JP2003229315A - Three-phase variable inductance device - Google Patents
Three-phase variable inductance deviceInfo
- Publication number
- JP2003229315A JP2003229315A JP2002025194A JP2002025194A JP2003229315A JP 2003229315 A JP2003229315 A JP 2003229315A JP 2002025194 A JP2002025194 A JP 2002025194A JP 2002025194 A JP2002025194 A JP 2002025194A JP 2003229315 A JP2003229315 A JP 2003229315A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- control
- iron core
- main
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、三相変圧器や三相
リアクトルなどの三相電力機器に可変インダクタンス機
能を付加し、三相可変インダクタンス装置とする装置の
機能改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a functional improvement of a device that adds a variable inductance function to a three-phase power device such as a three-phase transformer or a three-phase reactor to form a three-phase variable inductance device.
【0002】[0002]
【従来の技術】一般に、可変インダクタンスの機能を有
する変圧器やリアクトルは鉄心内部にギャップを設け、
そのギャップの大きさを機械的に変えることでインダク
タンスを変化させていた。例えば可変インダクタンス機
能を有するリアクトルは図6に示すように、下部鉄心1
の上に上部鉄心2を配置し、脚鉄心3a,3b,3cに
各相の交流主巻線4R,4S,4Tを巻回し、上部鉄心
2を機械的に上下させることで、下部鉄心1と上部鉄心
2の間のギャップ、5a,5b,5cの大きさを変化さ
せる構造となっている。2. Description of the Related Art Generally, a transformer or a reactor having a variable inductance function is provided with a gap inside an iron core,
The inductance was changed by mechanically changing the size of the gap. For example, a reactor having a variable inductance function has a lower iron core 1 as shown in FIG.
The upper iron core 2 is arranged on top of the upper iron core 2 and the leg main iron cores 3a, 3b, 3c are wound around the AC main windings 4R, 4S, 4T of the respective phases, and the upper iron core 2 is mechanically moved up and down to form the lower iron core 1. The structure is such that the sizes of the gaps 5a, 5b, 5c between the upper iron cores 2 are changed.
【0003】しかしながら、従来の可動式の鉄心構造で
は上部磁心2を可動させるため構造が複雑で、重量が重
くなり、しかも可動部分があるため故障し易く、電磁振
動による騒音が大きい問題がある。更に機械的に動作さ
せるため、応答速度が遅く瞬時にインダクタンスの調整
ができないなどの問題がある。However, in the conventional movable iron core structure, since the upper magnetic core 2 is moved, the structure is complicated and the weight is heavy. Moreover, since there is a movable portion, it is easy to break down and there is a problem that noise due to electromagnetic vibration is large. Further, since the mechanical operation is performed, there is a problem that the response speed is slow and the inductance cannot be instantaneously adjusted.
【0004】また、電力系統の電圧は、電圧を一定に保
持するため無効電力の発生と、吸収のバランスを取る無
効電力制御装置が設けられている。この無効電力制御装
置は図7に示すように力率改善用コンデンサ6と並列に
分路リアクトル7を設け、この分路リアクトル7と直列
にサイリスタなどの半導体デバイス8を接続し、半導体
デバイス8のスイッチングにより分路リアクトル7の電
流を制御するようになっている。Further, the voltage of the power system is provided with a reactive power control device which balances generation and absorption of reactive power in order to keep the voltage constant. As shown in FIG. 7, this reactive power control device is provided with a shunt reactor 7 in parallel with a power factor improving capacitor 6, a semiconductor device 8 such as a thyristor is connected in series with the shunt reactor 7, and The current of the shunt reactor 7 is controlled by switching.
【0005】一般の電力系統では、負荷の増加に伴い遅
れ無効電力が増加するので、この無効電力制御装置で
は、重負荷時には力率改善用コンデンサ6により力率を
改善している。一方、軽負荷時には負荷による遅れ無効
電力が減少するので、分路リアクトル7により、受電端
の電圧上昇を抑えて電力系統の電圧の安定化を図るよう
になっている。In a general electric power system, delayed reactive power increases with an increase in load. Therefore, in this reactive power control device, the power factor is improved by the power factor improving capacitor 6 during heavy load. On the other hand, when the load is light, the delayed reactive power due to the load decreases, so that the shunt reactor 7 suppresses the voltage increase at the power receiving end and stabilizes the voltage of the power system.
【0006】しかしながらサイリスタなどの半導体デバ
イス8は高速なスイッチングを行うための制御機器が必
要な上、過電流、過電圧に対する強度が低い欠点があ
る。このため図7に示す分路リアクトル7として図6の
可動式の鉄心構造を有するリアクトルを使用してインダ
クタンスを調整することにより、半導体デバイス8を省
くことも考えられる。しかしながら可動式の鉄心構造を
有するリアクトルを用いると、前述のような問題がある
ため、無効電力制御装置としては利用されていなかっ
た。However, the semiconductor device 8 such as a thyristor requires a control device for performing high-speed switching, and has a drawback of low strength against overcurrent and overvoltage. Therefore, it is possible to omit the semiconductor device 8 by adjusting the inductance by using the reactor having the movable iron core structure of FIG. 6 as the shunt reactor 7 shown in FIG. However, when a reactor having a movable iron core structure is used, it has not been used as a reactive power control device because of the problems described above.
【0007】[0007]
【発明が解決しようとする課題】本発明は上記問題を改
善し、機械的動作が不要で装置の小型化が図れると共
に、応答性に優れ、過電流、過電圧に対する強度も高
く、無効電力制御装置として好適な三相可変インダクタ
ンス装置を提供するものである。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, can reduce the size of the device without requiring mechanical operation, and has excellent responsiveness, high strength against overcurrent and overvoltage, and a reactive power control device. A three-phase variable inductance device suitable as
【0008】[0008]
【課題を解決するための手段】本発明の請求項1記載の
三相可変インダクタンス装置は、単相外鉄型磁心の、主
巻線を巻回する中央の内脚鉄心が直列になるように3個
一体に接続した鉄心構造をなし、3個の中央の内脚鉄心
に各相の交流主巻線を巻回すると共に、各相の側脚鉄心
からなる外側の枠状鉄心に制御巻線を巻回して、交流主
磁束により誘起される電圧が互いに打消し合うよう制御
巻線を接続し、外側の枠状鉄心に一方向に循環する直流
制御磁束を発生させるようにしたことを特徴とするもの
である。In the three-phase variable inductance device according to claim 1 of the present invention, the central inner leg iron core around which the main winding of the single-phase outer iron core is wound is arranged in series. An iron core structure in which three cores are integrally connected is formed, and AC main windings for each phase are wound around three central inner leg cores, and a control winding is provided for an outer frame-shaped core composed of side leg cores for each phase. And a control winding is connected so that the voltages induced by the AC main magnetic flux cancel each other out, and a DC control magnetic flux that circulates in one direction is generated in the outer frame-shaped iron core. To do.
【0009】本説明の請求項2記載の三相可変インダク
タンス装置は、三相五脚鉄心において内側の3個の内脚
鉄心に、各相の交流主巻線を巻回すると共に、外側の枠
状鉄心に制御巻線を巻回し、ここに直流電流を通電し
て、外側の枠状鉄心に一方向に循環する直流制御磁束を
発生させるようにしたことを特徴とするものである。In the three-phase variable inductance device according to claim 2 of the present description, the AC main winding of each phase is wound on the inner three inner leg cores of the three-phase five-leg iron core, and the outer frame is formed. A control winding is wound around the iron core, and a DC current is passed through the control winding to generate a DC control magnetic flux that circulates in one direction in the outer frame iron core.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施の一形態を、
図1を参照して詳細に説明する。図1は三相可変インダ
クタンス装置9を示すもので、装置を構成する鉄心10
は、第1相については中央の内脚鉄心11aの左右に側
脚鉄心12xa,12yaを配置した単相外鉄型鉄心か
らなり、第2相、第3相も同様にそれぞれ11b,12
xb,12ybと11c,12xc,12ycから構成
され、全体として中央の内脚鉄心11a,11b,11
cが直列になるように3個一体に接続した格子状構造を
なしている。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below.
This will be described in detail with reference to FIG. FIG. 1 shows a three-phase variable inductance device 9, which comprises an iron core 10 which constitutes the device.
Consists of a single-phase outer iron core in which side leg cores 12xa and 12ya are arranged on the left and right of the center inner leg core 11a for the first phase, and the second and third phases are also 11b and 12 respectively.
xb, 12yb and 11c, 12xc, 12yc, and the inner leg iron cores 11a, 11b, 11 in the center as a whole
It has a lattice-like structure in which three c are connected in series so as to be in series.
【0011】この鉄心10の直列に配置された中央の内
脚鉄心11a,11b,11cに、それぞれ各相の交流
主巻線4R,4S,4Tが巻回され、枠状鉄心13を構
成する側脚鉄心12xa,12ya,12xb,12y
b,12xc,12ycに制御巻線14xa,14y
a,14xb,14yb,14xc,14ycをそれぞ
れ巻回し、この制御巻線14xa,14ya,14x
b,14yb,14xc,14ycに直流電流を通電す
るようになっている。The main cores 11a, 11b, 11c arranged in series of the iron core 10 are respectively wound with AC main windings 4R, 4S, 4T of respective phases to form the frame-shaped iron core 13. Leg iron core 12xa, 12ya, 12xb, 12y
b, 12xc, 12yc control windings 14xa, 14y
a, 14xb, 14yb, 14xc, 14yc are respectively wound, and the control windings 14xa, 14ya, 14x are wound.
A direct current is applied to b, 14yb, 14xc, and 14yc.
【0012】交流主巻線4R,4S,4Tは、中央の内
脚鉄心11a,11b,11cからなる共通磁路に対し
同一方向の磁束が発生するよう極性を揃える。また制御
巻線14xa,14ya,14xb,14yb,14x
c,14ycは交流磁束により交流電圧が誘起されるた
め、第1相を例に説明すると制御巻線14xa,14y
aで交流磁束により発生する誘起電圧が互いに打消し合
う向きに直列に接続するようにし、第2相の14xb,
14yb、第3相の14xc,14ycについても同様
に接続する。このとき制御巻線14xa,14ya,1
4xb,14yb,14xc,14ycは枠状鉄心13
において一方向に循環する直流制御磁束を発生させるこ
ととなる。The AC main windings 4R, 4S, 4T have the same polarity so that magnetic fluxes in the same direction are generated with respect to the common magnetic path composed of the inner leg iron cores 11a, 11b, 11c at the center. Also, the control windings 14xa, 14ya, 14xb, 14yb, 14x
Since an alternating voltage is induced in the c and 14yc by the alternating magnetic flux, the control windings 14xa and 14y will be described by taking the first phase as an example.
The induced voltage generated by the AC magnetic flux at a is connected in series in such a direction as to cancel each other, and the second phase 14xb,
14yb and 14xc and 14yc of the third phase are similarly connected. At this time, the control windings 14xa, 14ya, 1
4xb, 14yb, 14xc, 14yc are frame-shaped iron cores 13
Will generate a DC control magnetic flux that circulates in one direction.
【0013】上記構成の三相可変インダクタンス装置
は、制御電流を流さない状態では、交流主巻線4R,4
S,4Tより発生する各相各々の交流磁束(φr,φ
s,φt)が各相の側脚鉄心12xa,12ya,12
xb,12yb,12xc,12ycに流れ、各相部分
の鉄心を単独で循環するために、各相毎に独立したイン
ダクタンス装置として動作する。In the three-phase variable inductance device having the above structure, the AC main windings 4R, 4R
AC magnetic flux of each phase (φr, φ
s, φt) is the side leg core 12xa, 12ya, 12 of each phase
xb, 12yb, 12xc, 12yc, and the iron core of each phase portion circulates independently, so that each phase operates as an independent inductance device.
【0014】この状態で制御巻線14xa,14ya,
14xb,14yb,14xc,14ycに直流電流を
流すと直流制御磁束φdcが枠状鉄心13を一方向に循
環するように流れる。この結果、枠状磁心13では磁束
密度の増加に伴い透磁率が低下するため、交流磁束(φ
r,φs,φt)は枠状鉄心13に流れにくくなり、中
央の内脚鉄心11a,11b,11c上で互いに打消し
合うように作用して、交流主巻線4R,4S,4Tのイ
ンダクタンスが減少する。In this state, the control windings 14xa, 14ya,
When a direct current is applied to 14xb, 14yb, 14xc, and 14yc, the DC control magnetic flux φdc flows so as to circulate in the frame-shaped iron core 13 in one direction. As a result, the magnetic permeability of the frame-shaped magnetic core 13 decreases as the magnetic flux density increases.
r, φs, φt) becomes difficult to flow into the frame-shaped iron core 13, and acts so as to cancel each other out on the inner leg iron cores 11a, 11b, 11c in the center, and the inductance of the AC main windings 4R, 4S, 4T Decrease.
【0015】上記構成の三相可変インダクタンス装置9
の特性を調べた結果、図2に示すように制御電流を増加
させていくと、インダクタンスが次第に減少していくこ
とが確認された。この三相可変インダクタンス装置9を
図3に示すように無効電力制御装置に組込み、制御電流
による遅れ無効電流の変化を測定したところ、図4に示
すように制御電流の増加に伴って遅れ無効電流がほぼ線
形に増加して、連続的に可変できることが確認された。Three-phase variable inductance device 9 having the above structure
As a result of examining the characteristics of the above, it was confirmed that as the control current was increased, the inductance gradually decreased as shown in FIG. When this three-phase variable inductance device 9 was incorporated into a reactive power control device as shown in FIG. 3 and changes in the delayed reactive current due to the control current were measured, it was found that the delayed reactive current increased as the control current increased as shown in FIG. It has been confirmed that is increased almost linearly and can be continuously changed.
【0016】なお、制御巻線14xa,14ya,14
xb,14yb,14xc,14ycの結線について
は、全ての制御巻線を直列に接続した上で制御用の直流
電流回路に接続する方法のほか、「14xa,14y
a」,「14xb,14yb」,「14xc,14y
c」のように各相毎に組合せ、制御用の直流電流回路に
並列に接続する方法や、「14xa,14xb,14x
c」,「14ya,14yb,14yc」のように組合
せ、制御用の直流電流回路に並列に接続する方法があ
る。つまり交流磁束により制御巻線に誘起される電圧が
打消され、枠状鉄心13に一方向に循環する直流制御磁
束を発生できれば制御巻線の構成は問わない。The control windings 14xa, 14ya, 14
Regarding the connection of xb, 14yb, 14xc, 14yc, in addition to the method of connecting all the control windings in series and then connecting to the control DC current circuit, "14xa, 14y"
a "," 14xb, 14yb "," 14xc, 14y "
"c", such as combining for each phase and connecting in parallel to the control DC current circuit, or "14xa, 14xb, 14x"
c ”,“ 14ya, 14yb, 14yc ”, and there is a method of connecting them in parallel to a direct current circuit for control. That is, the configuration of the control winding does not matter as long as the voltage induced in the control winding by the AC magnetic flux is canceled and a DC control magnetic flux circulating in one direction can be generated in the frame-shaped iron core 13.
【0017】図5は本発明の他の実施形態を示すもの
で、三相可変インダクタンス装置9の鉄心10は、3個
並列した内脚鉄心11a,11b,11cの両側に側脚
鉄心12x,12yを配置した三相五脚鉄心構造をなし
ている。この内側の3個の内脚鉄心11a,11b,1
1cに、それぞれ各相の交流主巻線4R,4S,4Tが
巻回され、枠状鉄心13を構成する側脚鉄心12x,1
2yに制御巻線14x,14yをそれぞれ巻回し、この
制御巻線14x,14yに直流電流を通電するようにな
っている。FIG. 5 shows another embodiment of the present invention. The iron core 10 of the three-phase variable inductance device 9 has side leg iron cores 12x, 12y on both sides of three inner leg iron cores 11a, 11b, 11c arranged in parallel. It has a three-phase five-legged iron core structure. These three inner leg iron cores 11a, 11b, 1
1 c of AC main windings 4R, 4S, and 4T of each phase are wound, respectively, and side leg iron cores 12x and 1 that form a frame-shaped iron core 13 are formed.
The control windings 14x and 14y are respectively wound around 2y, and a direct current is supplied to the control windings 14x and 14y.
【0018】また交流主巻線4R,4S,4Tは、内側
の3個の内脚鉄心11a,11b,11cの三相共通磁
路の部分に三相同一方向の磁束が発生する様に極性を揃
える。また制御巻線14x,14yは枠状鉄心13に一
方向に循環する磁束を発生させるよう構成する。The AC main windings 4R, 4S, 4T have polarities so that magnetic fluxes in the same three-phase direction are generated in the three-phase common magnetic paths of the inner three inner leg iron cores 11a, 11b, 11c. Align. The control windings 14x and 14y are configured to generate a magnetic flux that circulates in one direction in the frame-shaped iron core 13.
【0019】このタイプの三相可変インダクタンス装置
9も、制御巻線14x,14yに直流電流を流すと直流
制御磁束φdcが枠状鉄心13を一方向に循環するよう
に流れるので、枠状磁心13では磁束密度の増加に伴い
透磁率が低下し、交流磁束(φr,φrs,φst,φ
t)は枠状鉄心13に流れにくくなり、交流主巻線4
R,4S,4Tのインダクタンスが減少する。Also in this type of three-phase variable inductance device 9, when a DC current is passed through the control windings 14x and 14y, the DC control magnetic flux φdc flows so as to circulate in the frame-shaped iron core 13 in one direction. , The magnetic permeability decreases as the magnetic flux density increases, and the AC magnetic flux (φr, φrs, φst, φ
t) becomes difficult to flow into the frame-shaped iron core 13, and the AC main winding 4
The inductances of R, 4S and 4T are reduced.
【0020】なお上記説明ではリアクトルに適用した場
合について示したが、トランスに適用する場合には3個
の脚鉄心11a,11b,11cに対し、各相2つの以
上の交流主巻線4を巻回する。In the above description, the case of application to a reactor is shown, but in the case of application to a transformer, three or more AC main windings 4 for each phase are wound around three leg iron cores 11a, 11b, 11c. Turn.
【0021】[0021]
【発明の効果】以上説明した如く本発明に係る三相可変
インダクタンス装置によれば、外側の枠状鉄心に制御巻
線を設けて、ここに直流電流を流すことによりインダク
タンスを調整することができるので、機械的な可動部分
がなく、応答性が速く、連続的に可変することができる
と共に、装置を小型化できる上、騒音も少なく、信頼性
を大幅に向上させることができる。As described above, according to the three-phase variable inductance device of the present invention, the inductance can be adjusted by providing a control winding on the outer frame-shaped iron core and supplying a direct current to the control winding. Therefore, there are no mechanically movable parts, the response is fast, and it is possible to change continuously, the device can be downsized, the noise is small, and the reliability can be greatly improved.
【図1】本発明の実施の一形態による三相可変インダク
タンス装置の正面図である。FIG. 1 is a front view of a three-phase variable inductance device according to an embodiment of the present invention.
【図2】図1の三相可変インダクタンス装置の制御電流
とインダクタンスとの関係を示すグラフである。FIG. 2 is a graph showing a relationship between a control current and an inductance of the three-phase variable inductance device shown in FIG.
【図3】図1の三相可変インダクタンス装置を組込んだ
無効電力制御装置を示す説明図である。FIG. 3 is an explanatory diagram showing a reactive power control device incorporating the three-phase variable inductance device of FIG.
【図4】三相可変インダクタンス装置を組込んだ無効電
力制御装置における制御電流と遅れ無効電流の関係を示
すグラフである。FIG. 4 is a graph showing a relationship between a control current and a delayed reactive current in a reactive power control device incorporating a three-phase variable inductance device.
【図5】本発明の異なる他の実施の形態による三相五脚
鉄心構造の三相可変インダクタンス装置の正面図であ
る。FIG. 5 is a front view of a three-phase variable inductance device having a three-phase five-leg iron structure according to another embodiment of the present invention.
【図6】従来の可動式インダクタンス装置を示す正面図
である。FIG. 6 is a front view showing a conventional movable inductance device.
【図7】従来の半導体デバイスを組込んだ無効電力制御
装置を示す説明図である。FIG. 7 is an explanatory diagram showing a reactive power control device incorporating a conventional semiconductor device.
1 下部鉄心
2 上部鉄心
3a,3b,3c 脚鉄心
4R,4S,4T 交流主巻線
5a,5b,5c ギャップ
6 力率改善用コンデンサ
7 分路リアクトル
8 半導体デバイス
9 三相可変インダクタンス装置
10 鉄心
11a,11b,11c 内脚鉄心
12x,12y,12xa,12ya,12xb,12
yb,12xc,12yc 側脚鉄心
13 枠状鉄心
14x,14y,14xa,14ya,14xb,14
yb,14xc,14yc 制御巻線1 Lower iron core 2 Upper iron cores 3a, 3b, 3c Leg iron cores 4R, 4S, 4T AC main windings 5a, 5b, 5c Gap 6 Power factor improving capacitor 7 Shunt reactor 8 Semiconductor device 9 Three-phase variable inductance device 10 Iron core 11a , 11b, 11c Inner leg iron cores 12x, 12y, 12xa, 12ya, 12xb, 12
yb, 12xc, 12yc Side leg iron core 13 Frame-shaped iron cores 14x, 14y, 14xa, 14ya, 14xb, 14
yb, 14xc, 14yc control winding
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大日向 敬 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社研究開発センター内 (72)発明者 赤塚 重昭 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社研究開発センター内 (72)発明者 葵木 智之 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社研究開発センター内 (72)発明者 川上 峰夫 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社研究開発センター内 (72)発明者 佐々木 彰 福島県福島市松川町字天王原9番地 北芝 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kei Ohinata 72-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. Research and Development Center (72) Inventor Shigeaki Akatsuka 72-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. Research and Development Center (72) Inventor Tomoyuki Aoki 72-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. Research and Development Center (72) Inventor Mineo Kawakami 72-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. Research and Development Center (72) Inventor Akira Sasaki 9 Shiba, Tennohara, Matsukawa-cho, Fukushima City, Fukushima Prefecture Electric Co., Ltd.
Claims (2)
の内脚鉄心が直列になるように3個一体に接続した鉄心
構造をなし、3個の中央の内脚鉄心に各相の交流主巻線
を巻回すると共に、各相の側脚鉄心からなる外側の枠状
鉄心に制御巻線を巻回して、交流主磁束により誘起され
る電圧が互いに打消し合うよう制御巻線を接続し、ここ
に直流制御電流を通電して、外側の枠状鉄心に一方向に
循環する直流制御磁束を発生させ、前記主磁束と直流制
御磁束の共通磁路の磁気抵抗を制御し、主巻線のインダ
クタンスを可変することを特徴とする三相可変インダク
タンス装置。1. An iron core structure of a single-phase outer iron type magnetic core in which three central inner leg cores around which a main winding is wound are connected in series so as to be in series, and three central inner leg cores are formed. The AC main winding of each phase is wound around the control winding, and the control winding is wound around the outer frame-shaped core consisting of the side leg cores of each phase so that the voltages induced by the AC main magnetic flux cancel each other out. A control winding is connected, and a DC control current is passed through the control winding to generate a DC control magnetic flux that circulates in one direction in the outer frame-shaped iron core, and the magnetic resistance of the common magnetic path of the main magnetic flux and the DC control magnetic flux is changed. A three-phase variable inductance device characterized by controlling and varying the inductance of the main winding.
心に、各相の交流主巻線を巻回すると共に、外側の枠状
鉄心に制御巻線を巻回し、ここに直流制御電流を通電し
て、外側の枠状鉄心に一方向に循環する直流制御磁束を
発生させ、前記主磁束と直流制御磁束の共通磁路の磁気
抵抗を制御し、主巻線のインダクタンスを可変すること
を特徴とする三相可変インダクタンス装置。2. In a three-phase five-leg iron core, an AC main winding of each phase is wound on three inner inner iron cores, and a control winding is wound on an outer frame-shaped iron core. A control current is applied to generate a DC control magnetic flux that circulates in one direction in the outer frame-shaped iron core, and the magnetic resistance of the common magnetic path of the main magnetic flux and the DC control magnetic flux is controlled to change the inductance of the main winding. A three-phase variable inductance device characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002025194A JP4330840B2 (en) | 2002-02-01 | 2002-02-01 | Three-phase reactor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002025194A JP4330840B2 (en) | 2002-02-01 | 2002-02-01 | Three-phase reactor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003229315A true JP2003229315A (en) | 2003-08-15 |
JP4330840B2 JP4330840B2 (en) | 2009-09-16 |
Family
ID=27747424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002025194A Expired - Fee Related JP4330840B2 (en) | 2002-02-01 | 2002-02-01 | Three-phase reactor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4330840B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008135246A (en) * | 2006-11-28 | 2008-06-12 | Mitsubishi Electric Corp | Switch control device |
JP2008177500A (en) * | 2007-01-22 | 2008-07-31 | Tohoku Univ | Three-phase electromagnetic equipment |
WO2009056018A1 (en) * | 2007-10-31 | 2009-05-07 | Hilton Raymond Bacon | An apparatus and method for starting and stopping an ac induction motor |
JP2013212031A (en) * | 2012-03-30 | 2013-10-10 | Fuji Electric Co Ltd | Voltage fluctuation suppression device and voltage fluctuation suppression method |
CN104201903A (en) * | 2014-09-11 | 2014-12-10 | 山东大学 | Multifunctional transformer |
WO2015186303A1 (en) * | 2014-06-03 | 2015-12-10 | 株式会社デンソー | Reactor |
JP2019054158A (en) * | 2017-09-15 | 2019-04-04 | ファナック株式会社 | Three-phase transformer |
CN110085406A (en) * | 2019-06-10 | 2019-08-02 | 中国大唐集团科学技术研究院有限公司华中电力试验研究院 | The mixed type magnet controlled reactor of the orthogonal iron core type of three-phase |
JP2019179929A (en) * | 2019-06-21 | 2019-10-17 | ファナック株式会社 | Three-phase transformer |
WO2020031644A1 (en) * | 2018-08-06 | 2020-02-13 | 株式会社京三製作所 | Reactor |
-
2002
- 2002-02-01 JP JP2002025194A patent/JP4330840B2/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008135246A (en) * | 2006-11-28 | 2008-06-12 | Mitsubishi Electric Corp | Switch control device |
JP2008177500A (en) * | 2007-01-22 | 2008-07-31 | Tohoku Univ | Three-phase electromagnetic equipment |
JP4646327B2 (en) * | 2007-01-22 | 2011-03-09 | 国立大学法人東北大学 | Three-phase electromagnetic equipment |
WO2009056018A1 (en) * | 2007-10-31 | 2009-05-07 | Hilton Raymond Bacon | An apparatus and method for starting and stopping an ac induction motor |
US7633260B2 (en) | 2007-10-31 | 2009-12-15 | Hilton Raymond Bacon | Apparatus and method for starting and stopping an AC induction motor |
JP2013212031A (en) * | 2012-03-30 | 2013-10-10 | Fuji Electric Co Ltd | Voltage fluctuation suppression device and voltage fluctuation suppression method |
CN106463251A (en) * | 2014-06-03 | 2017-02-22 | 株式会社电装 | Reactor |
WO2015186303A1 (en) * | 2014-06-03 | 2015-12-10 | 株式会社デンソー | Reactor |
JP2015230904A (en) * | 2014-06-03 | 2015-12-21 | 株式会社デンソー | Reactor |
DE112015002631B4 (en) | 2014-06-03 | 2023-08-31 | Denso Corporation | throttle |
CN104201903A (en) * | 2014-09-11 | 2014-12-10 | 山东大学 | Multifunctional transformer |
US10692650B2 (en) | 2017-09-15 | 2020-06-23 | Fanuc Corporation | Three-phase transformer |
JP2019054158A (en) * | 2017-09-15 | 2019-04-04 | ファナック株式会社 | Three-phase transformer |
TWI722512B (en) * | 2018-08-06 | 2021-03-21 | 日商京三製作所股份有限公司 | Reactor |
WO2020031644A1 (en) * | 2018-08-06 | 2020-02-13 | 株式会社京三製作所 | Reactor |
KR20210014198A (en) * | 2018-08-06 | 2021-02-08 | 가부시끼가이샤교산세이사꾸쇼 | Reactor |
KR102230417B1 (en) | 2018-08-06 | 2021-03-19 | 가부시끼가이샤교산세이사꾸쇼 | Reactor |
CN112534526A (en) * | 2018-08-06 | 2021-03-19 | 株式会社京三制作所 | Electric reactor |
CN112534526B (en) * | 2018-08-06 | 2022-05-13 | 株式会社京三制作所 | Electric reactor |
EP3836173A4 (en) * | 2018-08-06 | 2022-05-18 | Kyosan Electric Mfg. Co., Ltd. | Reactor |
US12020840B2 (en) | 2018-08-06 | 2024-06-25 | Kyosan Electric Mfg. Co., Ltd. | Reactor |
CN110085406A (en) * | 2019-06-10 | 2019-08-02 | 中国大唐集团科学技术研究院有限公司华中电力试验研究院 | The mixed type magnet controlled reactor of the orthogonal iron core type of three-phase |
CN110085406B (en) * | 2019-06-10 | 2024-03-08 | 中国大唐集团科学技术研究院有限公司华中电力试验研究院 | Three-phase orthogonal iron core type hybrid magnetic control reactor |
JP2019179929A (en) * | 2019-06-21 | 2019-10-17 | ファナック株式会社 | Three-phase transformer |
Also Published As
Publication number | Publication date |
---|---|
JP4330840B2 (en) | 2009-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5363035A (en) | Phase controlled transformer | |
JP4646327B2 (en) | Three-phase electromagnetic equipment | |
US6856230B2 (en) | Harmonic filtering circuit with special transformer | |
JP2013529393A (en) | Integrated magnetic device for low-harmonic three-phase front-end equipment | |
JP2003229315A (en) | Three-phase variable inductance device | |
CN112712980A (en) | Integrated inductor and power supply module | |
CN113241952A (en) | Isolated bidirectional converter and control method thereof | |
US20160062386A1 (en) | Stationary Induction Electric Apparatus | |
JP4411460B2 (en) | Voltage regulation transformer | |
EP1559120A1 (en) | Transformer | |
JP5520613B2 (en) | Magnetic flux control type variable transformer | |
US20170323717A1 (en) | Gapless core reactor | |
JP7295914B2 (en) | Three-phase magnetic assembly with integral core body | |
JP2004288882A (en) | Noise filter | |
EP0900443A1 (en) | A controllable inductor | |
JP3938903B2 (en) | Single-phase three-wire voltage regulator | |
JP2003168612A (en) | Three-phase electromagnetic apparatus | |
JP3789333B2 (en) | Electromagnetic equipment | |
WO2017020709A1 (en) | Improved multifunctional transformer | |
JP2016032089A (en) | Reactor transformer integrally formed of transformer and reactor and controlling secondary winding by thyristor | |
JPS6139512A (en) | Feedback type current transformer | |
JP2005347535A (en) | Reactor | |
JPH065444A (en) | Phase shifter | |
CN117457347A (en) | Magnetic control transformer | |
RU1815053C (en) | Rectifier for arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090616 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090617 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4330840 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |