JP2003293049A - Method for recovering silver from slag containing silver and lead - Google Patents
Method for recovering silver from slag containing silver and leadInfo
- Publication number
- JP2003293049A JP2003293049A JP2002105736A JP2002105736A JP2003293049A JP 2003293049 A JP2003293049 A JP 2003293049A JP 2002105736 A JP2002105736 A JP 2002105736A JP 2002105736 A JP2002105736 A JP 2002105736A JP 2003293049 A JP2003293049 A JP 2003293049A
- Authority
- JP
- Japan
- Prior art keywords
- silver
- lead
- slag
- smelting
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、銀鉛含有滓、特に
銅電解スライムを湿式塩化処理して得た銀鉛含有滓から
銀を効率良く鉛と分離して回収する方法に関する。TECHNICAL FIELD The present invention relates to a method for efficiently separating and recovering silver from lead from a silver lead-containing slag, particularly a silver lead-containing slag obtained by subjecting a copper electrolytic slime to a wet chlorination treatment.
【0002】[0002]
【従来の技術】従来、銅製錬における銅電解工程では、
電解液に不溶な不純物が残渣として副生する。この銅電
解スライムには白金、セレン、テルル、鉛、金、銀、銅
などがかなりの量含まれており、これらの金属を分離回
収する方法がこれまで多数提案されている。これらの金
属の性質は様々であるため、全ての金属種を単一の方法
で同時に分離回収することは困難であるので、個々の金
属ごとに、あるいは同時に2種の金属をそれぞれ分離し
て回収する方法が従来から試みられている。これらの方
法を組み合わせた連続処理するシステムが知られてい
る。2. Description of the Related Art Conventionally, in the copper electrolysis process in copper smelting,
Impurities insoluble in the electrolytic solution are by-produced as a residue. This copper electrolytic slime contains a considerable amount of platinum, selenium, tellurium, lead, gold, silver, copper, etc., and many methods for separating and recovering these metals have been proposed so far. Due to the various properties of these metals, it is difficult to separate and recover all the metal species simultaneously by a single method. Therefore, separate or recover two metals individually or simultaneously. The method of doing so far has been tried. A continuous processing system combining these methods is known.
【0003】このうち鉛および銀について、例えば、特
公昭60−59975号には、鉛を硫酸塩として含有
し、銀を塩化物として含有する銅電解スライム中間処理
物について、これを水酸化アルカリまたは炭酸アルカリ
の水溶液と反応させ、固液分離して得た残渣をさらに硝
酸溶液と反応させて、残渣中の鉛を硝酸鉛として溶出さ
せる一方、銀を残渣中に残し、これを固液分離して鉛と
銀を分離する銀の濃縮法が記載されている。この処理方
法は、銀の濃縮効果が従来の方法より高いが、アルカリ
を過剰に添加する必要があり、また反応温度が室温を超
えると鉛と共に銀が溶出するため鉛と銀の分離が困難に
なるなどの問題がある。Of these, regarding lead and silver, for example, Japanese Examined Patent Publication No. 60-59975, a copper electrolytic slime intermediate treated product containing lead as a sulfate and silver as a chloride is treated with alkali hydroxide or The residue obtained by solid-liquid separation after reacting with an aqueous solution of alkali carbonate is further reacted with a nitric acid solution to elute lead in the residue as lead nitrate, while leaving silver in the residue and solid-liquid separating it. A method for concentrating silver to separate lead and silver is described. Although this treatment method has a higher silver concentration effect than the conventional method, it requires the addition of an excess amount of alkali, and if the reaction temperature exceeds room temperature, the silver elutes together with lead, making it difficult to separate lead and silver. There is a problem such as becoming.
【0004】また特開平4−236731号には、銅電
解スライムを焙焼して貴金属、ビスマス、鉛を含有する
焙焼澱物を回収し、この焙焼澱物に所定量の鉄を加えて
溶融し、高アンチモンスラグと貴鉛とを生成させ、この
貴鉛を分銀工程で処理する方法が記載されている。この
方法は鉛と銀の分離性が良いものの、熔錬工程で銀塊を
製造するときに金が混入するため、銀の電解回収工程と
金の電解回収工程が必要になるなどの問題がある。ま
た、本処理方法は乾式処理であるため銀や金以外の貴金
属について湿式方法との組み合わせが難しい。Further, in JP-A-4-236731, a copper electrolytic slime is roasted to recover a roasted starch containing a noble metal, bismuth and lead, and a predetermined amount of iron is added to the roasted starch. It describes a method of melting and producing high antimony slag and noble lead, and treating this noble lead in a silver-separation step. Although this method has good separability of lead and silver, it has a problem that an electrolytic recovery step of silver and an electrolytic recovery step of gold are required because gold is mixed in when a silver ingot is manufactured in the melting step. Further, since this treatment method is a dry treatment, it is difficult to combine noble metals other than silver and gold with a wet method.
【0005】特開平9−316559号には、脱銅スラ
イムを塩化浸出して塩化銀をを主成分とする析出物を生
成させ、これに炭酸ソーダを加えて脱塩素し、さらにア
ンモニア浸出して銀を溶液中に抽出し、これを中和処理
して得られる塩化銀に苛性ソーダを加えて酸化銀に転換
し、これに糖類やヒドラジン等の還元剤を添加して残査
中の酸化銀を金属銀に還元して回収する方法が記載され
ている。この方法は高品位の銀を回収できるが、脱塩素
処理、アンモニア浸出、中和処理、苛性ソーダによる酸
化銀への転換、糖類による還元と処理工程が多いために
手間がかかり、鉛を金やテルル等の他の金属成分と一緒
に分離するので、鉛を回収するにはさらに別の方法によ
らなければならない不便がある。また、この関連技術と
して「資源と素材」(116.No.6 2000年発行)には、上
記塩化処理残査に鉄粉と硫酸を添加して銀還元と硫酸鉛
化を行うことが記載されているが、単にこの方法だけで
は高品位の銀および鉛を同時にそれぞれ回収することは
難しい。また、この方法は鉛含有量が低い場合に適する
方法であり、10wt%以上の鉛を含有する処理滓につい
ては銀の損失が大きいために適さない。In Japanese Unexamined Patent Publication No. 9-316559, decoppered slime is leached with chloride to form a precipitate containing silver chloride as a main component, sodium carbonate is added thereto to dechlorinate, and further leaching with ammonia is performed. Extract silver into the solution, add caustic soda to the silver chloride obtained by neutralizing it to convert it to silver oxide, and add reducing agents such as sugars and hydrazine to this to remove the silver oxide in the residue. A method for reducing and recovering metallic silver is described. This method can recover high-quality silver, but it requires a lot of work due to dechlorination treatment, ammonia leaching, neutralization treatment, conversion to silver oxide with caustic soda, reduction with sugars and treatment steps. Since it separates with other metal components such as lead, there is the inconvenience that another method must be used to recover lead. As a related technology, "Resources and Materials" (116. No. 6 published in 2000) describes that iron powder and sulfuric acid are added to the chlorination residue to perform silver reduction and lead sulfate conversion. However, it is difficult to simultaneously recover high-quality silver and lead simultaneously by this method alone. Further, this method is suitable when the lead content is low, and is not suitable for a treatment slag containing 10 wt% or more of lead because of large loss of silver.
【0006】[0006]
【発明が解決しようとする課題】本発明者等は、従来の
処理方法における上記問題を解決したものであり、銅電
解スライムから簡便な方法で高品位の銀を効率良く鉛と
分離して回収する方法を提供する。DISCLOSURE OF THE INVENTION The present inventors have solved the above problems in the conventional processing method, and efficiently recover high-quality silver from copper electrolytic slime by separating it from lead with a simple method. Provide a way to do.
【0007】[0007]
【課題を解決するための手段】すなわち、本発明は以下
の構成からなる銀の回収方法に関する。
(1)銀鉛含有滓に炭素材料とスラグ形成材料を添加
し、還元熔錬を行ってメタル相に含まれる銀を貴鉛に
し、スラグを分離した後にメタル相に空気ないし酸素富
化空気を吹き込み、酸化熔錬を行って鉛分をスラグ化
し、メタル相の粗銀を回収することとを特徴とする銀鉛
含有滓から銀を回収する方法。
(2)銅電解スライムを湿式塩化処理して得た銀鉛含有
滓を用いる上記(1)の銀回収方法。
(3)貴鉛の酸化熔錬を二段階に行い、まず第一段の酸
化熔錬をメタル相の鉛含有量が5%〜10%になるまで
行ってスラグ相を分離し、次いで第二段の酸化熔錬をメ
タル相の鉛含有量が0.1%以下になるまで行ってスラ
グ相を分離する上記(1)または(2)の銀回収方法。
(4)第二段の酸化熔錬で分離したスラグを第一段の酸
化熔錬に戻して酸化熔錬を繰り返す上記(3)の銀回収方
法。
(5)還元熔錬において、還元材として炭素粉を用い、
炭素粉の添加量が銀鉛含有滓に含まれる鉛の反応当量の
2〜4倍である上記(1)〜(4)の何れかに記載する銀鉛回
収方法。
(6)還元熔錬において、スラグ形成材として炭酸ソー
ダを用い、炭酸ソーダの添加量が銀鉛含有滓に含まれる
銀と鉛の合計反応当量の1.2〜2.0倍である上記(1)
〜(5)の何れかに記載する銀回収方法。
(7)シリカ材料を添加して酸化熔錬を行う上記(1)〜
(6)の何れかに記載する銀回収方法。That is, the present invention relates to a silver recovery method having the following constitution. (1) Add a carbon material and a slag forming material to a silver lead-containing slag, perform reduction smelting to convert the silver contained in the metal phase into noble lead, separate the slag, and then add air or oxygen-enriched air to the metal phase. A method for recovering silver from a silver-lead-containing slag, which comprises blowing and oxidizing and slagging lead to slag to recover crude silver in a metal phase. (2) The silver recovery method according to (1) above, which uses a silver lead-containing slag obtained by subjecting copper electrolytic slime to wet chlorination. (3) Oxidative smelting of noble lead is carried out in two steps, firstly the oxidative smelting of the first step is carried out until the lead content of the metal phase becomes 5% to 10% to separate the slag phase, and then the second step. The silver recovery method according to (1) or (2) above, wherein the slag phase is separated by performing the staged oxidative smelting until the lead content of the metal phase becomes 0.1% or less. (4) The silver recovery method according to (3) above, in which the slag separated by the second-stage oxidation melting is returned to the first-stage oxidation melting and the oxidation melting is repeated. (5) In reduction smelting, carbon powder is used as a reducing material,
The method for recovering silver-lead according to any one of (1) to (4) above, wherein the amount of carbon powder added is 2 to 4 times the reaction equivalent of lead contained in the silver-lead-containing slag. (6) In reduction smelting, sodium carbonate is used as a slag forming material, and the addition amount of sodium carbonate is 1.2 to 2.0 times the total reaction equivalent of silver and lead contained in the silver lead-containing slag. 1)
~ The silver recovery method as described in any of (5). (7) Oxidation and smelting by adding silica material (1)-
The silver recovery method as described in any of (6).
【0008】本発明の回収方法によれば、銅電解スライ
ムから得た銀鉛含有滓について、還元熔錬と酸化熔錬を
連続して行い、好ましくは酸化熔錬を二段階に行うこと
によって銀を効率よく鉛から分離して回収することがで
きる。すなわち、銀鉛含有滓を最初から酸化熔錬すると
酸化鉛(PbO)を主体とするスラグ中に銀が多量に含有さ
れるために銀の損失が大きい。本発明の回収方法は最初
に還元熔錬を行い、メタル中の銀を貴鉛(Ag-Pb合金)の
形にして銀の損失を抑える。次に酸化熔錬を行って鉛を
スラグ化する。鉛は銀よりも酸化されやすく酸化鉛に転
じてスラグ化する。一方、銀は酸化されずにメタルとし
て残るので、銀と鉛を容易に分離することができる。こ
の酸化熔錬を二段階に行うことによってスラグに取り込
まれる銀の損失量を制御し、銀の回収率を高めると共に
高品位の銀を回収することができる。According to the recovery method of the present invention, the silver lead-containing slag obtained from the copper electrolytic slime is continuously subjected to reduction smelting and oxidation smelting, and preferably the oxidation smelting is carried out in two steps. Can be efficiently separated from lead and recovered. That is, when the silver-lead-containing slag is oxidized and smelted from the beginning, a large amount of silver is contained in the slag mainly composed of lead oxide (PbO), resulting in a large silver loss. In the recovery method of the present invention, reduction smelting is first performed to make silver in the metal into a form of noble lead (Ag-Pb alloy) to suppress silver loss. Next, oxidation smelting is performed to convert lead into slag. Lead is more easily oxidized than silver and is converted to lead oxide to form slag. On the other hand, since silver remains as a metal without being oxidized, silver and lead can be easily separated. By carrying out this oxidative smelting in two steps, the loss amount of silver taken into the slag can be controlled, the silver recovery rate can be increased, and high-quality silver can be recovered.
【0009】[0009]
【発明の実施の形態】以下、本発明の銀回収方法を実施
例と共に具体的に説明する。なお、%は特に示さない限
りwt%である。本発明の処理方法の概略を図1に示す。
図示するように、本発明の処理方法は、銀鉛含有滓に還
元材とスラグ形成材を添加し、還元熔錬を行ってメタル
相に含まれる銀を貴鉛にし、スラグを抜き出した後にメ
タル相に空気ないし酸素富化空気を吹き込み、酸化熔錬
を行って鉛分をスラグ化し、メタル相の粗銀を回収する
こととを特徴とする方法であり、好ましくは、銅電解ス
ライムを湿式塩化処理した銀鉛含有滓を用い、還元熔錬
で得た貴鉛の酸化熔錬を二段階に行い、まず第一段の酸
化熔錬をメタル相の鉛含有率が5%〜10%になるまで
行なって、一度、スラグを排除した後第二段の酸化熔錬
をメタル相の鉛含有率が0.1%以下になるまで行う銀
回収方法である。BEST MODE FOR CARRYING OUT THE INVENTION The silver recovery method of the present invention will be specifically described below with reference to Examples. In addition,% is wt% unless otherwise indicated. The outline of the processing method of the present invention is shown in FIG.
As shown in the figure, the treatment method of the present invention comprises adding a reducing material and a slag forming material to a silver lead-containing slag, reducing and smelting the silver contained in the metal phase into noble lead, and extracting the slag. Injecting air or oxygen-enriched air into the phase, oxidizing and slagging lead to slag, and recovering the crude silver in the metal phase, preferably wet electrolytic chlorination of copper electrolytic slime. Oxidation smelting of the noble lead obtained by reduction smelting is carried out in two stages using the treated silver-lead-containing slag, and the first stage oxidization smelting leads to a lead content of 5% to 10% in the metal phase. This is a silver recovery method in which the slag is removed once, and then the second-stage oxidation smelting is performed until the lead content of the metal phase becomes 0.1% or less.
【0010】〔銀鉛含有滓〕本発明で使用する銅電解ス
ライムは通常の銅電解において副生するものであれば良
い。先に述べたように一般に銅電解においては電解液に
不溶な成分が蓄積して銅電解スライムとなる。この銅電
解スライムには白金、セレン、テルル、鉛、金、銀、銅
を多く含んでいる。この銅電解スライムを湿式塩化処理
して金を液中に抽出する。湿式塩化処理は塩酸溶液中で
銅電解スライムに塩素ガスあるいは過酸化水素を添加す
ることによって行われる。この時、スライム中の銀、鉛
は不溶性の塩化銀、塩化鉛となり浸出滓中に残る。[Silver-Lead-Containing Slag] The copper electrolytic slime used in the present invention may be any by-product produced in ordinary copper electrolysis. As described above, generally in copper electrolysis, components insoluble in the electrolytic solution accumulate to form copper electrolysis slime. This copper electrolytic slime contains a large amount of platinum, selenium, tellurium, lead, gold, silver and copper. This copper electrolytic slime is wet-chlorinated to extract gold into the liquid. The wet chlorination treatment is performed by adding chlorine gas or hydrogen peroxide to copper electrolytic slime in a hydrochloric acid solution. At this time, the silver and lead in the slime become insoluble silver chloride and lead chloride and remain in the leaching slag.
【0011】塩化処理した銅電解スライムを水または温
水等を用いて十分に洗浄する。この水洗によって塩化金
等の水溶性塩化物は浸出滓から除去される。使用する水
または温水の量は、銅電解スライム1kgに対して1リットル
以上が好ましい。なお、銅電解スライムに含まれる金の
含有量は一般に約5%以下であるが、この湿式塩化処理
および洗浄によってその殆どが液中に抽出される。The chlorinated copper electrolytic slime is thoroughly washed with water or warm water. By this washing with water, water-soluble chlorides such as gold chloride are removed from the leach slag. The amount of water or warm water used is preferably 1 liter or more per 1 kg of copper electrolytic slime. The content of gold contained in the copper electrolytic slime is generally about 5% or less, but most of it is extracted into the liquid by this wet chlorination treatment and washing.
【0012】〔還元熔錬〕上記銀鉛含有滓を熔錬炉に入
れ、還元材とスラグ形成材を添加し、非酸化性雰囲気下
で還元熔錬を行う。還元熔錬を行うことによって、メタ
ル中の銀と鉛が合金化して貴鉛(Ag-Pb合金)を形成し、
銀がスラグに取り込まれる量(銀損失量)を抑えることが
できる。還元材としてはコークス等の炭素粉を用いれば
良い。炭素粉の添加量は銀鉛含有滓に含まれる鉛の反応
当量の2〜4倍量が好ましい。また、スラグ形成材とし
ては炭酸ソーダなどを用いることができる。なお、炭酸
ソーダは炭酸カルシウムよりもスラグの分離性が良いの
で好ましい。炭酸ソーダの添加量は銀鉛含有滓に含まれ
る銀と鉛の合計反応当量の1.2〜2.0倍量が適当であ
り、1.5〜1.7倍量が好ましい。熔錬温度は1050
℃〜1200℃が適当であり、1100℃前後が好まし
い。[Reduction Smelting] The silver lead-containing slag is placed in a smelting furnace, a reducing material and a slag forming material are added, and reduction smelting is performed in a non-oxidizing atmosphere. By performing reduction smelting, silver and lead in the metal are alloyed to form precious lead (Ag-Pb alloy),
The amount of silver taken into the slag (the amount of silver loss) can be suppressed. Carbon powder such as coke may be used as the reducing material. The amount of carbon powder added is preferably 2 to 4 times the reaction equivalent of lead contained in the silver lead-containing slag. Further, sodium carbonate or the like can be used as the slag forming material. Sodium carbonate is preferable because it has a better slag separability than calcium carbonate. The amount of sodium carbonate added is suitably 1.2 to 2.0 times, preferably 1.5 to 1.7 times the total reaction equivalent of silver and lead contained in the silver lead-containing slag. Melting temperature is 1050
C. to 1200.degree. C. is suitable, and about 1100.degree. C. is preferable.
【0013】銀鉛含有滓をコークス粉およびソー灰と共
に熔錬炉に装入し、1050℃〜1200℃に加熱する
と、次式のように滓中の塩化銀および塩化鉛が還元さ
れ、銀鉛合金溶融メタル相(貴鉛)と溶融NaClスラ
グ相が形成される。この脱塩したメタル相をスラグ相か
ら分離して取り出し、酸化炉に送る。
2AgCl+Na2CO3 → 2Ag+2NaCl+CO
2+1/2O2
PbCl2 +Na2CO3 +1/2C → Pb+2NaC
l+3/2CO2 When the silver lead-containing slag is charged into a smelting furnace together with coke powder and saw ash and heated to 1050 ° C. to 1200 ° C., silver chloride and lead chloride in the slag are reduced as shown in the following formula, and silver lead is added. An alloy molten metal phase (noble lead) and a molten NaCl slag phase are formed. The desalted metal phase is separated from the slag phase and taken out, and sent to an oxidation furnace. 2AgCl + Na 2 CO 3 → 2Ag + 2NaCl + CO
2 + 1 / 2O 2 PbCl 2 + Na 2 CO 3 + 1 / 2C → Pb + 2NaC
l + 3 / 2CO 2
【0014】〔酸化熔錬〕銀鉛合金(貴鉛)メタル相を酸
化炉に装入して酸化熔錬を行う。鉛は銀よりも酸化され
やいので酸化鉛に転じてスラグ化する。同時に他の不純
物金属も酸化されてスラグ化する。一方、銀は酸化され
ずにメタル相に残るので、銀と鉛を容易に分離すること
ができる。酸化炉では上記貴鉛(Ag-Pb合金)を1050
℃〜1200℃、好ましくは1100℃前後に加熱し、
ランスを通じてメタル相に空気ないし酸素富化空気を吹
き込んで熔錬する。[Oxidation Smelting] A silver lead alloy (noble lead) metal phase is charged into an oxidation furnace to perform oxidation melting. Since lead is more easily oxidized than silver, it turns into lead oxide and forms slag. At the same time, other impurity metals are also oxidized to form slag. On the other hand, since silver is not oxidized and remains in the metal phase, silver and lead can be easily separated. In the oxidation furnace, the above noble lead (Ag-Pb alloy) is added to 1050
℃ ~ 1200 ℃, preferably heated to around 1100 ℃,
Air or oxygen-enriched air is blown into the metal phase through a lance for smelting.
【0015】酸化熔錬の進行に伴ってメタル相の鉛含有
量が次第に低下し、スラグ相(PbO)の量が増加する。こ
の酸化熔錬の際に、メタル相の銀が酸化してスラグ相に
移行するのを極力抑えるために、珪砂(SiO2)などの
シリカ材料を添加して銀の反応性を抑えて熔錬を行うと
良い。珪砂の添加量はPbO:2モルに対してSiO:
1モル比の割合になる量が適当である。As the oxidative smelting progresses, the lead content of the metal phase gradually decreases, and the amount of slag phase (PbO) increases. During this oxidative smelting, silica material such as silica sand (SiO 2 ) is added to suppress the reactivity of silver and smelt in order to suppress the oxidation of the metal phase silver and transfer to the slag phase as much as possible. Good to do. The amount of silica sand added is SiO: to PbO: 2 mol.
An amount that provides a ratio of 1 molar ratio is suitable.
【0016】酸化熔錬を一段で行うと、酸化反応の終期
においてメタル相の鉛含有量が数%以下になると、銀の
酸化が急激に進行してスラグ(PbO-SiO2)相の銀含有量が
増大する。このような銀のスラグ相への移行量(損失量)
を最小に止めるために、貴鉛の酸化熔錬を二段階に行う
と良い。When the oxidative smelting is carried out in a single stage, when the lead content of the metal phase becomes several percent or less at the end of the oxidation reaction, the oxidation of silver rapidly progresses and the slag (PbO-SiO 2 ) phase contains silver. The amount increases. The amount of such silver transferred to the slag phase (the amount of loss)
In order to minimize the above, it is advisable to perform noble lead oxidation and smelting in two stages.
【0017】まず、第一段の酸化熔錬をメタル相の鉛含
有量が5%〜10%になるまで行ってスラグ相を分離す
る。メタル相の鉛含有が5%より少ないと銀の酸化が急
激に進行して銀の損失量が増大するので好ましくない。
メタル相の鉛含有量が5%程度であればスラグ相に含ま
れる酸化銀の量を概ね0.5%程度以下に抑えることが
できる。一方、メタル相の鉛含有量が10%より多いと
鉛と銀の分離効果が低下する。なお、上記スラグは大部
分が酸化鉛であるので、分離したスラグを鉛製錬原料な
どに用いることができる。First, the slag phase is separated by performing the first-stage oxidation smelting until the lead content of the metal phase becomes 5% to 10%. When the content of lead in the metal phase is less than 5%, the oxidation of silver rapidly progresses and the amount of silver loss increases, which is not preferable.
If the lead content of the metal phase is about 5%, the amount of silver oxide contained in the slag phase can be suppressed to about 0.5% or less. On the other hand, when the lead content of the metal phase is more than 10%, the effect of separating lead and silver decreases. Since most of the slag is lead oxide, the separated slag can be used as a lead smelting raw material.
【0018】次に、スラグ相を分離した残りのメタル相
について二段目の酸化熔錬を行う。この酸化熔錬はメタ
ル相の鉛含有率が0.1%以下になるまで行ってスラグ
相を分離する。スラグ相を分離したメタル相には銀が酸
化されずに残り、粗銀を回収することができる。この粗
銀をアノードに鋳造して電解精製を行うことにより純度
99.99%水準の高純度電気銀を得ることができる。
なお、分離したスラグには酸化銀が概ね2〜10%程度
含有されているので、このスラグを最初の第一段の酸化
熔錬に戻して再利用し、酸化熔錬を繰り返す。この二段
目酸化熔錬のスラグに含まれる酸化銀の含有量は最初の
酸化熔錬のスラグ相より多いが、生成するスラグの量は
僅かであり、しかも最初の酸化熔錬に戻して使用するの
で、銀の損失にはならない。なお、実施例2に示すよう
に、二段目のスラグを一段目の酸化熔錬に繰返し、酸素
を吹込む前に短時間窒素を吹込むことによって、スラグ
中の銀を大幅に低減することができる。Next, the second-stage oxidation smelting is performed on the remaining metal phase from which the slag phase has been separated. This oxidation smelting is performed until the lead content of the metal phase becomes 0.1% or less, and the slag phase is separated. Silver remains in the metal phase from which the slag phase has been separated, without being oxidized, and crude silver can be recovered. By casting this crude silver on the anode and performing electrolytic refining, high-purity electrosilver having a purity level of 99.99% can be obtained.
Since the separated slag contains about 2 to 10% of silver oxide, the slag is returned to the first stage of the smelting for reuse and reused, and the smelting for oxidation is repeated. The content of silver oxide contained in the slag of this second-stage oxidation smelt is higher than that of the slag phase of the first oxidation smelt, but the amount of slag produced is small, and it is used by returning it to the first oxidation smelt. It does not result in a loss of silver. As shown in Example 2, the silver in the slag is significantly reduced by repeating the second-stage slag in the first-stage oxidative smelting and blowing nitrogen for a short time before blowing oxygen. You can
【0019】[0019]
【実施例】以下、本発明を実施例によって具体的に示
す。なお、実施例および比較例の結果を表1に示す。EXAMPLES The present invention will be specifically described below with reference to examples. The results of Examples and Comparative Examples are shown in Table 1.
【0020】〔実施例1〕脱銅スライムを湿式塩化処理
して得た銀鉛含有滓(Ag:14.6%、Pb:52.8%)13kgを
熔錬炉に装入し、これにコークス粉600g、炭酸ソー
ダ7560gを添加し、1100℃に60分加熱保持し
て還元熔錬を行った。生成したスラグを分離してメタル
(貴鉛)9060gを回収した。さらに、このメタルを
酸化炉に入れ、珪砂980gを加え、ランスを通じて酸
素富化空気(80%酸素)3L/minを吹込みながら110
0℃に加熱して一段目の酸化熔錬を200分間行った。
ここで生成したスラグを分離してメタル2010gを残
し、これに再び珪砂15gを加え、ランスを通じて酸素
富化空気3L/minを吹込みながら1100℃に加熱して
二段目の酸化熔錬を行った。生成したスラグを分離して
メタル(粗銀)1880gを回収した。メタルの鉛含有
量は0.062%であった。一段目酸化熔錬のスラグの
銀含有量は0.21%であった。二段目酸化熔錬のスラ
グの銀含有量は5.22%であるが、スラグ量は110
gであった。[Example 1] 13 kg of a silver lead-containing slag (Ag: 14.6%, Pb: 52.8%) obtained by wet-chlorinating decoppered slime was charged into a smelting furnace, and 600 g of coke powder was added thereto. 7560 g of sodium carbonate was added, and reduction and smelting was performed by heating and holding at 1100 ° C. for 60 minutes. The produced slag was separated to recover 9060 g of metal (noble lead). Further, this metal was put into an oxidation furnace, 980 g of silica sand was added, and 110 L while blowing 3 L / min of oxygen-enriched air (80% oxygen) through a lance.
It heated at 0 degreeC and performed the 1st stage oxidation smelting for 200 minutes.
The slag generated here is separated to leave metal 2010g, 15g of silica sand is added again to this, and the second stage oxidation smelting is performed by blowing 3 L / min of oxygen-enriched air through a lance and heating to 1100 ° C. It was The generated slag was separated to recover 1880 g of metal (crude silver). The lead content of the metal was 0.062%. The silver content of the slag of the first stage oxidation smelting was 0.21%. The silver content of the slag of the second stage oxidation smelting is 5.22%, but the slag amount is 110
It was g.
【0021】〔実施例2〕実施例1と同様の銀鉛含有宰
(Ag:15.2%、Pb:49.1%)13kgを熔錬炉に装入し、こ
れにコークス粉700g、炭酸ソーダ6930gを添加
して1100℃に60分加熱保持して熔錬を行った。生
成したスラグを分離してメタル(貴鉛)8270gを回
収した。さらにこのメタルを酸化炉に入れ、珪砂880
gを加え、ランスを通じて酸素富化空気(80%酸素)3
L/minを吹込みながら1100℃に加熱して一段目の酸
化熔錬を180分間行った。ここで生成したスラグを分
離してメタル2110gを残し、これに再び珪砂20g
を加え、ランスを通じて酸素富化空気3L/minを吹込み
ながら1100℃に加熱して二段目の酸化熔錬を行っ
た。生成したスラグを分離してメタル(粗銀)1940
gを回収した。メタルの鉛含有量は0.049%であっ
た。分離した二段目のスラグは140gで、7.14%
の銀を含んでいた。これを次の一段目の酸化熔錬に繰返
して初めの30分間窒素を吹込んだところ、スラグ中の
銀は0.35%に低下した。[Example 2] 13 kg of the same silver lead-containing powder (Ag: 15.2%, Pb: 49.1%) as in Example 1 was charged into a smelting furnace, to which 700 g of coke powder and 6930 g of sodium carbonate were added. Then, it was heated and held at 1100 ° C. for 60 minutes for smelting. The produced slag was separated to recover 8270 g of metal (noble lead). Then, put this metal in an oxidation furnace and add quartz sand 880.
g and add oxygen-enriched air (80% oxygen) through lance 3
While blowing L / min, it was heated to 1100 ° C. and the first-stage oxidation smelting was performed for 180 minutes. The slag generated here was separated to leave 2110 g of metal, and 20 g of silica sand was again added to this.
Was added and the mixture was heated to 1100 ° C. while blowing 3 L / min of oxygen-enriched air through the lance to perform second-stage oxidation smelting. Generated slag is separated and metal (crude silver) 1940
g was recovered. The lead content of the metal was 0.049%. The separated second stage slag is 140g, 7.14%
Contains silver. When this was repeated in the next first-stage oxidation smelting and nitrogen was blown for the first 30 minutes, the silver content in the slag was reduced to 0.35%.
【0022】〔比較例1〕実施例1と同じ銀鉛含有量
(Ag:14.6%、Pb:52.8%)13kgを熔錬炉に装入し、こ
れに炭酸ソーダ8890gと珪砂995gを添加して1
100℃に60分間加熱保持して熔錬を行った。生成し
たスラグを分離してメタル(粗銀)1430gを回収し
た。回収メタル中の鉛含有量は1.14%であった。一
方、分離したスラグ量は12560gであり、3.77
%の銀を含んでいた。Comparative Example 1 13 kg of the same silver lead content (Ag: 14.6%, Pb: 52.8%) as in Example 1 was charged into a smelting furnace, to which 8890 g of sodium carbonate and 995 g of silica sand were added. 1
Smelting was performed by heating and holding at 100 ° C. for 60 minutes. The produced slag was separated and 1430 g of metal (crude silver) was recovered. The lead content in the recovered metal was 1.14%. On the other hand, the amount of separated slag is 12560 g, which is 3.77.
% Silver.
【0023】〔比較例2〕実施例2と同じ銀鉛含有宰
(Ag:15.2%、Pb:49.1%)13kgを熔錬炉に装入し、こ
れにコークス粉700gと炭酸ソーダ8150gを添加
して1100℃に60分加熱保持して熔錬を行った。生
成したスラグを分離してメタル(貴鉛)8190gを回
収した。さらにこのメタルを酸化炉に入れ、珪砂880
gを加え、ランスを通じて酸素富化空気(80%酸素)3
L/minを吹込みながら1100℃に加熱して酸化熔錬を
240分間行った。生成したスラグを分離してメタル
(粗銀)1790gを回収した。メタルの鉛含有量は
0.13%であった。一方、スラグ量は6310gであ
り、その銀含有量は2.83%であった。Comparative Example 2 13 kg of the same silver-lead containing silver (Ag: 15.2%, Pb: 49.1%) as in Example 2 was charged into a smelting furnace, to which 700 g of coke powder and 8150 g of sodium carbonate were added. And held at 1100 ° C. for 60 minutes for smelting. The generated slag was separated and 8190 g of metal (noble lead) was recovered. Then, put this metal in an oxidation furnace and add quartz sand 880.
g and add oxygen-enriched air (80% oxygen) through lance 3
The mixture was heated to 1100 ° C. while blowing L / min to carry out oxidation smelting for 240 minutes. The produced slag was separated to recover 1790 g of metal (crude silver). The lead content of the metal was 0.13%. On the other hand, the amount of slag was 6310 g, and the silver content was 2.83%.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【発明の効果】本発明の回収方法によれば、銅電解スラ
イムの湿式塩化処理から得た銀鉛含有滓について、高品
位の銀を効率よく鉛から分離して回収することができ
る。According to the recovery method of the present invention, high-grade silver can be efficiently separated from lead in a silver lead-containing slag obtained by wet chlorination of copper electrolytic slime and recovered.
【図1】 本発明の回収方法の概略を示す工程図FIG. 1 is a process diagram showing an outline of a recovery method of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 関口 桂一 埼玉県さいたま市北袋町1丁目279番地 三菱マテリアル株式会社総合研究所大宮研 究センター内 Fターム(参考) 4K001 AA01 AA20 BA12 BA17 DA05 EA03 EA04 EA07 HA01 KA13 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Keiichi Sekiguchi 1-279 Kitabukuro-cho, Saitama City, Saitama Prefecture Mitsubishi Materials Corporation Research Institute Omiya Lab Research Center F-term (reference) 4K001 AA01 AA20 BA12 BA17 DA05 EA03 EA04 EA07 HA01 KA13
Claims (7)
加し、還元熔錬を行ってメタル相に含まれる銀を貴鉛に
し、スラグを分離した後にメタル相に空気ないし酸素富
化空気を吹き込み、酸化熔錬を行って鉛分をスラグ化
し、メタル相の粗銀を回収することとを特徴とする銀鉛
含有滓から銀を回収する方法。1. A reducing material and a slag forming material are added to a silver lead-containing slag, and reduction smelting is performed to convert the silver contained in the metal phase into noble lead, and the metal phase is enriched with air or oxygen after separating the slag. A method for recovering silver from a silver-lead-containing slag, characterized by recovering crude silver in a metal phase by blowing air and oxidizing and smelting lead to slag.
銀鉛含有滓を用いる請求項1の銀回収方法。2. The silver recovery method according to claim 1, wherein a silver lead-containing slag obtained by subjecting copper electrolytic slime to a wet chlorination treatment is used.
一段の酸化熔錬をメタル相の鉛含有率量5%〜10%に
なるまで行ってスラグ相を分離し、次いで第二段の酸化
熔錬をメタル相の鉛含有量が0.1%以下になるまで行
ってスラグ相を分離する請求項1または2の銀回収方
法。3. Oxidation smelting of noble lead is carried out in two steps, firstly oxidization smelting of the first step is carried out until the lead content of the metal phase becomes 5% to 10%, and then the slag phase is separated. The silver recovery method according to claim 1 or 2, wherein the slag phase is separated by performing the second-stage oxidative smelting until the lead content of the metal phase becomes 0.1% or less.
一段の酸化熔錬に戻して酸化熔錬を繰り返す請求項3の
銀回収方法。4. The silver recovery method according to claim 3, wherein the slag separated by the second-stage oxidation melting is returned to the first-stage oxidation melting and the oxidation melting is repeated.
を用い、炭素粉の添加量が銀鉛含有滓に含まれる鉛の反
応当量の2〜4倍である請求項1〜4の何れかに記載す
る銀鉛回収方法。5. In the reduction smelting, carbon powder is used as a reducing material, and the addition amount of carbon powder is 2 to 4 times the reaction equivalent of lead contained in the silver lead-containing slag. The silver lead recovery method described in.
炭酸ソーダを用い、炭酸ソーダの添加量が銀鉛含有滓に
含まれる銀と鉛の合計反応当量の1.2〜2.0倍である
請求項1〜5の何れかに記載する銀回収方法。6. In reduction smelting, sodium carbonate is used as a slag forming material, and the addition amount of sodium carbonate is 1.2 to 2.0 times the total reaction equivalent of silver and lead contained in the silver lead-containing slag. The silver recovery method according to claim 1.
求項1〜6の何れかに記載する銀回収方法。7. The silver recovery method according to claim 1, wherein a silica material is added to carry out oxidation smelting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002105736A JP2003293049A (en) | 2002-04-08 | 2002-04-08 | Method for recovering silver from slag containing silver and lead |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002105736A JP2003293049A (en) | 2002-04-08 | 2002-04-08 | Method for recovering silver from slag containing silver and lead |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003293049A true JP2003293049A (en) | 2003-10-15 |
Family
ID=29243176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002105736A Pending JP2003293049A (en) | 2002-04-08 | 2002-04-08 | Method for recovering silver from slag containing silver and lead |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003293049A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307283A (en) * | 2005-04-28 | 2006-11-09 | Aida Kagaku Kogyo Kk | Method for recovering noble metal |
JP2014009383A (en) * | 2012-06-29 | 2014-01-20 | Mitsubishi Materials Corp | Method for separating noble metal and sulfate impurity |
US9637806B2 (en) | 2012-08-31 | 2017-05-02 | Corning Incorporated | Silver recovery methods and silver products produced thereby |
US9670564B2 (en) | 2012-08-31 | 2017-06-06 | Corning Incorporated | Low-temperature dispersion-based syntheses of silver and silver products produced thereby |
US9982322B2 (en) | 2012-08-30 | 2018-05-29 | Corning Incorporated | Solvent-free syntheses of silver products produced thereby |
CN114959293A (en) * | 2022-06-02 | 2022-08-30 | 中国恩菲工程技术有限公司 | Smelting method of low-lead silver concentrate |
-
2002
- 2002-04-08 JP JP2002105736A patent/JP2003293049A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307283A (en) * | 2005-04-28 | 2006-11-09 | Aida Kagaku Kogyo Kk | Method for recovering noble metal |
JP2014009383A (en) * | 2012-06-29 | 2014-01-20 | Mitsubishi Materials Corp | Method for separating noble metal and sulfate impurity |
US9982322B2 (en) | 2012-08-30 | 2018-05-29 | Corning Incorporated | Solvent-free syntheses of silver products produced thereby |
US9637806B2 (en) | 2012-08-31 | 2017-05-02 | Corning Incorporated | Silver recovery methods and silver products produced thereby |
US9670564B2 (en) | 2012-08-31 | 2017-06-06 | Corning Incorporated | Low-temperature dispersion-based syntheses of silver and silver products produced thereby |
CN114959293A (en) * | 2022-06-02 | 2022-08-30 | 中国恩菲工程技术有限公司 | Smelting method of low-lead silver concentrate |
CN114959293B (en) * | 2022-06-02 | 2024-02-27 | 中国恩菲工程技术有限公司 | Smelting method of low-lead silver concentrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110172570B (en) | Method for treating noble lead | |
CN112609078B (en) | Copper anode mud treatment process | |
JP2009102724A (en) | Method for producing silver powder | |
JP6810887B2 (en) | Separation and recovery methods for selenium, tellurium, and platinum group elements | |
US4389248A (en) | Method of recovering gold from anode slimes | |
US4423011A (en) | Selective recovery of base metals and precious metals from ores | |
CN106884093B (en) | A kind of thick aurin smelting method | |
JP2003293049A (en) | Method for recovering silver from slag containing silver and lead | |
JP6233478B2 (en) | Purification method of bismuth | |
WO2018138917A1 (en) | Bismuth purification method | |
CA2730558C (en) | Separation process for platinum group elements | |
JP3772770B2 (en) | Method for recovering precious metals from copper electrolytic slime | |
CA1068116A (en) | Process for the treatment of platinum group metals and gold | |
JP4155177B2 (en) | Method for recovering silver from silver-lead-containing materials | |
JPS6139383B2 (en) | ||
JP2007231397A (en) | Method for refining silver chloride | |
JP4155176B2 (en) | Method for recovering silver from silver-lead-containing materials | |
JPH06108177A (en) | Method of deleading debismuthed dross | |
JP2011068528A (en) | Method for recovering tellurium from copper electrolysis precipitation | |
JP6750454B2 (en) | Method for removing impurities from bismuth electrolyte | |
JP2005264252A (en) | TREATMENT METHOD FOR SUBSTANCE CONTAINING Sn, Pb AND Cu | |
US5004500A (en) | Chlorination process for recovering gold values from gold alloys | |
JP2019189891A (en) | Method for separating selenium and tellurium from mixture containing selenium and tellurium | |
EP1549777B1 (en) | Method for removal of silver from a copper chloride solution | |
JP2003277067A (en) | Method for manufacturing nickel sulfide with excellent oxidation resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070612 |