【0001】
【発明の属する技術分野】
この発明は、単一の電解槽を用いて原料金属の溶解と採取を行うことのできる電解採取による高純度金属の製造方法及び装置に関する。
【0002】
【従来の技術】
一般に、ニッケル、コバルト、鉄、インジウム、銅等の高純度金属は、アルカリ金属、放射性元素、遷移金属元素、ガス成分を極力減少させることが要求されており、VLSIの電極及び配線の形成、化合物半導体用あるいは磁性薄膜を形成するための、特にスパッタリングターゲット材として広範囲に使用されている。
Na、K等のアルカリ金属はゲート絶縁膜中を容易に移動し、MOS−LSI界面特性の劣化原因となる。U,Th等の放射性元素は、放出するα線によって素子のソフトエラーの原因となる。
一方、ニッケル、コバルト、銅等の材料が半導体の配線材料等として使用する場合、すなわち使用される場所によっては、Fe等の遷移金属元素が界面接合部のトラブルの原因となる場合もある。
さらに、炭素、酸素などのガス成分も、スパッタリングの際のパーティクル発生原因となるため好ましくないと云われている。
【0003】
一般に、5Nレベルのニッケル、コバルト、鉄、インジウム、銅等の高純度金属を製造する場合には、イオン交換や溶媒抽出等で溶液を精製し、これをさらに電解採取又は電解精製によって高純度化を行うことが普通であるが、このように溶媒抽出工程を先行させる方法は、工程が複雑であり、また特殊な溶媒を必要とすることから効率的でないという問題があった。
また、5Nレベルのニッケル、コバルト、鉄、インジウム、銅等の高純度金属を製造する場合に、これらの金属含有溶液を用いて電解により製造するのが、比較的簡単な方法と考えられるのであるが、例えば高純度ニッケルを電解により製造しようとした場合、電解液中に他の金属元素(主に鉄)が多量に含有され分離が難しく、必ずしも効率的とは言えなかった。
【0004】
【発明が解決しようとする課題】
本発明は、他の金属元素、炭素、酸素等が多く含有されるニッケル、コバルト、鉄、インジウム、銅等の金属原料から、該金属含有溶液を用いて電解する簡便な方法を提供するものであり、同原料から純度5N(99.999wt%)以上の高純度金属を効率的に製造する技術を提供することを目的としたものである。
【0005】
【課題を解決するための手段】
上記問題点を解決するため、金属含有溶液のアノライトから他の金属元素、その他の不純物を溶媒抽出により除去し、除去後の液をカソライトとして使用することにより、効率良く高純度金属を製造できるとの知見を得た。
この知見に基づき、本発明は
1.電解液として高純度化用金属を含有する溶液を用いて電解する際に、アノードとカソードを陰イオン交換膜で仕切り、アノライトを間歇的又は連続的に抜き出して溶媒抽出槽に導入して、該溶媒抽出槽にて不純物を除去し、この不純物除去後の高純度金属電解液をカソード側に、間歇的又は連続的に導入することを特徴とする高純度金属の製造方法
2.単一の電解槽内において、金属原料の溶解と金属の採取を同時に行ない、かつイオン交換膜で分離されていることを特徴とする上記1記載の高純度金属の製造方法
3.溶媒抽出槽にて不純物を除去した高純度金属電解液を一時的に貯留し、高純度金属電解液をカソード側に間歇的又は連続的に導入することを特徴とする上記1又は2記載の高純度金属の製造方法
4.アノライト及びカソライトの液を循環させることを特徴とする上記1〜3のそれぞれに記載の高純度金属の製造方法
を提供するものである。
【0006】
本発明はまた、
5.電解による高純度金属の製造装置であって、金属原料を入れたアノードバスケット、アノードとカソードを仕切る陰イオン交換膜、高純度金属を析出させるカソード、金属溶解液(アノライト)から不純物を除去する溶媒抽出槽、アノライトを間歇的又は連続的に抜き出して溶媒抽出槽に導入する装置及び溶媒抽出によって得られた高純度金属電解液をカソード側に間歇的又は連続的に導入する装置からなることを特徴とする高純度金属の製造装置
6.金属原料の溶解と金属の採取が単一の電解槽内であり、かつイオン交換膜で分離されていることを特徴とする上記5記載の高純度金属の製造装置
7.溶媒抽出槽にて不純物を除去した高純度金属電解液を一時的に貯留する電解液貯槽を備えていることを特徴とする上記5又は6記載の高純度金属の製造装置8.アノライト及びカソライトの液を循環させる装置を備えていることを特徴とする上記5〜7のそれぞれに記載の高純度金属の製造装置
を提供するものである。
【0007】
【発明の実施の形態】
図1に示す電解槽1を用い、4Nレベルの塊状の金属原料2をアノードバスケット3に入れてアノード5とし、カソード4に高純度化金属と同種の金属又はその他の金属材料を使用して電解を行う。金属原料には、高純度化する以外の金属元素、炭素、酸素等の不純物が多く含有されている。
電解に際しては、電解する金属によって異なるが、概ね浴温10〜70°C、金属濃度20〜120g/L、電流密度0.1〜10A/dm2で実施する。電流密度が低い場合、例えば0.1A/dm2未満では生産性が悪くなり、また高すぎると、例えば10A/dm2を超える場合にはノジュールが発生し易くなるという傾向がある。したがって、通常電流密度は0.1〜10A/dm2の範囲とするのが望ましい。
しかし、上記のように電解する金属によって、その条件を変えることができるので、必ずしも上記の範囲に制限する必要はない。
【0008】
前記アノード5とカソード4は陰イオン交換膜6で仕切り、アノライト7を循環させながら間歇的又は連続的に抜き出す。カソライトは、陰イオン交換膜6を介して外側の液(アノライト)と分離している。抜き出したアノライト7は、溶媒抽出槽8に導入する。
溶媒抽出槽8において、電解液中の他の金属元素やその他の不純物を除去する。これによって、電解液中の他の金属元素濃度を概ね1mg/L以下とすることができる。
【0009】
溶媒抽出後の高純度化された金属電解液は、カソード側に間歇的又は連続的に導入し、カソライト9として使用し、電解採取する。
溶媒抽出後の高純度化された金属電解液は、必要に応じて活性炭等のフィルター(図示せず)にかけても良い。
活性炭のフィルターは、有機溶媒又はイオン交換膜に由来する有機物からの不純物を除去する効果がある。
また、溶媒抽出槽にて他の金属元素等の不純物を除去した高純度金属電解液を一時的に貯留する電解液貯槽9を設け、循環させる。この場合、溶媒抽出後の高純度化された金属電解液は、一旦電解液貯槽9に貯留させ、そこからカソード側に間歇的又は連続的に導入し、カソライト9として使用し、電解採取する。
【0010】
電流効率は80〜100%となる。以上によって、純度5N以上の電析金属(カソードに析出)が得られる。すなわち、ガス成分を除き4N(99.99wt%)以上、材料によっては5N(99.999wt%)以上であり、不純物としてO:100wtppm以下(材料によってはO:30wtppm以下)、C,N,S,Hをそれぞれ10wtppm以下とすることができる。
さらに、電解によって得られた電析金属を電子ビーム溶解等の真空溶解を行うことができる。この真空溶解によって、Na、K等のアルカリ金属やその他の揮発性不純物及びガス成分を効果的に除去できる。
【0011】
【実施例及び比較例】
次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
【0012】
(実施例1)
図1に示すような電解槽を用い、3Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに2Nレベルのニッケル板を使用して電解を行った。原料の不純物の含有量を表1に示す。ニッケル原料には、主として鉄、炭素、酸素等が多く含有されている。
浴温50°C、硫酸系電解液を使用し、pH2、電流密度2A/dm2で実施した。電解当初、アノード側のNi濃度は20g/Lである。電解後、Ni濃度100g/Lとして抜き出す。
【0013】
抜き出したアノライトを溶媒抽出槽に導入した。さらに、この沈殿物等の不純物を、活性炭フィルターを使用して除去した。以上によって、電解液中の鉄の濃度を1mg/L以下とすることができた。
不純物の除去後、この液をカソード側に間歇的に導入し、カソライトとして使用して電解採取した。カソード側のNi濃度は100g/Lであるが、電解後Ni濃度は20g/Lとなる。
電析ニッケル(カソードに析出)約1kgを得た。純度は5Nを達成した。すなわち、ガス成分を除き5N(99.999wt%)以上であり、不純物としてO:30wtppm以下、C,N,Sをそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、表1に示す。
【0014】
【表1】
【0015】
(比較例1)
図1に示すような電解槽を用いた。但し、陰イオン交換膜を使用せず、また溶媒抽出も実施しなかった。
そして、3Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに2Nレベルのニッケル板を使用して電解を行った。原料の不純物の含有量を表1に示す。
浴温50°C、硫酸系電解液を使用し、ニッケル濃度60g/L、電流密度2A/dm2で実施した。
液のpHを2は調節した。この時、アノライトを抜き出さず、そのまま電解を続けた。そして、電析ニッケル(カソードに析出)約1kgを得た。
以上の結果を、同様に表1に示す。
【0016】
表1に示すように、実施例1では、原料の鉄50wtppmを2wtppmに、酸素200wtppmを10wtppm未満に、炭素50wtppmを10wtppm未満に、その他N10wtppm未満、S1wtppm未満、Na,Kをそれぞれ0.1wtppm未満とすることができた。
これに対し、比較例1では、C,Nをそれぞれ10wtppm未満に、S1wtppm未満、Na,Kをそれぞれ0.1wtppm未満とすることができたが、鉄50wtppm、コバルト20wtppm、酸素60wtppmで、実施例1に比べ精製効果が劣り、特に鉄とコバルトの除去が困難であった。
【0017】
(実施例2)
実施例1と同様に、図1に示すような電解槽を用い、90wt%レベルの純度のコバルトスクラップ原料1kgをアノードとし、カソードに2Nレベルのコバルト板を使用して電解を行った。原料の不純物の含有量を表2に示す。コバルト原料には、主としてタングステン、チタン、鉄、炭素、酸素等が多く含有されていた。
浴温50°C、硫酸系電解液を使用し、pH2、電流密度2A/dm2で実施した。電解当初、アノード側のCo濃度は20g/Lである。電解後、Co濃度100g/Lとして抜き出す。
【0018】
抜き出したアノライトを溶媒抽出槽に導入した。さらに、この沈殿物等の不純物を、活性炭フィルターを使用して除去した。以上によって、電解液中の鉄、タングステン等の金属元素不純物濃度をそれぞれ1mg/L以下とすることができた。
不純物の除去後、この液をカソード側に間歇的に導入し、カソライトとして使用して電解採取した。カソード側のCo濃度は100g/Lであるが、電解後Co濃度はそれぞれ20g/L以下となった。
電析コバルト(カソードに析出)約1kgを得た。純度は5Nを達成した。すなわち、ガス成分を除き5N(99.999wt%)以上であり、不純物としてO:10wtppm以下、C,N,Sもそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、表2に示す。
【0019】
【表2】
【0020】
(実施例3)
実施例1と同様に、図1に示すような電解槽を用い、2Nレベルの塊状鉄原料1kgをアノードとし、カソードに2Nレベルの鉄板を使用して電解を行った。原料の不純物の含有量を表3に示す。鉄原料には、主としてアルミニウム、砒素、硼素、コバルト、クロム、ニッケル、亜鉛、銅、炭素、酸素等が多く含有されていた。
浴温50°C、硫酸系電解液を使用し、pH2、電流密度2A/dm2で実施した。電解当初、アノード側の鉄濃度は20g/Lである。電解後、鉄濃度100g/Lとして抜き出す。
【0021】
抜き出したアノライトを溶媒抽出槽に導入した。さらに、この沈殿物等の不純物を、活性炭フィルターを使用して除去した。以上によって、電解液中のニッケル、コバルト等の金属元素不純物濃度をそれぞれ1mg/L以下とすることができた。
不純物の除去後、この液をカソード側に間歇的に導入し、カソライトとして使用して電解採取した。カソード側の鉄濃度は100g/Lであるが、電解後鉄濃度はそれぞれ20g/L以下となった。
電析鉄(カソードに析出)約1kgを得た。純度は5Nを達成した。すなわち、ガス成分を除き5N(99.999wt%)以上であり、不純物としてO:20wtppm、C,N,Sもそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、表3に示す。
【0022】
【表3】
【0023】
(実施例4)
実施例1と同様に、図1に示すような電解槽を用い、90wt%レベルの純度のインジウムスクラップ原料1kgをアノードとし、カソードに2Nレベルのインジウム板を使用して電解を行った。原料の不純物の含有量を表4に示す。インジウム原料には、主としてビスマス、アンチモン、鉛、鉄、亜鉛、銀、銅、アルミニウム、炭素、酸素等が多く含有されていた。
浴温50°C、塩酸系電解液を使用し、pH2、電流密度2A/dm2で実施した。電解当初、アノード側のインジウム濃度は20g/Lである。電解後、インジウム濃度100g/Lとして抜き出す。
【0024】
抜き出したアノライトを溶媒抽出槽に導入した。さらに、この沈殿物等の不純物を、活性炭フィルターを使用して除去した。以上によって、電解液中の金属元素不純物の濃度をそれぞれ1mg/L以下とすることができた。
不純物の除去後、この液をカソード側に間歇的に導入し、カソライトとして使用して電解採取した。カソード側のインジウム濃度は100g/Lであるが、電解後インジウム濃度はそれぞれ20g/L以下となった。
電析インジウム(カソードに析出)約1kgを得た。純度は4Nを達成した。すなわち、ガス成分を除き4N(99.99wt%)以上であり、不純物としてO:20wtppm、C,N,Sもそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、表4に示す。
【0025】
【表4】
【0026】
(実施例5)
実施例1と同様に、図1に示すような電解槽を用い、4Nレベルの純度の銅原料1kgをアノードとし、カソードに2Nレベルの銅板を使用して電解を行った。原料の不純物の含有量を表5に示す。銅原料には、主として鉄、クロム、ニッケル、銀、アルミニウム、アンチモン、セレン、シリコン、硫黄、酸素等が多く含有されていた。
浴温50°C、硝酸系電解液を使用し、pH2、電流密度2A/dm2で実施した。電解当初、アノード側の銅濃度は20g/Lである。電解後、銅濃度100g/Lとして抜き出す。
【0027】
抜き出したアノライトを溶媒抽出槽に導入した。さらに、この沈殿物等の不純物を、活性炭フィルターを使用して除去した。以上によって、電解液中の金属元素不純物の濃度をそれぞれ1mg/L以下とすることができた。
不純物の除去後、この液をカソード側に間歇的に導入し、カソライトとして使用して電解採取した。カソード側の銅濃度は100g/Lであるが、電解後銅濃度はそれぞれ20g/L以下となった。
電析銅(カソードに析出)約1kgを得た。純度は6Nを達成した。すなわち、ガス成分を除き6N(99.9999wt%)以上であり、不純物としてO,S:1wtppm以下、C,N,Sもそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、表5に示す。
【0028】
【表5】
【0029】
以上から、本発明の、アノードとカソードを陰イオン交換膜で仕切り、該アノライトを間歇的又は連続的に抜き出し、これを有機溶媒にて金属元素等の不純物を除去し、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れて電解採取することは、金属元素等の不純物を効果的に除去し、高純度金属を得る上で、簡便な方法であり、かつ極めて有効であることが分かる。
【0030】
【発明の効果】
以上に示すように、電解液として高純度化用金属含有溶液を用い、他の金属元素、非金属、炭素、酸素等が多く含有される金属原料から、電解用金属含有溶液を用いて電解採取する簡便な方法を提供するものであり、簡単な製造工程の改良により、同原料から純度4N(99.99wt%)以上若しくは5N(99.999wt%)以上の高純度金属を効率的に製造できるという著しい効果を有する。
【図面の簡単な説明】
【図1】電解工程の概要を示す図である。
【符号の説明】
1 電解槽
2 塊状の金属原料
3 アノードバスケット
4 カソード
5 アノード
6 陰イオン交換膜
7 アノライト
8 溶媒抽出槽
9 カソライト[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for producing a high-purity metal by electrowinning, which can dissolve and extract a raw metal using a single electrolyzer.
[0002]
[Prior art]
Generally, high purity metals such as nickel, cobalt, iron, indium, and copper are required to reduce alkali metals, radioactive elements, transition metal elements, and gas components as much as possible. It is widely used for semiconductors or for forming magnetic thin films, particularly as a sputtering target material.
Alkali metals such as Na and K easily move in the gate insulating film and cause deterioration of MOS-LSI interface characteristics. Radioactive elements such as U and Th cause soft errors in the device due to emitted α-rays.
On the other hand, when a material such as nickel, cobalt, or copper is used as a wiring material for a semiconductor or the like, that is, depending on a place where the material is used, a transition metal element such as Fe may cause a trouble in an interface junction.
Further, it is said that gas components such as carbon and oxygen are not preferable because they also cause particles to be generated during sputtering.
[0003]
Generally, when producing high-purity metals such as nickel, cobalt, iron, indium, and copper at the 5N level, the solution is purified by ion exchange or solvent extraction, and then further purified by electrolytic extraction or electrolytic purification. However, such a method that precedes the solvent extraction step has a problem that the step is complicated and requires a special solvent, so that it is not efficient.
In addition, when producing high-purity metals such as nickel, cobalt, iron, indium, and copper at the level of 5N, it is considered that producing them by electrolysis using a solution containing these metals is a relatively simple method. However, for example, when an attempt was made to produce high-purity nickel by electrolysis, the separation was difficult due to the large amount of other metal elements (mainly iron) contained in the electrolytic solution, which was not always efficient.
[0004]
[Problems to be solved by the invention]
The present invention provides a simple method for performing electrolysis using a metal-containing solution from a metal raw material such as nickel, cobalt, iron, indium, or copper containing a large amount of other metal elements, carbon, and oxygen. It is an object of the present invention to provide a technique for efficiently producing a high-purity metal having a purity of 5N (99.999 wt%) or more from the same raw material.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, other metal elements from the anolyte of the metal-containing solution, other impurities are removed by solvent extraction, and by using the removed liquid as catholyte, it is possible to efficiently produce high-purity metals. Was obtained.
Based on this finding, the present invention provides: When performing electrolysis using a solution containing a metal for purification as an electrolytic solution, the anode and the cathode are separated by an anion exchange membrane, and anolyte is extracted intermittently or continuously and introduced into a solvent extraction tank. 1. A method for producing a high-purity metal, wherein impurities are removed in a solvent extraction tank, and the high-purity metal electrolyte solution after the removal of the impurities is intermittently or continuously introduced into a cathode side. 2. The method for producing a high-purity metal according to 1 above, wherein the dissolution of the metal raw material and the collection of the metal are simultaneously performed in a single electrolytic cell and are separated by an ion exchange membrane. 3. The high-purity metal electrolyte according to claim 1 or 2, wherein the high-purity metal electrolyte from which impurities have been removed is temporarily stored in a solvent extraction tank, and the high-purity metal electrolyte is intermittently or continuously introduced into the cathode side. 3. Method for producing pure metal It is intended to provide a method for producing a high-purity metal according to any one of the above items 1 to 3, wherein a liquid of an anolyte and a catholyte is circulated.
[0006]
The present invention also provides
5. An apparatus for producing high-purity metal by electrolysis, comprising an anode basket containing metal raw materials, an anion exchange membrane separating an anode and a cathode, a cathode for depositing high-purity metal, and a solvent for removing impurities from a metal solution (anolyte). An extraction tank, a device for intermittently or continuously extracting anolyte and introducing it to a solvent extraction tank, and a device for intermittently or continuously introducing a high-purity metal electrolyte obtained by solvent extraction to the cathode side. 5. High-purity metal manufacturing equipment 6. The apparatus for producing a high-purity metal according to the above item 5, wherein the dissolution of the metal raw material and the collection of the metal are performed in a single electrolytic cell and separated by an ion exchange membrane. 7. The apparatus for producing a high-purity metal according to the above item 5 or 6, further comprising an electrolytic solution storage tank for temporarily storing the high-purity metal electrolyte from which impurities have been removed in the solvent extraction tank. The present invention also provides an apparatus for producing a high-purity metal according to any one of the above items 5 to 7, further comprising an apparatus for circulating a liquid of an anolyte and a catholyte.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Using an electrolytic cell 1 shown in FIG. 1, a 4N-level massive metal raw material 2 is put into an anode basket 3 to form an anode 5, and the cathode 4 is electrolyzed using a metal of the same kind as the highly purified metal or another metal material. I do. The metal raw material contains a lot of impurities such as a metal element, carbon, oxygen, etc. other than those to be highly purified.
The electrolysis is carried out generally at a bath temperature of 10 to 70 ° C., a metal concentration of 20 to 120 g / L, and a current density of 0.1 to 10 A / dm 2, although it depends on the metal to be electrolyzed. If the current density is low, for example, less than 0.1 A / dm 2 , the productivity will be poor, and if it is too high, for example, if it exceeds 10 A / dm 2 , nodules will tend to occur. Therefore, it is usually desirable that the current density be in the range of 0.1 to 10 A / dm 2 .
However, since the conditions can be changed depending on the metal to be electrolyzed as described above, it is not always necessary to limit to the above range.
[0008]
The anode 5 and the cathode 4 are separated by an anion exchange membrane 6, and the anolyte 7 is extracted intermittently or continuously while circulating. Catholyte is separated from the outer liquid (anolyte) via the anion exchange membrane 6. The extracted anolyte 7 is introduced into a solvent extraction tank 8.
In the solvent extraction tank 8, other metal elements and other impurities in the electrolytic solution are removed. As a result, the concentration of other metal elements in the electrolyte can be reduced to approximately 1 mg / L or less.
[0009]
The highly purified metal electrolyte after the solvent extraction is intermittently or continuously introduced into the cathode side, used as catholyte 9, and subjected to electrolytic sampling.
The highly purified metal electrolyte solution after the solvent extraction may be applied to a filter (not shown) such as activated carbon if necessary.
Activated carbon filters have the effect of removing impurities from organic substances derived from organic solvents or ion exchange membranes.
In addition, an electrolytic solution storage tank 9 for temporarily storing a high-purity metal electrolytic solution from which impurities such as other metal elements have been removed in a solvent extraction tank is provided and circulated. In this case, the highly purified metal electrolyte solution after the solvent extraction is once stored in the electrolyte solution storage tank 9, introduced intermittently or continuously from there to the cathode side, used as the catholyte 9, and subjected to electrolytic sampling.
[0010]
The current efficiency is 80-100%. As described above, an electrodeposited metal having a purity of 5N or more (precipitated on the cathode) is obtained. That is, excluding gas components, it is 4N (99.99 wt%) or more, depending on the material, 5N (99.999 wt%) or more. O: 100 wtppm or less (O: 30 wtppm or less depending on the material) as an impurity, C, N, S , H can be 10 wtppm or less.
Furthermore, the electrodeposited metal obtained by electrolysis can be subjected to vacuum melting such as electron beam melting. By this vacuum melting, alkali metals such as Na and K and other volatile impurities and gas components can be effectively removed.
[0011]
[Examples and Comparative Examples]
Next, examples of the present invention will be described. This embodiment is merely an example, and the present invention is not limited to this example. That is, within the scope of the technical idea of the present invention, all aspects or modifications other than the examples are included.
[0012]
(Example 1)
Using an electrolytic cell as shown in FIG. 1, electrolysis was performed using 1 kg of a 3N-level massive nickel raw material as an anode and a 2N-level nickel plate as a cathode. Table 1 shows the impurity contents of the raw materials. The nickel raw material mainly contains a large amount of iron, carbon, oxygen and the like.
Using a sulfuric acid-based electrolyte at a bath temperature of 50 ° C., the pH was 2 and the current density was 2 A / dm 2 . At the beginning of electrolysis, the Ni concentration on the anode side is 20 g / L. After the electrolysis, extraction is performed with a Ni concentration of 100 g / L.
[0013]
The extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as precipitates were removed using an activated carbon filter. As described above, the concentration of iron in the electrolytic solution could be reduced to 1 mg / L or less.
After removing the impurities, this solution was intermittently introduced into the cathode side, and used as a catholyte and subjected to electrolytic sampling. Although the Ni concentration on the cathode side is 100 g / L, the Ni concentration after electrolysis is 20 g / L.
About 1 kg of electrodeposited nickel (deposited on the cathode) was obtained. Purity achieved 5N. That is, it was 5 N (99.999 wt%) or more, excluding gas components, O: 30 wt ppm or less as impurities, and C, N, and S were each 10 wt ppm or less. The above results are shown in Table 1 in comparison with the raw materials.
[0014]
[Table 1]
[0015]
(Comparative Example 1)
An electrolytic cell as shown in FIG. 1 was used. However, no anion exchange membrane was used, and no solvent extraction was performed.
Electrolysis was performed using 1 kg of a 3N-level massive nickel raw material as an anode and a 2N-level nickel plate as a cathode. Table 1 shows the impurity contents of the raw materials.
The test was performed at a bath temperature of 50 ° C., a sulfuric acid-based electrolyte, a nickel concentration of 60 g / L, and a current density of 2 A / dm 2 .
The pH of the solution was adjusted to 2. At this time, electrolysis was continued without extracting the anolyte. Then, about 1 kg of electrodeposited nickel (deposited on the cathode) was obtained.
The above results are also shown in Table 1.
[0016]
As shown in Table 1, in Example 1, the raw material iron was 50 wtppm to 2 wtppm, oxygen was 200 wtppm to less than 10 wtppm, carbon was 50 wtppm to less than 10 wtppm, other N was less than 10 wtppm, S was less than 1 wtppm, and Na and K were each less than 0.1 wtppm. And could be.
In contrast, in Comparative Example 1, C and N could each be less than 10 wtppm, S could be less than 1 wtppm, and Na and K could be less than 0.1 wtppm, respectively. The purification effect was inferior to that of No. 1, and it was particularly difficult to remove iron and cobalt.
[0017]
(Example 2)
As in Example 1, electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of a cobalt scrap raw material having a purity of 90 wt% as an anode, and using a 2N level cobalt plate as a cathode. Table 2 shows the impurity contents of the raw materials. The cobalt raw material mainly contained a large amount of tungsten, titanium, iron, carbon, oxygen and the like.
Using a sulfuric acid-based electrolyte at a bath temperature of 50 ° C., the pH was 2 and the current density was 2 A / dm 2 . At the beginning of the electrolysis, the Co concentration on the anode side is 20 g / L. After the electrolysis, the Co is extracted at a Co concentration of 100 g / L.
[0018]
The extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as precipitates were removed using an activated carbon filter. As described above, the concentration of metal element impurities such as iron and tungsten in the electrolytic solution could be reduced to 1 mg / L or less.
After removing the impurities, this solution was intermittently introduced into the cathode side, and used as a catholyte and subjected to electrolytic sampling. The Co concentration on the cathode side was 100 g / L, but the Co concentration after electrolysis was 20 g / L or less.
About 1 kg of electrodeposited cobalt (deposited on the cathode) was obtained. Purity achieved 5N. That is, it was 5N (99.999 wt%) or more, excluding gas components, O: 10 wtppm or less as impurities, and C, N, and S were each 10 wtppm or less. The above results are shown in Table 2 in comparison with the raw materials.
[0019]
[Table 2]
[0020]
(Example 3)
In the same manner as in Example 1, electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of a 2N-level massive iron raw material as an anode, and using a 2N-level iron plate as a cathode. Table 3 shows the impurity contents of the raw materials. The iron raw material mainly contained a large amount of aluminum, arsenic, boron, cobalt, chromium, nickel, zinc, copper, carbon, oxygen, and the like.
Using a sulfuric acid-based electrolyte at a bath temperature of 50 ° C., the pH was 2 and the current density was 2 A / dm 2 . At the beginning of the electrolysis, the iron concentration on the anode side is 20 g / L. After the electrolysis, the iron is extracted at an iron concentration of 100 g / L.
[0021]
The extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as precipitates were removed using an activated carbon filter. As described above, the concentration of metal element impurities such as nickel and cobalt in the electrolytic solution could be reduced to 1 mg / L or less.
After removing the impurities, this solution was intermittently introduced into the cathode side, and used as a catholyte and subjected to electrolytic sampling. Although the iron concentration on the cathode side was 100 g / L, the iron concentration after electrolysis was 20 g / L or less.
About 1 kg of electrodeposited iron (deposited on the cathode) was obtained. Purity achieved 5N. That is, it was 5 N (99.999 wt%) or more, excluding gas components, O: 20 wt ppm as impurities, and C, N, and S could each be 10 wt ppm or less. The results are shown in Table 3 in comparison with the raw materials.
[0022]
[Table 3]
[0023]
(Example 4)
As in Example 1, electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of indium scrap raw material having a purity of 90 wt% as an anode, and using a 2N-level indium plate as a cathode. Table 4 shows the impurity contents of the raw materials. The indium raw material mainly contained a large amount of bismuth, antimony, lead, iron, zinc, silver, copper, aluminum, carbon, oxygen, and the like.
The test was carried out at a bath temperature of 50 ° C. and a hydrochloric acid-based electrolyte at a pH of 2 and a current density of 2 A / dm 2 . At the beginning of the electrolysis, the indium concentration on the anode side is 20 g / L. After the electrolysis, the indium is extracted at an indium concentration of 100 g / L.
[0024]
The extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as precipitates were removed using an activated carbon filter. As described above, the concentration of the metal element impurities in the electrolytic solution could be reduced to 1 mg / L or less.
After removing the impurities, this solution was intermittently introduced into the cathode side, and used as a catholyte and subjected to electrolytic sampling. The indium concentration on the cathode side was 100 g / L, but the indium concentration after electrolysis was 20 g / L or less.
About 1 kg of electrodeposited indium (deposited on the cathode) was obtained. Purity achieved 4N. That is, it was 4N (99.99 wt%) or more, excluding gas components, O: 20 wtppm as impurities, and C, N, and S could each be 10 wtppm or less. Table 4 shows the above results in comparison with the raw materials.
[0025]
[Table 4]
[0026]
(Example 5)
In the same manner as in Example 1, electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of a 4N-level pure copper raw material as an anode, and using a 2N-level copper plate as a cathode. Table 5 shows the impurity contents of the raw materials. The copper raw material mainly contained a large amount of iron, chromium, nickel, silver, aluminum, antimony, selenium, silicon, sulfur, oxygen, and the like.
Using a nitric acid-based electrolytic solution at a bath temperature of 50 ° C., pH 2 and a current density of 2 A / dm 2 were used. At the beginning of the electrolysis, the copper concentration on the anode side is 20 g / L. After the electrolysis, the copper is extracted at a copper concentration of 100 g / L.
[0027]
The extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as precipitates were removed using an activated carbon filter. As described above, the concentration of the metal element impurities in the electrolytic solution could be reduced to 1 mg / L or less.
After removing the impurities, this solution was intermittently introduced into the cathode side, and used as a catholyte and subjected to electrolytic sampling. Although the copper concentration on the cathode side was 100 g / L, the copper concentration after electrolysis was 20 g / L or less.
About 1 kg of electrodeposited copper (deposited on the cathode) was obtained. Purity achieved 6N. That is, it was 6N (99.9999 wt%) or more, excluding gas components, and O and S as impurities were 1 wtppm or less, and C, N and S were each 10 wtppm or less. The results are shown in Table 5 in comparison with the raw materials.
[0028]
[Table 5]
[0029]
From the above, according to the present invention, the anode and cathode are separated by an anion exchange membrane, the anolyte is extracted intermittently or continuously, and this is removed with an organic solvent to remove impurities such as metal elements, and further using a filter. To remove impurities and put the removed solution intermittently or continuously on the cathode side and perform electrowinning is a simple method for effectively removing impurities such as metal elements and obtaining high-purity metals. And it is found to be extremely effective.
[0030]
【The invention's effect】
As described above, a metal-containing solution for purification is used as an electrolytic solution, and a metal source containing a large amount of other metal elements, nonmetals, carbon, oxygen, and the like is used to perform electrowinning using a metal-containing solution for electrolysis. The present invention provides a simple method for improving the efficiency of the production process and efficiently producing a high-purity metal having a purity of 4N (99.99 wt%) or more or 5N (99.999 wt%) or more from the same raw material by improving the production process. It has a remarkable effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an electrolysis process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Lumpy metal raw material 3 Anode basket 4 Cathode 5 Anode 6 Anion exchange membrane 7 Anolite 8 Solvent extraction tank 9 Catholite