sheet with high magnetic-flux density, which gives high magnetic-flux density and high strength to a rotor material, and high magnetic-flux density and low core loss to a stator material, even though the rotor material and the stator material are simultaneously collected from the same steel sheet, and to provide a member for a rotating machine made thereof. <P>SOLUTION: The non-grain-oriented electromagnetic steel sheet with high magnetic-flux density for the rotating machine comprises, by mass ratio, 0.1-1.2% Si, 0.005-0.30% Mn, each limited amount of 0.0050% or less C (including zero), 0.0004% or less sol.Al (including zero) and 0.0030% or less N (including zero), and the balance Fe with unavoidable impurities; and has ductile non-metallic inclusions as to inhibit grain growth dispersed in the steel sheet at a number density of 1,000 pieces/cm<SP>2</SP>or less (including zero), wherein the ductile non-metallic inclusions as to inhibit the grain growth mean inclusions having a length of 3×D to 9×D, when a mean diameter of recrystallized particles in the finally annealed steel sheet is defined as D. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、回転機の組み立てに用いられる無方向性電磁鋼板、特に回転機のロータに組み立てたときには高磁束密度であるとともに高強度であり、ステータ用として用いるときには高磁束密度であるとともに低鉄損である、すぐれた性質を有する無方向性電磁鋼板及びそれを利用して組み立てた回転器用部材に関する。
【0002】
【従来の技術】
回転機のエネルギー消費を低下させるには、その鉄心(ロータ及びステータ)の磁束密度を上げるとともに、低鉄損化を図ることが効果的である。このうち、鉄損を低減する手段としては、Si,Al,Mn等の含有量を高めて鉄心材料の電気抵抗を増加させる手段が一般に用いられてきた。また、これらの手段のほか、たとえば特開昭58−15143号公報のBを添加する方法、特開平3−281758号公報のNiを添加する方法等が知られている。また、電磁鋼板の集合組織を、たとえば〈100〉〈UVW〉方位を有する結晶粒を優先的に成長させたものとすることにより磁気特性を向上させる方法があり、たとえば特開昭58−181822号公報等に提案されている。この手段により回転機鉄心内の磁束流を適正化することができ、高磁束密度で低鉄損の鉄心の製造が可能になっている。
【0003】
ところで、回転機用鉄心の製造に当たっては、材料の歩留まりを高く維持するために、一般に、同一の鋼板からロータ用鉄心板とステータ用鉄心板がプレスによって打ち抜かれる。そして、これらロータ用鉄心板とステータ用鉄心板をそれぞれ積層してロータ及びステータに組み立てることが行われる。
【0004】
このうち、ロータは、回転部材であり、高速回転に伴う高い応力が掛かるので強度が高いことが必要とされる。特に近年においては、回転機(モータ)の効率を上げるために、希土類磁石を埋め込んだ形式のロータが発達し、ロータの回転速度は著しく高くなっている。そのため、ロータを構成する電磁鋼板に対しては磁束密度及び強度、たとえば上降伏点(YP)、が従来に比べてより高いことが要求されるようになっている。一方、ステータは、高い磁束密度を有し、かつ鉄損が低いことが回転機の小型化と省エネルギー化のため重要である。
【0005】
【発明が解決しようとする課題】
このように、同じモータに使用される電磁鋼板であっても、ロータの組み立てに使用される鋼板(以下、「ロータ材」という)とステータの組み立てに使用される鋼板(以下、「ステータ材」という)とでは、要求特性が大きく異なる。従来提案されている技術は、ロータ材あるいはステータ材としての特性を個別に満たすものであっても、これら双方の特性を満たすように仕向けられたものではなかった。
【0006】
本発明は、同一の鋼板からロータ材及びステータ材の同時採取をしながら、ロータ材においては高い磁束密度及び高強度を、ステータ材においては高い磁束密度及び低鉄損を達成し得る高磁束密度無方向性電磁鋼板を提案し、さらにそれを用いた回転機用部材を提案することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、無方向性電磁鋼板の飽和磁束密度は素材の鉄の含有量(主として質量%によって表される)によって決まるものであり、鉄以外の元素、Siの含有量が高いと飽和磁束密度が低下することは避けられないこと、一方、磁束密度および強度は鋼板の結晶粒径によって支配されることに着目した。また、需要家での回転機のロータ及びステータの組み立て工程においては、鋼板からロータ用鉄心板とステータ用鉄心板を打ち抜いた後、歪取り焼鈍が行われることに着目した。さらに、Si含有量の低い無方向性電磁鋼板の結晶粒径を上記ロータおよびステータの製造プロセスにおいて適正化することによりロータおよびステータにそれぞれ必要な特性を付与できることに着目した。
【0008】
さらに、ステータの組み立て過程で行われる歪取り焼鈍工程で結晶粒径の成長を支配する要因を探求し、AlNなどの微細析出物を抑制し、かつ鋼板中に分散する延性非金属介在物の個数密度を最終焼鈍された鋼板の平均結晶粒径と関係付けて所定値以下に制限することにより需要家でのステータの組み立て過程で行われる歪取り焼鈍工程(750℃で2時間程度)で結晶粒径を十分成長させることができることの知見を得て本発明に至った。
【0009】
本発明の回転機用高磁束密度無方向性電磁鋼板は、質量比でSi:0.1%〜1.2%及びMn:0.005〜0.30%を含有し、C:0.0050%以下(0を含む)、Sol.Al:0.0004%以下(0を含む)、N:0.0030%以下(0を含む)に制限され、残部Fe及び不可避不純物からなり、鋼板中に分散する粒成長阻害延性非金属介在物の個数密度が1000個/cm以下(0を含む)である。ここに粒成長阻害延性非金属介在物とは最終焼鈍された鋼板の平均再結晶粒径をDとしたとき、長さが3×D〜9×Dの介在物をいう。
【0010】
上記発明において、質量比でSb:0.005〜0.10%およびSn:0.005〜0.2%から選んだ1種または2種をさらに含有すること、あるいは質量比でP:0.001〜0.2%およびNi:0.001〜0.2%から選んだ1種または2種をさらに含有することが好ましい。また、質量比でREM:0.0001〜0.10%およびCa:0.0001〜0.01%から選んだ1種または2種をさらに含有させることができる。
【0011】
また、上記不可避不純物のうちS及びOは、質量比でS:0.0050%以下(0を含む)、0:0.0100%以下(0を含む)に制限されていることが好ましい。同様に上記不可避不純物のうちTi、Nb及びVが質量比でTi:0.0020%以下(0を含む)、Nb:0.0050%以下(0を含む)、およびV:0.0060%以下(0を含む)に制限されていることが好ましい。
【0012】
上記発明において、最終焼鈍後の鋼板の平均再結晶粒径Dは6〜25μmであることが好ましい。
【0013】
上記各発明に係る無方向性電磁鋼板は、無方向性電磁鋼板用スラブを常法により処理して最終板厚を有する冷延鋼板とした後、700〜800℃で最終焼鈍を施してなるものが好ましい。
【0014】
上記各発明に係る無方向性電磁鋼板は、打ち抜き後、積層して高強度回転機ロータ部材とすることができる。また、打ち抜き後、積層した後さらに歪取り焼鈍を施して低鉄損回転機ステータ部材とすることもできる。
【0015】
また上記各発明に係る無方向性電磁鋼は、無方向性電磁鋼板用スラブを常法により処理して最終板厚を有する冷延鋼板とした後、700〜800℃で最終焼鈍を施し、これにさらに700〜800℃で歪取り焼鈍を施して結晶粒径を最終焼鈍後の粒径の2倍以上に成長させたものとすることもできる。
【0016】
【発明の実施の形態】
本発明の電磁鋼板は、質量比で以下の化学組成を有する。
【0017】
Si:0.1〜1.2%
鋼板の電気抵抗を増大させ、鉄損を低減するには、少なくとも0.1%のSiを含有させる必要があるが、Si含有量が1.2%を超えると、磁束密度が低下するだけでなく、硬度が上昇し、加工性が劣化する。したがって、Si含有量は0.1〜1.2%の範囲とする。
【0018】
Mn:0.005〜0.30%
Mnは良好な熱間圧延の際の加工性を得るために必要な成分であり、そのためには0.005%以上含有させることが必要である。しかし、0.30%を超えると磁束密度が低下する。したがってMnの含有量は0.005〜0.30%とする。
【0019】
C:0.0050%以下(0を含む)
Cは、磁気時効劣化を抑制するためには極力低くする必要がある。また、本発明で採用される極低Al化の条件の下で集合組織の改善効果を十分に発揮させるためには、0.0050%以下に低減する必要がある。しかしながら、このCの低減は、必ずしも出発材料である溶鋼あるいはスラブの段階で達成されていなければならないものではなく、鋼板の製造過程中最終焼鈍を行うまでに達成されればよい。
【0020】
Sol.Al:0.0004%以下(0を含む)
優れた粒成長性と磁気特性を得るためには、鋼板のAl量を0.0004%以下に低減することが必要である。Al含有量が0.0004%を超えると鋼板中にAlNが析出し、最終焼鈍された製品の磁束密度が低下する。また、ステータに打ち抜き後に行われる歪取り焼鈍の際の粒成長性が阻害され、鉄損値を十分低下させることができなくなる。
【0021】
N:0.0030%以下(0を含む)
NはAlと結合して窒化物(AlN)の析出原因となるほか、Ti等と結合して種々の窒化物を形成し、最終焼鈍された製品の磁束密度を低下させる原因になる。また、ステータに打ち抜き後行われる歪取り焼鈍の際の粒成長性を阻害し、鉄損値の十分な低下を阻害する原因になる。そのためN量は0.003%以下、好ましくは0.0025%以下に低減させることが必要である。
【0022】
本発明の無方向性電磁鋼板は、以上の基本組成を有するが、それだけでは本発明の目的を達成し得ない。最終焼鈍された鋼板中に分散する粒成長阻害延性非金属介在物、すなわち延性非金属介在物のうち鋼板の平均再結晶粒径をDとしたとき、長さが3×D〜9×Dの延性非金属介在物の個数密度が1000個/cm以下(0を含む)であることが必要である。
【0023】
ここに、平均再結晶粒径とは、鋼板の0.5mmの面積中に存在する結晶粒の個数を測定し、それに基づいて結晶粒1個あたりの平均面積を算出し、その平均面積に等しい円の直径をいう。この平均結晶粒径は鋼板の板幅方向に垂直な断面を光学顕微鏡で観察することにより測定される。
【0024】
延性非金属介在物とは、圧延方向に長く延びた棒状の介在物及び圧延方向に連続して並ぶ介在物をいう。また、10μm以内の距離にある2以上の介在物が圧延方向に対して±5°以内の方向に並んでいるときは、これらの介在物を繋がっているものととして1の延性介在物とみなす。
【0025】
延性介在物の長さとは、地鉄と介在物の界面における任意の2点間で引いた線分の長さの最大値、すなわち延性介在物の両端部間の距離をいう。その存在個数の測定は、鋼板の板幅方向に垂直な断面を研磨し、研磨まま(腐食処理等は行わずに)の面を光学顕微鏡で観察し、地鉄部分と色が異なる小さな領域を介在物と認定し、1つの試料に対しての観察視野を5mmとして上記により認定した介在物のうち延性介在物と認められるものの個数を計測し1cm当たりに割り戻して個数密度とする。介在物には上記延性介在物のほかに孤立した円形の介在物があるが、これは非延性介在物として延性介在物にはカウントしない。
【0026】
(実験1)
C:0.002%、Si:0.7%、Mn:0.2%、Sol.Al:0.0004%以下、S:0.002%、残部不可避不純物を基本成分とし、これにNを0.0010〜0.0060%の範囲で変更したスラブを製造した。得られたスラブを1100℃に加熱し2.3mm厚まで熱延したのち、酸洗し、冷間圧延して0.35mmの最終板厚に仕上げ、さらに、800℃、15秒間の再結晶焼鈍を施して最終焼鈍板(製品)とした。なお、延性介在物の存在量、及び形態(長さ)の調整は、たとえば、酸素含有量とAl含有量の変更や熱間圧延での圧下スケジュールを変えることによって行った。
【0027】
得られた製品について平均結晶粒径の測定を行うとともに介在物の観察を行って延性介在物の長さ及び個数密度を測定した。ついで、上記製品に対し、需要家での歪取り焼鈍に相当する条件であるアルゴン(Ar)雰囲気にて750℃、2時間の焼鈍(以下、単に「歪取り焼鈍」という)を施し、最終焼鈍板と同様平均結晶粒径の測定を行った。
【0028】
図1はこのようにして得られた最終焼鈍後の鋼板の平均結晶粒径に対する歪取り焼鈍後の鋼板の平均結晶粒径の比(以下「歪取り焼鈍結晶粒成長比」という)とN含有量の関係を、平均再結晶粒径をDとしたとき、長さが3×D〜9×Dの介在物(以下「粒成長阻害延性介在物」という)の個数密度をパラメータとして表したグラフである。
【0029】
図1から分かるように、N含有量が0.0030%以下のとき、粒成長阻害延性介在物の個数密度が、1000個/cm以下であれば、歪取り焼鈍結晶粒成長比が2以上となる。しかしながら、粒成長阻害延性介在物の個数密度が、1000個/cm以下であっても、N含有量が0.0030%を超えるとき、あるいは粒成長阻害延性介在物の個数密度が、1000個/cmを超えるときは、歪取り焼鈍結晶粒成長比が2未満となる。
【0030】
(実験2)
同様の結果が次の実験2からも確かめられる。表1に示す組成を有する厚さ250mmのスラブを3本製造し、これらのスラブから機械加工により、厚さが25、50、100、200mm厚さになるように試料をそれぞれ切り出した。その後、これらの試料を1070℃に加熱後、熱間圧延にて2.5mmとした後、酸洗してから冷間圧延によって最終板厚0.5mmに仕上げた。ついで、再結晶焼鈍条件を700〜800℃の範囲で調整し、製品板の結晶粒径が12μmまたは14μmである製品板とした。
【0031】
得られた製品板にはAr雰囲気中で750℃、2時間の歪取り焼鈍を施した。これらの製品板(再結晶焼鈍板)および歪取り焼鈍板の板幅方向に垂直な断面を光学顕微鏡で観察し、その平均結晶粒径を測定した。また、製品板については粒成長阻害延性介在物の個数密度を測定した。その結果を表2に示す。同表に示したように、製品板の粒成長阻害延性介在物の個数密度が1000個/cm以下である試料では、歪取り焼鈍結晶粒成長比が大きい。
【0032】
【表1】

Figure 2004068084
【0033】
【表2】
Figure 2004068084
【0034】
上記により組成を制限し、かつ粒成長阻害延性介在物の個数密度を適正に制限すれば、歪取り焼鈍後の鋼板(ステータに組み上げられた鉄心材料)の平均結晶粒径を前記最終焼鈍後の粒径の2倍以上とすることができる。これによりステータにおける鉄損は大きく低減される。一方、ロータは最終焼鈍された状態の結晶粒が前記のように相対的に小さい状態の鋼板で組み立てられるから、その状態で使用することにより、強度、特に上降伏点(YP)を高く維持することができ、高速回転用の回転機を効率的に組み立てることが可能になる。
【0035】
鋼板強度を支配する平均結晶粒径の大きさは、回転機の特性に応じて要求されるロータの強度レベルに応じて設計すればよい。しかしながら、一般的な回転機であれば鋼板の最終焼鈍後における平均結晶粒径は6〜25μmが好適である。
【0036】
なお、本発明の権利範囲の解釈に影響を与えるものではないが、粒成長阻害延性介在物の個数密度によって歪取り焼鈍結晶粒成長比が支配される理由は以下のように考えられる。
【0037】
まず、結晶粒径と同程度の長さの介在物が、最も粒成長性を阻害すると考えられるからである。すなわち、延性介在物は一つの、あるいは二つ以上の結晶粒界を横切って存在し、その結晶粒の成長性を阻害する確率が高くなる。しかしながら、電磁鋼板中に存在する非金属介在物の総量が一定の場合は、その鋼中に占める体積分率はほぼ一定と見られるので、ツェナー(Zener)の式の示すところにより、結晶粒径に比べて極端に長い介在物は粒成長性を阻害する可能性が低くなる。いいかえれば、延性介在物が粒成長性を阻害する程度は、介在物の長さによって異なり、本発明者等の知見では延性非金属介在物の長さが最終焼鈍板の平均結晶粒の3〜9倍であるとき、すなわち粒成長阻害延性介在物のとき、最大となるのである。一方、非金属介在物の量は、直接、結晶粒の成長性を支配する。したがって、この範囲の長さの延性非金属介在物、すなわち「粒成長阻害延性介在物」の個数密度により「歪取り焼鈍結晶粒成長比」が影響を受けるのである。
【0038】
上記のように、無方向性電磁鋼板のSi、Mn、C、Sol.Al及びN含有量を制限しさらに粒成長阻害延性介在物の個数密度を1000個/cm以下に押さえることによって歪取り焼鈍結晶粒成長比を大きくとることができ、回転機用に適した高磁束密度無方向性電磁鋼板とすることができるが、鋼板組成においてTi、Nb及びV、さらにSb、Snを制限あるいは添加することにより、その効果を一層確実にすることができる。そのことは、以下の実験により確認できた。
【0039】
(実験3)
表3に示す組成からなる鋼塊を製造し、これらの鋼塊を1070℃に加熱後、熱間圧延にて2.5mmとした後、酸洗してから冷間圧延によって最終板厚0.5mmに仕上げた。ついで、800℃、10秒間の再結晶焼鈍をおこない製品板としたのち、750℃、2時間の歪取り焼鈍を施して製品板とした。得られた製品板および歪取り焼鈍後の製品板から、圧延方向と平行および圧延方向に直角に、それぞれサンプルを切りだし、JIS C 2550に準拠して磁束密度および鉄損を測定し、それらの平均値を求めた。測定結果は表3に併せて示す。
【0040】
【表3】
Figure 2004068084
【0041】
表3から分かるように、Tiを0.0020%以下、Nbを0.0050%以下、およびV量を0.0060%以下に制限することによって歪取り焼鈍後の磁気特性を一層良好にすることができる。また、SbまたはSnの1種または2種を添加することによって、歪取り焼鈍後の鉄損が大幅に改善できる。Ti、NbおよびV量を低減することによって、磁気特性が改善する理由は必ずしも明らかでないが、TiおよびNb、そしてVはともに窒化物形成元素であり、これらの窒化物が微細に析出すると、集合組織形成および結晶粒成長性に悪影響を及ぼす微細析出AlNと同様の害を与えるため、これらの元素を低減することによってこの種の害が防止される結果、良好な磁気特性が得られるものと考えられる。
【0042】
歪取り焼鈍後の磁気特性に影響を及ぼす理由も明らかではないが、低Alの含Si鋼にTi、NbおよびV量が多いと、熱延板焼鈍や再結晶焼鈍時に部分的に固溶した窒化物または炭化物が、歪取り焼鈍時に窒化物または炭化物として析出し、磁壁の移動を阻害する結果、鉄損の劣化が生じるものと考えられる。
【0043】
また、SbまたはSnの1種または2種を添加することによって、歪取り焼鈍後の鉄損が大幅に改善される理由も明らかではないが、SbやSnの偏析がV等の析出挙動に影響を与え、析出の抑制と析出物の粗大化が起こるためであると考えられる。
【0044】
このように溶銑やSi原料から不可避的にに混入する、Ti,NbおよびVの量を制限することによって、上記したSol.Alの低減による効果が一層高まるとともに、磁気特性のさらなる向上が達成される。特に、Alを極力低減した成分系では、TiおよびNb量の制限に加えて、V量を制限することが有利である。その効果は、特に歪取り焼鈍後の鉄損のが劣化防止において大きい。上記微量元素の制限についてまとめると以下のとおりである。
【0045】
Ti:0.0020%以下(0を含む)、Nb:0.0050%以下(0を含む)、およびV:0.0060%以下(0を含む)
Ti、NbおよびVは、微細な窒化物又は炭化物を形成して、集合組織の形成および結晶粒の成長性を阻害する。特に本発明にしたがい、Sol.Al及びN含有量を低く制限した無方向性電磁鋼板ではその傾向が著しい。これら元素をそれぞれTi:0.0020%以下、Nb:0.0050%以下、V:0.0060%以下に低減すれば、その窒化物又は炭化物形成傾向が抑制されて、特に歪取り焼鈍後の鉄損の劣化が防止できる。
【0046】
Sb:0.005〜0.10%およびSn:0.005〜0.2%から選んだ1種または2種
SbおよびSnは、窒化物の微細析出を抑制するとともにその粒成長阻害効果を低減することにより、磁気特性上有利な集合組織の形成を効果的に促進させる。その効果はSb:0.005%以上、Sn:0.005%以上で現れるが、それぞれ0.10%超え、0.2%超えでは却って粒成長性を阻害する。
【0047】
上記のほか、下記の元素を制限あるいは添加することにより本発明鋼の特性をより効果的に発揮させることができる。
【0048】
P:0.001〜0.2%およびNi:0.001〜0.2%から選んだ1種または2種
本発明の無方向性電磁鋼板は、低Siであるためその硬度が低く、打ち抜きの際にダレやつぶれが発生したり、打ち抜き時に発生するカエリが大きくなって鋼板の占積率を低下させる等の問題が発生するおそれがある。P及びNiは電磁鋼板の硬度を上昇させる効果がある。したがって、電磁特性、特に磁束密度を害しない範囲内で需要家の要求に応じこれら元素を添加することができる。
【0049】
REM:0.0001〜0.10%およびCa:0.0001〜0.01%から選んだ1種または2種
REMやCaは硫化物を粗大化して鉄損を向上する作用を有する。したがって、これら元素をその効果の発現範囲、すなわちREM:0.0001〜0.10%、Ca:0.0001〜0.01%において適宜添加することができる。
【0050】
S:0.0050%以下(0を含む)、0:0.0100%以下(0を含む)
Sは、0.0050%を超えると、MnやトランプエレメントのCuなどと結合してMnSやCuSを形成する傾向が強くなり、結晶粒成長を妨げる。また、Oは、0.0100%を超えると酸化物が増え、結晶粒成長を妨げる。したがってこれら元素は上記範囲内に制限するのが好ましい。
【0051】
本発明においては、最終焼鈍された鋼板の結晶粒径は、無方向性電磁鋼板に要求される強度レベル、鉄損レベルが、製造される回転機の特性によって変化するので一律に決定する必要はない。しかしながら、平均再結晶粒径Dを6〜25μmとすることは、先に述べた歪取り焼鈍結晶粒成長比を比較的大きく、たとえば、3以上とすることに有利に作用する。
【0052】
上記本発明に係る無方向性電磁鋼板の製造方法は、特に制限されない。代表的には、下記のプロセスによって製造することができる。まず、好適成分組成に調整された溶鋼を連続鋳造法によってスラブする。ついで、これを熱間圧延して熱延板とする。これに必要に応じて熱延板焼鈍した後、必要に応じて中間焼鈍を挟んで1回以上の冷間圧延を施して最終板厚に仕上げる。得られた冷延板に連続焼鈍を施した上で必要に応じて絶縁コーティングを施す。
【0053】
本発明においては介在物のうち延性介在物の量、及び存在形態、特に平均結晶粒径に対する長さが所定範囲内となる延性介在物を低減すること、すなわち粒成長阻害延性介在物の量を1000個/cm以下にすることが肝要である。このようなコントロールは以下の手段のいずれか一又はそれらの組み合わせによって達成することができる。
【0054】
まず、酸素含有量を低減することによりスラブ中の介在物の絶対量を減少させる手段がある。また、スラブ中の介在物をAlやMn量の増加により延性化させたり、逆にAlやMn量の低減により非延性化(微細化)させる手段が有効である。さらに、熱延以後の累積圧下率が大きくなれば延性介在物は長くなり小さくなれば短くなる傾向にあるので、スラブ圧下率を増減、あるいは製品板厚の増減により非金属介在物の長さを調整して最終焼鈍された鋼板の平均再結晶粒径の3倍未満または9倍超とすることもできる。逆に最終焼鈍での温度や均熱時間等の条件を変更して平均結晶粒径を増減させ、その結果として非金属介在物の長さを平均結晶粒径の3倍未満または9倍超とすることもできる。
【0055】
また、上記製造プロセスにおいて、最終板厚に冷間圧延した冷延板に施す連続焼鈍の焼鈍温度を700〜800℃とすることは、平均結晶粒径を6〜25μmに調整し、あるいは鋼板の硬度を適当なレベル、たとえばビッカース硬さ(Hv)を100〜170に調整するのに好ましい。
【0056】
このようにして製造された無方向性電磁鋼板は、回転機用の鉄心に打ち抜き、ロータ及びステータに組み立てることができる。その際、同一の鋼板からロータとステータようの鉄心材料を同時に打ち抜き、それぞれ積層してロータ及びステータ部材に組み立てた後、ステータ部材にのみ歪取り焼鈍を施して、粒成長を促し、その鉄損を下げることができる。この歪取り焼鈍の条件は、歪取り焼鈍結晶粒成長比が2以上になるものであればよいが、たとえば不活性ガス雰囲気中で750℃、2時間程度とすることが望ましい。この際、ロータ用鉄心部材には粒成長を伴う歪取り焼鈍は行わず、高い強度を保ったままにするのがよい。
【0057】
なお、最終焼鈍された無方向性電磁鋼板には、さらに軽度の歪み、たとえば0.5〜5%程度の圧延歪みを付与した後、700〜800℃の歪取り焼鈍を施し、再結晶を促して結晶粒径を30〜100μmに成長させることができる。このように処理された鋼板は、特に低鉄損が要求されるステータの組み立てに利用することができる。
【0058】
【実施例】
以下、実施例に基づき本発明の実施形態をより具体的にする。
【0059】
(実施例1)
表4に示す成分組成を有するスラブを連続鋳造法により製造した。これらのスラブを1110℃で40分間加熱した後、仕上圧延を行い厚さ2.5mmの熱延板とした。得られた熱延板を酸洗し、スケール除去を施してから冷間圧延により厚さ0.50mmの冷延板に仕上げた。ついで、容量比で水素:50%と窒素:50%の雰囲気中で、780℃、10秒の最終焼鈍を施した。得られた最終焼鈍板には重クロム酸塩と樹脂からなる半有機コーティング液を塗布し、300℃で焼きつけて最終製品とした。なお、粒成長阻害延性介在物の量は、スラブ厚さの変更や熱間圧延での圧下スケジュールの変更によって変動させた。
【0060】
得られた製品からサンプルを切出し、JIS C2550に準拠して磁束密度、鉄損、上降伏点(YP)およびビッカース硬さ(Hv)を測定した。また、平均結晶粒径および粒成長阻害延性介在物の個数密度を測定した。なお、測定は幅方向に垂直な面について行った。
【0061】
ついで、上記製品をアルゴン雰囲気中にて750℃、2時間の歪取り焼鈍を行ったのち、前記製品について行ったのと同様にして鉄損および平均結晶粒径を測定するとともに、歪取り焼鈍結晶粒成長比を求めた。
【0062】
【表4】
Figure 2004068084
【0063】
得られた結果を表5に示す。表4及び表5に示すように、本発明にしたがう成分組成及び粒成長阻害介在物個数密度を有するものは歪取り焼鈍結晶粒成長比が大きく、製品(最終焼鈍状態)の上降伏点(YP)およびビッカース硬さ(Hv)が比較的高いことと相俟って、回転機のロータ及びステータを同時に打ち抜いて製作するのに適したものとなっている。
【0064】
【表5】
Figure 2004068084
【0065】
(実施例2)
表6に示す成分組成を有する厚さ210mmの連続鋳造スラブを製造した。その際、製鋼プロセスにおけるスラグ組成の適正化と成分組成によるスラブ厚および熱延条件の適正化により結晶粒阻害延性介在物量が1000個/cmの範囲に収まるようにした。得られたスラブを実施例1の場合と同様に処理して製品とし、実施例1の場合と同様に試験した。ただし、鋼記号58の最終焼鈍は680℃、鋼記号59の最終焼鈍は850℃で行った。得られた結果を表7に示す。表7に示したとおり、本発明にしたがう成分組成、平均結晶粒径を有するものはいずれも優れた歪取り焼鈍結晶粒成長比を有し、それにより回転機のロータ及びステータの同時打ち抜き製造に適したものとなっている。
【0066】
【表6】
Figure 2004068084
【0067】
【表7】
Figure 2004068084
【0068】
上記のように本発明により、回転機用ロータ及びステータを製造するのに極めて適した無方向性電磁鋼板を提供できる。しかしながら、本発明に係る無方向性電磁鋼板は、それに留まらず、いわゆるリサイクル性が優れているという特徴を有する。すなわち、鋼板のAl含有量が高いときは、鉄心材料をリサイクルしてモータのシャフトなどを鋳造する場合、溶鋼の表面酸化が進行して粘性が増大して溶鋼の鋳型内充填性が低下するために、健全な鋳物が得られないことがあり、一般にAlを含むスクラップはリサイクル性に乏しいとされていたが、本発明に係る無方向性電磁鋼板は低Al材であり、鋳造のためのリサイクル性は極めて高い。
【0069】
【発明の効果】
本発明にしたがう高磁束密度無方向性電磁鋼板により、同一の鋼板からロータ材及びステータ材の同時採取をしながら、ロータ材には高い磁束密度及び高強度を、ステータ材には高い磁束密度及び低鉄損を付与し得る。これにより、回転機用部材、ひいては回転機の製造効率、出力特性を大幅に向上し得る。併せて、本発明に係る無方向性電磁鋼板は、鋳造の際のリサイクル性に優れ、打ち抜き材のスクラップをリサイクルする場合の鋳造性が改善される。
【図面の簡単な説明】
【図1】最終焼鈍後の鋼板の平均結晶粒径に対する歪取り焼鈍後の鋼板の平均結晶粒径の比とN含有量の関係を粒成長阻害延性非金属介在物の存在個数をパラメータとして表したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to a non-oriented electrical steel sheet used for assembling a rotating machine, in particular, has a high magnetic flux density and high strength when assembled to a rotor of a rotating machine, and has a high magnetic flux density and low iron when used for a stator. The present invention relates to a non-oriented electrical steel sheet having excellent properties, which is a loss, and a rotating member assembled using the same.
[0002]
[Prior art]
In order to reduce the energy consumption of the rotating machine, it is effective to increase the magnetic flux density of the iron core (rotor and stator) and reduce the iron loss. Among these, as means for reducing iron loss, means for increasing the electric resistance of the iron core material by increasing the content of Si, Al, Mn or the like has been generally used. In addition to these means, for example, a method of adding B in JP-A-58-15143, a method of adding Ni in JP-A-3-281758, and the like are known. Also, there is a method of improving magnetic properties by making the texture of the magnetic steel sheet preferentially grow crystal grains having, for example, <100><UVW> orientation. For example, Japanese Patent Application Laid-Open No. 58-181822 discloses a method. It has been proposed in gazettes and the like. By this means, the magnetic flux flow in the rotating machine iron core can be optimized, and it becomes possible to manufacture an iron core having a high magnetic flux density and a low iron loss.
[0003]
In manufacturing a core for a rotating machine, a rotor core plate and a stator core plate are generally stamped out of the same steel plate by a press in order to maintain a high yield of materials. Then, the rotor core plate and the stator core plate are each laminated and assembled into a rotor and a stator.
[0004]
Among them, the rotor is a rotating member, and high strength is required because of high stress accompanying high-speed rotation. Particularly in recent years, in order to increase the efficiency of a rotating machine (motor), a rotor in which a rare-earth magnet is embedded has been developed, and the rotation speed of the rotor has been significantly increased. Therefore, the magnetic steel sheet constituting the rotor is required to have a higher magnetic flux density and strength, for example, a higher yield point (YP) than in the past. On the other hand, it is important that the stator has a high magnetic flux density and a low iron loss in order to reduce the size of the rotating machine and save energy.
[0005]
[Problems to be solved by the invention]
As described above, even if the electromagnetic steel sheet is used for the same motor, the steel sheet used for assembling the rotor (hereinafter referred to as “rotor material”) and the steel sheet used for assembling the stator (hereinafter referred to as “stator material”) ) Greatly differs in required characteristics. Conventionally proposed technologies, even if individually satisfying characteristics as a rotor material or a stator material, have not been directed to satisfy both of these characteristics.
[0006]
The present invention provides a high magnetic flux density and a high strength for a rotor material and a high magnetic flux density for a high magnetic flux density and a low iron loss in a stator material while simultaneously sampling a rotor material and a stator material from the same steel plate. An object of the present invention is to propose a non-oriented electrical steel sheet and further propose a member for a rotating machine using the same.
[0007]
[Means for Solving the Problems]
The inventor of the present invention has determined that the saturation magnetic flux density of a non-oriented electrical steel sheet is determined by the iron content (mainly represented by mass%) of the material. It was noted that the density was inevitably reduced, while the magnetic flux density and strength were governed by the crystal grain size of the steel sheet. Also, in the process of assembling the rotor and the stator of the rotating machine at the customer, attention was paid to the fact that after the core plate for the rotor and the core plate for the stator were punched from the steel plate, the strain relief annealing was performed. Furthermore, the inventors focused on the fact that the rotor and the stator can be provided with necessary characteristics by optimizing the crystal grain size of the non-oriented electrical steel sheet having a low Si content in the manufacturing process of the rotor and the stator.
[0008]
Furthermore, the factors that govern the growth of the crystal grain size in the strain relief annealing process performed during the stator assembly process are explored to suppress fine precipitates such as AlN, and the number of ductile nonmetallic inclusions dispersed in the steel sheet. By limiting the density to a predetermined value or less in relation to the average grain size of the finally annealed steel sheet, the grain size is reduced in a strain relief annealing process (about 2 hours at 750 ° C.) performed in a stator assembly process at a customer. The present inventors have found that the diameter can be sufficiently grown, and have reached the present invention.
[0009]
The high magnetic flux density non-oriented electrical steel sheet for a rotating machine of the present invention contains Si: 0.1% to 1.2% and Mn: 0.005 to 0.30% by mass ratio, and C: 0.0050. % (Including 0), Sol. Al: limited to 0.0004% or less (including 0), N: limited to 0.0030% or less (including 0), the balance consisting of Fe and unavoidable impurities, and dispersing in the steel sheet to inhibit grain growth and ductile nonmetallic inclusions Number density of 1000 / cm 2 Hereafter (including 0). Here, the term "grain growth-inhibiting ductile nonmetallic inclusions" refers to inclusions having a length of 3 × D to 9 × D, where D is the average recrystallized grain size of the finally annealed steel sheet.
[0010]
In the above invention, one or two selected from Sb: 0.005 to 0.10% and Sn: 0.005 to 0.2% by mass ratio, or P: 0. It is preferable to further contain one or two selected from 001 to 0.2% and Ni: 0.001 to 0.2%. Further, one or two selected from REM: 0.0001 to 0.10% and Ca: 0.0001 to 0.01% by mass ratio can be further contained.
[0011]
In addition, among the inevitable impurities, S and O are preferably limited to a mass ratio of S: 0.0050% or less (including 0) and 0: 0.0100% or less (including 0). Similarly, among the inevitable impurities, Ti, Nb, and V are, by mass ratio, Ti: 0.0020% or less (including 0), Nb: 0.0050% or less (including 0), and V: 0.0060% or less. (Including 0).
[0012]
In the above invention, the steel sheet after the final annealing preferably has an average recrystallized grain size D of 6 to 25 μm.
[0013]
The non-oriented electrical steel sheet according to each of the above inventions is obtained by subjecting a slab for a non-oriented electrical steel sheet to a cold-rolled steel sheet having a final thickness by a usual method, and then subjecting the slab to final annealing at 700 to 800 ° C. Is preferred.
[0014]
The non-oriented electrical steel sheets according to the above inventions can be punched and then laminated to form a high-strength rotating machine rotor member. Moreover, after punching and laminating, it can be further subjected to strain relief annealing to obtain a low iron loss rotating machine stator member.
[0015]
In addition, the non-oriented electrical steel according to each of the above inventions, after processing the slab for a non-oriented electrical steel sheet by a conventional method to form a cold-rolled steel sheet having a final thickness, subjected to final annealing at 700 to 800 ° C. May be further subjected to strain relief annealing at 700 to 800 ° C. to grow the crystal grain size to twice or more the grain size after final annealing.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The magnetic steel sheet of the present invention has the following chemical composition in mass ratio.
[0017]
Si: 0.1 to 1.2%
In order to increase the electrical resistance of the steel sheet and reduce iron loss, it is necessary to contain at least 0.1% of Si. However, when the Si content exceeds 1.2%, only the magnetic flux density is reduced. In addition, hardness increases and workability deteriorates. Therefore, the Si content is in the range of 0.1 to 1.2%.
[0018]
Mn: 0.005 to 0.30%
Mn is a component necessary for obtaining good workability during hot rolling, and for that purpose, it is necessary to contain 0.005% or more. However, when it exceeds 0.30%, the magnetic flux density decreases. Therefore, the content of Mn is set to 0.005 to 0.30%.
[0019]
C: 0.0050% or less (including 0)
C needs to be reduced as much as possible to suppress magnetic aging deterioration. Further, in order to sufficiently exhibit the effect of improving the texture under the ultra-low Al conditions employed in the present invention, the content must be reduced to 0.0050% or less. However, this reduction of C does not necessarily have to be achieved at the stage of the molten steel or slab as the starting material, but may be achieved by the time the final annealing is performed during the manufacturing process of the steel sheet.
[0020]
Sol. Al: 0.0004% or less (including 0)
In order to obtain excellent grain growth and magnetic properties, it is necessary to reduce the Al content of the steel sheet to 0.0004% or less. If the Al content exceeds 0.0004%, AlN precipitates in the steel sheet, and the magnetic flux density of the finally annealed product decreases. Further, the grain growth during the strain relief annealing performed after the punching of the stator is hindered, and the iron loss value cannot be sufficiently reduced.
[0021]
N: 0.0030% or less (including 0)
N combines with Al and causes precipitation of nitride (AlN), and also combines with Ti and the like to form various nitrides, thereby reducing the magnetic flux density of the finally annealed product. In addition, it hinders the grain growth during strain relief annealing performed after punching into the stator, which hinders a sufficient decrease in iron loss value. Therefore, it is necessary to reduce the N content to 0.003% or less, preferably 0.0025% or less.
[0022]
Although the non-oriented electrical steel sheet of the present invention has the above basic composition, the object of the present invention cannot be achieved by itself. When the average recrystallized grain size of the steel sheet among the ductile non-metallic inclusions dispersed in the finally annealed steel sheet is D, the length is 3 × D to 9 × D. Number density of ductile non-metallic inclusions is 1000 / cm 2 The following (including 0) is required.
[0023]
Here, the average recrystallized grain size is 0.5 mm 2 The number of crystal grains present in the area is measured, and the average area per crystal grain is calculated based on the number. The diameter of a circle equal to the average area is referred to. This average crystal grain size is measured by observing a cross section perpendicular to the width direction of the steel sheet with an optical microscope.
[0024]
The ductile nonmetallic inclusions refer to rod-shaped inclusions elongated in the rolling direction and inclusions that are continuously arranged in the rolling direction. Further, when two or more inclusions within a distance of 10 μm are arranged in a direction within ± 5 ° with respect to the rolling direction, these inclusions are regarded as being connected to each other as one ductile inclusion. .
[0025]
The length of the ductile inclusion refers to the maximum value of the length of a line segment drawn between any two points at the interface between the base iron and the inclusion, that is, the distance between both ends of the ductile inclusion. To measure the number of existing steel sheets, a section perpendicular to the width direction of the steel sheet was polished, and the as-polished surface (without performing any corrosion treatment, etc.) was observed with an optical microscope. Approved as inclusions, observation field for one sample is 5mm 2 The number of inclusions recognized as ductile inclusions among the inclusions identified above as 1 cm was measured. 2 Rebate per hit to determine the number density. In addition to the above ductile inclusions, there are isolated circular inclusions, which are not counted as ductile inclusions as non-ductile inclusions.
[0026]
(Experiment 1)
C: 0.002%, Si: 0.7%, Mn: 0.2%, Sol. A slab was manufactured in which Al: 0.0004% or less, S: 0.002%, and the remaining unavoidable impurities as basic components, and N was changed in the range of 0.0010 to 0.0060%. The obtained slab is heated to 1100 ° C., hot-rolled to a thickness of 2.3 mm, pickled, cold-rolled to a final thickness of 0.35 mm, and further recrystallized at 800 ° C. for 15 seconds. To give a final annealed plate (product). The amount of ductile inclusions and the form (length) were adjusted by, for example, changing the oxygen content and the Al content and changing the rolling schedule in hot rolling.
[0027]
The average crystal grain size of the obtained product was measured, and the inclusions were observed to measure the length and the number density of the ductile inclusions. Next, the product is annealed at 750 ° C. for 2 hours (hereinafter simply referred to as “strain relief annealing”) in an argon (Ar) atmosphere, which is a condition corresponding to the strain relief annealing at the customer, and is finally annealed. The average crystal grain size was measured as in the case of the plate.
[0028]
FIG. 1 shows the ratio of the average grain size of the steel sheet after strain relief annealing to the average grain size of the steel sheet after final annealing thus obtained (hereinafter referred to as “strain relief annealing grain growth ratio”) and N content. A graph expressing the number density of inclusions (hereinafter referred to as “grain growth-inhibiting ductile inclusions”) having a length of 3 × D to 9 × D, as a parameter, where D is the average recrystallized grain size in the relationship between the amounts. It is.
[0029]
As can be seen from FIG. 1, when the N content is 0.0030% or less, the number density of the grain growth-inhibiting ductile inclusions is 1000 / cm. 2 If it is below, the strain relief annealing crystal grain growth ratio becomes 2 or more. However, the number density of the grain growth-inhibiting ductile inclusions is 1000 / cm 2 Even when the N content is less than 0.0030%, or when the number density of the grain growth inhibiting ductile inclusions is 1000 2 When it exceeds, the strain relief annealing crystal grain growth ratio is less than 2.
[0030]
(Experiment 2)
Similar results can be confirmed from the following Experiment 2. Three 250 mm thick slabs having the compositions shown in Table 1 were produced, and samples were cut out of these slabs by machining to have thicknesses of 25, 50, 100, and 200 mm, respectively. Thereafter, these samples were heated to 1070 ° C., hot-rolled to 2.5 mm, pickled, and cold-rolled to a final thickness of 0.5 mm. Next, the recrystallization annealing conditions were adjusted in the range of 700 to 800 ° C. to obtain a product plate having a crystal grain size of 12 μm or 14 μm.
[0031]
The obtained product plate was subjected to strain relief annealing at 750 ° C. for 2 hours in an Ar atmosphere. The cross sections perpendicular to the sheet width direction of these product sheets (recrystallization annealing sheets) and strain relief annealing sheets were observed with an optical microscope, and the average crystal grain size was measured. The number density of the grain growth-inhibiting ductile inclusions was measured for the product sheet. Table 2 shows the results. As shown in the table, the number density of the grain growth-inhibiting ductile inclusions on the product sheet was 1000 / cm. 2 In the following samples, the strain relief annealing crystal grain growth ratio is large.
[0032]
[Table 1]
Figure 2004068084
[0033]
[Table 2]
Figure 2004068084
[0034]
If the composition is restricted as described above and the number density of the grain growth-inhibiting ductile inclusions is properly restricted, the average crystal grain size of the steel sheet after the strain relief annealing (the core material assembled into the stator) is adjusted to the average crystal grain size after the final annealing. It can be at least twice the particle size. Thereby, iron loss in the stator is greatly reduced. On the other hand, since the rotor is assembled from a steel sheet in which the crystal grains in the final annealed state are relatively small as described above, the strength, particularly the upper yield point (YP), is maintained high by using the rotor in that state. It is possible to efficiently assemble a rotating machine for high-speed rotation.
[0035]
The size of the average crystal grain size that governs the strength of the steel sheet may be designed according to the strength level of the rotor required according to the characteristics of the rotating machine. However, in the case of a general rotating machine, the average crystal grain size after the final annealing of the steel sheet is preferably 6 to 25 μm.
[0036]
Although the interpretation of the scope of the right of the present invention is not affected, the reason why the strain relief annealing crystal grain growth ratio is controlled by the number density of the grain growth inhibiting ductile inclusions is considered as follows.
[0037]
First, inclusions having the same length as the crystal grain size are considered to most hinder grain growth. That is, the ductile inclusion exists across one or two or more crystal grain boundaries, and the probability of inhibiting the growth of the crystal grains increases. However, when the total amount of nonmetallic inclusions present in the magnetic steel sheet is constant, the volume fraction occupied in the steel is considered to be almost constant. Extremely long inclusions are less likely to inhibit grain growth. In other words, the degree to which the ductile inclusions inhibit the grain growth depends on the length of the inclusions. According to the knowledge of the present inventors, the length of the ductile nonmetallic inclusions is 3 to 3 times the average grain size of the final annealed sheet. When the ratio is 9 times, that is, when it is a grain growth-inhibiting ductile inclusion, it becomes the maximum. On the other hand, the amount of nonmetallic inclusions directly governs the growth of crystal grains. Therefore, the “strain relief annealing crystal grain growth ratio” is affected by the number density of the ductile nonmetallic inclusions having a length in this range, that is, “grain growth inhibiting ductile inclusions”.
[0038]
As described above, the Si, Mn, C, Sol. The content density of Al and N is restricted, and the number density of the grain growth inhibiting ductile inclusions is 1000 / cm. 2 The strain reduction annealing crystal grain growth ratio can be increased by suppressing the following, and a high magnetic flux density non-oriented electrical steel sheet suitable for a rotating machine can be obtained. However, in the steel sheet composition, Ti, Nb and V, and By limiting or adding Sb and Sn, the effect can be further ensured. This was confirmed by the following experiment.
[0039]
(Experiment 3)
Steel ingots having the compositions shown in Table 3 were produced, and these ingots were heated to 1070 ° C., hot-rolled to 2.5 mm, pickled, and then cold-rolled to a final thickness of 0.1 mm. Finished to 5 mm. Next, after recrystallization annealing was performed at 800 ° C. for 10 seconds to obtain a product plate, the product plate was subjected to strain relief annealing at 750 ° C. for 2 hours to obtain a product plate. From the obtained product sheet and the product sheet after the strain relief annealing, samples were cut out in parallel with the rolling direction and at right angles to the rolling direction, and the magnetic flux density and iron loss were measured in accordance with JIS C 2550, The average was determined. The measurement results are shown in Table 3.
[0040]
[Table 3]
Figure 2004068084
[0041]
As can be seen from Table 3, by limiting the content of Ti to 0.0020% or less, the content of Nb to 0.0050% or less, and the amount of V to 0.0060% or less, the magnetic properties after strain relief annealing are further improved. Can be. Also, by adding one or two of Sb or Sn, the iron loss after strain relief annealing can be significantly improved. The reason why the magnetic properties are improved by reducing the amounts of Ti, Nb, and V is not always clear, but Ti, Nb, and V are both nitride-forming elements. Since it causes the same harm as finely precipitated AlN which has a bad influence on the structure formation and crystal grain growth, it is considered that by reducing these elements, this kind of harm is prevented and as a result good magnetic properties can be obtained. Can be
[0042]
The reason for affecting the magnetic properties after strain relief annealing is not clear, but if the amount of Ti, Nb, and V is large in the low Al-containing Si steel, a partial solid solution occurs during hot-rolled sheet annealing or recrystallization annealing. It is considered that nitrides or carbides precipitate as nitrides or carbides during strain relief annealing and hinder domain wall movement, resulting in deterioration of iron loss.
[0043]
Further, it is not clear why the addition of one or two of Sb or Sn significantly improves iron loss after strain relief annealing, but segregation of Sb or Sn affects precipitation behavior such as V. This is considered to be due to suppression of precipitation and coarsening of precipitates.
[0044]
By limiting the amounts of Ti, Nb and V that are inevitably mixed from the hot metal or the Si raw material, the above Sol. The effect of the reduction of Al is further enhanced, and the magnetic properties are further improved. In particular, in a component system in which Al is reduced as much as possible, it is advantageous to limit the amount of V in addition to the amount of Ti and Nb. The effect is particularly large in preventing iron loss after strain relief annealing. The restrictions on the trace elements are summarized as follows.
[0045]
Ti: 0.0020% or less (including 0), Nb: 0.0050% or less (including 0), and V: 0.0060% or less (including 0)
Ti, Nb, and V form fine nitrides or carbides and inhibit the formation of texture and the growth of crystal grains. In particular, according to the present invention, Sol. The tendency is remarkable in a non-oriented electrical steel sheet in which the contents of Al and N are limited to be low. If these elements are reduced to Ti: 0.0020% or less, Nb: 0.0050% or less, and V: 0.0060% or less, their tendency to form nitrides or carbides is suppressed, particularly after strain relief annealing. Iron loss can be prevented from deteriorating.
[0046]
One or two selected from Sb: 0.005 to 0.10% and Sn: 0.005 to 0.2%
Sb and Sn effectively promote the formation of a texture that is advantageous in magnetic properties by suppressing the fine precipitation of nitride and reducing the effect of inhibiting grain growth. The effect appears when Sb is 0.005% or more and Sn is 0.005% or more. However, when it exceeds 0.10% and 0.2%, respectively, it rather inhibits grain growth.
[0047]
In addition to the above, the characteristics of the steel of the present invention can be more effectively exhibited by limiting or adding the following elements.
[0048]
P: One or two selected from 0.001 to 0.2% and Ni: 0.001 to 0.2%
The non-oriented electrical steel sheet of the present invention has a low hardness due to low Si, causing sagging and crushing at the time of punching, and causing burrs generated at the time of punching to decrease the space factor of the steel sheet. Problem may occur. P and Ni have the effect of increasing the hardness of the magnetic steel sheet. Therefore, these elements can be added as required by the customer within a range that does not impair the electromagnetic characteristics, particularly the magnetic flux density.
[0049]
REM: one or two selected from 0.0001 to 0.10% and Ca: 0.0001 to 0.01%
REM and Ca have the effect of coarsening sulfides and improving iron loss. Therefore, these elements can be appropriately added in the range where the effect is exhibited, that is, REM: 0.0001 to 0.10% and Ca: 0.0001 to 0.01%.
[0050]
S: 0.0050% or less (including 0), 0: 0.0100% or less (including 0)
If S exceeds 0.0050%, S bonds with Mn or Cu of a playing card element to form MnS or Cu. 2 The tendency to form S becomes strong and hinders crystal grain growth. Further, if O exceeds 0.0100%, the amount of oxides increases and hinders crystal grain growth. Therefore, it is preferable to limit these elements to the above range.
[0051]
In the present invention, the crystal grain size of the steel sheet finally annealed, the strength level required for the non-oriented electrical steel sheet, the iron loss level, depends on the characteristics of the rotating machine to be manufactured, it is necessary to uniformly determine Absent. However, setting the average recrystallized grain size D to 6 to 25 μm is advantageous in that the above-mentioned strain relief annealing crystal grain growth ratio is relatively large, for example, 3 or more.
[0052]
The method for producing the non-oriented electrical steel sheet according to the present invention is not particularly limited. Typically, it can be manufactured by the following process. First, slab of molten steel adjusted to a suitable component composition is produced by a continuous casting method. Next, this is hot-rolled to obtain a hot-rolled sheet. After annealing the hot-rolled sheet as required, the sheet is subjected to one or more cold rolling steps with intermediate annealing as necessary to finish to a final sheet thickness. The obtained cold-rolled sheet is subjected to continuous annealing and, if necessary, an insulating coating.
[0053]
In the present invention, the amount of ductile inclusions among the inclusions, and the existing form, particularly to reduce the ductile inclusions whose length with respect to the average crystal grain size is within a predetermined range, that is, the amount of the grain growth inhibiting ductile inclusions 1000 pieces / cm 2 It is important to: Such control can be achieved by any one of the following means or a combination thereof.
[0054]
First, there is a means for reducing the absolute content of inclusions in the slab by reducing the oxygen content. Further, it is effective to make the inclusions in the slab ductile by increasing the amount of Al or Mn, or conversely, to make the inclusions non-ductile (miniaturized) by reducing the amount of Al or Mn. Furthermore, since the ductile inclusions tend to be longer if the cumulative rolling reduction after hot rolling increases, and shorter if they decrease, the length of nonmetallic inclusions may be increased or decreased by increasing or decreasing the slab reduction ratio or increasing or decreasing the product sheet thickness. It can be adjusted to be less than 3 times or more than 9 times the average recrystallized grain size of the final annealed steel sheet. Conversely, conditions such as temperature and soaking time in final annealing are changed to increase or decrease the average grain size, and as a result, the length of the nonmetallic inclusions is reduced to less than 3 times or more than 9 times the average grain size. You can also.
[0055]
Further, in the above manufacturing process, the annealing temperature of the continuous annealing applied to the cold-rolled sheet cold-rolled to the final sheet thickness is set to 700 to 800 ° C., by adjusting the average crystal grain size to 6 to 25 μm, or It is preferable to adjust the hardness to an appropriate level, for example, Vickers hardness (Hv) of 100 to 170.
[0056]
The non-oriented electrical steel sheet manufactured in this manner can be punched into an iron core for a rotating machine and assembled into a rotor and a stator. At that time, core materials such as a rotor and a stator are simultaneously punched from the same steel plate, laminated and assembled into a rotor and a stator member, and then subjected to strain relief annealing only on the stator member to promote grain growth, thereby increasing the iron loss. Can be lowered. The condition of the strain relief annealing may be such that the crystal growth ratio of the strain relief annealing is 2 or more. For example, it is preferable that the strain relief annealing is performed at 750 ° C. for about 2 hours in an inert gas atmosphere. At this time, it is preferable that high strength is maintained without performing strain relief annealing accompanied by grain growth on the rotor core member.
[0057]
The non-oriented electrical steel sheet subjected to the final annealing is further given a slight strain, for example, a rolling strain of about 0.5 to 5%, and then subjected to strain relief annealing at 700 to 800 ° C. to promote recrystallization. Thus, the crystal grain size can be grown to 30 to 100 μm. The steel sheet thus treated can be used particularly for assembling a stator requiring low iron loss.
[0058]
【Example】
Hereinafter, embodiments of the present invention will be described more specifically based on examples.
[0059]
(Example 1)
Slabs having the component compositions shown in Table 4 were produced by a continuous casting method. After heating these slabs at 1110 ° C for 40 minutes, finish rolling was performed to obtain a hot-rolled sheet having a thickness of 2.5 mm. The obtained hot-rolled sheet was pickled, scale-removed, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.50 mm. Then, final annealing was performed at 780 ° C. for 10 seconds in an atmosphere of 50% hydrogen and 50% nitrogen at a volume ratio. A semi-organic coating solution comprising a dichromate and a resin was applied to the obtained final annealed plate and baked at 300 ° C. to obtain a final product. The amount of the grain growth-inhibiting ductile inclusion was varied by changing the slab thickness or the rolling schedule in hot rolling.
[0060]
A sample was cut out from the obtained product, and the magnetic flux density, iron loss, upper yield point (YP) and Vickers hardness (Hv) were measured according to JIS C2550. Further, the average crystal grain size and the number density of the grain growth inhibiting ductile inclusions were measured. The measurement was performed on a plane perpendicular to the width direction.
[0061]
Then, the above product was subjected to strain relief annealing at 750 ° C. for 2 hours in an argon atmosphere, and then the iron loss and average crystal grain size were measured in the same manner as performed for the product. The grain growth ratio was determined.
[0062]
[Table 4]
Figure 2004068084
[0063]
Table 5 shows the obtained results. As shown in Tables 4 and 5, those having a component composition and a grain growth-inhibiting inclusion number density according to the present invention have a large strain relief annealing crystal grain growth ratio and an upper yield point (YP) of the product (final annealing state). ) And the relatively high Vickers hardness (Hv) make it suitable for punching and manufacturing the rotor and stator of a rotating machine simultaneously.
[0064]
[Table 5]
Figure 2004068084
[0065]
(Example 2)
A continuous cast slab having a thickness of 210 mm having the component composition shown in Table 6 was produced. At that time, the amount of crystal grain-inhibiting ductile inclusions was 1000 / cm by optimizing the slag composition and slab thickness and hot rolling conditions by the component composition in the steelmaking process. 2 In the range. The obtained slab was processed in the same manner as in Example 1 to obtain a product, and tested in the same manner as in Example 1. However, the final annealing of steel symbol 58 was performed at 680 ° C, and the final annealing of steel symbol 59 was performed at 850 ° C. Table 7 shows the obtained results. As shown in Table 7, those having a component composition and an average grain size according to the present invention all have an excellent strain relief annealing grain growth ratio, which makes it possible to simultaneously manufacture a rotor and a stator of a rotary machine. It is suitable.
[0066]
[Table 6]
Figure 2004068084
[0067]
[Table 7]
Figure 2004068084
[0068]
As described above, according to the present invention, it is possible to provide a non-oriented electrical steel sheet which is extremely suitable for manufacturing a rotor and a stator for a rotating machine. However, the non-oriented electrical steel sheet according to the present invention is not limited thereto, and has a feature of being excellent in so-called recyclability. That is, when the Al content of the steel sheet is high, when the iron core material is recycled and a motor shaft or the like is cast, the surface oxidation of the molten steel proceeds, the viscosity increases, and the filling property of the molten steel in the mold decreases. However, a sound casting may not be obtained, and scrap containing Al is generally considered to be poor in recyclability.However, the non-oriented electrical steel sheet according to the present invention is a low Al material, Sex is extremely high.
[0069]
【The invention's effect】
With the high magnetic flux density non-oriented electrical steel sheet according to the present invention, while simultaneously collecting the rotor material and the stator material from the same steel sheet, the rotor material has a high magnetic flux density and high strength, and the stator material has a high magnetic flux density and Low iron loss can be imparted. Thereby, the manufacturing efficiency and output characteristics of the rotating machine member, and eventually the rotating machine, can be greatly improved. In addition, the non-oriented electrical steel sheet according to the present invention has excellent recyclability at the time of casting, and improves the castability at the time of recycling scraps from a punched material.
[Brief description of the drawings]
FIG. 1 is a table showing the relationship between the ratio of the average crystal grain size of a steel sheet after strain relief annealing to the average crystal grain size of a steel sheet after final annealing and the N content using the number of grain growth-inhibiting ductile nonmetallic inclusions as a parameter. It is the graph which did.

Claims (11)

質量比でSi:0.1%〜1.2%及びMn:0.005〜0.30%を含有し、C:0.0050%以下(0を含む)、Sol.Al:0.0004%以下(0を含む)、N:0.0030%以下(0を含む)に制限され、残部Fe及び不可避不純物からなり、鋼板中に分散する粒成長阻害延性非金属介在物の個数密度が1000個/cm以下(0を含む)であることを特徴とする回転機用高磁束密度無方向性電磁鋼板。ここに粒成長阻害延性非金属介在物とは最終焼鈍された鋼板の平均再結晶粒径をDとしたとき、長さが3×D〜9×Dの介在物をいう。It contains Si: 0.1% to 1.2% and Mn: 0.005 to 0.30% by mass ratio, C: 0.0050% or less (including 0), Sol. Al: limited to 0.0004% or less (including 0), N: limited to 0.0030% or less (including 0), the balance consisting of Fe and unavoidable impurities, and which is dispersed in the steel plate and inhibits grain growth-inhibiting ductile nonmetallic inclusions A high magnetic flux density non-oriented electrical steel sheet for a rotating machine, characterized in that the number density is 1000 pieces / cm 2 or less (including 0). Here, the term "grain growth-inhibiting ductile nonmetallic inclusions" refers to inclusions having a length of 3 × D to 9 × D, where D is the average recrystallized grain size of the finally annealed steel sheet. 質量比でSb:0.005〜0.10%およびSn:0.005〜0.2%から選んだ1種または2種をさらに含有することを特徴とする請求項1記載の回転機用高磁束密度無方向性電磁鋼板。The height for a rotary machine according to claim 1, further comprising one or two selected from Sb: 0.005 to 0.10% and Sn: 0.005 to 0.2% by mass ratio. Non-oriented electrical steel sheet with magnetic flux density. 質量比でP:0.001〜0.2%およびNi:0.001〜0.2%から選んだ1種または2種をさらに含有することを特徴とする請求項1又は2記載の回転機用高磁束密度無方向性電磁鋼板。The rotating machine according to claim 1 or 2, further comprising one or two kinds selected from a mass ratio of P: 0.001 to 0.2% and Ni: 0.001 to 0.2%. High magnetic flux density non-oriented electrical steel sheet. 質量比でREM:0.0001〜0.10%およびCa:0.0001〜0.01%から選んだ1種または2種をさらに含有することを特徴とする請求項1、2または3記載の回転機用高磁束密度無方向性電磁鋼板。4. The method according to claim 1, further comprising one or two kinds selected from a mass ratio of REM: 0.0001 to 0.10% and Ca: 0.0001 to 0.01%. High magnetic flux density non-oriented electrical steel sheet for rotating machines. 不可避不純物のうちS及びOが質量比でS:0.0050%以下(0を含む)、0:0.0100%以下(0を含む)に制限されていることを特徴とする請求項1〜4のいずれかに記載の回転機用高磁束密度無方向性電磁鋼板。The mass ratio of S and O among unavoidable impurities is limited to S: 0.0050% or less (including 0), and 0: 0.0100% or less (including 0). 4. The high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of 4. 不可避不純物のうちTi、Nb及びVが質量比でTi:0.0020%以下(0を含む)、Nb:0.0050%以下(0を含む)、およびV:0.0060%以下(0を含む)に制限されていることを特徴とする請求項1〜5のいずれかに記載の回転機用高磁束密度無方向性電磁鋼板。Among the unavoidable impurities, Ti, Nb and V by mass ratio of Ti: 0.0020% or less (including 0), Nb: 0.0050% or less (including 0), and V: 0.0060% or less (0 The high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of claims 1 to 5, characterized in that: 平均再結晶粒径をDが6〜25μmであることを特徴とする請求項1〜6のいずれかに記載の回転機用高磁束密度無方向性電磁鋼板。The high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of claims 1 to 6, wherein D has an average recrystallized grain size of 6 to 25 µm. 無方向性電磁鋼板用スラブを常法により処理して最終板厚を有する冷延鋼板とした後、700〜800℃で最終焼鈍を施してなる請求項1〜7のいずれかに記載の回転機用高磁束密度無方向性電磁鋼板。The rotating machine according to any one of claims 1 to 7, wherein the slab for a non-oriented electrical steel sheet is processed by a conventional method into a cold-rolled steel sheet having a final thickness, and then subjected to final annealing at 700 to 800 ° C. High magnetic flux density non-oriented electrical steel sheet. 無方向性電磁鋼板用スラブを常法により処理して最終板厚を有する冷延鋼板とした後、700〜800℃で最終焼鈍を施し、さらに700〜800℃で焼鈍を施して結晶粒径を最終焼鈍後の粒径の2倍以上に成長させてなる請求項1〜7のいずれかに記載の回転機用高磁束密度無方向性電磁鋼板。After processing the slab for a non-oriented electrical steel sheet by a conventional method to obtain a cold-rolled steel sheet having a final thickness, a final annealing is performed at 700 to 800 ° C., and an annealing is further performed at 700 to 800 ° C. to reduce the crystal grain size. The high-magnetic-flux-density non-oriented electrical steel sheet for a rotating machine according to any one of claims 1 to 7, wherein the non-oriented electrical steel sheet is grown to be at least twice the grain size after final annealing. 請求項1〜8のいずれかに記載の回転機用高磁束密度無方向性電磁鋼板を打ち抜いて積層した高強度回転機ロータ部材。A high-strength rotating machine rotor member formed by punching and laminating the high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of claims 1 to 8. 請求項1〜8のいずれかに記載の回転機用高磁束密度無方向性電磁鋼板を打ち抜いて積層した後さらに歪取り焼鈍を施してなる低鉄損回転機ステータ部材。A low iron loss rotating machine stator member obtained by punching and laminating the high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of claims 1 to 8, and then performing strain relief annealing.
JP2002229251A 2002-08-06 2002-08-06 High magnetic flux density non-oriented electrical steel sheet for rotating machine and member for rotating machine Expired - Lifetime JP4718749B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002229251A JP4718749B2 (en) 2002-08-06 2002-08-06 High magnetic flux density non-oriented electrical steel sheet for rotating machine and member for rotating machine
CN 03801038 CN1277945C (en) 2002-08-06 2003-08-05 Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
PCT/JP2003/009947 WO2004013365A1 (en) 2002-08-06 2003-08-05 Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
KR1020047004538A KR100567239B1 (en) 2002-08-06 2003-08-05 Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
TW92121498A TWI276693B (en) 2002-08-06 2003-08-06 Nonoriented magnetic steel sheet, member for rotary machine and rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229251A JP4718749B2 (en) 2002-08-06 2002-08-06 High magnetic flux density non-oriented electrical steel sheet for rotating machine and member for rotating machine

Publications (2)

Publication Number Publication Date
JP2004068084A true JP2004068084A (en) 2004-03-04
JP4718749B2 JP4718749B2 (en) 2011-07-06

Family

ID=31492289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229251A Expired - Lifetime JP4718749B2 (en) 2002-08-06 2002-08-06 High magnetic flux density non-oriented electrical steel sheet for rotating machine and member for rotating machine

Country Status (5)

Country Link
JP (1) JP4718749B2 (en)
KR (1) KR100567239B1 (en)
CN (1) CN1277945C (en)
TW (1) TWI276693B (en)
WO (1) WO2004013365A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470333B2 (en) * 2003-05-06 2008-12-30 Nippon Steel Corp. Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof
JP2011080140A (en) * 2009-09-14 2011-04-21 Nippon Steel Corp Thin cast slab for non-oriented silicon steel sheet excellent in magnetic characteristic, and method for manufacturing non-oriented silicon steel sheet
WO2017122761A1 (en) * 2016-01-15 2017-07-20 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing same
JP2017186590A (en) * 2016-04-01 2017-10-12 トヨタ自動車株式会社 Manufacturing method of motor
JP2019521246A (en) * 2016-05-30 2019-07-25 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. Non-oriented silicon steel sheet with high magnetic induction and low core loss and method of manufacturing the same
US10658885B2 (en) 2015-11-27 2020-05-19 Nidec Corporation Motor and manufacturing method of motor
JP2020139198A (en) * 2019-02-28 2020-09-03 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
WO2022113263A1 (en) * 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet
US12104215B2 (en) 2018-11-26 2024-10-01 Baoshan Iron & Steel Co., Ltd. High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therefor

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662010B1 (en) 2004-11-24 2009-01-07 ARVEDI, Giovanni Magnetic hot rolled steel strip particularly suited for the production of electromagnetic lamination packs
KR20120035928A (en) * 2009-07-31 2012-04-16 제이에프이 스틸 가부시키가이샤 Grain-oriented magnetic steel sheet
KR101110257B1 (en) * 2009-08-07 2012-02-16 주식회사 포스코 Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
KR101223113B1 (en) * 2010-12-27 2013-01-17 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
US9466411B2 (en) 2011-09-27 2016-10-11 Jfe Steel Corporation Non-oriented electrical steel sheet
JP6057082B2 (en) * 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
EP3176279B1 (en) * 2014-07-31 2018-08-15 JFE Steel Corporation Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same
KR101719231B1 (en) 2014-12-24 2017-04-04 주식회사 포스코 Grain oriented electical steel sheet and method for manufacturing the same
JP6048699B2 (en) 2015-02-18 2016-12-21 Jfeスチール株式会社 Non-oriented electrical steel sheet, manufacturing method thereof and motor core
WO2017016604A1 (en) * 2015-07-29 2017-02-02 Aperam Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
CN107849632A (en) 2015-08-04 2018-03-27 杰富意钢铁株式会社 The manufacture method of the non-oriented electromagnetic steel sheet of having excellent magnetic properties
RU2694299C1 (en) * 2015-10-02 2019-07-11 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet of non-textured electrical steel and method of its production
KR101728028B1 (en) 2015-12-23 2017-04-18 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
US11114227B2 (en) 2015-12-28 2021-09-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
US11056256B2 (en) 2016-10-27 2021-07-06 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same
JP6738047B2 (en) * 2017-05-31 2020-08-12 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
DE102018201618A1 (en) 2018-02-02 2019-08-08 Thyssenkrupp Ag Afterglow, but not nachglühpflichtiges electrical tape
US11649532B2 (en) 2018-05-21 2023-05-16 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same
US11952641B2 (en) * 2019-03-20 2024-04-09 Nippon Steel Corporation Non oriented electrical steel sheet
CN110205462A (en) * 2019-06-28 2019-09-06 武汉钢铁有限公司 Used in high-speed motor method for producing non-oriented silicon steel
US20240295014A1 (en) * 2021-02-19 2024-09-05 Nippon Steel Corporation Hot rolled steel sheet for non oriented electrical steel sheet, producing method of hot rolled steel sheet for non oriented electrical steel sheet, and producing method of non oriented electrical steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456295B2 (en) * 1995-03-31 2003-10-14 Jfeスチール株式会社 Melting method of steel for non-oriented electrical steel sheet
JPH09263908A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its production
JPH10212555A (en) * 1997-01-29 1998-08-11 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic property and its production
JP4218136B2 (en) * 1999-06-24 2009-02-04 Jfeスチール株式会社 Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP2002206114A (en) * 2000-12-28 2002-07-26 Nippon Steel Corp Method for manufacturing nonoriented silicon steel sheet
CN108454769A (en) * 2018-03-29 2018-08-28 曾东斌 A kind of super labour-saving bicycle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470333B2 (en) * 2003-05-06 2008-12-30 Nippon Steel Corp. Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof
JP2011080140A (en) * 2009-09-14 2011-04-21 Nippon Steel Corp Thin cast slab for non-oriented silicon steel sheet excellent in magnetic characteristic, and method for manufacturing non-oriented silicon steel sheet
US10658885B2 (en) 2015-11-27 2020-05-19 Nidec Corporation Motor and manufacturing method of motor
WO2017122761A1 (en) * 2016-01-15 2017-07-20 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing same
JPWO2017122761A1 (en) * 2016-01-15 2018-01-18 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
US11008633B2 (en) 2016-01-15 2021-05-18 Jfe Steel Corporation Non-oriented electrical steel sheet and production method thereof
JP2017186590A (en) * 2016-04-01 2017-10-12 トヨタ自動車株式会社 Manufacturing method of motor
JP2019521246A (en) * 2016-05-30 2019-07-25 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. Non-oriented silicon steel sheet with high magnetic induction and low core loss and method of manufacturing the same
US12104215B2 (en) 2018-11-26 2024-10-01 Baoshan Iron & Steel Co., Ltd. High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therefor
JP2020139198A (en) * 2019-02-28 2020-09-03 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
JP7284383B2 (en) 2019-02-28 2023-05-31 日本製鉄株式会社 Non-oriented electrical steel sheet
WO2022113263A1 (en) * 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet
CN116457477A (en) * 2020-11-27 2023-07-18 日本制铁株式会社 Non-oriented electromagnetic steel sheet, method for producing same, and hot-rolled steel sheet
JP7492162B2 (en) 2020-11-27 2024-05-29 日本製鉄株式会社 Non-oriented electrical steel sheet, manufacturing method thereof, and hot-rolled steel sheet

Also Published As

Publication number Publication date
KR100567239B1 (en) 2006-04-03
KR20040039438A (en) 2004-05-10
JP4718749B2 (en) 2011-07-06
WO2004013365A1 (en) 2004-02-12
TW200403346A (en) 2004-03-01
CN1556869A (en) 2004-12-22
TWI276693B (en) 2007-03-21
CN1277945C (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP2004068084A (en) Non-grain-oriented electromagnetic steel sheet with high magnetic-flux density for rotating machine, and member for rotating machine
JP5000136B2 (en) High-strength electrical steel sheet, shape processed parts thereof, and manufacturing method thereof
KR100709056B1 (en) Non-oriented magnetic steel sheet and method for production thereof
JPWO2020136993A1 (en) Non-oriented electrical steel sheet and its manufacturing method
JPWO2020262063A1 (en) Manufacturing method of non-oriented electrical steel sheet, manufacturing method of motor core and motor core
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
JP2001323344A (en) Nonoriented silicon steel sheet excellent in workability and recyclability
JP2910508B2 (en) Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics
JP4259177B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2005113184A (en) High strength silicon steel sheet, and its production method
EP2474636A1 (en) Non-oriented electromagnetic steel sheet
CN117321238A (en) Non-oriented electrical steel sheet and method for manufacturing same
JP2001335897A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP2004270011A (en) Method for producing high magnetic flux density non-directional magnetic steel sheet for rotary machine
JP2001323347A (en) Nonoriented silicon steel sheet excellent in workability, recyclability and magnetic property after strain relieving annealing
JP2001323345A (en) Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and magnetic property after strain relieving annealing
JP2001032054A (en) Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
JP4258859B2 (en) Non-oriented electrical steel sheet with good machinability and low iron loss
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP4259011B2 (en) Non-oriented electrical steel sheet
CN113166871A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP3937685B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same
JP7552952B1 (en) Non-oriented electrical steel sheet with excellent punching workability
JP3934904B2 (en) Low iron loss non-oriented electrical steel sheet excellent in workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090501

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R150 Certificate of patent or registration of utility model

Ref document number: 4718749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term