Nothing Special   »   [go: up one dir, main page]

JP2003310580A - Biological signal detector and correction processing program for biological signal detector - Google Patents

Biological signal detector and correction processing program for biological signal detector

Info

Publication number
JP2003310580A
JP2003310580A JP2002127144A JP2002127144A JP2003310580A JP 2003310580 A JP2003310580 A JP 2003310580A JP 2002127144 A JP2002127144 A JP 2002127144A JP 2002127144 A JP2002127144 A JP 2002127144A JP 2003310580 A JP2003310580 A JP 2003310580A
Authority
JP
Japan
Prior art keywords
light
probe
correction coefficient
signal
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002127144A
Other languages
Japanese (ja)
Other versions
JP3818211B2 (en
JP2003310580A5 (en
Inventor
Hiroaki Suzuki
宏明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2002127144A priority Critical patent/JP3818211B2/en
Publication of JP2003310580A publication Critical patent/JP2003310580A/en
Publication of JP2003310580A5 publication Critical patent/JP2003310580A5/ja
Application granted granted Critical
Publication of JP3818211B2 publication Critical patent/JP3818211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To alway obtain the stable measured result without being affected by variance in performance for each probe or a little performance lowering in a biological signal detector for irradiating an examinee body with light, detecting and measuring a status of the examinee body based upon the transmitted light or the reflected light of the irradiation light. <P>SOLUTION: A ratio a/b of a measured value (a) of a light receiving level signal Va to be read into a CPU 25 in accordance with a light receiving current IF to be outputted from a light receiving device 12 when a light emitting device 11 of a prove part 1 mounted at present is driven to emit light with a prescribed light emission driving current in the case of turning on a power source, for example, and a specific value (b) of the light receiving level value Va stored beforehand to be read into the CPU 25 when the reference (designed) probe part 1 is defined as a target is stored into a probe light receiving quantity correction coefficient memory 29a as a probe light receiving correction coefficient X10 and afterwards, the light receiving level signal Va to be read into the CPU 25 is corrected by the correction coefficient X10 of the probe light receiving quantity to maintain the high-accuracy organism measurement. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被検体もしくは被
照射体に光を照射しその透過光や反射光に基づき被検体
又は被照射体の状態を検出測定するための生体信号検出
装置および生体信号検出装置の校正処理プログラムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body signal detecting device and a living body for irradiating a subject or an irradiated body with light and detecting and measuring the state of the subject or the irradiated body based on transmitted light or reflected light thereof. The present invention relates to a calibration processing program for a signal detection device.

【0002】[0002]

【従来の技術】従来の代表的な生体信号検出装置として
は、パルスオキシメータがある。
2. Description of the Related Art A pulse oximeter is known as a typical conventional biological signal detecting device.

【0003】このパルスオキシメータは、血液中のヘモ
グロビンのうち、酸素と結合した酸化ヘモグロビンと、
酸素と結合していない還元ヘモグロビンとの比率を検出
し、酸素飽和度%として演算表示するもので、酸化ヘモ
グロビンに対する吸光度が高い赤外発光LEDと還元ヘ
モグロビンに対する吸光度が高い赤色発光LEDとの2
つの発光素子と、この発光波長の異なる2つの発光素子
を交互に発光させて生体(指や耳たぶ)に照射すること
で該生体を透過した透過光を受光する受光素子とを備
え、この受光素子による赤外発光時と赤色発光時との各
生体透過光の受光量の比、すなわち吸光度の比率を酸素
飽和度%として演算算出し測定するものである。
This pulse oximeter is one of hemoglobins in blood and oxygenated hemoglobin combined with oxygen.
The ratio of reduced hemoglobin that is not bound to oxygen is detected and calculated and displayed as the oxygen saturation%. The infrared emission LED having high absorbance for oxygenated hemoglobin and the red light emitting LED having high absorbance for reduced hemoglobin are used.
This light receiving element includes one light emitting element and a light receiving element that alternately transmits two light emitting elements having different emission wavelengths and irradiates the living body (finger or earlobe) with the transmitted light transmitted through the living body. The ratio of the received light amount of each transmitted light through the living body at the time of infrared light emission and that at the time of red light emission, that is, the ratio of the absorbance is calculated and calculated as oxygen saturation%.

【0004】また、このパルスオキシメータでは、生体
の透過光から血液の脈動に応じた受光信号が得られるこ
とから、脈拍を演算算出し測定することもできる。
Further, in this pulse oximeter, since the received light signal corresponding to the pulsation of blood is obtained from the transmitted light of the living body, it is possible to calculate and measure the pulse.

【0005】なお、このような生体への光の照射と受光
を利用した生体信号検出装置一般として、生体の状態を
直接検出する部分、つまり、生体に光を照射する発光部
およびこの光の照射により得られる生体からの光を受光
する受光部そしてその受光信号を取り出す部分をプロー
ブと称している。
Incidentally, as a general biological signal detecting apparatus utilizing such irradiation and reception of light to the living body, a portion for directly detecting the state of the living body, that is, a light emitting section for irradiating the living body with light and irradiation of this light. The light receiving portion that receives the light from the living body and the portion that extracts the received light signal are referred to as a probe.

【0006】このプローブは、生体測定の度に該生体に
直接接触することおよび発光・受光動作を繰り返すこと
から、特にその使用環境に応じて性能の低下が著しく、
一定以上の測定精度を維持する上で定期的な交換が必要
になる。
[0006] Since this probe is in direct contact with the living body and repeats the light emitting and light receiving operations every time the living body is measured, the performance is remarkably lowered depending on the environment in which it is used.
Periodic replacement is required to maintain the measurement accuracy above a certain level.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな生体信号検出装置において、プローブの交換費用は
高いため、特に一般ユーザへの普及がされにくい原因と
なっている。
However, in such a biological signal detecting device, the replacement cost of the probe is high, which makes it difficult to spread to general users.

【0008】そこで、プローブの価格を下げることが考
えられるが、その主要な構成部品である発光素子および
受光素子に安価なものを使用すると、プローブ毎に個体
差が生じ、プローブの交換に伴い所定の測定精度が得ら
れているのか明確でなくなる問題がある。
Therefore, it is conceivable to reduce the price of the probe. However, if inexpensive light emitting elements and light receiving elements, which are the main components of the probe, are used, individual differences will occur between the probes, and a predetermined amount will be required when the probe is replaced. There is a problem that it is not clear whether the measurement accuracy of is obtained.

【0009】すなわち、プローブにおける発光部の駆動
制御および受光部からの信号検出は何れも装置本体の側
で行われ、所定の発光駆動制御をしたときの受光検出信
号に基づいて脈拍や酸素飽和度などの演算測定が行われ
るため、プローブ毎にその発光効率や受光効率がばらつ
いたり、また同一プローブであってもその発光効率や受
光効率が低下したりすると、測定精度にもばらつきが生
じてしまう。
That is, the drive control of the light emitting portion of the probe and the signal detection from the light receiving portion are both performed on the side of the apparatus main body, and based on the light receiving detection signal when the predetermined light emission drive control is performed, the pulse rate and the oxygen saturation level are determined. For example, if the light emitting efficiency and the light receiving efficiency of each probe vary, or if the light emitting efficiency and light receiving efficiency of the same probe decrease, the measurement accuracy also varies. .

【0010】本発明は、前記のような問題に鑑みなされ
たもので、プローブ毎の性能のばらつきや多少の性能低
下にも影響を受けることなく、常に安定した測定結果を
得ることが可能になる生体信号検出装置および生体信号
検出装置の校正処理プログラムを提供することを目的と
する。
The present invention has been made in view of the above problems, and it is possible to always obtain a stable measurement result without being affected by variations in the performance of each probe and a slight decrease in performance. An object of the present invention is to provide a biological signal detection device and a calibration processing program for the biological signal detection device.

【0011】[0011]

【課題を解決するための手段】すなわち、本発明に係る
第1の生体信号検出装置は、発光手段とこの発光手段に
より発光される光を被検体に照射することにより得られ
る被検体からの光を受光する受光手段とを有するプロー
ブと、このプローブの発光手段を駆動する発光駆動手段
と、この発光駆動手段により前記プローブの発光手段を
駆動した際に、当該プローブの受光手段から出力される
受光信号の信号レベルを測定する信号レベル測定手段
と、前記発光駆動手段により前記プローブの発光手段を
所定の発光駆動レベルで駆動した際に、前記信号レベル
測定手段により測定された受光信号の信号レベルと前記
所定の発光駆動レベルに応じた規定の信号レベルとに基
づき当該測定された信号レベルの補正係数を算出する補
正係数算出手段と、この補正係数算出手段により算出さ
れた信号レベルの補正係数に基づき、前記信号レベル測
定手段により測定された受光信号の信号レベルを補正し
前記被検体の状態を測定する状態測定手段と、を備えた
ことを特徴とする。
That is, a first biological signal detecting apparatus according to the present invention is a light emitting means and light from the subject obtained by irradiating the subject with light emitted by the light emitting means. A probe having a light receiving means for receiving the light, a light emitting drive means for driving the light emitting means of the probe, and a light receiving output of the light receiving means of the probe when the light emitting means of the probe is driven by the light emitting drive means. A signal level measuring means for measuring a signal level of a signal; and a signal level of a light receiving signal measured by the signal level measuring means when the light emitting means of the probe is driven by the light emitting drive means at a predetermined light emitting drive level. A correction coefficient calculating means for calculating a correction coefficient of the measured signal level based on a prescribed signal level according to the predetermined light emission drive level, State correction means for correcting the signal level of the received light signal measured by the signal level measurement means based on the correction coefficient of the signal level calculated by the correction coefficient calculation means to measure the state of the subject. It is characterized by

【0012】このような、本発明に係る第1の生体信号
検出装置では、発光駆動手段によりプローブの発光手段
を所定の発光駆動レベルで駆動した際に、信号レベル測
定手段により測定された受光信号の信号レベルと前記所
定の発光駆動レベルに応じた規定の信号レベルとに基づ
き当該測定された信号レベルの補正係数が算出され、こ
の算出された信号レベルの補正係数に基づき、前記信号
レベル測定手段により測定された受光信号の信号レベル
が補正されて被検体の状態が測定されるので、プローブ
性能のばらつきが校正されて被検体の状態測定が行われ
ることになる。
In such a first biological signal detecting apparatus according to the present invention, when the light emitting drive means drives the light emitting means of the probe at a predetermined light emission drive level, the light receiving signal measured by the signal level measuring means. A correction coefficient for the measured signal level is calculated based on the signal level of the signal level and a prescribed signal level corresponding to the predetermined light emission drive level, and the signal level measuring means is based on the calculated correction coefficient for the signal level. Since the signal level of the received light signal measured by is corrected and the state of the subject is measured, the variation of the probe performance is calibrated and the state of the subject is measured.

【0013】また、本発明に係る第2の生体信号検出装
置は、発光手段とこの発光手段により発光される光を被
検体に照射することにより得られる被検体からの光を受
光する受光手段とを有するプローブと、このプローブの
発光手段を駆動する発光駆動手段と、この発光駆動手段
により前記プローブの発光手段を駆動した際に、当該プ
ローブの受光手段から出力される受光信号の信号レベル
を測定する信号レベル測定手段と、この信号レベル測定
手段により測定された受光信号の信号レベルに基づき前
記被検体の状態を測定する状態測定手段と、前記発光駆
動手段により前記プローブの発光手段を所定の被検体の
状態に応じた疑似脈波形に対応する発光駆動レベルで駆
動した際に、前記状態測定手段により測定された状態測
定値と前記所定の被検体の状態とに基づき当該測定され
た状態測定値の補正係数を算出する補正係数算出手段
と、この補正係数算出手段により算出された状態測定値
の補正係数に基づき、前記状態測定手段により測定され
た状態測定値を補正する状態測定値補正手段と、を備え
たことを特徴とする。
The second biological signal detecting apparatus according to the present invention includes a light emitting means and a light receiving means for receiving light from the subject obtained by irradiating the subject with light emitted by the light emitting means. And a light emission drive means for driving the light emission means of the probe, and when the light emission means of the probe is driven by the light emission drive means, the signal level of the light reception signal output from the light reception means of the probe is measured. Signal level measuring means, state measuring means for measuring the state of the subject based on the signal level of the received light signal measured by the signal level measuring means, and the light emitting driving means for controlling the light emitting means of the probe to a predetermined object level. When driven at a light emission drive level corresponding to the pseudo pulse waveform according to the state of the sample, the state measurement value measured by the state measuring means and the predetermined value Based on the state of the sample, a correction coefficient calculation means for calculating a correction coefficient for the measured state measurement value, and a correction coefficient for the state measurement value calculated by the correction coefficient calculation means are measured by the state measurement means. And a state measurement value correction means for correcting the state measurement value.

【0014】このような、本発明に係る第2の生体信号
検出装置では、プローブの発光手段を駆動した際に、当
該プローブの受光手段から出力される受光信号の信号レ
ベルが信号レベル測定手段により測定され、この測定さ
れた受光信号の信号レベルに基づき状態測定手段により
被検体の状態が測定されるもので、発光駆動手段により
プローブの発光手段を所定の被検体の状態に応じた疑似
脈波形に対応する発光駆動レベルで駆動した際に、状態
測定手段により測定された状態測定値と前記所定の被検
体の状態とに基づき当該測定された状態測定値の補正係
数が算出され、この算出された状態測定値の補正係数に
基づき、前記状態測定手段により測定された状態測定値
が補正されるので、プローブ性能のばらつきがあっても
状態測定の測定精度が維持されることになる。
In such a second biological signal detecting apparatus according to the present invention, when the light emitting means of the probe is driven, the signal level of the light receiving signal output from the light receiving means of the probe is measured by the signal level measuring means. The state of the subject is measured by the state measuring means based on the measured signal level of the received light signal, and the light emission drive means causes the light emitting means of the probe to emit a pseudo pulse waveform according to the predetermined state of the subject. When driven at a light emission drive level corresponding to, the correction coefficient of the measured state measurement value is calculated based on the state measurement value measured by the state measurement means and the state of the predetermined subject, and this calculation is performed. The state measurement value measured by the state measuring means is corrected based on the correction coefficient of the state measurement value. It will be but is maintained.

【0015】[0015]

【発明の実施の形態】以下図面により本発明の実施の形
態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は本発明の実施形態に係る生体信号検
出装置の電子回路の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of an electronic circuit of a biological signal detecting apparatus according to an embodiment of the present invention.

【0017】この生体信号検出装置は、被検体(例えば
指先)10に対し2つの波長の光を交互に照射してその
それぞれの透過光を受光するためのプローブ部1、及び
このプローブ部1における発光動作の制御を行なうと共
に、該プローブ部1にて得られる受光信号を取り込んで
脈拍および動脈血の酸素飽和度%を演算算出し出力する
ためのシステム部2から構成される。
This biological signal detecting apparatus includes a probe unit 1 for alternately irradiating a subject (for example, a fingertip) 10 with light of two wavelengths and receiving the transmitted light, and a probe unit 1 in the probe unit 1. A system unit 2 is provided for controlling the light emitting operation and for calculating and outputting the oxygen saturation% of the pulse and arterial blood by taking in the received light signal obtained by the probe unit 1.

【0018】プローブ部1には、発光装置11と受光装
置12が設けられる。
The probe unit 1 is provided with a light emitting device 11 and a light receiving device 12.

【0019】発光装置11には、660nmの発光波長
で発光する赤色LED11aと890nmの発光波長で
発光する赤外LED11bが備えられ、この発光装置1
1により交互に発光される赤色発光と赤外発光とが受光
装置12との間に挟まれた被検体10に対して照射され
る。
The light emitting device 11 is provided with a red LED 11a which emits light having an emission wavelength of 660 nm and an infrared LED 11b which emits light having an emission wavelength of 890 nm.
The red light emission and the infrared light emission alternately emitted by 1 are applied to the subject 10 sandwiched between the light receiving device 12.

【0020】受光装置12には、前記発光装置11によ
る被検体10に対する光の照射によって該被検体10を
透過してくる透過光を受光するためのフォトダイオード
12aが備えられ、このフォトダイオード12aの受光
動作に応じて出力される受光電流IFは、システム部2
内の増幅回路(電流アンプ)21を介して増幅され、電
流/電圧変換回路22に供給されて電圧変換される。
The light receiving device 12 is provided with a photodiode 12a for receiving the transmitted light which passes through the subject 10 when the light emitting device 11 irradiates the subject 10 with light. The received light current IF output according to the light receiving operation is the system unit 2
It is amplified through an amplifier circuit (current amplifier) 21 inside and is supplied to a current / voltage conversion circuit 22 for voltage conversion.

【0021】この電流/電圧変換回路22により電圧変
換された生体(被検体10)透過光の受光信号は、一方
で増幅回路23を介してN倍(N=2,4,8,…)に
増幅されてA/D変換回路24の第1端子CH1に供給
され、デジタル変換された受光レベル信号Va1としてC
PU25に読み込まれる。また、他方で直接A/D変換
回路24の第2端子CH2に供給され、デジタル変換さ
れた受光レベル信号Va2としてCPU25に読み込まれ
る。
The received light signal of the transmitted light of the living body (subject 10) whose voltage is converted by the current / voltage conversion circuit 22 is multiplied by N (N = 2, 4, 8, ...) Through the amplification circuit 23. The amplified signal is supplied to the first terminal CH1 of the A / D conversion circuit 24 and digitally converted into the received light level signal Va1 which is C.
It is read into PU25. On the other hand, it is directly supplied to the second terminal CH2 of the A / D conversion circuit 24 and read by the CPU 25 as a digitally converted light reception level signal Va2.

【0022】なお、このCPU25に読み込まれる受光
レベル信号Va1,Va2は、基準(設計通り)のプローブ
部1を対象として所定の発光駆動を行った場合の受光レ
ベル信号Va1,Va2を基準としたプローブ整合処理(図
6〜図8参照)により得られる、実際の受光レベルとの
差に応じた補正係数により補正されて読み込まれる。
The light reception level signals Va1 and Va2 read by the CPU 25 are based on the light reception level signals Va1 and Va2 when a predetermined light emission drive is performed on the reference (as designed) probe unit 1. It is read after being corrected by a correction coefficient obtained by the matching process (see FIGS. 6 to 8) according to the difference from the actual light reception level.

【0023】一方、前記電流/電圧変換回路22におけ
る、前記プローブ部1の発光装置11が未発光状態にあ
る時の動作基準電圧、つまり、受光装置12のフォトダ
イオード12aに対し被検体10を介した透過光が受光
されない状態での受光動作の基準となる動作点電圧は、
電圧制御回路26から与えられる基準電圧によって制御
設定されるもので、この電圧制御回路26から前記電流
/電圧変換回路22に与えるべく基準電圧を調整するた
めの信号は、前記プローブ部1における発光装置11の
未発光時において前記A/D変換回路24から読み込ま
れる各受光レベル信号Va1,Va2に基づきCPU25に
より生成されて電圧制御回路26内のD/A変換回路2
6aに出力される。
On the other hand, in the current / voltage conversion circuit 22, an operation reference voltage when the light emitting device 11 of the probe section 1 is in a non-light emitting state, that is, the photodiode 12a of the light receiving device 12 through the subject 10. The operating point voltage, which is the reference for the light receiving operation when the transmitted light is not received, is
It is controlled and set by the reference voltage given from the voltage control circuit 26, and the signal for adjusting the reference voltage to be given from the voltage control circuit 26 to the current / voltage conversion circuit 22 is a light emitting device in the probe unit 1. 11 when the light is not emitted, the D / A conversion circuit 2 in the voltage control circuit 26 is generated by the CPU 25 on the basis of the received light level signals Va1 and Va2 read from the A / D conversion circuit 24.
6a is output.

【0024】すなわち、前記電流/電圧変換回路22で
は、プローブ部1における発光装置11が未発光状態に
ある受光装置12からの受光電流IFに応じた動作点基
準電圧をVREFとして設定したいところ、プローブ部1
の設置環境における外来光が受光装置12のフォトダイ
オード12aに受光されると、発光装置11の未発光状
態にあっても、前記外来光の受光に応じた受光電流IF
が出力されて電流/電圧変換回路22における動作点基
準電圧VREFがシフトしてしまうもので、このため、本
発明の実施形態における生体信号検出装置では、この外
来光受光の影響による動作点基準電圧VREFの変動(シ
フト)を解消するための補正処理を行なう。
That is, in the current / voltage conversion circuit 22, where it is desired to set the operating point reference voltage corresponding to the received light current IF from the light receiving device 12 in which the light emitting device 11 in the probe unit 1 is in the non-light emitting state as VREF, Part 1
When the external light in the installation environment is received by the photodiode 12a of the light receiving device 12, even if the light emitting device 11 is in a non-light emitting state, the received light current IF corresponding to the reception of the external light is received.
Is output and the operating point reference voltage VREF in the current / voltage conversion circuit 22 shifts. Therefore, in the biological signal detecting device according to the embodiment of the present invention, the operating point reference voltage due to the influence of the external light reception. A correction process for eliminating the fluctuation (shift) of VREF is performed.

【0025】つまり、プローブ部1の発光装置11が未
発光状態での電流/電圧変換回路22の動作点基準電圧
VREFとなるべき増幅回路23を介した受光レベル信号
Va1をCPU25において読み込み、前記増幅回路23
の増幅率Nを基準電圧VREFに掛けた値(N・VREF)と
前記受光レベル信号Va1が一致しない場合には、その差
(シフト量)であるVb(=N・VREF−Va1)を算出
して電圧制御回路26へ出力し、この電圧制御回路26
から前記Vbを前記増幅率Nで割った電流/電圧変換回
路22における実シフト値Vb/NをVREFに加算した
電圧を、基準電圧(VREF+Vb/N)として電流/電
圧変換回路22に与える。
That is, when the light emitting device 11 of the probe unit 1 is in a non-light emitting state, the CPU 25 reads the light reception level signal Va1 through the amplifier circuit 23 which should be the operating point reference voltage VREF of the current / voltage conversion circuit 22, and the amplification is performed. Circuit 23
When the value (N · VREF) obtained by multiplying the reference voltage VREF by the amplification factor N of 1 and the received light level signal Va1 do not match, the difference (shift amount) Vb (= N · VREF−Va1) is calculated. Output to the voltage control circuit 26.
Then, the voltage obtained by adding the actual shift value Vb / N in the current / voltage conversion circuit 22 obtained by dividing Vb by the amplification factor N to VREF is applied to the current / voltage conversion circuit 22 as the reference voltage (VREF + Vb / N).

【0026】さらに同様に、プローブ部1の発光装置1
1が未発光状態での電流/電圧変換回路22の動作点基
準電圧VREFとなるべきそのままの受光レベル信号Va2
をCPU25において読み込み、この受光レベル信号V
a2と基準電圧VREFとが一致しない場合には、その差
(シフト量)であるVb(=VREF−Va2)を算出して
電圧制御回路26へ出力し、この電圧制御回路26から
前記電流/電圧変換回路22における実シフト値Vbを
VREFに加算した電圧を、基準電圧(VREF+Vb)とし
て電流/電圧変換回路22に与える。
Further similarly, the light emitting device 1 of the probe unit 1
1 is the light-emission level signal Va2 as it is which should be the operating point reference voltage VREF of the current / voltage conversion circuit 22 in the non-light emitting state.
Is read by the CPU 25, and the received light level signal V
When a2 and the reference voltage VREF do not match, the difference (shift amount) Vb (= VREF−Va2) is calculated and output to the voltage control circuit 26, and the current / voltage from the voltage control circuit 26 is calculated. The voltage obtained by adding the actual shift value Vb in the conversion circuit 22 to VREF is given to the current / voltage conversion circuit 22 as the reference voltage (VREF + Vb).

【0027】このように、増幅回路23を介した受光レ
ベル信号Va1とそのままの受光レベル信号Va2とに基づ
く2段階の電流/電圧変換回路22に対する動作点基準
電圧VREFの補正制御を行なうことにより、前記受光装
置12に対し外来光が受光されても、電流/電圧変換回
路22における動作点基準電圧VREFを一定に設定でき
るようになる。
In this way, by performing the correction control of the operating point reference voltage VREF for the two-stage current / voltage conversion circuit 22 based on the received light level signal Va1 via the amplifier circuit 23 and the received light level signal Va2 as it is, Even when external light is received by the light receiving device 12, the operating point reference voltage VREF in the current / voltage conversion circuit 22 can be set to be constant.

【0028】一方、CPU25には、さらに、発光電流
制御回路25a及びタイミング発生回路25bが備えら
れ、この発光電流制御回路25aからの発光電流制御信
号及びタイミング発生回路25bからの発光タイミング
制御信号は、LED駆動装置27へ出力される。
On the other hand, the CPU 25 is further provided with a light emission current control circuit 25a and a timing generation circuit 25b. The light emission current control signal from the light emission current control circuit 25a and the light emission timing control signal from the timing generation circuit 25b are It is output to the LED drive device 27.

【0029】このLED駆動装置17には、前記プロー
ブ部1の発光装置11における赤色LED11aと赤外
LED11bとをそれぞれ点灯させるための赤色発光駆
動回路27aと赤外発光駆動回路27bとが備えられる
と共に、この各駆動回路27a,27bによるそれぞれ
の発光駆動電流を設定するための定電流回路27cが備
えられる。
The LED drive device 17 is provided with a red light emission drive circuit 27a and an infrared light emission drive circuit 27b for respectively lighting the red LED 11a and the infrared LED 11b in the light emission device 11 of the probe unit 1. A constant current circuit 27c for setting the respective light emission drive currents by the drive circuits 27a and 27b is provided.

【0030】そして、前記定電流回路27cにおける発
光駆動電流の設定値は前記CPU25内の発光電流制御
回路25aからの発光電流制御信号により調整され、ま
た、その発光駆動電流による各LED11a,11bそ
れぞれの駆動のタイミング(図4参照)は、前記CPU
25内のタイミング発生回路25bからの発光タイミン
グ制御信号により制御される。
The set value of the light emission drive current in the constant current circuit 27c is adjusted by the light emission current control signal from the light emission current control circuit 25a in the CPU 25, and each of the LEDs 11a, 11b by the light emission drive current is adjusted. The drive timing (see FIG. 4) depends on the CPU.
It is controlled by the light emission timing control signal from the timing generation circuit 25b in 25.

【0031】ここで、実際の生体測定に伴う前記LED
駆動装置27の定電流回路27cによる赤色LED11
a用の発光駆動電流の設定値と、赤外LED11b用の
発光駆動電流の設定値とは、そのそれぞれの発光により
被検体10からの透過光が受光装置12に受光された状
態での、前記A/D変換回路24からCPU25に読み
込まれる受光レベル信号Va1が、所定のレベルに設定さ
れるよう発光電流制御回路25aにより調整するもの
で、この場合、被検体10に対する動脈血の流れ込みが
最小のタイミング、つまり、被検体10の組織及び静脈
血による固定的な吸光が主で該動脈血による吸光が最小
になりフォトダイオード12aにおける受光量が最大と
なってCPU25に読み込まれる受光レベル信号Va1が
最大となるタイミング(図2及び図5参照)において、
当該受光レベル信号Va1が、所定のレベルに設定される
よう前記各LED11a,11bの発光量は調整され
る。
Here, the LED according to the actual biometric measurement
Red LED 11 by constant current circuit 27c of drive device 27
The set value of the light emission drive current for a and the set value of the light emission drive current for the infrared LED 11b are as described above in the state where the transmitted light from the subject 10 is received by the light receiving device 12 due to their respective light emission. The light reception level signal Va1 read from the A / D conversion circuit 24 to the CPU 25 is adjusted by the light emission current control circuit 25a so as to be set to a predetermined level. In this case, the timing at which the inflow of arterial blood into the subject 10 is minimum. That is, the fixed absorption due to the tissue and venous blood of the subject 10 is mainly, the absorption due to the arterial blood is minimized, the amount of light received by the photodiode 12a is maximized, and the light reception level signal Va1 read by the CPU 25 is maximized. At the timing (see FIGS. 2 and 5),
The light emission amounts of the LEDs 11a and 11b are adjusted so that the received light level signal Va1 is set to a predetermined level.

【0032】このように、生体測定に際し、発光装置1
1の発光時における被検体10からの透過光の受光装置
12による受光に伴ない、赤色及び赤外発光時それぞれ
の受光レベル信号Va1が所定のレベルとして得られるよ
うにLED発光量の補正を行なうことで、被検体10の
光の透過率が非常に低かったり高かったりする等の個人
差があっても、安定した受光レベル信号Va1を読み込ん
で動脈血酸素飽和度%の適正な測定ができるようにな
る。
As described above, the light emitting device 1 is used for the biological measurement.
When the light receiving device 12 receives the transmitted light from the subject 10 at the time of the light emission of 1, the LED light emission amount is corrected so that the light reception level signals Va1 at the time of the red light emission and the infrared light emission can be obtained as the predetermined levels. As a result, even if there is individual difference such that the light transmittance of the subject 10 is extremely low or high, it is possible to read the stable received light level signal Va1 and perform proper measurement of the oxygen saturation% of the arterial blood. Become.

【0033】さらに、前記CPU25には、入力装置2
8、記憶装置29A、外部記憶装置29B、表示部3
0、該表示部30のバックライト31を点灯制御するた
めのバックライト制御装置32、そして出力装置33が
接続される。
Further, the CPU 25 has an input device 2
8, storage device 29A, external storage device 29B, display unit 3
0, a backlight control device 32 for controlling lighting of the backlight 31 of the display unit 30, and an output device 33 are connected.

【0034】入力装置28には、本装置の電源投入スイ
ッチや生体信号検出処理の開始を指示するための測定開
始スイッチなどが備えられる。
The input device 28 is provided with a power-on switch of this device, a measurement start switch for instructing the start of the biological signal detection process, and the like.

【0035】記憶装置29Aには、基準(設計通り)の
プローブ部1を対象として、LED駆動装置27により
所定の発光駆動電流で発光装置11の各LED11a,
11bを発光駆動した場合に、受光装置12のフォトダ
イオード12aから出力されるはずの受光電流IFに応
じた受光レベル信号Va1,Va2が、発光電流対受光レベ
ルの基準データ(図6参照)として記憶される。この発
光電流対受光レベルの基準データに従いプローブ整合処
理(図8参照)が行われ、現在のプローブ部1による実
際の受光レベル信号Vaとの差に応じた補正係数x10が
プローブ受光量補正係数メモリ29aに記憶される。そ
して、A/D変換回路24からCPU25に読み込まれ
る各受光レベル信号Va1,Va2は前記プローブ受光量の
補正係数x10により補正されることで、プローブ部1の
交換や経時変化に伴いプローブ性能にばらつきがあって
も安定した受光レベル信号Va1,Va2を得ることができ
る。なお、前記プローブ整合処理は、プローブ部1に吸
光度N分の1の疑似被検体を挟んで行ってもよいし、挟
まなくてもよい。
In the memory device 29A, the LEDs 11a of the light emitting device 11 are driven by the LED drive device 27 at a predetermined light emission drive current for the reference (as designed) probe portion 1.
When the 11b is driven to emit light, the light-reception level signals Va1 and Va2 corresponding to the light-reception current IF that should be output from the photodiode 12a of the light-receiving device 12 are stored as reference data of light-emission current vs. light-reception level (see FIG. 6). To be done. The probe matching process (see FIG. 8) is performed according to the reference data of the light emission current vs. the light reception level, and the correction coefficient x10 corresponding to the difference from the actual light reception level signal Va by the current probe unit 1 is stored in the probe light reception amount correction coefficient memory It is stored in 29a. The light reception level signals Va1 and Va2 read from the A / D conversion circuit 24 into the CPU 25 are corrected by the correction coefficient x10 of the probe light reception amount, so that the probe performance varies with the replacement of the probe unit 1 and the change over time. Even if there is, stable light reception level signals Va1 and Va2 can be obtained. The probe matching process may or may not be performed with the pseudo analyte having an absorbance of 1 / N sandwiched between the probe units 1.

【0036】また、記憶装置29Aには、プローブ部1
に対して、LED駆動装置27により所定脈拍の脈動波
形(図10参照)に対応した発光駆動電流および発光タ
イミングで発光装置11の各LED11a,11bを発
光駆動するための疑似脈発光駆動テーブル(図9参照)
が記憶される。この疑似脈発光駆動テーブルに従い脈拍
測定確認処理(図11参照)が行われ、現在のプローブ
部1による測定脈拍数との差に応じた補正係数x20が脈
拍測定補正係数メモリ29bに記憶される。そして、実
際の被検体10に対する脈拍測定時には前記脈拍測定補
正係数x20による補正が行われることで、プローブ部1
の交換や経時変化に伴いプローブ性能にばらつきがあっ
ても安定した精度で脈拍測定を行うことができる。な
お、前記所定脈拍の脈動波形(図10参照)に対応した
LED発光駆動信号を、演算により発生させて脈拍測定
確認処理(図12参照)を行う構成としてもよい。
Further, the storage device 29A includes a probe unit 1
On the other hand, the pseudo pulse emission drive table for driving the LEDs 11a and 11b of the light emitting device 11 to emit light by the LED drive device 27 at the emission drive current and the emission timing corresponding to the pulsating waveform of the predetermined pulse (see FIG. 10) (see FIG. (See 9)
Is memorized. A pulse measurement confirmation process (see FIG. 11) is performed according to this pseudo pulse emission drive table, and a correction coefficient x20 corresponding to the difference from the current pulse rate measured by the probe unit 1 is stored in the pulse measurement correction coefficient memory 29b. Then, when the pulse measurement is actually performed on the subject 10, the correction is performed by the pulse measurement correction coefficient x20, so that the probe unit 1
It is possible to perform pulse measurement with stable accuracy even if there is a variation in probe performance due to replacement or change over time. The LED light emission drive signal corresponding to the pulsating waveform of the predetermined pulse (see FIG. 10) may be generated by calculation to perform the pulse measurement confirmation process (see FIG. 12).

【0037】また、記憶装置29Aには、基準(設計通
り)のプローブ部1を対象とした場合に、所定の酸素飽
和度%となる動脈血の吸光度比率に応じた赤色/赤外受
光レベル比R/IRの受光レベル信号VaR/VaIRが
得られるはずの所定発光レベル比の疑似脈波形(図13
参照)に対応した疑似脈所定比発光駆動テーブル(図1
4参照)が記憶される。この疑似脈所定比発光駆動テー
ブルに従い酸素飽和度測定確認処理(図17参照)が行
われ、現在のプローブ部1による測定酸素飽和度%との
差に応じた補正係数(または補正シフト値)x30が酸素
飽和度補正係数メモリ29cに記憶される。そして、実
際の被検体10に対する酸素飽和度測定時には前記酸素
飽和度補正係数x30により補正が行われることで、プロ
ーブ部1の交換や経時変化に伴いプローブ性能にばらつ
きがあっても安定した精度で酸素飽和度測定を行うこと
ができる。なお、前記所定吸光度比率の赤色/赤外受光
レベル信号VaR/VaIRが得られるはずの疑似脈波形
(図13参照)に対応したLED発光駆動信号を、演算
により発生させて脈拍測定確認処理を行う構成としても
よい。
Further, in the storage device 29A, when the reference (as designed) probe portion 1 is targeted, the red / infrared light reception level ratio R corresponding to the absorbance ratio of arterial blood which gives a predetermined oxygen saturation%. / IR received light level signal VaR / VaIR should be obtained.
Pseudo pulse predetermined ratio light emission drive table (see FIG. 1)
4) is stored. Oxygen saturation measurement confirmation processing (see FIG. 17) is performed according to this pseudo pulse predetermined ratio light emission drive table, and a correction coefficient (or correction shift value) x30 according to the difference with the current measured oxygen saturation% by the probe unit 1 Are stored in the oxygen saturation correction coefficient memory 29c. Then, when the oxygen saturation is actually measured for the subject 10, the oxygen saturation correction coefficient x30 is used to correct the oxygen saturation, so that even if there is a variation in the probe performance due to replacement of the probe unit 1 or aging, stable accuracy can be obtained. Oxygen saturation measurements can be made. The LED light emission drive signal corresponding to the pseudo pulse waveform (see FIG. 13) that should obtain the red / infrared received light level signal VaR / VaIR having the predetermined absorbance ratio is generated by calculation to perform pulse measurement confirmation processing. It may be configured.

【0038】さらに、記憶装置29Aには、現在装着中
のプローブ部1に対してLED駆動装置27により発光
駆動した積算時間tを記憶するためのプローブ駆動積算
時間メモリ29dが備えられ、このプローブ駆動積算時
間tが予め設定されたプローブ駆動耐用時間Tを超える
と、プローブ交換のメッセージが表示報知される。
Further, the storage device 29A is provided with a probe drive accumulated time memory 29d for storing the accumulated time t when the LED driving device 27 emits light for the probe unit 1 currently mounted. When the accumulated time t exceeds a preset probe driving life time T, a message for probe replacement is displayed and notified.

【0039】外部記憶装置29Bには、CPU25を中
心とする生体信号検出処理に応じて測定された種々のデ
ータが記憶される。
The external storage device 29B stores various data measured according to the biological signal detection process centered on the CPU 25.

【0040】なお、この生体信号検出装置のCPU25
を中心とする電子回路(コンピュータ)を制御するため
のプログラムは、当該CPU25に内蔵されたROM、
あるいは記憶装置29Aに記憶されるか、あるいはメモ
リカードなどの外部記憶装置28Bに外部で書き込まれ
て記憶される。
The CPU 25 of this biological signal detecting device
A program for controlling an electronic circuit (computer) centered on is a ROM built in the CPU 25,
Alternatively, it is stored in the storage device 29A, or is externally written and stored in the external storage device 28B such as a memory card.

【0041】バックライト制御装置32は、表示部30
のバックライト31に対する点灯,消灯の制御、及びそ
の点灯時における点灯レベル制御を行なうもので、前記
電流/電圧変換回路22における受光動作の基準電圧
(VREF)補正処理に伴ない、前記発光装置11が未発
光状態での受光装置12による外来光の受光量に応じた
受光レベル信号Va1がCPU25に読み込まれた際に、
当該受光レベル信号Va1により外部環境の明るさが判定
され、これに応じてバックライト31に対する点灯レベ
ルが最適なレベルに制御される。
The backlight control device 32 includes a display unit 30.
The backlight 31 is controlled to be turned on and off, and a lighting level is controlled when the backlight 31 is turned on. The light emitting device 11 is accompanied by the reference voltage (VREF) correction process of the light receiving operation in the current / voltage conversion circuit 22. When the light-reception level signal Va1 corresponding to the amount of external light received by the light-receiving device 12 in the non-light-emitting state is read by the CPU 25,
The light reception level signal Va1 determines the brightness of the external environment, and the lighting level for the backlight 31 is controlled to an optimum level accordingly.

【0042】ここで、前記生体信号検出装置による被検
体10の脈拍は、プローブ部1の発光装置11を発光駆
動することにより得られる生体の脈動に応じた受光レベ
ル信号Va1,Va2のピーク値(図2および図5参照)
が、所定時間あたり何回カウントされるかで演算算出さ
れて測定される。
Here, the pulse of the subject 10 detected by the biological signal detecting apparatus is the peak value of the received light level signals Va1 and Va2 (in accordance with the pulsation of the biological body obtained by driving the light emitting device 11 of the probe unit 1 to emit light). (See FIGS. 2 and 5)
Is calculated and measured depending on how many times it is counted per predetermined time.

【0043】次に、前記生体信号検出装置により被検体
10の動脈血酸素飽和度を測定するための原理について
説明する。
Next, the principle for measuring the oxygen saturation of arterial blood of the subject 10 by the biological signal detecting apparatus will be described.

【0044】本装置は、脈拍による動脈の血液量変動を
利用することによって、動脈血酸素飽和度を測定する装
置であり、採血の必要がなく、被検体10(例えば指)
に光を当てるだけで測定できるため、麻酔や集中治療の
領域モニタをはじめ、各種検査,臨床研究機器として使
用される。
This device is a device for measuring the oxygen saturation of arterial blood by utilizing the fluctuation of blood volume of the artery due to the pulse, and it is not necessary to collect blood and the subject 10 (for example, finger)
Since it can be measured simply by shining light on it, it is used as an area monitor for anesthesia and intensive care, as well as various tests and clinical research equipment.

【0045】血液中のヘモグロビンのうち、酸素と結合
したヘモグロビンを酸化ヘモグロビン(HbO2)、酸
素と結合していないヘモグロビンを還元ヘモグロビン
(Hb)と呼び、この比率を%で表わしたものが酸素飽
和度(SpO2)である。
Among hemoglobins in blood, hemoglobin bound to oxygen is called oxyhemoglobin (HbO 2 ), hemoglobin not bound to oxygen is called reduced hemoglobin (Hb), and this percentage is represented by oxygen saturation. Degree (SpO 2 ).

【0046】血液は酸素を含めば赤くなり、酸素を失え
ば黒くなる。よって、血液の色を見れば酸素量の評価が
行なえる。体外から測定する場合、動脈流と静脈流が混
ざった状態で得られてしまうが、実際に測定したいのは
動脈流単独の飽和度であるので、動脈流の脈動を利用す
る。
The blood becomes red when oxygen is included, and black when oxygen is lost. Therefore, the oxygen amount can be evaluated by looking at the color of blood. When measuring from the outside of the body, the arterial flow and the venous flow are obtained in a mixed state, but since the saturation of the arterial flow alone is actually measured, the pulsation of the arterial flow is used.

【0047】図2は人体に光を透過させた場合の吸光度
全体に対する各吸光成分の割合とその脈動に伴なう吸光
度の変化状態を示す図である。
FIG. 2 is a diagram showing the ratio of each light absorption component to the total light absorption when light is transmitted to the human body and the change state of the light absorption due to its pulsation.

【0048】被検体10に対し光を透過させた場合の光
の吸収の度合いは、当然脈動成分を持っている。この脈
動成分は動脈の拍動によって起こる。
The degree of light absorption when light is transmitted through the subject 10 naturally has a pulsating component. This pulsating component is caused by the pulsation of the artery.

【0049】心臓の拍動に一致して変化するのは動脈成
分であり、従ってこの拍動部分の血液の色を取り出すこ
とで、動脈血の色だけを分離して測定することが可能で
ある。
It is the arterial component that changes in accordance with the pulsation of the heart. Therefore, by extracting the color of the blood in this pulsating portion, it is possible to measure only the color of the arterial blood separately.

【0050】すなわち、図2に示すように、血管以外の
組織と静脈血による光の吸収は心拍の影響を受けないの
で一定なのに対し、動脈血は脈動するのでその成分によ
る光の吸収は心拍に同期して変動する。
That is, as shown in FIG. 2, the absorption of light by tissues other than blood vessels and venous blood is constant because it is not affected by the heartbeat, whereas arterial blood pulsates, so the absorption of light by its components is synchronized with the heartbeat. And fluctuate.

【0051】このように、動脈血による吸光が心拍に伴
ない変動しているので、吸光全体から変動の不変な成分
を数値的に差し引けば、人体組織や静脈血による吸光の
成分は除去され、動脈血による吸光成分のみが残り、こ
れが動脈血酸素飽和度を示すものとなる。
As described above, since the absorption due to arterial blood fluctuates with the heartbeat, if the invariant component of the fluctuation is numerically subtracted from the overall absorption, the absorption component due to human tissue or venous blood is removed, Only the light absorption component due to arterial blood remains, which indicates the oxygen saturation of arterial blood.

【0052】酸素を光により測定する原理は、Lamb
ert−Beerの法則と吸光による測定の原理に基づ
く。
The principle of measuring oxygen by light is Lamb
It is based on the ert-Beer law and the principle of measurement by absorption.

【0053】(Lambert−Beer)の法則 基本:“吸光量は、入る光と溶質濃度の積に比例する” 液体に物質が溶けている溶液で、入射光Iinと透過光I
outの比が物質の濃度と光路長に比例した分だけ減衰す
る。
(Lambert-Beer) law Basic: "Absorbance is proportional to the product of incident light and solute concentration" A solution in which a substance is dissolved in a liquid, the incident light Iin and the transmitted light I
The out ratio is attenuated by an amount proportional to the concentration of the substance and the optical path length.

【0054】A=log(Iin/Iout)=E・C・D A:吸光度 C:濃度 E:吸光係数 D:厚み 吸光係数Eとは、試料固有の光吸収の強さを表わす定数
であり、入射光の波長に依存する。
A = log (Iin / Iout) = E · C · D A: Absorbance C: Concentration E: Extinction coefficient D: Thickness extinction coefficient E is a constant representing the intensity of light absorption specific to the sample, It depends on the wavelength of the incident light.

【0055】ここで、厚みがΔDだけ増加して透過光が
減少し(Iin−ΔI)になったとする。これは、あたか
も厚みΔDに入射光Ioutが入射し(Iout−ΔI)なる
透過光が得られたことに等しい。従って次式が成立す
る。
Here, it is assumed that the thickness increases by ΔD and the transmitted light decreases (Iin−ΔI). This is equivalent to the case where the incident light Iout enters the thickness ΔD and the transmitted light of (Iout−ΔI) is obtained. Therefore, the following equation is established.

【0056】ΔA=log{Iout/(Iout−ΔI)}
=E・C・ΔD 本装置では、動脈血の脈動によって厚みの変化ΔDが生
じ、その結果吸光度がΔAだけ変化したと考える。
ΔA = log {Iout / (Iout-ΔI)}
= E · C · ΔD In this apparatus, it is considered that the pulsation of arterial blood causes a change in thickness ΔD, and as a result, the absorbance changes by ΔA.

【0057】ここで、2つの波長でΔAを測定すると、 ΔA1=E1・C・ΔD ΔA2=E2・C・ΔD E1:波長1の動脈血の吸光係数 E2:波長2の動脈血の吸光係数 吸光度の比ΔA1/ΔA2をφとして求めると、濃度Cと
厚みの変化ΔDは波長によらず一定であるので、 φ=ΔA1/ΔA2=E1/E2 と表現される。
When ΔA is measured at two wavelengths, ΔA1 = E1 · C · ΔD ΔA2 = E2 · C · ΔD E1: extinction coefficient of arterial blood of wavelength 1 E2: ratio of extinction coefficient of extinction coefficient of arterial blood of wavelength 2 When ΔA1 / ΔA2 is obtained as φ, the concentration C and the change ΔD of the thickness are constant regardless of the wavelength, and therefore φ = ΔA1 / ΔA2 = E1 / E2.

【0058】酸素飽和度Sとφは、1対1の関係にある
ことから、φが決まればSも決定する。
Since the oxygen saturation S and φ have a one-to-one relationship, if φ is determined, S is also determined.

【0059】よって、異なる2波長の光源を用い、酸化
ヘモグロビンと還元ヘモグロビンの比率により動脈血酸
素飽和度を求めることが可能となる。
Therefore, it becomes possible to obtain the oxygen saturation of arterial blood from the ratio of oxyhemoglobin and deoxyhemoglobin using light sources of two different wavelengths.

【0060】図3は赤色発光波長と赤外発光波長におけ
る酸化ヘモグロビン及び還元ヘモグロビンに対する吸光
度の変化とその吸光度比に応じた酸素飽和度の変化を示
す図であり、同図(A)は酸化ヘモグロビンと還元ヘモ
グロビンに対する発光波長と吸光度の関係を示す図、同
図(B)は赤色光Rと赤外光IRの吸光度比R/IRと
酸素飽和度SpO2との関係を示す図である。
FIG. 3 is a diagram showing changes in absorbance with respect to oxyhemoglobin and reduced hemoglobin at red emission wavelengths and infrared emission wavelengths, and changes in oxygen saturation depending on the absorbance ratio. FIG. 3A shows oxyhemoglobin. And (B) are diagrams showing the relationship between the emission wavelength and the absorbance with respect to reduced hemoglobin, and FIG. 7B is a diagram showing the relationship between the absorbance ratio R / IR of the red light R and the infrared light IR and the oxygen saturation SpO 2 .

【0061】図4は前記生体信号検出装置の赤色LED
11aと赤外LED11bにおける発光駆動間隔を示す
タイミングチャートである。
FIG. 4 shows a red LED of the biological signal detecting device.
It is a timing chart which shows the light emission drive interval in 11a and infrared LED11b.

【0062】図5は前記生体信号検出装置の赤色LED
11aと赤外LED11bの発光に伴なう脈動に応じた
各受光信号波形を示す図である。
FIG. 5 shows a red LED of the biological signal detecting device.
It is a figure which shows each received light signal waveform according to the pulsation accompanying the light emission of 11a and infrared LED11b.

【0063】すなわち、プローブ部1の発光装置11に
おける赤色LED11aと赤外LED11bとは、図4
に示すように、CPU25内のタイミング発生回路25
bからLED駆動装置27へ出力される発光タイミング
制御信号に応じて時分割駆動され、図5に示すように、
A/D変換回路24からCPU25に読込まれる脈動に
応じた受光合成信号から分離される各発光波長毎の受光
レベル信号Vaの比率(A/B)により、動脈血酸素飽
和度(SpO2)が演算算出される。
That is, the red LED 11a and the infrared LED 11b in the light emitting device 11 of the probe unit 1 are as shown in FIG.
As shown in FIG.
The time-divisional driving is performed according to the light emission timing control signal output from the LED drive device 27 to the LED driving device 27, as shown in FIG.
The arterial oxygen saturation (SpO 2 ) is determined by the ratio (A / B) of the received light level signal Va for each light emission wavelength separated from the received light combined signal corresponding to the pulsation read from the A / D conversion circuit 24 to the CPU 25. Calculated and calculated.

【0064】この場合、被検体10に対する動脈血の流
れ込みが最大のタイミング、つまり、被検体10の組織
及び静脈血による固定的な吸光と共に該動脈血による吸
光が最大になりフォトダイオード12aにおける受光量
が最小となってCPU25に読み込まれる受光レベル信
号Vaが最小(図5では暗レベル最大)となるタイミン
グにおいて、赤色発光に伴なう受光レベル信号VaRと
赤外発光に伴なう受光レベル信号VaIRとが分離され、
その比率(A/B)に対応した動脈血酸素飽和度(Sp
2)が測定される。
In this case, the timing at which the arterial blood flows into the subject 10 is the maximum, that is, the fixed absorption by the tissue and venous blood of the subject 10 and the absorption by the arterial blood are maximized, and the amount of light received by the photodiode 12a is minimum. When the light reception level signal Va read by the CPU 25 becomes minimum (dark level maximum in FIG. 5), the light reception level signal VaR accompanying red light emission and the light reception level signal VaIR accompanying infrared light emission are Separated,
Arterial oxygen saturation (Sp) corresponding to the ratio (A / B)
O 2 ) is measured.

【0065】なお、赤色光Rと赤外光IRの受光レベル
の比率R/IRに対応する酸素飽和度(SpO2)の規
定値は、予めROMテーブル(図16参照)として格納
し測定時に対応するデータを読み出す構成としてもよい
し、その都度、前記脈動に伴なう吸光度比(ΔA1/Δ
A2)に基づき演算算出する構成としてもよい。
The specified value of the oxygen saturation (SpO 2 ) corresponding to the ratio R / IR of the received light levels of the red light R and the infrared light IR is stored in advance as a ROM table (see FIG. 16) and corresponds at the time of measurement. Data may be read out, and the absorbance ratio (ΔA1 / Δ) accompanying the pulsation may be read each time.
The calculation may be performed based on A2).

【0066】次に、前記構成による生体信号検出装置の
一連の動作について説明する。
Next, a series of operations of the biological signal detecting device having the above-mentioned configuration will be described.

【0067】(プローブの整合(校正))図6は前記生
体信号検出装置のプローブ整合処理に伴いプローブ駆動
の基準となる発光電流対受光レベルの基準データを示す
図である。この発光電流対受光レベルの基準データで
は、所定の発光駆動電流(mA)の変化に対する受光レ
ベル信号(V)の規定値と実測定値、そしてその実測値
の補正係数が各アドレスに対応付けられる。
(Probe Matching (Calibration)) FIG. 6 is a diagram showing reference data of light emission current vs. light receiving level which becomes a reference for driving the probe in accordance with the probe matching process of the biological signal detecting apparatus. In the reference data of the light emission current vs. the light reception level, the specified value of the light reception level signal (V) with respect to the change of the predetermined light emission drive current (mA), the actual measurement value, and the correction coefficient of the actual measurement value are associated with each address.

【0068】図7は前記生体信号検出装置のプローブ整
合処理に伴う発光電流対受光レベルの基準データに従い
基準(設計通り)のプローブ部1を対象として発光駆動
した場合の受光レベルの規定値曲線と現在のプローブ部
1を対象として発光駆動した場合の受光レベルの測定値
曲線とを対比して示す図である。図7における横軸は発
光駆動電流値(mA)、縦軸は受光レベルの電圧値
(V)である。
FIG. 7 shows a prescribed value curve of the light receiving level when light emission is driven for the reference (as designed) probe portion 1 according to the reference data of the light emitting current versus the light receiving level associated with the probe matching process of the biological signal detecting device. It is a figure which shows in comparison with the measured value curve of the light reception level at the time of light emission drive targeting the present probe part 1. In FIG. 7, the horizontal axis represents the light emission drive current value (mA), and the vertical axis represents the voltage value (V) of the light reception level.

【0069】図8は前記生体信号検出装置のプローブ整
合処理を示すフローチャートである。
FIG. 8 is a flow chart showing a probe matching process of the biological signal detecting apparatus.

【0070】このプローブ整合処理は、例えば電源の投
入に伴い毎回実施され、赤色LED11a発光の場合と
赤外LED11b発光の場合とで2度行われる。
This probe matching process is performed every time the power is turned on, for example, and is performed twice for the red LED 11a and the infrared LED 11b.

【0071】生体信号検出装置の電源が投入されると、
CPU25の内部ROMあるいは記憶装置29Aあるい
は外部記憶装置29Bに記憶されているシステムプログ
ラムに従って図8におけるプローブ整合処理が起動され
る。
When the power of the biological signal detecting device is turned on,
The probe matching process in FIG. 8 is started according to the system program stored in the internal ROM of the CPU 25, the storage device 29A, or the external storage device 29B.

【0072】このプローブ整合処理が起動されると、ま
ず、プローブ部1の発光装置11に対する駆動電流Iが
初期値“0(mA)”に設定され(ステップA1)、前
記図6で示した発光電流対受光レベルの基準データのAD
DRESS“00”が指定される(ステップA2)。
When this probe matching process is started, first, the drive current I for the light emitting device 11 of the probe unit 1 is set to the initial value "0 (mA)" (step A1), and the light emission shown in FIG. Reference data AD of current vs. received light level
DRESS “00” is designated (step A2).

【0073】すると、前記設定駆動電流I(初期値
“0”)によりLED(11a又は11b)が点灯駆動
され(ステップA3)、このとき受光装置12から出力
された受光電流IFに応じた受光レベル信号(Va1又は
Va2)の測定値(この場合“0”)が前記基準データの
指定ADD“00”に対応させて書き込まれる(ステップ
A4)。
Then, the LED (11a or 11b) is driven to light by the set drive current I (initial value "0") (step A3), and the light receiving level according to the light receiving current IF output from the light receiving device 12 at this time. The measured value (“0” in this case) of the signal (Va1 or Va2) is written in correspondence with the designated ADD “00” of the reference data (step A4).

【0074】すると、LEDが消灯されると共に(ステ
ップA5)、前記基準データの指定ADDが+1されてADD
RESS“01”が指定され(ステップA6)、LED駆動
電流Iが+5(mA)されて“5(mA)”に設定され
る(ステップA7)。
Then, the LED is turned off (step A5), and the designated ADD of the reference data is incremented by 1 to ADD.
RESS "01" is designated (step A6), and the LED drive current I is set to +5 (mA) and set to "5 (mA)" (step A7).

【0075】ここで、前記設定駆動電流Iが整合最大値
の40(mA)を超えたか否か判断され(ステップA
8)、当該整合最大値の40(mA)を超えてないと判
断された場合には、前記ステップA7にて更新設定され
た設定駆動電流I(この場合“5(mA)”)によりL
EDが点灯駆動され(ステップA8→A3)、このとき
の受光レベル信号Vaの測定値(この場合“0.2
5”)が前記基準データの指定ADD“01”に対応させ
て書き込まれる(ステップA4)。
Here, it is judged whether or not the set drive current I exceeds the maximum matching value of 40 (mA) (step A).
8) If it is determined that the matching maximum value of 40 (mA) is not exceeded, L is set by the set drive current I (in this case, "5 (mA)") updated and set in step A7.
The ED is driven to light (step A8 → A3), and the measured value of the received light level signal Va at this time (in this case, "0.2"
5 ") is written in correspondence with the designated ADD" 01 "of the reference data (step A4).

【0076】この後、前記同様にステップA3〜A8が
繰り返されることで、前記基準データの各ADDRESS(0
0〜08)で指定された発光駆動電流Iにそれぞれ対応
するLED点灯時の受光レベル信号Vaの測定値が、各
対応する指定ADDに順次書き込まれる。
Thereafter, the steps A3 to A8 are repeated in the same manner as described above, so that each ADDRESS (0
(0 to 08), the measured values of the light reception level signal Va at the time of LED lighting, which correspond to the light emission drive current I respectively, are sequentially written to the corresponding designated ADDs.

【0077】そして、ステップA8において、前記設定
駆動電流Iが整合最大値の40(mA)を超えたと判断
された場合には、現在のプローブ部1を基準の発光駆動
電流I(0,5,10,…,40mA)で点灯駆動した
場合の各受光測定値が得られたことになり、前記基準デ
ータの指定ADDが“00”にリセットされる(ステップ
A8→A9)。
Then, in step A8, when it is determined that the set drive current I exceeds the matching maximum value of 40 (mA), the light emission drive current I (0, 5, 5) based on the current probe unit 1 is used. 10, ..., 40 mA), each received light measurement value in the case of lighting drive is obtained, and the designated ADD of the reference data is reset to "00" (steps A8 → A9).

【0078】ここで、プローブ部1の発光,受光動作に
伴う許容誤差範囲y1が設定されると共に(この場合は
y1=20%)(ステップA10)、補正係数x1が
“0”にリセットされる(ステップA11)。
Here, the allowable error range y1 associated with the light emitting and light receiving operations of the probe unit 1 is set (y1 = 20% in this case) (step A10), and the correction coefficient x1 is reset to "0". (Step A11).

【0079】すると、前記基準データ(図6参照)にお
ける現在の指定ADD“00”に対応するところの測定値
がレジスタaにセットされると共に(ステップA1
2)、基準(設計通り)のプローブ部1である場合に得
られたはずの規定値がレジスタbにセットされ(ステッ
プA13)、この測定値aと規定値bとの比a/bが対
応補正係数x1としてセットされる(ステップA1
4)。
Then, the measured value corresponding to the current designated ADD "00" in the reference data (see FIG. 6) is set in the register a (step A1).
2) The specified value that should have been obtained when the probe unit 1 is the reference (as designed) is set in the register b (step A13), and the ratio a / b between the measured value a and the specified value b corresponds. It is set as the correction coefficient x1 (step A1)
4).

【0080】すると、この測定値aと規定値bとの比a
/bからなる補正係数x1が前記ステップA10にて設
定された許容誤差範囲y1の範囲内か範囲外かが判断さ
れ(ステップA15,A16)、許容誤差範囲y1内で
あると判断された場合には、現在の指定ADD“00”に
対応して補正係数x1が書き込まれる(ステップA1
7)。
Then, the ratio a between the measured value a and the specified value b
It is determined whether the correction coefficient x1 composed of / b is within or outside the allowable error range y1 set in step A10 (steps A15 and A16), and when it is determined that the correction coefficient x1 is within the allowable error range y1. , The correction coefficient x1 is written corresponding to the current designated ADD "00" (step A1).
7).

【0081】すると、前記基準データの指定ADDが+1
されて更新されるのに伴い(ステップA18)、当該指
定ADDが最終の“08”を超えるまで前記ステップA1
2〜A19の処理が繰り返され(ステップA19)、基
準データの各アドレスADDに対応した各測定値a…毎の
規定値bとの比a/bである補正係数x1…が取得され
る。
Then, the designated ADD of the reference data is +1.
As a result of being updated (step A18), the specified ADD exceeds the final "08", the above step A1.
The processes of 2 to A19 are repeated (step A19), and the correction coefficient x1 ... Which is the ratio a / b with the specified value b for each measured value a corresponding to each address ADD of the reference data is acquired.

【0082】そして、前記ステップA19において基準
データの指定ADDが最終の“08”を超えたと判断され
た場合、つまり前記基準データの各アドレスADDに対応
した各測定値a…毎の補正係数x1…が全て許容誤差範
囲y1内であると判断された場合には、プローブ整合終
了メッセージが表示部30に表示され、前記基準データ
の各ADDに書き込まれた補正係数x1…のうち、その平均
値あるいは中間値の補正係数x1が抽出されて現在のプ
ローブ部1に対する受光レベル信号Vaの補正係数x10
として記憶装置29Aのプローブ受光量補正係数メモリ
29aに記憶される(ステップA20)。
When it is determined in step A19 that the designated ADD of the reference data exceeds the final "08", that is, the correction coefficient x1 for each measured value a ... Corresponding to each address ADD of the reference data. When it is determined that all are within the allowable error range y1, a probe matching end message is displayed on the display unit 30, and the average value of the correction coefficients x1 written in each ADD of the reference data or The correction coefficient x1 of the intermediate value is extracted and the correction coefficient x10 of the received light level signal Va for the current probe unit 1 is extracted.
Is stored in the probe light receiving amount correction coefficient memory 29a of the storage device 29A (step A20).

【0083】一方、前記ステップA15,A16におい
て、基準データのある指定ADDに対応する測定値aに応
じた補正係数x1が前記許容誤差範囲y1の範囲外である
と判断された場合には、プローブNGメッセージと共に
“プローブの発光面および受光面を拭いて下さい”など
のガイドメッセージが表示部30に表示される(ステッ
プA21)。
On the other hand, if it is determined in steps A15 and A16 that the correction coefficient x1 corresponding to the measured value a corresponding to the designated ADD of the reference data is outside the allowable error range y1, the probe A guide message such as "Please wipe the light emitting surface and the light receiving surface of the probe" is displayed on the display unit 30 together with the NG message (step A21).

【0084】ここで、現在のプローブ部1の発光面およ
び受光面の汚れがユーザによって拭かれた後に、入力装
置28のユーザ操作により再校正(整合)が指示される
と(ステップA22)、前記ステップA1からのプロー
ブ整合処理が最初から再スタートされ、前記同様にして
基準データに従った現在のプローブ部1による受光レベ
ル信号Vaの実測定処理(ステップA1〜A8)、測定
値aと規定値bとの比a/bに応じた補正係数x1の許
容誤差(y1)判断処理(ステップA9〜A19)、そ
して補正係数x1の書き込み処理(ステップA17)、
が繰り返される。
Here, when the user re-calibrates (matches) the user's operation of the input device 28 after the current light-emitting surface and light-receiving surface of the probe unit 1 are wiped by the user (step A22), The probe matching process from step A1 is restarted from the beginning, and in the same manner as above, the actual measurement process of the received light level signal Va by the current probe unit 1 according to the reference data (steps A1 to A8), the measured value a and the specified value. an allowable error (y1) determination process of the correction coefficient x1 according to the ratio a / b with b (steps A9 to A19), and a writing process of the correction coefficient x1 (step A17),
Is repeated.

【0085】そして、ステップA20において、プロー
ブ整合終了メッセージが表示部30に表示された場合に
は、この後のプローブ部1の発光駆動に伴いA/D変換
回路24からCPU25に読み込まれる全ての受光レベ
ル信号Vaについて、前記プローブ受光量補正係数メモ
リ29aに記憶された補正係数x10により補正されるこ
とで、プローブ部1の交換や経時変化に伴いプローブ性
能に多少のばらつきがあっても安定した精度の受光レベ
ル信号Vaを得ることができる。
When the probe matching completion message is displayed on the display unit 30 in step A20, all the light received by the CPU 25 is read from the A / D conversion circuit 24 as the probe unit 1 emits light. The level signal Va is corrected by the correction coefficient x10 stored in the probe light receiving amount correction coefficient memory 29a, so that the accuracy is stable even if there is some variation in the probe performance due to replacement of the probe unit 1 or aging. It is possible to obtain the received light level signal Va of.

【0086】一方さらに、前記プローブ部1の発光面お
よび受光面の汚れを拭き取った後の再校正(整合)処理
により、再びプローブNGメッセージが表示される場合
には、プローブ性能そのものが許容誤差範囲y1を超え
て低下したものとして、プローブ交換メッセージが共に
表示される(ステップA21)。
On the other hand, when the probe NG message is displayed again by the recalibration (matching) process after wiping the dirt of the light emitting surface and the light receiving surface of the probe unit 1, the probe performance itself is within the allowable error range. A probe exchange message is displayed together with the message indicating that the value has dropped beyond y1 (step A21).

【0087】これにより、ユーザは、装着中のプローブ
部1を許容誤差範囲yに収まる性能限界まで最大限継続
して使用できるばかりか、プローブ部1の性能が一定の
生体検出精度を維持できない使用不能なレベルにまで低
下した場合には、速やかにプローブ交換が必要であるこ
とを容易に知ることができる。
As a result, the user not only can use the probe unit 1 while being worn up to the maximum performance limit within the allowable error range y, but also use the probe unit 1 in which the performance of the probe unit 1 cannot be maintained constant. When the level drops to an impossible level, it is possible to easily know that probe replacement is necessary immediately.

【0088】(脈拍測定の精度確認)図9は前記生体信
号検出装置の脈拍測定確認処理に伴いプローブ部1を所
定の脈拍に応じて擬似的に発光駆動するための疑似脈発
光駆動テーブルを示す図である。図9では擬似的に発光
駆動するための電流値と、その電流値のデータを記憶す
るメモリのアドレスを電流値に対応付けて表示してい
る。
(Confirmation of Accuracy of Pulse Measurement) FIG. 9 shows a pseudo pulse emission drive table for pseudo emission drive of the probe unit 1 according to a predetermined pulse in accordance with the pulse measurement confirmation process of the biological signal detecting apparatus. It is a figure. In FIG. 9, the current value for pseudo light emission driving and the address of the memory for storing the data of the current value are displayed in association with the current value.

【0089】図10は前記生体信号検出装置の脈拍測定
確認処理に伴う疑似脈発光駆動テーブルに従いプローブ
部1を発光駆動した場合の所定脈拍の脈動波形に対応し
た発光駆動曲線を示す図である。横軸は、擬似脈発光駆
動テーブルのアドレス(ADD)に対応する値を経過時
間として示し、縦軸は、擬似的に発光駆動するための電
流値を発光量として示している。
FIG. 10 is a diagram showing a light emission drive curve corresponding to a pulsating waveform of a predetermined pulse when the probe unit 1 is driven to emit light according to the pseudo pulse light emission drive table accompanying the pulse measurement confirmation processing of the biological signal detecting apparatus. The horizontal axis represents a value corresponding to the address (ADD) of the pseudo pulse light emission drive table as the elapsed time, and the vertical axis represents the current value for the pseudo light emission drive as the light emission amount.

【0090】図11は前記生体信号検出装置の脈拍測定
確認処理(テーブル方式)を示すフローチャートであ
る。
FIG. 11 is a flow chart showing the pulse measurement confirmation processing (table system) of the biological signal detecting apparatus.

【0091】この脈拍測定確認処理は、例えば電源の投
入に伴い毎回実施される前記プローブ整合処理に続い
て、CPU25の内部ROMあるいは記憶装置29Aあ
るいは外部記憶装置29Bに記憶されているシステムプ
ログラムに従って実施され、赤色LED11a又は赤外
LED11bの何れか一方を所定の脈拍に応じて擬似的
に発光駆動させる。
This pulse measurement confirmation processing is executed according to the system program stored in the internal ROM of the CPU 25 or the storage device 29A or the external storage device 29B, for example, following the probe matching process executed every time the power is turned on. Then, either the red LED 11a or the infrared LED 11b is driven to emit light in a pseudo manner according to a predetermined pulse.

【0092】なお、この脈拍測定確認処理において、所
定の脈拍を例えば1分間で60拍とする場合には、前記
疑似脈発光駆動テーブル(図9参照)において1拍の疑
似脈拍となる発光駆動サイクル(ADD1-6,7-12,…)が1秒
間で繰り返される。
In the pulse measurement confirmation process, when the predetermined pulse is set to 60 beats in one minute, for example, the pseudo pulse emission drive table (see FIG. 9) has a light emission drive cycle that produces one pseudo pulse. (ADD1-6, 7-12, ...) is repeated in 1 second.

【0093】図11における脈拍測定確認処理が起動さ
れると、まず、前記疑似脈発光駆動テーブルのアドレス
ADDが“1”に指定され(ステップB1)、この指定ADD
“1”に対応するLED駆動電流I(=10)によりL
EDが点灯駆動される(ステップB2,B3)。
When the pulse measurement confirmation process in FIG. 11 is started, first, the address of the pseudo pulse emission drive table is displayed.
ADD is designated as "1" (step B1), and this designated ADD
L by the LED drive current I (= 10) corresponding to “1”
The ED is driven to light up (steps B2 and B3).

【0094】すると、前記疑似脈発光駆動テーブルの指
定ADDが+1されてADD“2”が指定されると共に(ステ
ップB4)、この指定ADD“2”に対応するLED駆動
電流I(=12)によりLEDが点灯駆動される(ステ
ップB5→B2,B3)。
Then, the designated ADD of the pseudo pulse emission drive table is incremented by 1 to designate ADD "2" (step B4), and the LED drive current I (= 12) corresponding to the designated ADD "2" is used. The LED is driven to light (step B5 → B2, B3).

【0095】この後、前記同様に疑似脈発光駆動テーブ
ルの指定ADDが順次+1されるのに伴い、LED駆動電
流Iが所定の脈拍に応じた擬似的な脈動波形(図10参
照)に対応させて変化され、発光装置11が繰り返し点
灯駆動されるもので(ステップB2〜B5)、この間C
PU25において一定時間内の受光レベル信号Vaのピ
ーク値が何回カウントされるかで脈拍算出が繰り返され
る(ステップB5)。
Thereafter, as the designated ADD of the pseudo pulse light emission drive table is sequentially incremented by +1 as described above, the LED drive current I is made to correspond to the pseudo pulse waveform corresponding to a predetermined pulse (see FIG. 10). The light emitting device 11 is repeatedly turned on and driven (steps B2 to B5).
The pulse calculation is repeated depending on how many times the peak value of the received light level signal Va within the fixed time is counted in the PU 25 (step B5).

【0096】そして、前記所定脈拍の脈動波形に対応し
た発光駆動に従いCPU25において脈拍が算出される
と、プローブ部1の性能のばらつきに伴う脈拍測定の許
容誤差範囲y2が設定されると共に(この場合はy2=1
0%)(ステップB6)、補正係数x2が“0”にリセ
ットされる(ステップB7)。
When the CPU 25 calculates the pulse according to the light emission drive corresponding to the pulsating waveform of the predetermined pulse, the allowable error range y2 of the pulse measurement due to the variation in the performance of the probe unit 1 is set (in this case, Is y2 = 1
0%) (step B6), and the correction coefficient x2 is reset to "0" (step B7).

【0097】すると、前記ステップB5においてCPU
25にて算出された前記プローブ部1に対する疑似脈発
光駆動に応じて測定された脈拍測定値がレジスタaにセ
ットされると共に(ステップB8)、基準(設計通り)
のプローブ部1である場合に得られたはずの前記所定の
脈拍規定値(例えば60拍)がレジスタbにセットされ
(ステップB9)、この測定値aと規定値bとの比a/
bが脈拍補正係数x2としてセットされる(ステップB
10)。
Then, in step B5, the CPU
The pulse measurement value measured in response to the pseudo pulse emission drive for the probe unit 1 calculated in step 25 is set in the register a (step B8), and the reference (as designed) is set.
The predetermined pulse prescribed value (for example, 60 beats) which should have been obtained in the case of the probe unit 1 of (1) is set in the register b (step B9), and the ratio a / of the measured value a and the prescribed value b is set.
b is set as the pulse correction coefficient x2 (step B
10).

【0098】すると、この現在のプローブ部1を使用し
た脈拍測定値aと所定の脈拍規定値bとの比a/bから
なる脈拍補正係数x2が前記ステップB6にて設定され
た許容誤差範囲y2の範囲内か範囲外かが判断され(ス
テップB11,B12)、許容誤差範囲y2内であると
判断された場合には、脈拍測定OKメッセージが表示部
30に表示され、前記脈拍補正係数x2が現在のプロー
ブ部1を使用した脈拍測定の補正係数x20として記憶装
置29Aの脈拍測定補正係数メモリ29bに記憶される
(ステップB13)。
Then, the pulse correction coefficient x2 consisting of the ratio a / b between the pulse measurement value a using the current probe unit 1 and the predetermined pulse regulation value b is the allowable error range y2 set in the step B6. Is determined to be within or outside the range (steps B11 and B12), and if it is determined to be within the allowable error range y2, a pulse measurement OK message is displayed on the display unit 30, and the pulse correction coefficient x2 is displayed. The correction coefficient x20 for pulse measurement using the current probe unit 1 is stored in the pulse measurement correction coefficient memory 29b of the storage device 29A (step B13).

【0099】一方、前記ステップB11,B12におい
て、現在のプローブ部1を使用した脈拍測定値aと所定
の脈拍規定値bとの比a/bからなる脈拍補正係数x2
が前記許容誤差範囲y2の範囲外であると判断された場
合には、プローブ(脈拍測定)NGメッセージと共に
“プローブの発光面および受光面を拭いて下さい”など
のガイドメッセージが表示部30に表示される(ステッ
プB14)。
On the other hand, in steps B11 and B12, a pulse correction coefficient x2 consisting of the ratio a / b of the current pulse measurement value a using the probe unit 1 and the predetermined pulse regulation value b is used.
When it is determined that is outside the allowable error range y2, a guide message such as "Please wipe the light emitting surface and the light receiving surface of the probe" is displayed on the display unit 30 together with the probe (pulse measurement) NG message. (Step B14).

【0100】ここで、現在のプローブ部1の発光面およ
び受光面の汚れがユーザによって拭かれた後に、入力装
置28のユーザ操作により再測定が指示されると(ステ
ップB15)、前記ステップB1からの脈拍測定確認処
理が最初から再スタートされ、前記同様にして所定脈拍
の疑似脈波形に対応した現在のプローブ部1の発光駆動
に伴う脈拍測定処理(ステップB1〜B5)、測定値a
と規定値bとの比a/bに応じた補正係数x2の許容誤
差(y2)判断処理(ステップB6〜B12)、そして
脈拍補正係数x2の書き込み処理(ステップB10)、
が繰り返される。
[0100] Here, after the user wipes the current dirt on the light-emitting surface and the light-receiving surface of the probe unit 1 and then a re-measurement is instructed by the user operation of the input device 28 (step B15), from the step B1. The pulse measurement confirmation process is restarted from the beginning, and in the same manner as above, the pulse measurement process (steps B1 to B5) associated with the current emission drive of the probe unit 1 corresponding to the pseudo pulse waveform of the predetermined pulse (measured value a).
The allowable error (y2) of the correction coefficient x2 according to the ratio a / b between the reference value b and the specified value b (steps B6 to B12), and the writing processing of the pulse correction coefficient x2 (step B10),
Is repeated.

【0101】そして、ステップB13において、脈拍測
定OKメッセージが表示部30に表示された場合には、
この後の被検体10に対する実際の脈拍測定に伴いCP
U25にて算出された脈拍値について、前記脈拍測定補
正係数メモリ29bに記憶された脈拍補正係数x20によ
り補正されることで、プローブ部1の交換や経時変化に
伴いプローブ性能に多少のばらつきがあっても安定した
精度で脈拍測定を行うことができる。
Then, in step B13, when the pulse measurement OK message is displayed on the display unit 30,
Along with the actual pulse measurement for the subject 10 after this, the CP
The pulse value calculated in U25 is corrected by the pulse correction coefficient x20 stored in the pulse measurement correction coefficient memory 29b, so that there is some variation in the probe performance due to replacement of the probe unit 1 and aging. Even with this, pulse measurement can be performed with stable accuracy.

【0102】一方さらに、前記プローブ部1の発光面お
よび受光面の汚れを拭き取った後の再測定処理により、
再びプローブ(脈拍測定)NGメッセージが表示される
場合には、現在のプローブ部1を使用した脈拍測定精度
が許容誤差範囲y2を超えて低下したものとして、プロ
ーブ交換メッセージが共に表示される(ステップB1
4)。
On the other hand, by the re-measurement process after wiping off the dirt on the light emitting surface and the light receiving surface of the probe unit 1,
When the probe (pulse measurement) NG message is displayed again, the probe replacement message is displayed together with the fact that the current pulse measurement accuracy using the probe unit 1 has fallen beyond the allowable error range y2 (step). B1
4).

【0103】これにより、ユーザは、装着中のプローブ
部1を許容誤差範囲yに収まる性能限界まで最大限継続
して使用できるばかりか、プローブ部1の性能が一定の
脈拍測定精度を維持できない使用不能なレベルにまで低
下した場合には、速やかにプローブ交換が必要であるこ
とを容易に知ることができる。
As a result, the user not only can use the probe unit 1 while being worn up to the maximum performance limit within the allowable error range y, but also cannot use the probe unit 1 with a constant performance of pulse measurement. When the level drops to an impossible level, it is possible to easily know that probe replacement is necessary immediately.

【0104】なお、前記所定脈拍の脈動波形(図10参
照)に対応したLED発光駆動信号を、疑似脈発光駆動
テーブル(図9参照)によらず、演算により発生させて
脈拍測定確認処理(図12参照)を行う構成としてもよ
い。
Note that the LED light emission drive signal corresponding to the pulsating waveform of the predetermined pulse (see FIG. 10) is generated by calculation regardless of the pseudo pulse light emission drive table (see FIG. 9) and the pulse measurement confirmation process (see FIG. 12)).

【0105】図12は前記生体信号検出装置の脈拍測定
確認処理(演算方式)を示すフローチャートである。
FIG. 12 is a flow chart showing the pulse measurement confirmation processing (calculation method) of the biological signal detecting apparatus.

【0106】この演算方式の脈拍測定確認処理では、プ
ローブ部1に対する発光駆動電流IをI=10からI=
20まで“2”ずつ演算増加させてLEDを点灯駆動す
る処理を、所定の脈拍に応じた一定時間毎(例えば1分
間に60拍の場合は1秒)に繰り返し行うことで(ステ
ップC1〜C6)、前記同様に所定脈拍の疑似脈波形に
対応した現在のプローブ部1の発光駆動に伴う脈拍測定
処理を実行させる。
In the pulse measurement confirmation processing of this calculation method, the light emission drive current I for the probe unit 1 is changed from I = 10 to I =
By repeating the process of driving the LEDs to be turned on by increasing the calculation by “2” by 20 at regular intervals (for example, 1 second in the case of 60 beats per minute) according to a predetermined pulse rate (steps C1 to C6). ) Similarly to the above, the pulse measurement process associated with the current light emission drive of the probe unit 1 corresponding to the pseudo pulse waveform of the predetermined pulse is executed.

【0107】なお、この演算方式の脈拍測定確認処理に
おいても、ステップB6〜B15に伴う測定値aと規定
値bとの比a/bに応じた補正係数x2の許容誤差(y
2)判断処理、そして脈拍補正係数x2の書き込み処理
は、前記テーブル方式の場合と同一の処理であり、現在
のプローブ部1を使用した脈拍測定の補正係数x20とし
て記憶装置29Aの脈拍測定補正係数メモリ29bに記
憶させることができる。
Even in the pulse measurement confirmation processing of this calculation method, the tolerance (y) of the correction coefficient x2 according to the ratio a / b between the measured value a and the specified value b accompanying steps B6 to B15
2) The determination process and the writing process of the pulse correction coefficient x2 are the same as those in the case of the table system, and the pulse measurement correction coefficient of the storage device 29A is used as the correction coefficient x20 of the pulse measurement using the current probe unit 1. It can be stored in the memory 29b.

【0108】よってこの場合にも、被検体10に対する
実際の脈拍測定に伴いCPU25にて算出された脈拍値
について、前記脈拍測定補正係数メモリ29bに記憶さ
せた脈拍補正係数x20により補正することで、プローブ
部1の交換や経時変化に伴いプローブ性能に多少のばら
つきがあっても安定した精度で脈拍測定を行うことがで
きる。また、プローブ部1の性能が一定の脈拍測定精度
を維持できない使用不能なレベルにまで低下した場合に
は、速やかにプローブ交換が必要であることを容易に知
ることができる。
Therefore, also in this case, the pulse value calculated by the CPU 25 along with the actual pulse measurement for the subject 10 is corrected by the pulse correction coefficient x20 stored in the pulse measurement correction coefficient memory 29b. Even if there is some variation in the probe performance due to replacement of the probe unit 1 or change over time, pulse measurement can be performed with stable accuracy. Further, when the performance of the probe unit 1 is lowered to an unusable level at which a constant pulse measurement accuracy cannot be maintained, it can be easily known that the probe needs to be replaced promptly.

【0109】(酸素飽和度測定の精度確認)図13は前
記生体信号検出装置の酸素飽和度測定確認処理に伴う所
定の酸素飽和度%となる動脈血吸光度比率に応じた所定
発光レベル比R/IRの疑似脈波形に対応した発光駆動
曲線を示す図である。横軸は、擬似脈所定比発光駆動テ
ーブルのアドレス(ADD)に対応する値を経過時間と
して示し、縦軸は、擬似的に発光駆動するための電流値
を発光量として示している。
(Accuracy Confirmation of Oxygen Saturation Measurement) FIG. 13 shows a predetermined light emission level ratio R / IR corresponding to an arterial blood absorbance ratio which becomes a predetermined oxygen saturation% accompanying the oxygen saturation measurement confirmation processing of the biological signal detecting device. It is a figure which shows the light emission drive curve corresponding to the pseudo pulse waveform of. The horizontal axis represents a value corresponding to the address (ADD) of the pseudo pulse predetermined ratio light emission drive table as an elapsed time, and the vertical axis represents a current value for pseudo light emission drive as a light emission amount.

【0110】図14は前記生体信号検出装置の酸素飽和
度測定確認処理に伴いプローブ部1を所定の酸素飽和度
%となる発光レベル比R/IRで擬似的に発光駆動する
ための疑似脈所定比発光駆動テーブルを示す図である。
この疑似脈所定比発光駆動テーブルでは、所定発光レベ
ル比R/IRの疑似脈波形に対応する赤色LED11a
と赤外LED11bそれぞれの発光駆動電流(mA)が
各アドレスに対応付けられてセットされる。
FIG. 14 shows a predetermined pseudo pulse for driving the probe unit 1 to emit light in a pseudo manner at a light emission level ratio R / IR that provides a predetermined oxygen saturation% in accordance with the oxygen saturation measurement confirmation process of the biological signal detecting apparatus. It is a figure which shows a specific light emission drive table.
In this pseudo pulse predetermined ratio light emission drive table, the red LED 11a corresponding to the pseudo pulse waveform of the predetermined light emission level ratio R / IR
And the light emission drive current (mA) of each of the infrared LEDs 11b is set in association with each address.

【0111】図15は前記生体信号検出装置の酸素飽和
度測定確認処理に伴う疑似脈波形での発光駆動による発
光レベル比R/IRの変化に応じた酸素飽和度測定の規
定値曲線と現在のプローブ部1を対象として発光駆動し
た場合の酸素飽和度測定の測定値曲線とを対比して示す
図である。横軸に発光レベル比R/IRを、縦軸に酸素
飽和度%を示す。
FIG. 15 shows a prescribed value curve of the oxygen saturation measurement according to the change of the emission level ratio R / IR due to the emission drive in the pseudo pulse waveform accompanying the oxygen saturation measurement confirmation process of the biological signal detecting device and the current curve. It is a figure which shows in comparison with the measured value curve of the oxygen saturation measurement at the time of light emission drive targeting the probe part 1. The abscissa indicates the emission level ratio R / IR, and the ordinate indicates the oxygen saturation%.

【0112】図16は前記生体信号検出装置の酸素飽和
度測定確認処理に伴う動脈血の吸光度比R/IRに対応
した酸素飽和度の規定値と各対応した測定値およびその
補正係数x3を示すテーブルである。このテーブルで
は、動脈血の吸光度比R/IRの変化に対する酸素飽和
度%の規定値と実測定値、そしてその実測値の補正係数
が各アドレスに対応付けられる。
FIG. 16 is a table showing the specified values of oxygen saturation corresponding to the absorbance ratio R / IR of arterial blood accompanying the oxygen saturation measurement confirmation processing of the biological signal detecting device, the respective measured values and the correction coefficient x3 thereof. Is. In this table, the specified value of the oxygen saturation% with respect to the change in the absorbance ratio R / IR of the arterial blood, the actual measurement value, and the correction coefficient of the actual measurement value are associated with each address.

【0113】図17は前記生体信号検出装置の酸素飽和
度測定確認処理を示すフローチャートである。
FIG. 17 is a flow chart showing the oxygen saturation measurement confirmation processing of the biological signal detecting apparatus.

【0114】この酸素飽和度測定確認処理は、例えば電
源の投入に伴い毎回実施される前記プローブ整合処理お
よび脈拍測定確認処理に続いて、CPU25の内部RO
Mあるいは記憶装置29Aあるいは外部記憶装置29B
に記憶されているシステムプログラムに従って実施され
る。
This oxygen saturation measurement confirmation processing is, for example, following the probe matching processing and pulse measurement confirmation processing executed every time the power is turned on, and then the internal RO of the CPU 25.
M or storage device 29A or external storage device 29B
Is carried out according to the system program stored in.

【0115】なお、この酸素飽和度測定確認処理では、
赤色光Rと赤外光IRによる動脈血の吸光度比R/IR
に応じた疑似脈波形に対応する発光比率でプローブ部1
を発光駆動し、測定された酸素飽和度と規定値との比
(差)から該酸素飽和度の測定補正係数x3を得るもの
である。
In this oxygen saturation measurement confirmation processing,
Absorbance ratio R / IR of arterial blood by red light R and infrared light IR
With the emission ratio corresponding to the pseudo pulse waveform according to
Is driven to emit light, and the measurement correction coefficient x3 of the oxygen saturation is obtained from the ratio (difference) between the measured oxygen saturation and the specified value.

【0116】図17における酸素飽和度測定確認処理が
起動されると、まず、発光比率R/IRの更新間隔をz
(=0.2)とし、図16におけるテーブルのアドレス
(ADR)を“00”に指定する(ステップD1)。
When the oxygen saturation measurement confirmation processing in FIG. 17 is started, first, the update interval of the emission ratio R / IR is set to z.
(= 0.2), and the address of the table in FIG.
(ADR) is designated as "00" (step D1).

【0117】また、測定確認初期の発光比率R/IRを
“3.6”に設定し(ステップD2)、この設定発光比
率R/IR(=3.6)に対応した疑似脈波形を得るた
めの疑似脈所定比発光駆動テーブル(図14参照)が生
成されてその先頭アドレス(ADD=1)が指定される(ステ
ップD3)。
In order to obtain the pseudo pulse waveform corresponding to this set emission ratio R / IR (= 3.6), the emission ratio R / IR in the initial measurement confirmation is set to "3.6" (step D2). The pseudo pulse predetermined ratio light emission drive table (see FIG. 14) is generated and its head address (ADD = 1) is designated (step D3).

【0118】すると、前記設定発光比率R/IR(=
3.6)に対応して生成した疑似脈所定比発光駆動テー
ブルに従い、当該所定発光比率R/IRの疑似脈波形に
対応した発光駆動電流Iの変化により赤色LED11a
と赤外LED11bの発光駆動が行われ(ステップD4
〜D7)、この間CPU25において赤色発光時の受光
レベル信号VaRと赤外発光時の受光レベル信号VaIRと
に応じた酸素飽和度の算出が繰り返される(ステップD
7)。
Then, the set emission ratio R / IR (=
According to the pseudo pulse predetermined ratio light emission drive table generated corresponding to 3.6), the red LED 11a is changed by the change of the light emission drive current I corresponding to the pseudo pulse waveform of the predetermined light emission ratio R / IR.
And the infrared LEDs 11b are driven to emit light (step D4
During this period, the CPU 25 repeats the calculation of the oxygen saturation level according to the light reception level signal VaR for red light emission and the light reception level signal VaIR for infrared light emission (step D7).
7).

【0119】そして、前記所定発光比率R/IR(=
3.6)の疑似脈波形に対応した発光駆動に従いCPU
25において酸素飽和度が算出されると、プローブ部1
の性能のばらつきに伴う酸素飽和度測定の許容誤差範囲
y3が設定されると共に(この場合はy3=10%)(ス
テップD8)、補正係数x3が“0”にリセットされる
(ステップD9)。
Then, the predetermined light emission ratio R / IR (=
CPU according to the light emission drive corresponding to the pseudo pulse waveform of 3.6)
When the oxygen saturation is calculated at 25, the probe unit 1
The allowable error range y3 of the oxygen saturation measurement due to the variation of the performance of (3) is set (y3 = 10% in this case) (step D8), and the correction coefficient x3 is reset to "0" (step D9).

【0120】すると、前記ステップD7においてCPU
25にて算出された前記プローブ部1に対する所定発光
比率R/IR(=3.6)での疑似脈発光駆動に応じて
測定された酸素飽和度がレジスタaにセットされると共
に(ステップD10)、動脈血吸光度比R/IR(=
3.6)である場合の酸素飽和度の規定値がレジスタb
にセットされ(ステップD11)、この測定値aと規定
値bとの比a/bが酸素飽和度補正係数x3としてセッ
トされる(ステップD12)。
Then, in step D7, the CPU
The oxygen saturation measured in response to the pseudo pulse emission drive at the predetermined emission ratio R / IR (= 3.6) for the probe unit 1 calculated in step 25 is set in the register a (step D10). , Arterial blood absorbance ratio R / IR (=
The prescribed value of oxygen saturation in the case of 3.6) is the register b.
Is set (step D11), and the ratio a / b between the measured value a and the specified value b is set as the oxygen saturation correction coefficient x3 (step D12).

【0121】すると、この現在のプローブ部1を使用し
た所定発光比率R/IR(=3.6)での酸素飽和度測
定値aと規定値bとの比a/bからなる酸素飽和度補正
係数x3が前記ステップD8にて設定された許容誤差範
囲y3の範囲内か範囲外かが判断され(ステップD1
3,D14)、許容誤差範囲y3内であると判断された
場合には、現在のテーブル指定ADR“00”(図16参
照)に対応して該補正係数x3が書き込まれる(ステッ
プD15)。
Then, the oxygen saturation correction consisting of the ratio a / b between the measured oxygen saturation value a and the specified value b at the predetermined light emission ratio R / IR (= 3.6) using the present probe unit 1 is used. It is determined whether the coefficient x3 is within or outside the allowable error range y3 set in step D8 (step D1).
3, D14), and if it is determined that it is within the allowable error range y3, the correction coefficient x3 is written in correspondence with the current table designation ADR "00" (see FIG. 16) (step D15).

【0122】すると、この所定発光比率R/IR(=
3.6)での酸素飽和度測定確認に対応するプローブO
K判定メッセージが表示部30に経過表示されると共に
(ステップD16)、次の所定発光比率R/IRが−z
(=0.2)されて“3.4”に更新され(ステップD
17)、前記テーブル指定ADR“00”が+1されて
“01”に更新される(ステップD18)。
Then, the predetermined light emission ratio R / IR (=
Probe O corresponding to the confirmation of oxygen saturation measurement in 3.6)
While the K determination message is displayed on the display unit 30 (step D16), the next predetermined light emission ratio R / IR is -z.
(= 0.2) and updated to "3.4" (step D
17), the table designation ADR "00" is incremented by 1 and updated to "01" (step D18).

【0123】すると、前記ステップD17にて更新設定
された次の所定発光比率R/IR(=3.4)が、この
酸素飽和度測定確認処理における最小の所定発光比率R
/IR(=0.4)より低下して設定されたか否か判断
され(ステップD19)、当該最小の所定発光比率R/
IR(=0.4)より低下してないと判断された場合に
は、前記ステップD3〜D7の処理が繰り返される。
Then, the next predetermined light emission ratio R / IR (= 3.4) updated and set in step D17 is the minimum predetermined light emission ratio R in this oxygen saturation measurement confirmation processing.
/ IR (= 0.4), it is determined whether or not it has been set (step D19), and the minimum predetermined light emission ratio R /
When it is determined that the value is not lower than IR (= 0.4), the processes of steps D3 to D7 are repeated.

【0124】つまり、更新設定された発光比率R/IR
(=3.4)に対応して生成した疑似脈所定比発光駆動
テーブル(図14参照)に従い、当該所定発光比率R/
IRの疑似脈波形に対応した発光駆動電流Iの変化によ
り赤色LED11aと赤外LED11bの発光駆動が行
われ(ステップD4〜D7)、この間CPU25におい
て赤色発光時の受光レベル信号VaRと赤外発光時の受光
レベル信号VaIRとに応じた酸素飽和度の算出が繰り返
される(ステップD7)。
In other words, the updated light emission ratio R / IR
According to the pseudo pulse predetermined ratio light emission drive table (see FIG. 14) generated corresponding to (= 3.4), the predetermined light emission ratio R /
The red LED 11a and the infrared LED 11b are driven to emit light by the change of the light emission drive current I corresponding to the pseudo pulse waveform of IR (steps D4 to D7). The calculation of the oxygen saturation level according to the received light level signal VaIR is repeated (step D7).

【0125】そして、前記更新された所定発光比率R/
IR(=3.4)の疑似脈波形に対応した発光駆動に従
いCPU25において酸素飽和度が算出されると、前回
同様にプローブ部1の性能のばらつきに伴う酸素飽和度
測定の許容誤差範囲y3が設定され(ステップD8)、
補正係数x3が“0”にリセットされる(ステップD
9)。
Then, the updated predetermined light emission ratio R /
When the oxygen saturation level is calculated in the CPU 25 according to the light emission drive corresponding to the pseudo pulse waveform of IR (= 3.4), the allowable error range y3 of the oxygen saturation level measurement due to the variation in the performance of the probe unit 1 becomes similar to the previous time. Is set (step D8),
The correction coefficient x3 is reset to "0" (step D
9).

【0126】そして、前記ステップD7においてCPU
25にて算出された前記プローブ部1に対する所定発光
比率R/IR(=3.4)での疑似脈発光駆動に応じて
測定された酸素飽和度がレジスタaにセットされると共
に(ステップD10)、動脈血吸光度比R/IR(=
3.4)である場合の酸素飽和度の規定値がレジスタb
にセットされ(ステップD11)、この測定値aと規定
値bとの比a/bが酸素飽和度補正係数x3としてセッ
トされる(ステップD12)。
Then, in step D7, the CPU
The oxygen saturation measured in response to the pseudo pulse emission drive at the predetermined emission ratio R / IR (= 3.4) for the probe unit 1 calculated in step 25 is set in the register a (step D10). , Arterial blood absorbance ratio R / IR (=
In the case of 3.4), the specified value of the oxygen saturation is the register b.
Is set (step D11), and the ratio a / b between the measured value a and the specified value b is set as the oxygen saturation correction coefficient x3 (step D12).

【0127】すると、この現在のプローブ部1を使用し
た更新後の所定発光比率R/IR(=3.4)での酸素
飽和度測定値aと規定値bとの比a/bからなる酸素飽
和度補正係数x3が前記許容誤差範囲y3の範囲内か範囲
外かが再び判断され(ステップD13,D14)、許容
誤差範囲y3内であると判断された場合には、現在のテ
ーブル指定ADR“01”(図16参照)に対応して当該
補正係数x3が書き込まれる(ステップD15)。
Then, the oxygen composed of the ratio a / b between the measured oxygen saturation value a and the specified value b at the predetermined emission ratio R / IR (= 3.4) after the update using the current probe unit 1 is performed. It is again determined whether the saturation correction coefficient x3 is within the allowable error range y3 or not (steps D13 and D14). If it is determined that the saturation correction coefficient x3 is within the allowable error range y3, the current table designation ADR " The correction coefficient x3 is written corresponding to 01 "(see FIG. 16) (step D15).

【0128】すなわち、前記ステップD3〜D19の処
理が繰り返し行われることで、所定発光比率R/IR
(=3.6)からR/IR(=0.4)まで、その更新
間隔z(=0.2)毎に更新設定されながら、各所定発
光比率R/IR…での酸素飽和度測定結果aと規定値b
との比a/bからなる酸素飽和度補正係数x3が求めら
れ、予め設定された許容誤差範囲y3の範囲内であるこ
とが確認され、図16におけるテーブルの各対応する指
定ADRに当該補正係数x3が順次セットされる。
That is, by repeating the processes of steps D3 to D19, the predetermined light emission ratio R / IR is obtained.
From (= 3.6) to R / IR (= 0.4), while being updated and set at each update interval z (= 0.2), the oxygen saturation measurement result at each predetermined light emission ratio R / IR ... a and specified value b
The oxygen saturation correction coefficient x3 consisting of the ratio a / b is calculated, and it is confirmed that it is within the preset allowable error range y3, and the correction coefficient is added to each corresponding designated ADR in the table in FIG. x3 is set sequentially.

【0129】この後、ステップD19において、更新さ
れた次の所定発光比率R/IRがこの酸素飽和度測定確
認処理における最小の所定発光比率R/IR(=0.
4)より低下して設定されたと判断された場合、つま
り、所定発光比率R/IR(=3.6)からR/IR
(=0.4)までの各発光比率R/IR…でのプローブ
駆動に対応した各酸素飽和度測定値とその既定値との比
からなる全ての酸素飽和度補正係数x3…について許容
誤差範囲y3の範囲内であると判断された場合には、酸
素飽和度測定OKメッセージが表示部30に表示され、
前記テーブルの各ADRに書き込まれた補正係数x3…のう
ち、その平均値あるいは中間値あるいは代表的な酸素飽
和度既定値(=50,80%など)での補正係数x3が
抽出されて現在のプローブ部1を使用した酸素飽和度測
定の補正係数x30として記憶装置29Aの酸素飽和度補
正係数メモリ29cに記憶される(ステップD20)。
Thereafter, in step D19, the updated next predetermined light emission ratio R / IR is the minimum predetermined light emission ratio R / IR (= 0.
4) If it is determined that the setting is lower than that, that is, from the predetermined light emission ratio R / IR (= 3.6) to R / IR
(= 0.4) Allowable error range for all oxygen saturation correction coefficients x3 ... Comprising the ratio of each oxygen saturation measurement value corresponding to probe driving at each emission ratio R / IR ... and its preset value If it is determined to be within the range of y3, an oxygen saturation measurement OK message is displayed on the display unit 30,
Of the correction coefficients x3 written in each ADR in the table, the correction coefficient x3 at the average value or the intermediate value or a typical oxygen saturation predetermined value (= 50, 80%, etc.) is extracted to obtain the current value. The correction coefficient x30 for oxygen saturation measurement using the probe unit 1 is stored in the oxygen saturation correction coefficient memory 29c of the storage device 29A (step D20).

【0130】一方、前記ステップD13,D14におい
て、ある所定発光比率R/IRでのプローブ駆動時に対
応する酸素飽和度測定値aに応じた補正係数x3が前記
許容誤差範囲y3の範囲外であると判断された場合に
は、プローブ(酸素飽和度測定)NGメッセージと共に
“プローブの発光面および受光面を拭いて下さい”など
のガイドメッセージが表示部30に表示される(ステッ
プD21)。
On the other hand, in steps D13 and D14, it is determined that the correction coefficient x3 corresponding to the oxygen saturation measurement value a corresponding to the probe driving at a predetermined light emission ratio R / IR is outside the allowable error range y3. When the determination is made, a guide message such as "Please wipe the light emitting surface and the light receiving surface of the probe" is displayed on the display unit 30 together with the probe (oxygen saturation measurement) NG message (step D21).

【0131】ここで、現在のプローブ部1の発光面およ
び受光面の汚れがユーザによって拭かれた後に、入力装
置28のユーザ操作により再測定が指示されると(ステ
ップD22)、前記ステップD1からの酸素飽和度測定
確認処理が最初から再スタートされ、前記同様にして所
定発光比率R/IRの疑似脈波形に対応した現在のプロ
ーブ部1の発光駆動に伴う酸素飽和度測定処理(ステッ
プD1〜D7)、測定値aと規定値bとの比a/bに応
じた補正係数x3の許容誤差(y3)判断処理(ステップ
D8〜D14)、そして酸素飽和度補正係数x3の書き
込み処理(ステップD15)、が繰り返される。
When the user now operates the input device 28 to instruct re-measurement after the current light-emitting surface and light-receiving surface of the probe unit 1 are wiped by the user (step D22), the steps from the step D1 are started. The oxygen saturation measurement confirmation process is restarted from the beginning, and the oxygen saturation measurement process associated with the current emission drive of the probe unit 1 corresponding to the pseudo pulse waveform of the predetermined emission ratio R / IR is performed in the same manner as described above (steps D1 to D1). D7), a permissible error (y3) determination process of the correction coefficient x3 according to the ratio a / b between the measured value a and the specified value b (steps D8 to D14), and a writing process of the oxygen saturation correction coefficient x3 (step D15). ), Is repeated.

【0132】そして、ステップD20において、酸素飽
和度測定OKメッセージが表示部30に表示された場合
には、この後の被検体10に対する実際の酸素飽和度の
測定に伴いCPU25にて算出された酸素飽和度につい
て、前記酸素飽和度補正係数メモリ29cに記憶された
酸素飽和度補正係数x30により補正されることで、プロ
ーブ部1の交換や経時変化に伴いプローブ性能に多少の
ばらつきがあっても安定した精度で酸素飽和度の測定を
行うことができる。
Then, in step D20, when the oxygen saturation measurement OK message is displayed on the display unit 30, the oxygen calculated by the CPU 25 in accordance with the subsequent actual measurement of the oxygen saturation of the subject 10. The saturation is corrected by the oxygen saturation correction coefficient x30 stored in the oxygen saturation correction coefficient memory 29c, so that the probe performance is stable even if there is some variation in the probe performance due to replacement of the probe unit 1 or aging. Oxygen saturation can be measured with the specified accuracy.

【0133】一方さらに、前記プローブ部1の発光面お
よび受光面の汚れを拭き取った後の再測定処理により、
再びプローブ(酸素飽和度測定)NGメッセージが表示
される場合には、現在のプローブ部1を使用した酸素飽
和度の測定精度が許容誤差範囲y3を超えて低下したも
のとして、プローブ交換メッセージが共に表示される
(ステップD21)。
On the other hand, further, by re-measurement processing after wiping off the dirt on the light emitting surface and the light receiving surface of the probe unit 1,
When the probe (oxygen saturation measurement) NG message is displayed again, it is considered that the current measurement accuracy of oxygen saturation using the probe unit 1 has fallen beyond the allowable error range y3, and the probe exchange message is issued. It is displayed (step D21).

【0134】これにより、ユーザは、装着中のプローブ
部1を許容誤差範囲yに収まる性能限界まで最大限継続
して使用できるばかりか、プローブ部1の性能が一定の
酸素飽和度測定精度を維持できない使用不能なレベルに
まで低下した場合には、速やかにプローブ交換が必要で
あることを容易に知ることができる。
As a result, the user not only can continue to use the probe unit 1 being mounted up to the performance limit within the allowable error range y, but also maintain the performance of the probe unit 1 at a constant oxygen saturation measurement accuracy. If it drops to an unusable level, which is impossible, it is possible to easily know that probe replacement is necessary immediately.

【0135】なお、この酸素飽和度測定確認処理では、
所定の発光比率R/IRでプローブ駆動した場合の酸素
飽和度測定値aと規定値bとの比率a/bを酸素飽和度
補正係数x3として取得(図17(ステップD15))
したが、酸素飽和度測定値aと規定値bとの差a−bを
酸素飽和度補正(シフト)係数として取得し、酸素飽和
度補正係数メモリ29cに記憶させてもよい。
Incidentally, in this oxygen saturation measurement confirmation processing,
Obtain the ratio a / b between the measured oxygen saturation value a and the specified value b when the probe is driven at a predetermined light emission ratio R / IR as the oxygen saturation correction coefficient x3 (FIG. 17 (step D15)).
However, the difference ab between the measured oxygen saturation value a and the specified value b may be acquired as an oxygen saturation correction (shift) coefficient and stored in the oxygen saturation correction coefficient memory 29c.

【0136】また、前記所定吸光度比率の赤色/赤外受
光レベル信号VaR/VaIRが得られるはずの脈動波形
(図13参照)に対応したLED発光駆動信号を、疑似
脈所定比発光駆動テーブル(図14参照)によらず、演
算により発生させて酸素飽和度測定確認処理を行う構成
としてもよい。
Further, the LED light emission drive signal corresponding to the pulsating waveform (see FIG. 13) which should obtain the red / infrared light receiving level signal VaR / VaIR of the predetermined light absorption ratio is converted into the pseudo pulse predetermined ratio light emission drive table (see FIG. 13). 14)), the oxygen saturation measurement confirmation processing may be performed by generating by calculation.

【0137】(プローブ交換時期監視)この生体信号検
出装置において、電源が投入された状態では、例えば一
定時間毎に記憶装置29Aのプローブ駆動積算時間メモ
リ29dに積算記憶されている現在装着中のプローブ部
1に対する駆動積算時間tが読み出され、予め設定され
たプローブ駆動耐用時間Tを超えたか否か監視される。
(Monitoring of probe replacement time) In this biological signal detecting device, when the power is turned on, for example, the probe which is currently mounted and is stored in the probe drive accumulated time memory 29d of the storage device 29A at a constant interval. The drive accumulated time t for the unit 1 is read out, and it is monitored whether or not the preset probe drive life time T has been exceeded.

【0138】このプローブ駆動積算時間tがプローブ駆
動耐用時間Tを超えた場合には、“プローブ交換時期で
す”などのガイドメッセージが表示される。
When the probe drive accumulated time t exceeds the probe drive life time T, a guide message such as "probe replacement time" is displayed.

【0139】これにより、ユーザは、プローブ交換時期
を目安として容易に知ることができる。
As a result, the user can easily know the probe replacement time as a guide.

【0140】次に、実際の被検体(生体)10に対して
脈拍測定および酸素飽和度測定を行う場合の動作につい
て説明する。
Next, the operation when the pulse measurement and the oxygen saturation measurement are performed on the actual subject (living body) 10 will be described.

【0141】図18は前記生体信号検出装置による被検
体(生体)10に対する生体信号検出処理を示すフロー
チャートである。
FIG. 18 is a flow chart showing a biological signal detecting process for the subject (living body) 10 by the biological signal detecting apparatus.

【0142】プローブ部1における発光装置11と受光
装置12との間に被検体10を挟み込み、入力装置28
に備えられる測定開始キーを操作すると、CPU25の
内部ROMあるいは記憶装置29Aあるいは外部記憶装
置29Bに記憶されているシステムプログラムに従って
図18における生体信号検出処理が起動される。
The subject 10 is sandwiched between the light emitting device 11 and the light receiving device 12 in the probe unit 1, and the input device 28
When the measurement start key provided in is operated, the biological signal detection process in FIG. 18 is started according to the system program stored in the internal ROM of the CPU 25, the storage device 29A, or the external storage device 29B.

【0143】(外来光影響除去)この生体信号検出処理
が起動されると、まず、発光装置11の未発光時におけ
る増幅回路23を介した側の受光レベル信号Va1、つま
り、被検体10を通した透過光の受光以前でもプローブ
部1の設置環境に応じた受光装置12での外来光の受光
動作に伴ない増幅回路23によりN倍されてA/D変換
回路24から出力される受光レベル信号Va1がCPU2
5に読み込まれる(ステップS1)。
(Elimination of influence of extraneous light) When this biological signal detection process is activated, first, the light reception level signal Va1 on the side through the amplifier circuit 23 when the light emitting device 11 is not emitting light, that is, the subject 10 is passed through. Even before the reception of the transmitted light, the light reception level signal output from the A / D conversion circuit 24 after being multiplied by N by the amplification circuit 23 in accordance with the external light reception operation in the light reception device 12 according to the installation environment of the probe unit 1. Va1 is CPU2
5 is read (step S1).

【0144】すると、このCPU25に読み込まれた発
光装置11の未発光時における増幅側受光レベル信号V
a1がN倍にした受光動作の基準電圧(N・VREF)と等
しいか否か、つまり、電圧/電流変換回路22から出力
される受光装置12での受光動作に応じた出力電圧が、
予め設定された基準電圧VREFとなっているか否か判断
される(ステップS2)。
Then, the amplification side light receiving level signal V read by the CPU 25 when the light emitting device 11 is not emitting light is received.
Whether a1 is equal to the reference voltage (N · VREF) for the light receiving operation multiplied by N, that is, the output voltage output from the voltage / current conversion circuit 22 according to the light receiving operation in the light receiving device 12 is
It is determined whether or not the reference voltage VREF is set in advance (step S2).

【0145】ここで、前記プローブ部1の設置環境に応
じた外来光が受光装置12のフォトダイオード12aに
受光されていることで、その受光電流IFの上昇に応じ
電流/電圧変換回路22からの出力電圧が前記基準電圧
VREFからシフトし、これにより前記CPU25に読み
込まれた増幅側の受光レベル信号Va1が基準電圧(N・
VREF)に等しくないと判断されると、その差(シフト
量)であるVb(=N・VREF−Va1)が算出されて電
圧制御回路26へ出力される(ステップS2→S3)。
Here, since the external light according to the installation environment of the probe unit 1 is received by the photodiode 12a of the light receiving device 12, the current / voltage conversion circuit 22 responds to the increase in the received light current IF. The output voltage shifts from the reference voltage VREF, whereby the light-receiving level signal Va1 on the amplification side read by the CPU 25 becomes the reference voltage (N
If it is determined that the difference is not equal to VREF), Vb (= N · VREF−Va1) which is the difference (shift amount) is calculated and output to the voltage control circuit 26 (steps S2 → S3).

【0146】すると、この電圧制御回路26から前記V
bを前記増幅率Nで割った電流/電圧変換回路22にお
ける実シフト値Vb/NをVREFに加算した電圧が、基
準電圧(VREF+Vb/N)として電流/電圧変換回路
22に与えられる(ステップS4)。
Then, from the voltage control circuit 26, the V
The voltage obtained by adding the actual shift value Vb / N in the current / voltage conversion circuit 22 obtained by dividing b by the amplification factor N to VREF is supplied to the current / voltage conversion circuit 22 as the reference voltage (VREF + Vb / N) (step S4). ).

【0147】こうして、増幅回路23を介した受光レベ
ル信号Va1に基づく第1段階の電流/電圧変換回路22
に対する動作点基準電圧VREFの補正制御により、前記
被検体10を挟み込んだ状態で受光装置12に対し外来
光が受光されていても、発光装置11の未発光時におけ
る増幅側受光レベル信号Va1がN倍にした受光動作の基
準電圧(N・VREF)と等しく設定されたと判断される
と、さらに同様に、プローブ部1の発光装置11が未発
光状態での電流/電圧変換回路22の動作点基準電圧V
REFとなるべきそのままの受光レベル信号Va2が、CP
U25において読み込まれる(ステップS1,S2→S
5)。
In this way, the first stage current / voltage conversion circuit 22 based on the received light level signal Va1 via the amplifier circuit 23.
By the correction control of the operating point reference voltage VREF with respect to, even if the external light is received by the light receiving device 12 with the subject 10 sandwiched therebetween, the amplification side light receiving level signal Va1 when the light emitting device 11 is not emitting light is N If it is determined that the reference voltage (N · VREF) for the doubled light receiving operation is set to be the same, the operating point reference of the current / voltage conversion circuit 22 in the light emitting device 11 of the probe unit 1 in the non-light emitting state is similarly obtained. Voltage V
The received light level signal Va2 that should be REF is CP
Read in U25 (steps S1, S2 → S
5).

【0148】そして、前記CPU25に読み込まれた受
光レベル信号Va2と基準電圧VREFとが一致しないと判
断された場合には、その差(シフト量)であるVb(=
VREF−Va2)が算出されて電圧制御回路26へ出力さ
れる(ステップS6→S7)。
When it is determined that the received light level signal Va2 read by the CPU 25 does not match the reference voltage VREF, the difference (shift amount) Vb (=
VREF−Va2) is calculated and output to the voltage control circuit 26 (steps S6 → S7).

【0149】すると、この電圧制御回路26から前記電
流/電圧変換回路22における実シフト値VbをVREF
に加算した電圧が、基準電圧(VREF +Vb)として電
流/電圧変換回路22に与えられる(ステップS8)。
Then, the actual shift value Vb in the current / voltage conversion circuit 22 is set to VREF from the voltage control circuit 26.
Is added to the current / voltage conversion circuit 22 as a reference voltage (VREF + Vb) (step S8).

【0150】こうして、電流/電圧変換回路22からの
そのままの受光レベル信号Va2に基づく第2段階の電流
/電圧変換回路22に対する動作点基準電圧VREFの補
正制御により、前記被検体10を挟み込んだ状態で受光
装置12に対し外来光が受光されていても、発光装置1
1の未発光時における受光レベル信号Va2が受光動作の
基準電圧(VREF)と等しく設定されたと判断される
と、ステップS9〜S16における発光レベルの制御処
理に移行される(ステップS5,S6→S9)。
In this way, the subject 10 is sandwiched by the correction control of the operating point reference voltage VREF for the second stage current / voltage conversion circuit 22 based on the received light level signal Va2 from the current / voltage conversion circuit 22 as it is. Even if external light is received by the light receiving device 12, the light emitting device 1
When it is determined that the light receiving level signal Va2 in the non-light emitting state of 1 is set equal to the reference voltage (VREF) of the light receiving operation, the process shifts to the light emitting level control process in steps S9 to S16 (steps S5, S6 → S9). ).

【0151】このように、被検体10を挟み込んだ状態
で、増幅回路23を介した受光レベル信号Va1とそのま
まの受光レベル信号Va2とに基づく2段階の電流/電圧
変換回路22に対する動作点基準電圧VREFの補正制御
を行なうことにより、前記受光装置12に対し外来光が
受光されても、電流/電圧変換回路22における動作点
基準電圧VREFを高精度に一定に設定することができ
る。
As described above, the operating point reference voltage for the two-stage current / voltage conversion circuit 22 based on the received light level signal Va1 via the amplifier circuit 23 and the received light level signal Va2 as it is with the object 10 sandwiched therebetween. By performing VREF correction control, the operating point reference voltage VREF in the current / voltage conversion circuit 22 can be set to a constant value with high accuracy even when external light is received by the light receiving device 12.

【0152】(被検体個体差影響除去)前記ステップS
1〜S8における動作点基準電圧VREFの補正制御が行
なわれ、外来光の影響が除去されると、被検体10の光
透過率の個体差の影響を除去するためステップS9〜S
16における発光レベルの制御処理に移行され、まず、
CPU25の発光電流制御回路25aから所定初期レベ
ルの赤色発光駆動用の発光電流制御信号がLED駆動装
置27の定電流回路27cへ出力され、赤色発光駆動回
路27aによりプローブ部1の発光装置11における赤
色LED11aが所定初期レベルの発光量で点灯される
(ステップS9)。
(Removal of Influence of Individual Difference of Subject) Step S
When the correction control of the operating point reference voltage VREF in 1 to S8 is performed and the influence of external light is removed, steps S9 to S are performed to remove the influence of the individual difference in the light transmittance of the subject 10.
The process shifts to the control process of the light emission level in 16, and first,
A light emitting current control circuit 25a of the CPU 25 outputs a light emitting current control signal for driving red light emission of a predetermined initial level to the constant current circuit 27c of the LED driving device 27, and the red light emitting drive circuit 27a outputs a red light in the light emitting device 11 of the probe unit 1. The LED 11a is turned on with a predetermined initial level of light emission (step S9).

【0153】すると、被検体10を通した赤色発光の透
過光が受光装置12のフォトダイオード12aに受光さ
れ、このフォトダイオード12aから出力される受光電
流IF に応じて、電流/電圧変換回路22からは前記基
準電圧VREFから受光量分シフトした受光電圧信号が出
力されるもので、これに対応してA/D変換回路24か
ら出力される受光レベル信号Va1がCPU25に読み込
まれ、当該赤色発光の透過光に応じた受光レベル信号V
a1が適正な測定処理を行なうために必要なレンジ範囲の
所定の受光レベルに等しいか否か判断される(ステップ
S10,S11)。
Then, the transmitted light of red emission that has passed through the subject 10 is received by the photodiode 12a of the light receiving device 12, and from the current / voltage conversion circuit 22 in accordance with the received light current IF output from the photodiode 12a. Is a light reception voltage signal shifted from the reference voltage VREF by the amount of light received, and the light reception level signal Va1 output from the A / D conversion circuit 24 is read by the CPU 25 in response to this, and the red light emission Receiving level signal V according to transmitted light
It is determined whether or not a1 is equal to a predetermined light receiving level within the range necessary for performing an appropriate measurement process (steps S10 and S11).

【0154】ここで、例えば前記プローブ部1に挟み込
んだ被検体10である指が非常に太いことでその光の透
過率が極めて低く、赤色透過光の受光動作により得られ
る前記基準電圧VREFからのシフト量が非常に小さいこ
とで、これに対応する受光レベル信号Va1は所定の受光
レベルより大幅に小さいと判断されると、CPU25の
発光電流制御回路25aからLED駆動装置27の定電
流回路27cへ出力されている赤色発光駆動用の発光電
流制御信号により、赤色発光駆動回路27aからの赤色
LED11aに対する発光駆動電流が増加制御される
(ステップS11→S12)。
Here, for example, since the finger which is the subject 10 sandwiched between the probe portions 1 is very thick, the light transmittance thereof is extremely low, and the finger from the reference voltage VREF obtained by the operation of receiving the red transmitted light. When it is determined that the light receiving level signal Va1 corresponding to the shift amount is significantly smaller than the predetermined light receiving level because the shift amount is very small, the light emitting current control circuit 25a of the CPU 25 transfers it to the constant current circuit 27c of the LED driving device 27. The emitted light emission current control signal for driving red light emission drives the emission drive current for the red LED 11a from the red light emission drive circuit 27a to be increased (steps S11 → S12).

【0155】こうして、赤色LED11aによる発光量
が増加されるのに伴ない、被検体10を通した赤色透過
光の受光装置12における受光量も増大され、前記A/
D変換回路24からCPU25に読み込まれる受光レベ
ル信号Va1が適正な測定処理を行なうために必要なレン
ジ範囲の所定の受光レベルに等しくなったと判断される
と、続いて同様に、CPU25の発光電流制御回路25
aから所定初期レベルの赤外発光駆動用の発光電流制御
信号がLED駆動装置27の定電流回路27cへ出力さ
れ、赤外発光駆動回路27bによりプローブ部1の発光
装置11における赤外LED11bが所定初期レベルの
発光量で点灯される(ステップS10,S11→S1
3)。
Thus, as the amount of light emitted by the red LED 11a increases, the amount of red transmitted light that has passed through the subject 10 in the light receiving device 12 also increases, and
When it is determined that the received light level signal Va1 read from the D conversion circuit 24 into the CPU 25 has become equal to the predetermined received light level within the range necessary for performing proper measurement processing, the light emitting current control of the CPU 25 is similarly performed. Circuit 25
A light emission current control signal for driving the infrared light emission of a predetermined initial level is output to the constant current circuit 27c of the LED driving device 27, and the infrared light emitting drive circuit 27b causes the infrared LED 11b in the light emitting device 11 of the probe unit 1 to be predetermined. The light is turned on at the initial level of light emission (steps S10, S11 → S1).
3).

【0156】すると、被検体10を通した赤外発光の透
過光が受光装置12のフォトダイオード12aに受光さ
れ、このフォトダイオード12aから出力される受光電
流IF に応じて、電流/電圧変換回路22からは前記基
準電圧VREFから受光量分シフトした受光電圧信号が出
力されるもので、これに対応してA/D変換回路24か
ら出力される受光レベル信号Va1がCPU25に読み込
まれ、当該赤外発光の透過光に応じた受光レベル信号V
a1が適正な測定処理を行なうために必要なレンジ範囲の
所定の受光レベルに等しいか否か判断される(ステップ
S14,S15)。
Then, the transmitted light of the infrared light emitted through the subject 10 is received by the photodiode 12a of the light receiving device 12, and the current / voltage conversion circuit 22 is generated according to the received light current IF output from the photodiode 12a. Outputs a light receiving voltage signal shifted from the reference voltage VREF by the amount of light received. Corresponding to this, the light receiving level signal Va1 output from the A / D conversion circuit 24 is read by the CPU 25, and the infrared light is emitted. Receiving level signal V according to the transmitted light of the emitted light
It is determined whether or not a1 is equal to a predetermined light receiving level in the range necessary for performing an appropriate measurement process (steps S14 and S15).

【0157】ここで、例えば前記同様にプローブ部1に
挟み込んだ被検体10である指が非常に太いことでその
光の透過率が極めて低く、赤外透過光の受光動作により
得られる前記基準電圧VREFからのシフト量も非常に小
さいことで、これに対応する受光レベル信号Va1は所定
の受光レベルより大幅に小さいと判断されると、CPU
25の発光電流制御回路25aからLED駆動装置27
の定電流回路27cへ出力されている赤外発光駆動用の
発光電流制御信号により、赤外発光駆動回路27bから
の赤外LED11bに対する発光駆動電流が増加制御さ
れる(ステップS15→S16)。
Here, for example, as in the case described above, since the finger which is the subject 10 sandwiched in the probe unit 1 is very thick, the light transmittance thereof is extremely low, and the reference voltage obtained by the operation of receiving infrared transmitted light is extremely low. Since the shift amount from VREF is also very small, if it is determined that the corresponding light reception level signal Va1 is significantly smaller than the predetermined light reception level, the CPU
25 to the LED drive device 27
The emission current control signal for driving the infrared emission for outputting to the constant current circuit 27c controls the increase of the emission drive current from the infrared emission drive circuit 27b to the infrared LED 11b (steps S15 → S16).

【0158】こうして、赤外LED11aによる発光量
が増加されるのに伴ない、被検体10を通した赤外透過
光の受光装置12における受光量も増大され、前記A/
D変換回路24からCPU25に読み込まれる受光レベ
ル信号Va1が適正な測定処理を行なうために必要なレン
ジ範囲の所定の受光レベルに等しくなったと判断される
と、前述の脈拍測定および動脈血酸素飽和度(Sp
2)の測定原理に従った測定処理に移行される(ステ
ップS14,S15→S17)。
Thus, as the amount of light emitted by the infrared LED 11a is increased, the amount of infrared transmitted light that has passed through the subject 10 at the light receiving device 12 is also increased.
When it is determined that the received light level signal Va1 read from the D conversion circuit 24 into the CPU 25 becomes equal to the predetermined received light level within the range required for proper measurement processing, the above-described pulse measurement and arterial oxygen saturation ( Sp
The measurement process follows the measurement principle of O 2 ) (steps S14, S15 → S17).

【0159】すなわち、これ以降継続的に交互発光駆動
される赤色LED11aからの赤色光と赤外LED11
bからの赤外光とに対応する各透過光の受光レベル信号
Va1(R)とVa1(IR)が順次読み込まれ、まず、被検体1
0に対する動脈血の流れ込みが最大となるタイミング、
つまり、該動脈血による吸光が最大となり、フォトダイ
オード12aにおける受光量が最小となってCPU25
に読み込まれる受光レベル信号Vaが最小(図5では暗
レベル最大)となるタイミングが一定時間毎に繰り返し
カウントされて脈拍が演算算出される。
That is, the red light from the red LED 11a and the infrared LED 11 which are continuously driven to alternately emit light after that.
The received light level signals Va1 (R) and Va1 (IR) of each transmitted light corresponding to the infrared light from b are sequentially read, and first, the subject 1
The timing when the flow of arterial blood to 0 becomes maximum,
That is, the absorption of light by the arterial blood is maximized, the amount of light received by the photodiode 12a is minimized, and the CPU 25
The timing at which the received light level signal Va read in is minimum (maximum dark level in FIG. 5) is repeatedly counted at regular intervals to calculate and calculate the pulse.

【0160】この際、脈拍測定値は、記憶装置29Aの
脈拍測定補正係数メモリ29bに記憶されている脈拍測
定補正係数x20により補正された値として、外部記憶装
置29Bに記憶され、表示部30に表示されるので、プ
ローブ部1の交換や経時変化に伴いプローブ性能に多少
のばらつきがあっても、安定した精度で脈拍の測定結果
を得ることができる。
At this time, the pulse measurement value is stored in the external storage device 29B as a value corrected by the pulse measurement correction coefficient x20 stored in the pulse measurement correction coefficient memory 29b of the storage device 29A, and is displayed on the display unit 30. Since it is displayed, even if there is some variation in the probe performance due to replacement of the probe unit 1 or change over time, it is possible to obtain pulse measurement results with stable accuracy.

【0161】また、前記同様に、被検体10に対する動
脈血の流れ込みが最大となるタイミング、つまり、該動
脈血による吸光が最大となり、フォトダイオード12a
における受光量が最小となってCPU25に読み込まれ
る受光レベル信号Vaが最小(図5では暗レベル最大)
となるタイミングにおいて、この赤色光と赤外光による
受光レベル信号Va1(R),Va1(IR)の比として得られる
被検体10における吸光度の比率(A/B)に基づき動
脈血酸素飽和度(SpO2)が演算算出される。
Similarly to the above, the timing at which the inflow of arterial blood into the subject 10 is maximized, that is, the absorption of light by the arterial blood is maximized, and the photodiode 12a
The received light level signal Va read by the CPU 25 is minimum (the maximum dark level in FIG. 5).
At this timing, the arterial blood oxygen saturation (SpO) is determined based on the absorbance ratio (A / B) of the subject 10 obtained as the ratio of the received light level signals Va1 (R) and Va1 (IR) of the red light and the infrared light. 2 ) is calculated.

【0162】この際、動脈血酸素飽和度の測定値は、記
憶装置29Aの酸素飽和度補正係数メモリ29cに記憶
されている酸素飽和度補正係数x30により補正された値
として、外部記憶装置29Bに記憶され、表示部30に
表示されるので、プローブ部1の交換や経時変化に伴い
プローブ性能に多少のばらつきがあっても、安定した精
度で酸素飽和度の測定結果を得ることができる。
At this time, the measured value of the arterial blood oxygen saturation is stored in the external storage device 29B as a value corrected by the oxygen saturation correction coefficient x30 stored in the oxygen saturation correction coefficient memory 29c of the storage device 29A. Then, the measurement result of the oxygen saturation can be obtained with stable accuracy even if there is some variation in the probe performance due to the replacement of the probe unit 1 or the change over time, because the measurement result is displayed on the display unit 30.

【0163】したがって、前記構成の生体信号検出装置
によれば、例えば電源投入時において、現在装着中のプ
ローブ部1の発光装置11を所定の発光駆動電流で発光
駆動した場合に受光装置12から出力される受光電流I
Fに応じてCPU25に読み込まれる受光レベル信号Va
の測定値aと、基準(設計通り)のプローブ部1を対象
とした場合にCPU25に読み込まれるはずの予め記憶
された受光レベル信号Vaの規定値bとの比a/bを、
プローブ受光量補正係数x10としてプローブ受光量補正
係数メモリ29aに記憶させ、これ以後CPU25に読
み込まれる受光レベル信号Vaは前記プローブ受光量の
補正係数x10により補正されるので、プローブ部1の交
換や経時変化に伴いプローブ性能にばらつきがあって
も、安定した受光レベル信号Vaを得て、高精度な生体
測定を維持することができる。
Therefore, according to the biological signal detecting device having the above-mentioned configuration, for example, when the light emitting device 11 of the probe part 1 currently mounted is driven to emit light by a predetermined light emitting drive current when the power is turned on, the light receiving device 12 outputs the light. Received light current I
Light reception level signal Va read by the CPU 25 according to F
The ratio a / b between the measured value a of ## EQU1 ## and the specified value b of the pre-stored received light level signal Va that should be read by the CPU 25 when the reference (as designed) probe unit 1 is targeted,
The probe light receiving amount correction coefficient x10 is stored in the probe light receiving amount correction coefficient memory 29a, and the light receiving level signal Va read by the CPU 25 thereafter is corrected by the probe light receiving amount correction coefficient x10. Even if there is a variation in the probe performance due to the change, it is possible to obtain a stable light reception level signal Va and maintain highly accurate biometric measurement.

【0164】また、前記受光レベル信号Vaの測定値a
と規定値bとの比a/bであるプローブ受光量補正係数
x1が予め設定された許容誤差範囲y1を超えた場合に
は、プローブNGメッセージをプローブ発光面/受光面
の拭き取りメッセージと共に表示部30に表示させるの
で、プローブ部1を最大限長く使用でき、しかも交換時
期を容易に知ることができる。
The measured value a of the received light level signal Va
When the probe received light amount correction coefficient x1, which is the ratio a / b between the measured value and the specified value b, exceeds the preset allowable error range y1, the probe NG message is displayed together with the message for wiping the probe light emitting surface / light receiving surface. Since it is displayed on 30, the probe unit 1 can be used for the longest time and the replacement time can be easily known.

【0165】また、前記構成の生体信号検出装置によれ
ば、例えば電源投入時において、現在装着中のプローブ
部1の発光装置11を所定脈拍の脈動波形に対応した発
光駆動電流で発光駆動した場合に受光装置12から出力
される受光電流IFに応じてCPU25に読み込まれる
受光レベル信号Vaに基づき演算算出された脈拍の測定
値aと、前記所定脈拍の規定値bとの比a/bを、脈拍
測定補正係数x20として脈拍測定補正係数メモリ29b
に記憶させ、この後、実際の被検体(生体)10をプロ
ーブ部1に挟み込んで行う脈拍測定の際には、その測定
脈拍値は前記脈拍測定補正係数x20により補正されて結
果表示されるので、プローブ部1の交換や経時変化に伴
いプローブ性能にばらつきがあっても、高精度な脈拍測
定を維持することができる。
Further, according to the biological signal detecting device having the above-mentioned configuration, for example, when the light emitting device 11 of the probe part 1 currently mounted is driven to emit light by the light emission drive current corresponding to the pulsating waveform of the predetermined pulse when the power is turned on. Further, the ratio a / b between the measured pulse value a calculated based on the received light level signal Va read into the CPU 25 according to the received light current IF output from the light receiving device 12 and the prescribed value b of the predetermined pulse is Pulse measurement correction coefficient x20 as pulse measurement correction coefficient memory 29b
When the pulse measurement is performed by storing the actual subject (living body) 10 in the probe unit 1, the measured pulse value is corrected by the pulse measurement correction coefficient x20 and the result is displayed. Even if the probe performance varies due to replacement of the probe unit 1 or change over time, highly accurate pulse measurement can be maintained.

【0166】また、前記所定脈拍の脈動波形に対応した
プローブ駆動による脈拍測定値aとその所定脈拍である
規定値bとの比a/bからなる脈拍測定補正係数x2が
予め設定された許容誤差範囲y2を超えた場合には、プ
ローブNGメッセージをプローブ発光面/受光面の拭き
取りメッセージと共に表示部30に表示させるので、プ
ローブ部1を脈拍測定精度を維持しつつも最大限長く使
用でき、しかも交換時期を容易に知ることができる。
Further, the pulse measurement correction coefficient x2 consisting of the ratio a / b of the pulse measurement value a by the probe driving corresponding to the pulsation waveform of the predetermined pulse and the specified value b which is the predetermined pulse is set to a preset allowable error. When the value exceeds the range y2, the probe NG message is displayed on the display unit 30 together with the message for wiping the probe light-emitting surface / light-receiving surface, so that the probe unit 1 can be used for the maximum length while maintaining the pulse measurement accuracy. You can easily know when to replace.

【0167】また、前記構成の生体信号検出装置によれ
ば、例えば電源投入時において、現在装着中のプローブ
部1の発光装置11における赤色LED11aと赤外L
ED11bとを、所定の酸素飽和度の疑似脈波形に対応
した赤色/赤外発光比R/IRの駆動電流で発光駆動し
た場合に、受光装置12から出力される受光電流IFに
応じてCPU25に読み込まれる受光レベル信号Vaに
基づき演算算出された酸素飽和度の測定値aと、前記所
定の酸素飽和度の規定値bとの比(または差)a/b
(a−b)を、酸素飽和度補正係数x30として酸素飽和
度補正係数メモリ29cに記憶させ、この後、実際の被
検体(生体)10をプローブ部1に挟み込んで行う酸素
飽和度測定の際には、その測定された酸素飽和度は前記
酸素飽和度補正係数x30により補正されて結果表示され
るので、プローブ部1の交換や経時変化に伴いプローブ
性能にばらつきがあっても、高精度な酸素飽和度測定を
維持することができる。
Further, according to the biological signal detecting device having the above-mentioned configuration, for example, when the power is turned on, the red LED 11a and the infrared light L in the light emitting device 11 of the probe part 1 which is currently mounted are
When the ED 11b and the ED 11b are driven to emit light by the drive current of the red / infrared emission ratio R / IR corresponding to the pseudo pulse waveform of the predetermined oxygen saturation, the CPU 25 is controlled according to the received light current IF output from the light receiving device 12. Ratio (or difference) a / b between the measured value a of oxygen saturation calculated based on the read received light level signal Va and the specified value b of the predetermined oxygen saturation.
(A-b) is stored in the oxygen saturation correction coefficient memory 29c as the oxygen saturation correction coefficient x30, and after that, when the actual subject (living body) 10 is sandwiched in the probe unit 1 and the oxygen saturation measurement is performed. In addition, since the measured oxygen saturation is corrected by the oxygen saturation correction coefficient x30 and displayed as a result, even if there is a variation in the probe performance due to replacement of the probe unit 1 or aging, it is highly accurate. Oxygen saturation measurements can be maintained.

【0168】また、前記所定酸素飽和度の疑似脈波形に
対応したプローブ駆動による酸素飽和度測定値aとその
所定酸素飽和度である規定値bとの比a/bからなる脈
拍測定補正係数x3が予め設定された許容誤差範囲y3を
超えた場合には、プローブNGメッセージをプローブ発
光面/受光面の拭き取りメッセージと共に表示部30に
表示させるので、プローブ部1を酸素飽和度測定精度を
維持しつつも最大限長く使用でき、しかも交換時期を容
易に知ることができる。
Further, a pulse measurement correction coefficient x3 consisting of a ratio a / b of the oxygen saturation measurement value a by probe driving corresponding to the pseudo pulse waveform of the predetermined oxygen saturation and the specified value b which is the predetermined oxygen saturation. If the value exceeds the preset allowable error range y3, the probe NG message is displayed on the display unit 30 together with the message for wiping the probe light emitting surface / light receiving surface, so that the probe unit 1 maintains the oxygen saturation measurement accuracy. However, it can be used for the longest time, and it is easy to know when to replace it.

【0169】なお、前記実施形態における生体信号検出
装置では、プローブ部1を、発光装置11により発光さ
れる光を被検体10に透過させ、その透過光を受光装置
12で受光するものとして構成したが、同発光装置11
により発光される光を被検体10に反射させ、その反射
光を受光装置12で受光するものとして構成してもよ
い。このような被検体反射光受光型のプローブ部とした
生体信号検出装置であっても、前記実施形態と全く同様
のプローブ整合処理および脈拍測定確認処理および酸素
飽和度測定確認処理を行なうことにより、プローブ部1
の交換や経時変化に伴いプローブ性能にばらつきがあっ
ても、測定精度を維持しつつ最大限長く使用でき、しか
も交換時期を容易に知ることができる。
In the biological signal detecting apparatus according to the above-mentioned embodiment, the probe unit 1 is constructed so that the light emitted from the light emitting device 11 is transmitted to the subject 10 and the transmitted light is received by the light receiving device 12. However, the same light emitting device 11
The light emitted by the light may be reflected by the subject 10 and the reflected light may be received by the light receiving device 12. Even in the case of a biological signal detecting device using such an object reflected light receiving type probe unit, by performing the probe matching process and the pulse measurement confirmation process and the oxygen saturation measurement confirmation process exactly the same as in the above embodiment, Probe part 1
Even if there is a variation in probe performance due to replacement or change over time, the probe can be used for the longest time while maintaining measurement accuracy, and the replacement time can be easily known.

【0170】なお、前記実施形態において記載した生体
信号検出装置によるプローブ校正や生体測定の手法、す
なわち、図8のフローチャートに示すプローブ整合(校
正)処理、図11のフローチャートに示す脈拍測定確認
処理(テーブル方式)、図12のフローチャートに示す
脈拍測定確認処理(演算方式)、図17のフローチャー
トに示す酸素飽和度測定確認処理、図18のフローチャ
ートに示す被検体(生体)10に対する生体信号検出処
理等の各手法は、何れもコンピュータに実行させること
ができるプログラムとして、メモリカード(ROMカー
ド、RAMカード等)、磁気ディスク(フロッピディス
ク、ハードディスク等)、光ディスク(CD−ROM、
DVD等)、半導体メモリ等の外部記録媒体(29B)
に格納して配布することができる。そして、プローブ部
1に対する発光駆動機能および受光信号入力機能を備え
た種々のコンピュータ機器は、この外部記録媒体(29
B)に記憶されたプログラムを読み込み、この読み込ん
だプログラムによって動作が制御されることにより、前
記実施形態において説明したプローブ校正機能や生体測
定機能を実現し、前述した手法による同様の処理を実行
することができる。
The method of probe calibration and biometric measurement by the biological signal detecting device described in the above embodiment, that is, the probe matching (calibration) process shown in the flowchart of FIG. 8 and the pulse measurement confirmation process shown in the flowchart of FIG. 11 ( Table method), pulse measurement confirmation processing (calculation method) shown in the flowchart of FIG. 12, oxygen saturation measurement confirmation processing shown in the flowchart of FIG. 17, biological signal detection processing for the subject (living body) 10 shown in the flowchart of FIG. Each of the above methods is a program that can be executed by a computer as a memory card (ROM card, RAM card, etc.), magnetic disk (floppy disk, hard disk, etc.), optical disk (CD-ROM,
DVD, etc.), external recording medium (29B) such as semiconductor memory
It can be stored and distributed in. Then, various computer devices having a light emission drive function and a light reception signal input function for the probe unit 1 are provided with the external recording medium (29
By reading the program stored in B) and controlling the operation by the read program, the probe calibration function and the biometric function described in the above-described embodiment are realized, and the same processing is performed by the method described above. be able to.

【0171】なお、本願発明は、前記各実施形態に限定
されるものではなく、実施段階ではその要旨を逸脱しな
い範囲で種々に変形することが可能である。さらに、前
記各実施形態には種々の段階の発明が含まれており、開
示される複数の構成要件における適宜な組み合わせによ
り種々の発明が抽出され得る。例えば、各実施形態に示
される全構成要件から幾つかの構成要件が削除された
り、幾つかの構成要件が組み合わされても、発明が解決
しようとする課題の欄で述べた課題が解決でき、発明の
効果の欄で述べられている効果が得られる場合には、こ
の構成要件が削除されたり組み合わされた構成が発明と
して抽出され得るものである。
The invention of the present application is not limited to the above-described embodiments, but can be variously modified at the stage of implementation without departing from the spirit of the invention. Furthermore, each of the embodiments includes inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, some constituents may be deleted from all constituents shown in each embodiment, or even if some constituents are combined, the problems described in the section of the problem to be solved by the invention can be solved, When the effects described in the section of the effects of the invention can be obtained, a structure in which these constituent elements are deleted or combined can be extracted as the invention.

【0172】[0172]

【発明の効果】以上のように、本発明に係る第1の生体
信号検出装置によれば、発光駆動手段によりプローブの
発光手段を所定の発光駆動レベルで駆動した際に、信号
レベル測定手段により測定された受光信号の信号レベル
と前記所定の発光駆動レベルに応じた規定の信号レベル
とに基づき当該測定された信号レベルの補正係数が算出
され、この算出された信号レベルの補正係数に基づき、
前記信号レベル測定手段により測定された受光信号の信
号レベルが補正されて被検体の状態が測定されるので、
プローブ性能のばらつきが校正されて被検体の状態測定
が行われるようになる。
As described above, according to the first biological signal detecting apparatus of the present invention, when the light emitting means of the probe is driven at the predetermined light emitting drive level by the light emitting drive means, the signal level measuring means is used. A correction coefficient of the measured signal level is calculated based on the signal level of the measured light receiving signal and a prescribed signal level according to the predetermined light emission drive level, and based on the calculated correction coefficient of the signal level,
Since the signal level of the received light signal measured by the signal level measuring means is corrected and the state of the subject is measured,
Variations in probe performance are calibrated to measure the condition of the subject.

【0173】また、本発明に係る第2の生体信号検出装
置によれば、プローブの発光手段を駆動した際に、当該
プローブの受光手段から出力される受光信号の信号レベ
ルが信号レベル測定手段により測定され、この測定され
た受光信号の信号レベルに基づき状態測定手段により被
検体の状態が測定されるもので、発光駆動手段によりプ
ローブの発光手段を所定の被検体の状態に応じた疑似脈
波形に対応する発光駆動レベルで駆動した際に、状態測
定手段により測定された状態測定値と前記所定の被検体
の状態とに基づき当該測定された状態測定値の補正係数
が算出され、この算出された状態測定値の補正係数に基
づき、前記状態測定手段により測定された状態測定値が
補正されるので、プローブ性能のばらつきがあっても状
態測定の測定精度が維持されるようになる。
According to the second biological signal detecting apparatus of the present invention, when the light emitting means of the probe is driven, the signal level of the light receiving signal output from the light receiving means of the probe is measured by the signal level measuring means. The state of the subject is measured by the state measuring means based on the measured signal level of the received light signal, and the light emission drive means causes the light emitting means of the probe to emit a pseudo pulse waveform according to the predetermined state of the subject. When driven at a light emission drive level corresponding to, the correction coefficient of the measured state measurement value is calculated based on the state measurement value measured by the state measurement means and the state of the predetermined subject, and this calculation is performed. The state measurement value measured by the state measuring means is corrected based on the correction coefficient of the state measurement value. Become to be maintained.

【0174】よって、プローブ毎の性能のばらつきや多
少の性能低下にも影響を受けることなく、常に安定した
測定結果を得ることが可能になる。
Therefore, it is possible to always obtain stable measurement results without being affected by variations in the performance of each probe and a slight decrease in performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る生体信号検出装置の電
子回路の構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of an electronic circuit of a biological signal detection device according to an embodiment of the present invention.

【図2】人体に光を透過させた場合の吸光度全体に対す
る各吸光成分の割合とその脈動に伴なう吸光度の変化状
態を示す図。
FIG. 2 is a diagram showing a ratio of each light absorption component to the total light absorption when light is transmitted through a human body and a change state of the light absorption with pulsation thereof.

【図3】赤色発光波長と赤外発光波長における酸化ヘモ
グロビン及び還元ヘモグロビンに対する吸光度の変化と
その吸光度比に応じた酸素飽和度の変化を示す図であ
り、同図(A)は酸化ヘモグロビンと還元ヘモグロビン
に対する発光波長と吸光度の関係を示す図、同図(B)
は赤色光Rと赤外光IRの吸光度比R/IRと酸素飽和
度SpO2との関係を示す図。
FIG. 3 is a diagram showing changes in absorbance with respect to oxyhemoglobin and reduced hemoglobin at red emission wavelengths and infrared emission wavelengths, and changes in oxygen saturation depending on the absorbance ratio, and FIG. 3 (A) shows oxyhemoglobin and reduction. Diagram showing the relationship between emission wavelength and absorbance for hemoglobin, same figure (B)
FIG. 3 is a diagram showing a relationship between an absorbance ratio R / IR of red light R and infrared light IR and oxygen saturation SpO 2 .

【図4】前記生体信号検出装置の赤色LED11aと赤
外LED11bにおける発光駆動間隔を示すタイミング
チャート。
FIG. 4 is a timing chart showing a light emission drive interval in the red LED 11a and the infrared LED 11b of the biological signal detecting device.

【図5】前記生体信号検出装置の赤色LED11aと赤
外LED11bの発光に伴なう脈動に応じた各受光信号
波形を示す図。
FIG. 5 is a diagram showing respective received light signal waveforms according to pulsations associated with light emission of the red LED 11a and the infrared LED 11b of the biological signal detecting device.

【図6】前記生体信号検出装置のプローブ整合処理に伴
いプローブ駆動の基準となる発光電流対受光レベルの基
準データを示す図。
FIG. 6 is a diagram showing reference data of a light emission current versus a light reception level, which is a reference for driving the probe in accordance with the probe matching process of the biological signal detecting apparatus.

【図7】前記生体信号検出装置のプローブ整合処理に伴
う発光電流対受光レベルの基準データに従い基準(設計
通り)のプローブ部1を対象として発光駆動した場合の
受光レベルの規定値曲線と現在のプローブ部1を対象と
して発光駆動した場合の受光レベルの測定値曲線とを対
比して示す図。
FIG. 7 shows a prescribed value curve of the light receiving level when the light emission drive is performed on the reference (as designed) probe unit 1 according to the reference data of the light emitting current vs. the light receiving level associated with the probe matching process of the biological signal detecting device and the current curve. The figure which shows in comparison with the measured value curve of the light reception level at the time of light emission drive targeting the probe part 1.

【図8】前記生体信号検出装置のプローブ整合処理を示
すフローチャートである。
FIG. 8 is a flowchart showing a probe matching process of the biological signal detecting apparatus.

【図9】前記生体信号検出装置の脈拍測定確認処理に伴
いプローブ部1を所定の脈拍に応じて擬似的に発光駆動
するための疑似脈発光駆動テーブルを示す図。
FIG. 9 is a view showing a pseudo pulse emission drive table for pseudo emission drive of the probe unit 1 according to a predetermined pulse in accordance with the pulse measurement confirmation process of the biological signal detecting apparatus.

【図10】前記生体信号検出装置の脈拍測定確認処理に
伴う疑似脈発光駆動テーブルに従いプローブ部1を発光
駆動した場合の所定脈拍の脈動波形に対応した発光駆動
曲線を示す図。
FIG. 10 is a diagram showing a light emission drive curve corresponding to a pulsation waveform of a predetermined pulse when the probe unit 1 is driven to emit light according to a pseudo pulse light emission drive table accompanying the pulse measurement confirmation processing of the biological signal detection apparatus.

【図11】前記生体信号検出装置の脈拍測定確認処理
(テーブル方式)を示すフローチャート。
FIG. 11 is a flowchart showing a pulse measurement confirmation process (table system) of the biological signal detection apparatus.

【図12】前記生体信号検出装置の脈拍測定確認処理
(演算方式)を示すフローチャート。
FIG. 12 is a flowchart showing a pulse measurement confirmation process (calculation method) of the biological signal detection apparatus.

【図13】前記生体信号検出装置の酸素飽和度測定確認
処理に伴う所定の酸素飽和度%となる動脈血吸光度比率
に応じた所定発光レベル比R/IRの疑似脈波形に対応
した発光駆動曲線を示す図。
FIG. 13 is a graph showing a light emission drive curve corresponding to a pseudo pulse waveform of a predetermined light emission level ratio R / IR corresponding to an arterial blood absorbance ratio that results in a predetermined oxygen saturation% associated with the oxygen saturation measurement confirmation process of the biological signal detecting device. FIG.

【図14】前記生体信号検出装置の酸素飽和度測定確認
処理に伴いプローブ部1を所定の酸素飽和度%となる発
光レベル比R/IRで擬似的に発光駆動するための疑似
脈所定比発光駆動テーブルを示す図。
FIG. 14 is a pseudo pulse predetermined ratio light emission for pseudo light emission driving of the probe unit 1 at a light emission level ratio R / IR that provides a predetermined oxygen saturation% in accordance with the oxygen saturation measurement confirmation processing of the biological signal detection device. The figure which shows a drive table.

【図15】前記生体信号検出装置の酸素飽和度測定確認
処理に伴う疑似脈波形での発光駆動による発光レベル比
R/IRの変化に応じた酸素飽和度測定の規定値曲線と
現在のプローブ部1を対象として発光駆動した場合の酸
素飽和度測定の測定値曲線とを対比して示す図。
FIG. 15 is a prescribed value curve of oxygen saturation measurement according to a change in emission level ratio R / IR due to emission drive in a pseudo pulse waveform accompanying the oxygen saturation measurement confirmation processing of the biological signal detection device and the current probe unit. The figure which shows in comparison with the measured value curve of the oxygen saturation measurement at the time of light emission drive targeting 1.

【図16】前記生体信号検出装置の酸素飽和度測定確認
処理に伴う動脈血の吸光度比R/IRに対応した酸素飽
和度の規定値と各対応した測定値およびその補正係数x
3を示すテーブル。
FIG. 16 is a diagram showing a specified value of oxygen saturation corresponding to the absorbance ratio R / IR of arterial blood accompanying the oxygen saturation measurement confirmation processing of the biological signal detecting device, each corresponding measured value and its correction coefficient x.
A table showing 3.

【図17】前記生体信号検出装置の酸素飽和度測定確認
処理を示すフローチャート。
FIG. 17 is a flowchart showing an oxygen saturation measurement confirmation process of the biological signal detecting device.

【図18】前記生体信号検出装置による被検体(生体)
10に対する生体信号検出処理を示すフローチャート。
FIG. 18 is a subject (living body) using the biological signal detecting apparatus.
10 is a flowchart showing a biological signal detection process for 10.

【符号の説明】[Explanation of symbols]

1 …プローブ部 10 …被検体(生体) 11 …発光装置 11a…赤色LED 11b…赤外LED 12 …受光装置 12a…フォトダイオード 2 …システム部 21 …増幅回路(電流アンプ) 22 …電流/電圧変換回路 23 …増幅回路(電圧アンプ) 24 …A/D変換回路 25 …CPU 25a…発光電流制御回路 25b…タイミング発生回路 26 …電圧制御回路 26a…D/A変換回路 27 …LED駆動装置 27a…赤色LED駆動回路 27b…赤外LED駆動回路 28 …入力装置 29A…記憶装置 29a…プローブ受光量補正係数メモリ(x10) 29b…脈拍測定補正係数メモリ(x20) 29c…酸素飽和度補正係数メモリ(x30) 29d…プローブ駆動積算時間メモリ(t) 29B…外部記憶装置 30 …表示部 31 …バックライト 32 …バックライト制御装置 33 …出力装置(コネクタ) Va(R)…赤色透過光受光信号 Va(IR) …赤外透過光受光信号 1… Probe section 10 ... Subject (living body) 11 ... Light emitting device 11a ... Red LED 11b ... infrared LED 12 ... Light receiving device 12a ... Photodiode 2 ... System Department 21 ... Amplifying circuit (current amplifier) 22 ... Current / voltage conversion circuit 23 ... Amplifying circuit (voltage amplifier) 24 ... A / D conversion circuit 25 ... CPU 25a ... Emission current control circuit 25b ... Timing generation circuit 26 ... Voltage control circuit 26a ... D / A conversion circuit 27 ... LED driving device 27a ... Red LED driving circuit 27b ... Infrared LED drive circuit 28 ... Input device 29A ... Storage device 29a ... Memory for correcting the amount of light received by the probe 29b ... Pulse measurement correction coefficient memory (x20) 29c ... Oxygen saturation correction coefficient memory (x30) 29d ... Probe drive accumulated time memory (t) 29B ... External storage device 30 ... Display 31… Backlight 32 ... Backlight control device 33 ... Output device (connector) Va (R) ... Red transmitted light reception signal Va (IR)… Infrared transmitted light reception signal

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 発光手段とこの発光手段により発光され
る光を被検体に照射することにより得られる被検体から
の光を受光する受光手段とを有するプローブと、 このプローブの発光手段を駆動する発光駆動手段と、 この発光駆動手段により前記プローブの発光手段を駆動
した際に、当該プローブの受光手段から出力される受光
信号の信号レベルを測定する信号レベル測定手段と、 前記発光駆動手段により前記プローブの発光手段を所定
の発光駆動レベルで駆動した際に、前記信号レベル測定
手段により測定された受光信号の信号レベルと前記所定
の発光駆動レベルに応じた規定の信号レベルとに基づき
当該測定された信号レベルの補正係数を算出する補正係
数算出手段と、 この補正係数算出手段により算出された信号レベルの補
正係数に基づき、前記信号レベル測定手段により測定さ
れた受光信号の信号レベルを補正し前記被検体の状態を
測定する状態測定手段と、を備えたことを特徴とする生
体信号検出装置。
1. A probe having a light emitting means and a light receiving means for receiving light from the subject obtained by irradiating the subject with light emitted by the light emitting means, and driving the light emitting means of the probe. Light emission drive means, signal level measurement means for measuring the signal level of a light reception signal output from the light reception means of the probe when the light emission means of the probe is driven by the light emission drive means, and the light emission drive means When the light emitting means of the probe is driven at a predetermined light emission drive level, the measurement is performed based on the signal level of the light receiving signal measured by the signal level measuring means and a prescribed signal level according to the predetermined light emission drive level. And a correction coefficient calculating means for calculating a correction coefficient for the signal level, and a correction coefficient for the signal level calculated by the correction coefficient calculating means. Come, the signal level measurement unit corrects the signal level of the measured received signal by the above and a state measuring means for measuring the state of the subject, the biological signal detecting apparatus characterized by comprising a.
【請求項2】 さらに、 前記補正係数算出手段により算出された信号レベルの補
正係数が予め設定された許容誤差範囲を超えた場合に前
記プローブに関する情報を出力するプローブ情報出力手
段を備えたことを特徴とする請求項1に記載の生体信号
検出装置。
2. A probe information output means for outputting information on the probe when the correction coefficient of the signal level calculated by the correction coefficient calculation means exceeds a preset allowable error range. The biological signal detecting device according to claim 1, which is characterized in that.
【請求項3】 発光手段とこの発光手段により発光され
る光を被検体に照射することにより得られる被検体から
の光を受光する受光手段とを有するプローブと、 このプローブの発光手段を駆動する発光駆動手段と、 この発光駆動手段により前記プローブの発光手段を駆動
した際に、当該プローブの受光手段から出力される受光
信号の信号レベルを測定する信号レベル測定手段と、 この信号レベル測定手段により測定された受光信号の信
号レベルに基づき前記被検体の状態を測定する状態測定
手段と、 前記発光駆動手段により前記プローブの発光手段を所定
の被検体の状態に応じた疑似脈波形に対応する発光駆動
レベルで駆動した際に、前記状態測定手段により測定さ
れた状態測定値と前記所定の被検体の状態とに基づき当
該測定された状態測定値の補正係数を算出する補正係数
算出手段と、 この補正係数算出手段により算出された状態測定値の補
正係数に基づき、前記状態測定手段により測定された状
態測定値を補正する状態測定値補正手段と、を備えたこ
とを特徴とする生体信号検出装置。
3. A probe having a light emitting means and a light receiving means for receiving light from the subject obtained by irradiating the subject with light emitted by the light emitting means, and a light emitting means of the probe is driven. The light emission drive means, the signal level measurement means for measuring the signal level of the light reception signal output from the light reception means of the probe when the light emission means of the probe is driven by the light emission drive means, and the signal level measurement means State measuring means for measuring the state of the subject based on the measured signal level of the received light signal, and light emission means of the probe for causing the light emitting means of the probe to emit light corresponding to a pseudo pulse waveform corresponding to the predetermined state of the subject. When driven at a drive level, the measured state based on the state measurement value measured by the state measuring means and the state of the predetermined subject. A correction coefficient calculation means for calculating a correction coefficient of a constant value, and a state measurement value correction means for correcting the state measurement value measured by the state measurement means based on the correction coefficient of the state measurement value calculated by the correction coefficient calculation means. And a biological signal detecting apparatus comprising:
【請求項4】 さらに、 前記補正係数算出手段により算出された状態測定値の補
正係数が予め設定された許容誤差範囲を超えた場合に前
記プローブに関する情報を出力するプローブ情報出力手
段を備えたことを特徴とする請求項3に記載の生体信号
検出装置。
4. A probe information output means for outputting information about the probe when the correction coefficient of the state measurement value calculated by the correction coefficient calculation means exceeds a preset allowable error range. The biological signal detecting device according to claim 3, wherein
【請求項5】 前記プローブに関する情報は、プローブ
の汚れおよび交換に関する情報のうちの少なくとも何れ
かであることを特徴とする請求項2又は請求項4に記載
の生体信号検出装置。
5. The biological signal detecting apparatus according to claim 2, wherein the information regarding the probe is at least one of information regarding contamination and replacement of the probe.
【請求項6】 前記被検体の状態は、脈拍および酸素飽
和度のうちの少なくとも何れかであることを特徴とする
請求項1乃至請求項5の何れか1項に記載の生体信号検
出装置。
6. The biological signal detecting apparatus according to claim 1, wherein the state of the subject is at least one of a pulse rate and an oxygen saturation level.
【請求項7】 発光手段とこの発光手段により発光され
る光を被検体に照射することにより得られる被検体から
の光を受光する受光手段とを有するプローブと、このプ
ローブの発光手段を駆動する発光駆動手段とを備えた生
体信号検出装置のコンピュータを制御するための生体信
号検出装置の校正処理プログラムであって、 前記コンピュータを、 前記発光駆動手段により前記プローブの発光手段を駆動
した際に、当該プローブの受光手段から出力される受光
信号の信号レベルを測定する信号レベル測定手段、 前記発光駆動手段により前記プローブの発光手段を所定
の発光駆動レベルで駆動した際に、前記信号レベル測定
手段により測定された受光信号の信号レベルと前記所定
の発光駆動レベルに応じた規定の信号レベルとに基づき
当該測定された信号レベルの補正係数を算出する補正係
数算出手段、 この補正係数算出手段により算出された信号レベルの補
正係数に基づき、前記信号レベル測定手段により測定さ
れた受光信号の信号レベルを補正し前記被検体の状態を
測定する状態測定手段、として機能させるようにしたコ
ンピュータ読み込み可能な生体信号検出装置の校正処理
プログラム。
7. A probe having a light emitting means and a light receiving means for receiving light from the subject obtained by irradiating the subject with light emitted by the light emitting means, and a light emitting means of the probe. A calibration processing program for a biological signal detection device for controlling a computer of a biological signal detection device comprising a light emission drive means, wherein the computer, when the light emission means of the probe is driven by the light emission drive means, A signal level measuring means for measuring a signal level of a light receiving signal output from the light receiving means of the probe; and when the light emitting means of the probe is driven at a predetermined light emitting drive level by the signal level measuring means. The measurement is performed based on the measured signal level of the received light signal and the prescribed signal level according to the predetermined light emission drive level. Correction coefficient calculating means for calculating a correction coefficient of the signal level, and correcting the signal level of the received light signal measured by the signal level measuring means based on the correction coefficient of the signal level calculated by the correction coefficient calculating means. A computer readable calibration program for a biological signal detecting device, which is made to function as state measuring means for measuring the state of a subject.
【請求項8】 発光手段とこの発光手段により発光され
る光を被検体に照射することにより得られる被検体から
の光を受光する受光手段とを有するプローブと、このプ
ローブの発光手段を駆動する発光駆動手段とを備えた生
体信号検出装置のコンピュータを制御するための生体信
号検出装置の校正処理プログラムであって、 前記コンピュータを、 前記発光駆動手段により前記プローブの発光手段を駆動
した際に、当該プローブの受光手段から出力される受光
信号の信号レベルを測定する信号レベル測定手段、 この信号レベル測定手段により測定された受光信号の信
号レベルに基づき前記被検体の状態を測定する状態測定
手段、 前記発光駆動手段により前記プローブの発光手段を所定
の被検体の状態に応じた疑似脈波形に対応する発光駆動
レベルで駆動した際に、前記状態測定手段により測定さ
れた状態測定値と前記所定の被検体の状態とに基づき当
該測定された状態測定値の補正係数を算出する補正係数
算出手段、 この補正係数算出手段により算出された状態測定値の補
正係数に基づき、前記状態測定手段により測定された状
態測定値を補正する状態測定値補正手段、として機能さ
せるようにしたコンピュータ読み込み可能な生体信号検
出装置の校正処理プログラム。
8. A probe having a light emitting means and a light receiving means for receiving light from the subject obtained by irradiating the subject with light emitted by the light emitting means, and a light emitting means of the probe. A calibration processing program for a biological signal detection device for controlling a computer of a biological signal detection device comprising a light emission drive means, wherein the computer, when the light emission means of the probe is driven by the light emission drive means, Signal level measuring means for measuring the signal level of the light receiving signal output from the light receiving means of the probe, state measuring means for measuring the state of the subject based on the signal level of the light receiving signal measured by the signal level measuring means, The light emission drive means causes the light emission means of the probe to emit a light emission drive signal corresponding to a pseudo pulse waveform according to a predetermined state of the subject. Correction coefficient calculation means for calculating a correction coefficient of the measured state measurement value based on the state measurement value measured by the state measurement means and the state of the predetermined subject when driven by a driving device. A computer-readable bio-signal detection device that functions as state measurement value correction means for correcting the state measurement value measured by the state measurement means based on the correction coefficient of the state measurement value calculated by the calculation means. Calibration processing program.
JP2002127144A 2002-04-26 2002-04-26 Biological signal detection device and calibration processing program for biological signal detection device Expired - Fee Related JP3818211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002127144A JP3818211B2 (en) 2002-04-26 2002-04-26 Biological signal detection device and calibration processing program for biological signal detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002127144A JP3818211B2 (en) 2002-04-26 2002-04-26 Biological signal detection device and calibration processing program for biological signal detection device

Publications (3)

Publication Number Publication Date
JP2003310580A true JP2003310580A (en) 2003-11-05
JP2003310580A5 JP2003310580A5 (en) 2005-07-21
JP3818211B2 JP3818211B2 (en) 2006-09-06

Family

ID=29541343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002127144A Expired - Fee Related JP3818211B2 (en) 2002-04-26 2002-04-26 Biological signal detection device and calibration processing program for biological signal detection device

Country Status (1)

Country Link
JP (1) JP3818211B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072267A (en) * 2007-09-19 2009-04-09 Koken Co Ltd Living body model, pseudo-biological information generator using the model, and living body simulator using the generator compatible with pulse oximeter
KR101051487B1 (en) 2009-06-29 2011-07-22 주식회사 메디칼써프라이 Amplification Rate Correction Method and Device of Oxygen Saturation Measuring Sensor
US8532729B2 (en) 2011-03-31 2013-09-10 Covidien Lp Moldable ear sensor
US8577435B2 (en) 2011-03-31 2013-11-05 Covidien Lp Flexible bandage ear sensor
US8768426B2 (en) 2011-03-31 2014-07-01 Covidien Lp Y-shaped ear sensor with strain relief
JP2014524798A (en) * 2011-07-05 2014-09-25 サウジ アラビアン オイル カンパニー Computer mouse system and associated computer media and computer-implemented method for monitoring and improving employee health and productivity
CN105310697A (en) * 2014-07-28 2016-02-10 深圳先进技术研究院 Method and device for measuring oxyhemoglobin saturation
US9462977B2 (en) 2011-07-05 2016-10-11 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9492120B2 (en) 2011-07-05 2016-11-15 Saudi Arabian Oil Company Workstation for monitoring and improving health and productivity of employees
US9615746B2 (en) 2011-07-05 2017-04-11 Saudi Arabian Oil Company Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9693734B2 (en) 2011-07-05 2017-07-04 Saudi Arabian Oil Company Systems for monitoring and improving biometric health of employees
US9722472B2 (en) 2013-12-11 2017-08-01 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for harvesting human energy in the workplace
US9889311B2 (en) 2015-12-04 2018-02-13 Saudi Arabian Oil Company Systems, protective casings for smartphones, and associated methods to enhance use of an automated external defibrillator (AED) device
US9949640B2 (en) 2011-07-05 2018-04-24 Saudi Arabian Oil Company System for monitoring employee health
US10307104B2 (en) 2011-07-05 2019-06-04 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US10475351B2 (en) 2015-12-04 2019-11-12 Saudi Arabian Oil Company Systems, computer medium and methods for management training systems
US10628770B2 (en) 2015-12-14 2020-04-21 Saudi Arabian Oil Company Systems and methods for acquiring and employing resiliency data for leadership development
US10642955B2 (en) 2015-12-04 2020-05-05 Saudi Arabian Oil Company Devices, methods, and computer medium to provide real time 3D visualization bio-feedback
US10824132B2 (en) 2017-12-07 2020-11-03 Saudi Arabian Oil Company Intelligent personal protective equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7555327B2 (en) 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072267A (en) * 2007-09-19 2009-04-09 Koken Co Ltd Living body model, pseudo-biological information generator using the model, and living body simulator using the generator compatible with pulse oximeter
KR101051487B1 (en) 2009-06-29 2011-07-22 주식회사 메디칼써프라이 Amplification Rate Correction Method and Device of Oxygen Saturation Measuring Sensor
US8532729B2 (en) 2011-03-31 2013-09-10 Covidien Lp Moldable ear sensor
US8577435B2 (en) 2011-03-31 2013-11-05 Covidien Lp Flexible bandage ear sensor
US8768426B2 (en) 2011-03-31 2014-07-01 Covidien Lp Y-shaped ear sensor with strain relief
US9808156B2 (en) 2011-07-05 2017-11-07 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving biomechanical health of employees
US9844344B2 (en) 2011-07-05 2017-12-19 Saudi Arabian Oil Company Systems and method to monitor health of employee when positioned in association with a workstation
US9462977B2 (en) 2011-07-05 2016-10-11 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9492120B2 (en) 2011-07-05 2016-11-15 Saudi Arabian Oil Company Workstation for monitoring and improving health and productivity of employees
US9526455B2 (en) 2011-07-05 2016-12-27 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9615746B2 (en) 2011-07-05 2017-04-11 Saudi Arabian Oil Company Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9693734B2 (en) 2011-07-05 2017-07-04 Saudi Arabian Oil Company Systems for monitoring and improving biometric health of employees
US9710788B2 (en) 2011-07-05 2017-07-18 Saudi Arabian Oil Company Computer mouse system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US10307104B2 (en) 2011-07-05 2019-06-04 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
JP2014524798A (en) * 2011-07-05 2014-09-25 サウジ アラビアン オイル カンパニー Computer mouse system and associated computer media and computer-implemented method for monitoring and improving employee health and productivity
US9830577B2 (en) 2011-07-05 2017-11-28 Saudi Arabian Oil Company Computer mouse system and associated computer medium for monitoring and improving health and productivity of employees
US9830576B2 (en) 2011-07-05 2017-11-28 Saudi Arabian Oil Company Computer mouse for monitoring and improving health and productivity of employees
US9833142B2 (en) 2011-07-05 2017-12-05 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for coaching employees based upon monitored health conditions using an avatar
US10206625B2 (en) 2011-07-05 2019-02-19 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US10058285B2 (en) 2011-07-05 2018-08-28 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9949640B2 (en) 2011-07-05 2018-04-24 Saudi Arabian Oil Company System for monitoring employee health
US9962083B2 (en) 2011-07-05 2018-05-08 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving biomechanical health of employees
US10052023B2 (en) 2011-07-05 2018-08-21 Saudi Arabian Oil Company Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9722472B2 (en) 2013-12-11 2017-08-01 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for harvesting human energy in the workplace
CN105310697B (en) * 2014-07-28 2018-12-28 深圳先进技术研究院 Measure the method and device of blood oxygen saturation
CN105310697A (en) * 2014-07-28 2016-02-10 深圳先进技术研究院 Method and device for measuring oxyhemoglobin saturation
US9889311B2 (en) 2015-12-04 2018-02-13 Saudi Arabian Oil Company Systems, protective casings for smartphones, and associated methods to enhance use of an automated external defibrillator (AED) device
US10475351B2 (en) 2015-12-04 2019-11-12 Saudi Arabian Oil Company Systems, computer medium and methods for management training systems
US10642955B2 (en) 2015-12-04 2020-05-05 Saudi Arabian Oil Company Devices, methods, and computer medium to provide real time 3D visualization bio-feedback
US10628770B2 (en) 2015-12-14 2020-04-21 Saudi Arabian Oil Company Systems and methods for acquiring and employing resiliency data for leadership development
US10824132B2 (en) 2017-12-07 2020-11-03 Saudi Arabian Oil Company Intelligent personal protective equipment

Also Published As

Publication number Publication date
JP3818211B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP3818211B2 (en) Biological signal detection device and calibration processing program for biological signal detection device
US20240122508A1 (en) Active-pulse blood analysis system
JP4284674B2 (en) Absorbent concentration measuring device in blood
US8385995B2 (en) Physiological parameter tracking system
US5193543A (en) Method and apparatus for measuring arterial blood constituents
US4869253A (en) Method and apparatus for indicating perfusion and oxygen saturation trends in oximetry
US8515514B2 (en) Compensation of human variability in pulse oximetry
US6018674A (en) Fast-turnoff photodiodes with switched-gain preamplifiers in photoplethysmographic measurement instruments
US4819752A (en) Blood constituent measuring device and method
USRE39268E1 (en) Simulation for pulse oximeter
US7184809B1 (en) Pulse amplitude indexing method and apparatus
US6754515B1 (en) Stabilization of noisy optical sources in photoplethysmography
US5058588A (en) Oximeter and medical sensor therefor
JP2004209257A (en) Blood ingredient analysis system using method of erasing abnormal data and spectroscopy applied therewith
JP2008532719A (en) Portable diagnostic device
EP3928689A1 (en) Apparatus and method for compensating assessment of peripheral arterial tone
JP2005334424A (en) Biological signal detecting device
US12109020B2 (en) System and method for non-invasive monitoring of advanced glycation end-products (AGE)
JP3815119B2 (en) Biological signal detector
CN107427240B (en) Optical analysis system and method
US5203342A (en) Peripheral blood circulation state detecting apparatus
JP4399847B2 (en) Pulse oximeter
JP2004016279A (en) Apparatus and method for body motion detection
JPH06169892A (en) Noninvasive blood pressure measurement system
KR100340240B1 (en) A potodetector equipment used in measuring oxygen saturation and amount of blood flow

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3818211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees