Nothing Special   »   [go: up one dir, main page]

JP2003069523A - Ofdm communication device - Google Patents

Ofdm communication device

Info

Publication number
JP2003069523A
JP2003069523A JP2001259542A JP2001259542A JP2003069523A JP 2003069523 A JP2003069523 A JP 2003069523A JP 2001259542 A JP2001259542 A JP 2001259542A JP 2001259542 A JP2001259542 A JP 2001259542A JP 2003069523 A JP2003069523 A JP 2003069523A
Authority
JP
Japan
Prior art keywords
signal
ofdm
cnr
communication device
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001259542A
Other languages
Japanese (ja)
Other versions
JP4138280B2 (en
Inventor
Masakazu Takahashi
正和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2001259542A priority Critical patent/JP4138280B2/en
Publication of JP2003069523A publication Critical patent/JP2003069523A/en
Application granted granted Critical
Publication of JP4138280B2 publication Critical patent/JP4138280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an OFDM communication device which improves communication quality and cuts down the waste of sending power based on the CNR estimation concerning with transmission paths such as electric power lines. SOLUTION: The OFDM communication device receives the ODDM signals including preamble signals composed of predetermined fixed data, and then fetches out at least two preamble signals from the received signals to interconnect them so that it generates expanded preamble signals. By transforming the signals into frequency data using Fourier transform means, the device calculates in a lump carrier wave components relating to the expanded preamble signals and the other noise components, and performs the CNR estimation of the carrier wave components based on the result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はOFDM通信装置に関
し、特に伝送路に係わる搬送波対雑音比(Carrier to No
ise Ratio、以下CNRと記す)を推定して通信品質を改善
する手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an OFDM communication apparatus, and more particularly to a carrier to noise ratio (Carrier to No.
ise Ratio, hereinafter referred to as CNR) to improve communication quality.

【0002】[0002]

【従来の技術】電力線通信は、屋外配電線や屋内電灯線
などの電力を供給するため配設している電力線を利用し
て情報を伝送するものであり、通信線路を新たに敷設す
る必要がなく通信料金の低コスト化が可能であるため、
従来より種々の方式が検討されてきた。電力線通信で
は、上記のような利点がある一方で、雑音などによる伝
送特性劣悪な電力線を使用するため、雑音に強い通信方
式を用いる必要がある。
2. Description of the Related Art In power line communication, information is transmitted using a power line such as an outdoor distribution line or an indoor power line that is provided to supply electric power, and it is necessary to newly lay a communication line. Since it is possible to reduce the cost of communication without
Conventionally, various methods have been studied. While the power line communication has the above advantages, it uses a power line that has poor transmission characteristics due to noise and the like, and thus needs to use a communication system that is resistant to noise.

【0003】直交周波数分割多重(Orthogonal Frequenc
y Division Multiplexing、以下OFDMと記す)方式は、1
チャネルのデータを複数の搬送波に分散させて伝送する
マルチキャリア変調方式の一種であり、データが複数の
搬送波に分散されるため雑音による全データ欠落の確率
が低くなり、従って電力線通信に適した通信方式として
知られている。
Orthogonal Frequency Division Multiplexing
y Division Multiplexing (hereinafter referred to as OFDM))
This is a type of multi-carrier modulation method that disperses channel data over multiple carriers and transmits it. Since the data is dispersed over multiple carriers, the probability of all data loss due to noise is low, and therefore communication suitable for power line communication Known as the scheme.

【0004】図7は、電力線通信装置における従来のOFD
M通信装置の構成例を示す機能ブロック図である。この
図に示す電力線通信装置は、送信系としてOFDM変調部10
0をD/A変換器(デジタル/アナログ変換器)110とローパス
フィルタ120とを介して中間周波・高周波処理部(以下、I
F・RF処理部と記す)130に接続するとともに、受信系とし
て前記IF・RF処理部130をアンチエイリアスフィルタ(ロ
ーパスフィルタ)140とA/D変換器(アナログ/デジタル変
換器)150とを介してOFDM復調部200に接続して構成され
る。
FIG. 7 shows a conventional OFD in a power line communication device.
FIG. 3 is a functional block diagram showing a configuration example of an M communication device. The power line communication device shown in this figure has an OFDM modulator 10 as a transmission system.
0 through the D / A converter (digital / analog converter) 110 and the low-pass filter 120 to the intermediate frequency / high frequency processing unit (hereinafter, I
(Hereinafter referred to as F / RF processing unit) 130, and the IF / RF processing unit 130 as a reception system via an antialiasing filter (low-pass filter) 140 and an A / D converter (analog / digital converter) 150. It is configured by being connected to the OFDM demodulation unit 200.

【0005】なお、OFDM方式については、例えば「伊丹
誠、OFDM変調技術、トリケップス、2000年3月」等に詳細
に記載されているので、ここでは要点のみ説明する。OF
DM変調部100は、送信データを各周波数成分が一部重複
しつつ直交する複数の搬送波に分散して所定の被変調信
号を生成するシンボルマッパ101と、シリアルデータを
パラレルデータに変換するS/P変換回路102と、逆フーリ
エ変換手段としての逆高速フーリエ変換器(Inverse Fas
t Fourier Transform、以下IFFTと記す)103と、パラレ
ルデータをシリアルデータに変換するP/S変換回路104
と、伝送路(電力線)分岐からの反射波によるマルチパス
の影響を軽減する送信側ガードインターバル回路105と
を順次接続して構成する。
Since the OFDM system is described in detail in, for example, "Makoto Itami, OFDM Modulation Technique, Trikeps, March 2000", etc., only the essential points will be described here. OF
The DM modulation unit 100 is a symbol mapper 101 that generates a predetermined modulated signal by dispersing transmission data into a plurality of orthogonal carrier waves with each frequency component partially overlapping, and S / that converts serial data into parallel data. P conversion circuit 102 and an inverse fast Fourier transformer (Inverse Fas
t Fourier Transform (hereinafter referred to as IFFT) 103, and a P / S conversion circuit 104 for converting parallel data into serial data
And a transmission side guard interval circuit 105 for reducing the influence of multipath due to the reflected wave from the transmission path (power line) branch are sequentially connected.

【0006】また、OFDM復調部200は、上述したOFDM変
調部100の逆操作により復調信号を得るため、受信側ガ
ードインターバル回路201と、S/P変換回路202と、受信O
FDM信号から前記直交する複数の搬送波を生成するため
のフーリエ変換手段としての高速フーリエ変換器(Fast
Fourier Transform、以下FFTと記す)203と、P/S変換回
路204と、所定の復調処理を行うシンボルデマッパ205と
を順次接続して構成する。
Further, since the OFDM demodulation section 200 obtains a demodulated signal by the reverse operation of the OFDM modulation section 100 described above, the reception side guard interval circuit 201, the S / P conversion circuit 202 and the reception O
Fast Fourier Transform (Fast Fourier Transform) as a Fourier transform means for generating the plurality of orthogonal carrier waves from the FDM signal.
A Fourier Transform (hereinafter referred to as FFT) 203, a P / S conversion circuit 204, and a symbol demapper 205 that performs a predetermined demodulation process are sequentially connected and configured.

【0007】図8は、シンボルマッパ101が出力する信号
のスペクトルを示す図である。この例では、n個の搬送
波を用いるOFDM信号を生成する場合のスペクトルを示し
ており、周波数利用効率を上げるために各スペクトルは
隣接するスペクトルの一部と重複するように配置され
る。
FIG. 8 is a diagram showing a spectrum of a signal output from the symbol mapper 101. This example shows a spectrum in the case of generating an OFDM signal using n carriers, and each spectrum is arranged so as to overlap a part of an adjacent spectrum in order to improve frequency utilization efficiency.

【0008】図9は、16個(n=15)の搬送波を用いる場合
の送信側P/S変換回路104より出力するOFDM信号(16個の
搬送波が多重化された信号)の例を示す図である。
FIG. 9 is a diagram showing an example of an OFDM signal (a signal in which 16 carrier waves are multiplexed) output from the transmitting side P / S conversion circuit 104 when 16 carrier waves (n = 15) are used. Is.

【0009】以下、図8および図9を参照しつつ図7に示
したOFDM通信装置の動作について、電力線通信装置全体
の動作も含めて説明する。まず、送信系の動作として、
シンボルマッパ101が送信データを図8に示すような周波
数成分を有し互いに直交する複数の搬送波に分散して所
定の被変調信号(例えば、直交振幅変調(QAM)、或いは、
位相変調(PSK))を生成し出力すると、これをS/P変換回
路102がパラレル信号に変換する。
The operation of the OFDM communication apparatus shown in FIG. 7 will be described below with reference to FIGS. 8 and 9 including the operation of the entire power line communication apparatus. First, as the operation of the transmission system,
The symbol mapper 101 transmits the transmission data to a plurality of carriers that have frequency components as shown in FIG. 8 and are orthogonal to each other, and a predetermined modulated signal (for example, quadrature amplitude modulation (QAM), or,
When phase modulation (PSK) is generated and output, the S / P conversion circuit 102 converts this to a parallel signal.

【0010】この被変調信号は、各搬送波の発生タイミ
ングのずれ(位相のずれ)に起因して正確な直交性が保証
されないが、この各搬送波をIFFT変換器103により時間
領域の信号に変換することにより、上記発生タイミング
のずれが補正されることが知られており、理想的なOFDM
信号が図9に示されたような多重化波形として出力され
る。このOFDM信号は、P/S変換回路104によりシリアル信
号に戻され、送信側ガードインターバル回路105により
マルチパスの影響を受けにくい信号に加工されるととも
に、D/A変換器110とローパスフィルタ120とを介して高
調波が除去されたアナログ信号に変換されIF・RF処理部1
30において所定の処理が行われた後に伝送路に送出され
る。
Although accurate orthogonality is not guaranteed for this modulated signal due to the shift of the generation timing (phase shift) of each carrier, each carrier is converted into a signal in the time domain by the IFFT converter 103. It is known that the above deviation of the generation timing can be corrected by
The signal is output as a multiplexed waveform as shown in FIG. This OFDM signal is returned to a serial signal by the P / S conversion circuit 104, processed into a signal that is less susceptible to multipath by the transmission side guard interval circuit 105, and the D / A converter 110 and the low-pass filter 120. Converted to an analog signal with harmonics removed via the IF / RF processing unit 1
After a predetermined process is performed in 30, the data is sent to the transmission path.

【0011】一方、受信系の動作として、IF・RF処理部1
30とアンチエイリアスフィルタ140とA/D変換器150とを
介して所定の処理の後に不要波が除去されデジタル信号
に変換されたOFDM信号がOFDM復調部200に入力すると、
受信側ガードインターバル回路201により送信側のガー
ドインターバル加工が解除され、S/P変換回路202におい
てパラレル信号に変換されFFT203に供給される。FFT203
がこの信号から直交する複数の搬送波(被変調信号)を周
波数成分として生成し、これをP/S変換器204を介してシ
ンボルデマッパ205に供給すると、ここで被変調信号か
ら送信データを再生するために所定の復調処理が行われ
る。
On the other hand, as the operation of the receiving system, the IF / RF processing unit 1
When the OFDM signal converted into a digital signal by removing unnecessary waves after the predetermined processing is input to the OFDM demodulation unit 200 via 30 and the anti-aliasing filter 140 and the A / D converter 150,
The guard interval processing on the transmission side is canceled by the guard interval circuit on the reception side 201, converted into a parallel signal in the S / P conversion circuit 202, and supplied to the FFT 203. FFT203
Generates a plurality of orthogonal carrier waves (modulated signals) from this signal as frequency components, and supplies this to the symbol demapper 205 via the P / S converter 204, where the transmission data is reproduced from the modulated signals. In order to do so, a predetermined demodulation process is performed.

【0012】なお、図8に示すようにOFDM信号は各搬送
波のスペクトルの一部が隣接スペクトルと重複している
ため、各搬送波をフィルターで取り出す(分離する)こと
はできない。しかしながら、周知のように各搬送波間で
有する直交性を利用して信号を分離することができる。
これについては記述が煩雑になるので説明を省略する
(上記文献のpp.37-41に記載がある)。
As shown in FIG. 8, since a part of the spectrum of each carrier in the OFDM signal overlaps the adjacent spectrum, each carrier cannot be extracted (separated) by a filter. However, as is well known, it is possible to separate signals by utilizing the orthogonality between carrier waves.
Since the description of this is complicated, explanation is omitted.
(It is described in pp.37-41 of the above document).

【0013】以上のように、OFDM信号は1つのチャネル
信号を複数の搬送波を用いて伝送するので、雑音により
特定の搬送波のデータが欠落しても、搬送波全体のデー
タが欠落する可能性は低く、従って、所定の誤り訂正技
術等を併用することにより電力線を伝送路として利用し
ても情報データを送受信することができる。
As described above, since an OFDM signal transmits one channel signal using a plurality of carriers, even if the data of a specific carrier is lost due to noise, there is a low possibility that the data of the entire carrier will be lost. Therefore, the information data can be transmitted and received even when the power line is used as a transmission line by using a predetermined error correction technique together.

【0014】[0014]

【発明が解決しようとする課題】上述したような従来の
マルチキャリア通信装置(OFDM通信装置)においては以下
に示すような問題点があった。つまり、伝送路として使
用する電力線には、これに接続された電子機器の種類、
接続数、使用状況、及び電力線敷設状況に依存してレベ
ルと周波数分布が様々に変化する雑音が発生する。従っ
て、CNR特性の高い(雑音レベルの低い)周波数を用いる
搬送波では、情報伝送エラーの少ない良好な通信を実現
できるものの、CNR特性の低い(雑音レベルの高い)周波
数を用いる搬送波では、雑音により情報伝送エラーが多
発して通信品質が劣化する問題があった。また、最悪の
場合は通信不能となるので送信電力が無駄になる問題も
あった。このような問題に対して、特開2000-165304号
公報にはマルチキャリア方式を用いる電力線通信装置に
おいて、受信SNR(CNR)に対して伝送レートや信頼性が高
くなる変調方式の選択、或いはキャリアの選択に関する
記載がある。また、特開2000-216752号公報にはマルチ
キャリア通信装置において、雑音による影響が大きい帯
域以外のキャリアのみを使用する記載がある。しかしな
がら、上記公報にはこれら装置(伝送路)に係わる具体的
な雑音評価手段、或いは、CNR評価手段については開示
されていない。本願出願人は、平成13年4月24日出願の
特願2001-125916号において、多数の受信信号をフーリ
エ変換手段の出力においてサンプリングし、平均信号
(S)及び雑音成分の分散特性から雑音電力(N)を求めてSN
R(CNR)推定を行う電力線通信装置を提案している。しか
しながら、処理時間短縮のため更に効率の良いCNR推定
手段が要求されていた。
The conventional multicarrier communication device (OFDM communication device) as described above has the following problems. In other words, for the power line used as a transmission line, the type of electronic device connected to it,
Noise with varying levels and frequency distributions is generated depending on the number of connections, usage conditions, and power line installation conditions. Therefore, while a carrier using a frequency with a high CNR characteristic (low noise level) can realize good communication with few information transmission errors, a carrier using a frequency with a low CNR characteristic (high noise level) can generate information due to noise. There was a problem that communication quality deteriorates due to frequent transmission errors. In addition, in the worst case, communication becomes impossible, and there is a problem that transmission power is wasted. To solve such a problem, Japanese Patent Laid-Open No. 2000-165304 discloses a power line communication apparatus using a multi-carrier method, in which a transmission method or a modulation method with a higher transmission rate with respect to a received SNR (CNR) is selected, or a carrier is selected. There is a description regarding the selection of. Further, Japanese Patent Laid-Open No. 2000-216752 describes that in a multicarrier communication device, only carriers other than the band in which the influence of noise is large are used. However, the above publication does not disclose any specific noise evaluation means or CNR evaluation means relating to these devices (transmission paths). The applicant of the present application, in Japanese Patent Application No. 2001-125916 filed on April 24, 2001, samples a large number of received signals at the output of the Fourier transform means to obtain an average signal.
(S) and the noise power (N) from the dispersion characteristics of the noise component to obtain SN
We propose a power line communication device for R (CNR) estimation. However, in order to shorten the processing time, a more efficient CNR estimation means has been required.

【0015】本発明は、上述した従来のマルチキャリア
通信装置(OFDM通信装置)に関する問題を解決するために
なされたもので、電力線などの伝送路に係わるCNR推定
を効率良く行う手段を有するOFDM通信装置を提供するこ
とを目的とする。
The present invention has been made in order to solve the above-mentioned problems relating to the conventional multi-carrier communication device (OFDM communication device), and OFDM communication having means for efficiently performing CNR estimation related to a transmission line such as a power line. The purpose is to provide a device.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係わるOFDM通信装置の請求項1記載の発明
は、予め決められた固定データから構成される複数のプ
リアンブル信号を有するOFDM信号を受信するとともに、
この受信信号から少なくとも2個以上の前記プリアンブ
ル信号を取り出し連結させて拡張プリアンブル信号を生
成し、これをフーリエ変換手段を用いて周波数データに
変換することにより、前記拡張プリアンブル信号に係わ
る搬送波成分とそれ以外の雑音成分とを一括して算出
し、この結果に基づき前記搬送波成分のCNR推定を行う
ようにした。本発明に係わるOFDM通信装置の請求項2記
載の発明は、少なくとも送信系として送信データを各周
波数成分が一部重複しつつ直交する複数の搬送波に分散
し複数の変調方式に基づいて所定の被変調信号を生成す
るシンボルマッパと、前記被変調信号を時間領域におい
て多重化しOFDM信号を出力する逆フーリエ変換手段とを
備えるとともに、受信系として受信OFDM信号から前記直
交する複数の搬送波を生成するフーリエ変換手段と、所
定の復調処理を行うシンボルデマッパとを備えるOFDM通
信装置であって、前記受信OFDM信号には予め決められた
固定データから構成される複数のプリアンブル信号を有
し、当該プリアンブル信号を少なくとも2個以上取り出
し連結させて拡張プリアンブル信号を生成し、これをフ
ーリエ変換手段を用いて周波数データに変換することに
より、前記拡張プリアンブル信号に係わる搬送波成分と
それ以外の雑音成分とを一括して算出し、この結果に基
づき前記搬送波成分のCNR推定を行うようにした。本発
明に係わるOFDM通信装置の請求項3記載の発明は、請求
項2記載のOFDM通信装置において、前記CNR推定により求
めたCNR値に基づき前記搬送波ごとに前記複数の変調方
式から送信データの伝送レートが最適となる変調方式を
選択する通信制御を行うようにした。本発明に係わるOF
DM通信装置の請求項4記載の発明は、請求項2または請求
項3記載のOFDM通信装置において、前記CNR推定により求
めたCNR値が所定値より低い場合に当該搬送波を使用し
ないよう通信制御を行うようにした。。本発明に係わる
OFDM通信装置の請求項5記載の発明は、請求項1、請求項
2、請求項3または請求項4記載のOFDM通信装置におい
て、前記複数のプリアンブル信号が所定数連続してお
り、これを少なくとも2個以上連続するように取り出し
て拡張プリアンブル信号とした。
In order to achieve the above object, the invention according to claim 1 of the OFDM communication apparatus according to the present invention is an OFDM having a plurality of preamble signals composed of predetermined fixed data. While receiving the signal,
At least two or more of the preamble signals are extracted from this received signal and combined to generate an extended preamble signal, which is converted into frequency data by using a Fourier transform means, and a carrier component related to the extended preamble signal and Noise components other than the above are collectively calculated, and the CNR of the carrier component is estimated based on this result. The invention according to claim 2 of the OFDM communication apparatus according to the present invention, at least as a transmission system, disperses transmission data into a plurality of orthogonal carrier waves with each frequency component partially overlapping, and a predetermined target based on a plurality of modulation schemes. A symbol mapper for generating a modulated signal, and an inverse Fourier transform means for multiplexing the modulated signal in the time domain and outputting an OFDM signal, and a Fourier system for generating a plurality of orthogonal carrier waves from a received OFDM signal as a reception system. An OFDM communication device comprising a conversion means and a symbol demapper for performing a predetermined demodulation process, wherein the received OFDM signal has a plurality of preamble signals composed of predetermined fixed data, and the preamble signal. To extract and concatenate at least two of them to generate an extended preamble signal, which is transformed into frequency data using Fourier transform means. By doing so, the carrier component related to the extended preamble signal and the noise component other than that are collectively calculated, and the CNR of the carrier component is estimated based on the result. The invention according to claim 3 of the OFDM communication device according to the present invention is the OFDM communication device according to claim 2, wherein transmission data is transmitted from the plurality of modulation methods for each carrier based on the CNR value obtained by the CNR estimation. Communication control is performed to select the modulation method that optimizes the rate. OF according to the present invention
The invention according to claim 4 of the DM communication device, in the OFDM communication device according to claim 2 or claim 3, the communication control so as not to use the carrier when the CNR value obtained by the CNR estimation is lower than a predetermined value. I decided to do it. . Related to the invention
The invention according to claim 5 of the OFDM communication device, claims 1,
2, In the OFDM communication device according to claim 3 or 4, the plurality of preamble signals are continuous for a predetermined number, and at least two or more of these are taken out as continuous preamble signals.

【0017】[0017]

【発明の実施の形態】以下、図示した実施の形態例に基
づいて本発明を詳細に説明する。本発明に係わるOFDM通
信装置は有線通信方式である電力線通信装置、或いは、
固定系、移動系の無線通信装置いずれにも使用可能であ
るが、一例として電力線通信装置に使用する場合につい
て説明する。図1は本発明に係わるOFDM通信装置を電力
線通信装置に用いる場合の実施の形態例を示す機能ブロ
ック図である。本発明の特徴は、受信系に後述するCNR
推定手段を有することであるが、まず、装置全体の構成
について説明する。この例に示す電力線通信装置は、送
信系としてOFDM変調部10をD/A変換器(デジタル/アナロ
グ変換器)30とローパスフィルタ40とを介して中間周波・
高周波処理部(以下、IF・RF処理部と記す)50に接続する
とともに、受信系として前記IF・RF処理部50をアンチエ
イリアスフィルタ(ローパスフィルタ)60とA/D変換器(ア
ナログ/デジタル変換器)70とを介してOFDM復調部20に接
続して構成される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on the illustrated embodiments. The OFDM communication device according to the present invention is a power line communication device that is a wired communication system, or
Although it can be used for both fixed and mobile wireless communication devices, a case where it is used for a power line communication device will be described as an example. FIG. 1 is a functional block diagram showing an embodiment example in which the OFDM communication apparatus according to the present invention is used in a power line communication apparatus. The feature of the present invention is that the CNR described later in the receiving system.
First, the configuration of the entire apparatus will be described, although it has an estimating means. The power line communication device shown in this example has an OFDM modulation unit 10 as a transmission system via an D / A converter (digital / analog converter) 30 and a low-pass filter 40 at an intermediate frequency /
A high-frequency processing unit (hereinafter referred to as an IF / RF processing unit) 50 is connected to the IF / RF processing unit 50 as a receiving system, an anti-alias filter (low-pass filter) 60 and an A / D converter (analog / digital converter). ) 70 and is connected to the OFDM demodulation unit 20.

【0018】OFDM変調部10は、送信データを各周波数成
分が一部重複しつつ直交する複数の搬送波に分散し複数
の変調方式から所定の被変調信号を生成するシンボルマ
ッパ11と、シリアルデータをパラレルデータに変換する
S/P変換回路12と、逆フーリエ変換手段としての逆高速
フーリエ変換器(Inverse Fast Fourier Transform、IFF
Tと記す)13と、パラレルデータをシリアルデータに変換
するP/S変換回路14と、伝送路(電力線)分岐からの反射
波によるマルチパスの影響を軽減する送信側ガードイン
ターバル回路15とを順次接続して構成される。
The OFDM modulation section 10 distributes the transmission data to a plurality of orthogonal carrier waves with each frequency component partially overlapping and generates a predetermined modulated signal from a plurality of modulation systems, and serial data. Convert to parallel data
S / P conversion circuit 12 and an Inverse Fast Fourier Transform (IFF) as an inverse Fourier transform means.
13), a P / S conversion circuit 14 for converting parallel data to serial data, and a transmission side guard interval circuit 15 for reducing the effect of multipath due to the reflected wave from the transmission path (power line) branch. Connected and configured.

【0019】また、OFDM復調部20は、上述したOFDM変調
部10の逆操作により復調信号を得るため、受信側ガード
インターバル回路21と、S/P変換回路22と、受信OFDM信
号から前記直交する複数の搬送波を生成するフーリエ変
換手段としての第1の高速フーリエ変換器(Fast Fourier
Transform、FFTと記す)23と、P/S変換回路24と、所定
の復調処理を行うシンボルデマッパ25とを順次接続する
とともに、ガードインターバル回路21の後段に伝送路
(電力線)に係わるCNR特性を推定するためのCNR推定部26
と、この推定結果に基づきシンボルマッパ11及びシンボ
ルデマッパ25における変調方式、或いは、使用する搬送
波を選択する変調方式/キャリア制御部27とを配置す
る。
Further, since the OFDM demodulation section 20 obtains a demodulated signal by the inverse operation of the above-mentioned OFDM modulation section 10, the reception side guard interval circuit 21, the S / P conversion circuit 22 and the received OFDM signal are orthogonal to each other. The first fast Fourier transformer (Fast Fourier Transform) as a Fourier transform means for generating a plurality of carrier waves.
Transform, FFT) 23, a P / S conversion circuit 24, and a symbol demapper 25 that performs a predetermined demodulation process are sequentially connected, and a transmission line is provided at a stage subsequent to the guard interval circuit 21.
CNR estimation unit 26 for estimating the CNR characteristics related to (power line)
And a modulation method / carrier control unit 27 for selecting a modulation method in the symbol mapper 11 and the symbol demapper 25 or a carrier to be used based on the estimation result.

【0020】OFDM変復調部を含めた電力線通信装置の基
本的な動作は、上述した従来技術と同様であるので説明
を省略する。
The basic operation of the power line communication apparatus including the OFDM modulator / demodulator is the same as that of the above-mentioned conventional technique, and therefore its explanation is omitted.

【0021】本発明では、CNR推定部26において伝送路
に係わるCNR特性を推定し、この推定値に基づき各搬送
波ごとに複数の変調方式(例えば、PSK/QPSK/8PSK/16PS
K)から最適な方式を選択するようにシンボルマッパ11及
びシンボルデマッパ25を変調方式/キャリア制御部27を
介して制御する。
In the present invention, the CNR estimating unit 26 estimates the CNR characteristics related to the transmission path, and a plurality of modulation methods (for example, PSK / QPSK / 8PSK / 16PS) for each carrier are estimated based on the estimated values.
The symbol mapper 11 and the symbol demapper 25 are controlled via the modulation method / carrier control unit 27 so as to select the optimum method from K).

【0022】つまり、変調方式として用いるBPSK(2値PS
K)/QPSK(4値PSK)/8PSK(8値PSK)/16PSK(16値PSK)は、1シ
ンボルにより伝送できる情報ビット数がそれぞれ1/2/3/
4ビットである。ここで、多くの情報ビット数を伝送で
きる方式ほど、信号空間ダイヤグラム上の信号間隔(PSK
系では位相偏移間隔)が狭くなる。例えば、BPSKの位相
偏移間隔は180°、QPSKでは90°、8PSKでは45°とな
り、多くの情報ビット数を伝送できる方式ほど雑音によ
る信号誤りが発生しやすく、その分所定の通信品質を得
るために高いCNR特性(低い雑音特性)を必要とする。一
方、BPSKは1シンボルにより多く情報ビット数を伝送で
きないが、位相偏移間隔が180°と広く雑音による伝送
エラーが少ないので、低いCNR特性でも通信品質に支障
をきたすことはない。
That is, BPSK (binary PS used as a modulation method
(K) / QPSK (4 level PSK) / 8PSK (8 level PSK) / 16PSK (16 level PSK), the number of information bits that can be transmitted by 1 symbol is 1/2/3 /
It is 4 bits. Here, the more the information bit number can be transmitted, the more the signal interval (PSK
In the system, the phase shift interval) becomes narrower. For example, the phase shift interval of BPSK is 180 °, QPSK is 90 °, and 8PSK is 45 °, so that the more information bits can be transmitted, the more easily signal errors due to noise occur, and the predetermined communication quality is obtained accordingly. Therefore, high CNR characteristics (low noise characteristics) are required. On the other hand, BPSK cannot transmit a larger number of information bits per symbol, but since the phase shift interval is 180 ° and the transmission error due to noise is small, even low CNR characteristics do not affect communication quality.

【0023】従って、上記CNR推定値に基づき、CNR値が
低い搬送波においては伝送できる情報ビット数は少ない
が伝送エラーの少ないBPSKを用い、CNR値が高い搬送波
では伝送情報ビット数の多い16PSKなどを選択して伝送
レートの向上を図るようにする。
Therefore, based on the above CNR estimation value, BPSK, which has a small number of information bits that can be transmitted but has few transmission errors, is used in a carrier having a low CNR value, and 16PSK, which has many transmission information bits in a carrier having a high CNR value, is used. Select to improve the transmission rate.

【0024】なお、SNR推定部26での推定の結果、搬送
波のCNR値が所定値よりも小さい場合は、通信品質が劣
化して通信不能となるので、この場合は送信電力の無駄
を改善するためにこの搬送波をOFFするように変調方式/
キャリア制御部27を介してシンボルマッパ11を制御す
る。
When the CNR value of the carrier is smaller than the predetermined value as a result of the estimation by the SNR estimation unit 26, the communication quality is deteriorated and communication becomes impossible. Therefore, in this case, waste of transmission power is improved. In order to turn off this carrier,
The symbol mapper 11 is controlled via the carrier control unit 27.

【0025】次に、本発明を特徴づけるCNR推定部26に
おけるCNR推定について詳細に説明する。図2は、本発明
に係わるOFDM通信装置において用いるCNR推定部の構成
例を示す機能ブロック図である。この例に示すCNR推定
部26は、受信OFDM信号から後述するプリアンブル信号を
取り出して連結し拡張プリアンブル信号を生成するゲー
ト回路261と、第2のFFT262と、CNR算出部263とを順次接
続するとともに、前記第2のFFT262とCNR算出部263との
間に雑音電力検出器264を並列に配置して構成される。
Next, the CNR estimation in the CNR estimation unit 26 which characterizes the present invention will be described in detail. FIG. 2 is a functional block diagram showing a configuration example of the CNR estimation unit used in the OFDM communication apparatus according to the present invention. The CNR estimation unit 26 shown in this example sequentially connects the gate circuit 261, which takes out a preamble signal described later from the received OFDM signal and concatenates it to generate an extended preamble signal, the second FFT 262, and the CNR calculation unit 263. A noise power detector 264 is arranged in parallel between the second FFT 262 and the CNR calculation unit 263.

【0026】図2に示したCNR推定部26の動作説明に先立
ち、まず、CNR推定の原理及びこれに係わる送信信号構
成例について説明する。図3は、このCNR推定の原理を説
明する図である。同図(a)は、先頭にガードインターバ
ル信号を、その後に予め決められたnビットの固定デー
タを配置した送信プリアンブル信号を、同図(b)はこの
固定データが4ビット(n=4)でガードインターバル信号GI
が除去された場合のFFT出力信号をそれぞれ示す。ま
た、同図(c)及び同図(d)は、同図(a)のプリアンブル信
号が2個連結された場合の信号フォーマットとFFT出力信
号をそれぞれ示す。
Prior to the description of the operation of the CNR estimation unit 26 shown in FIG. 2, the principle of CNR estimation and a transmission signal configuration example relating to the principle will be described. FIG. 3 is a diagram explaining the principle of this CNR estimation. The same figure (a) is a transmission preamble signal in which a guard interval signal is placed at the beginning, and then a predetermined n-bit fixed data is placed after that, and in the same figure (b) this fixed data is 4 bits (n = 4). Guard interval signal GI
The FFT output signals are shown respectively when is removed. Also, FIGS. 7C and 7D show the signal format and the FFT output signal when two preamble signals of FIG. 9A are connected, respectively.

【0027】上記固定データのビット数は、OFDMシンボ
ルを構成するビット数と一致するように設定しており、
例えば4ビットに構成されると、FFT出力信号は同図(b)
に示すように4つの搬送波がΔfの間隔にて配置される。
一方、同図(c)に示すように同じプリアンブル信号が2個
連結される場合は、信号のビット数が2倍の8ビットにな
るので、周知のようにフーリエ変換の性質からFFT出力
信号の周波数間隔は同図(d)に示すようにΔf/2となる。
The number of bits of the fixed data is set so as to match the number of bits that make up the OFDM symbol,
For example, if it is configured with 4 bits, the FFT output signal will be
As shown in, four carrier waves are arranged at intervals of Δf.
On the other hand, when two identical preamble signals are concatenated as shown in (c) of the figure, the number of bits of the signal is doubled to 8 bits. The frequency interval is Δf / 2 as shown in FIG.

【0028】この際に、4ビットの固定データが繰り返
されるため、各被変調信号は信号空間ダイアグラム上に
おいて一定値から変動せず、無変調状態に保持される
(連続な正弦波信号が繰り返される)。周知のように、こ
のような連続正弦波信号は線スペクトルとして観測され
るので、同図(d)には図9に示すようなスペクトルの広が
りは発生しない。
At this time, since 4-bit fixed data is repeated, each modulated signal does not change from a constant value on the signal space diagram and is held in an unmodulated state.
(A continuous sinusoidal signal is repeated). As is well known, since such a continuous sine wave signal is observed as a line spectrum, the spectrum spread shown in FIG. 9 (d) does not occur in FIG. 9 (d).

【0029】ところで、同図(b)に示す搬送波C0〜C3が
発生する周波数f0〜f3は予め決められているので、これ
以外の周波数に発生するスペクトルは雑音成分と見なす
ことができる。但し、同図(d)に示すように各搬送波に
は雑音成分(N0、N2、N4、N6)が重畳されるので、観測信
号としてはC0+N0、C1+N2、C2+N4、C3+N6となり、各雑音
成分レベルを特定(推定)できれば、搬送波だけのレベル
を特定することができる。そこで、雑音レベルを平均雑
音レベルとして評価すると、この例では、雑音成分とし
てN1、N3、N5、N7の4つが搬送波と分離して観測される
ので、各レベルをn1、n2、n3、n4とすると 平均雑音レベル=(n1+n3+n5+n7)/4 (1) として評価できる。
By the way, since the frequencies f0 to f3 generated by the carriers C0 to C3 shown in FIG. 7B are predetermined, the spectra generated at frequencies other than this can be regarded as noise components. However, since noise components (N0, N2, N4, N6) are superimposed on each carrier as shown in FIG. 3D, the observed signals are C0 + N0, C1 + N2, C2 + N4, C3 +. N6, and if each noise component level can be specified (estimated), the level of only the carrier can be specified. Therefore, when the noise level is evaluated as an average noise level, in this example, four noise components, N1, N3, N5, and N7, are observed separately from the carrier wave, so each level is n1, n2, n3, and n4. Then, the average noise level can be evaluated as (n1 + n3 + n5 + n7) / 4 (1).

【0030】従って、各搬送波には(1)式で表される雑
音が重畳されているものとして、各搬送波の観測レベル
(C0+N0、C1+N2、C2+N4、C3+N6)から上記平均雑音レベル
を減算して搬送波レベルを推定する。これにより、搬送
波レベルと雑音レベルが算定されるので、CNRを推定す
ることが可能となる。
Therefore, assuming that the noise represented by the equation (1) is superimposed on each carrier, the observation level of each carrier is
The carrier level is estimated by subtracting the average noise level from (C0 + N0, C1 + N2, C2 + N4, C3 + N6). With this, the carrier level and the noise level are calculated, so that the CNR can be estimated.

【0031】図4は、本発明に係わるOFDM通信装置にお
いて使用する送信信号の構成例を示す図である。この例
に示す送信信号は、各フレームの先頭部分に上述したプ
リアンブル信号を、その後に所定数のOFDMシンボルデー
タをそれぞれ配置している。
FIG. 4 is a diagram showing a configuration example of a transmission signal used in the OFDM communication apparatus according to the present invention. In the transmission signal shown in this example, the above-described preamble signal is arranged at the beginning of each frame, and a predetermined number of OFDM symbol data are arranged thereafter.

【0032】以下、図3及び図4を参照しつつ、図2に示
したCNR推定部26の動作について説明するが、例えば、
特許第2772292号公報や本願と同一出願人による特許出
願(特願2001-201585号)に基づき、既にシンボルタイミ
ング同期は確立しているものとする。
The operation of the CNR estimation unit 26 shown in FIG. 2 will be described below with reference to FIGS. 3 and 4.
It is assumed that symbol timing synchronization has already been established based on Japanese Patent No. 2772292 or a patent application (Japanese Patent Application No. 2001-201585) filed by the same applicant as the present application.

【0033】まず、図4に示した送信OFDM信号が受信系
に入力すると、CNR推定部26の前段に配置されたガード
インターバル回路21によりガード信号GIが除去された
後、ゲート回路261に供給される。ゲート回路261は、入
力するOFDMシンボルの数をカウントしており、所定のカ
ウントごとにプリアンブル信号を取り出してこれらを結
合し、拡張プリアンブル信号を生成して(図4参照)FFT26
2に出力する。図3に示したようにFFT262からはこの拡張
プリアンブル信号に係わる周波数スペクトルが搬送波(C
0+N0、C1+N2、C2+N4、C3+N6)と雑音成分(N1、N3、N5、N
7)とに分離されて出力されるので、雑音電力検出器264
において上記(1)式で表される平均雑音レベルを算定す
るとともにCNR算出部263において上記した手順により搬
送波レベルを算出し、最終的に各搬送波ごとのCNRを推
定する。
First, when the transmission OFDM signal shown in FIG. 4 is input to the reception system, the guard signal GI is removed by the guard interval circuit 21 arranged in the preceding stage of the CNR estimation unit 26 and then supplied to the gate circuit 261. It The gate circuit 261 counts the number of input OFDM symbols, takes out a preamble signal for each predetermined count, combines these, and generates an extended preamble signal (see FIG. 4).
Output to 2. As shown in FIG. 3, the frequency spectrum related to this extended preamble signal is transmitted from the FFT 262 to the carrier (C
0 + N0, C1 + N2, C2 + N4, C3 + N6) and noise components (N1, N3, N5, N
7) The noise power detector 264 is output because it is separated into and output.
In (1), the average noise level represented by the above equation (1) is calculated, and the carrier level is calculated in the CNR calculation unit 263 by the procedure described above, and finally the CNR of each carrier is estimated.

【0034】なお、この実施例においては各フレームの
先頭にプリアンブル信号を配置するようにしたが、要す
るに2個以上のプリアンブル信号を連結して拡張プリア
ンブル信号を生成できればよいので、フレームの任意の
位置にプリアンブル信号を配置するようにしてもよい。
In this embodiment, the preamble signal is arranged at the beginning of each frame. In short, it suffices that two or more preamble signals be concatenated to generate an extended preamble signal. You may make it arrange | position a preamble signal to this.

【0035】また、初めから2個以上のプリアンブル信
号を連結させたものを各フレームの先頭に配置するよう
送信信号を構成しても良い。図5は、本発明に係わるOFD
M通信装置において使用する送信信号の他の構成例を示
す図である。この例に示す送信信号は、フレームの先頭
に2つのプリアンブル信号を連続して配置するようにし
ている。このような信号を用いれば、ゲート回路261で
は改めて各プリアンブル信号を連結させる必要がなくな
るので、ゲート回路261における処理が軽くなり、従っ
て、ゲート回路261のハードウェア構成を簡略化するこ
とが可能である。
Further, the transmission signal may be configured such that a concatenation of two or more preamble signals from the beginning is arranged at the beginning of each frame. FIG. 5 shows the OFD according to the present invention.
FIG. 11 is a diagram showing another configuration example of a transmission signal used in the M communication device. In the transmission signal shown in this example, two preamble signals are continuously arranged at the beginning of the frame. If such a signal is used, the gate circuit 261 does not need to connect the preamble signals again, so that the processing in the gate circuit 261 becomes light, and therefore the hardware configuration of the gate circuit 261 can be simplified. is there.

【0036】なお、拡張プリアンブル信号を構成するプ
リアンブル信号の数を増加すると、CNR推定の精度をよ
り向上させることができる。図6は、本発明に係わるOFD
M通信装置においてプリアンブル信号を3つに増やした拡
張プリアンブル信号を用いる利点を説明する図である。
同図(a)は、3つのプリアンブル信号から構成した拡張プ
リアンブル信号を、同図(b)はこの拡張プリアンブル信
号においてガードインターバル信号GIが除去された場合
のFFT出力信号をそれぞれ示している。この場合には、
図3(c)、(d)に示したものよりもプリアンブル信号のビ
ット数が増加するので、上述したFFTの性質から、さら
にスペクトル間隔がΔf/3と狭くなり、観測できる雑音
成分の数が増加する。
If the number of preamble signals forming the extended preamble signal is increased, the accuracy of CNR estimation can be further improved. FIG. 6 shows an OFD according to the present invention.
FIG. 6 is a diagram illustrating an advantage of using an extended preamble signal in which the number of preamble signals is increased to three in the M communication device.
9A shows an extended preamble signal composed of three preamble signals, and FIG. 9B shows an FFT output signal when the guard interval signal GI is removed from the extended preamble signal. In this case,
Since the number of bits of the preamble signal is larger than that shown in FIGS. 3 (c) and (d), the spectrum interval is further narrowed to Δf / 3 due to the nature of the FFT described above, and the number of observable noise components is reduced. To increase.

【0037】ここで、雑音電力が一定であると仮定する
と、各観測雑音N0〜N11のスペクトルレベルは図3(d)の
ものよりも低くなる。従って、各搬送波に重畳される雑
音成分(N0、N3、N6、N9)の各レベルも低くなり、その分
だけ搬送波に対する雑音レベル推定の影響が小さくなる
ので、CNR推定値の精度が向上する。
Here, assuming that the noise power is constant, the spectral levels of the observation noises N0 to N11 are lower than those in FIG. 3 (d). Therefore, each level of the noise components (N0, N3, N6, N9) superimposed on each carrier is also lowered, and the influence of noise level estimation on the carrier is reduced accordingly, so that the accuracy of the CNR estimation value is improved.

【0038】以上のように本発明に係わるOFDM通信装置
は動作するので、各搬送波のCNR特性に応じて最適な変
調方式を選択することができ、以て通信品質の劣化を改
善することができるとともに、通信に利用できない搬送
波を初めから使用しないので無駄な送信電力の消費を防
ぐことができる。
Since the OFDM communication apparatus according to the present invention operates as described above, it is possible to select the optimum modulation method according to the CNR characteristics of each carrier, thereby improving the deterioration of communication quality. At the same time, since the carrier wave that cannot be used for communication is not used from the beginning, useless transmission power consumption can be prevented.

【0039】なお、受信側で知り得たCNR情報により上
述した変調方式制御、搬送波OFF制御を行う際には、こ
れに関する情報を送信相手側装置に通報する必要がある
ので、このためにはフレーム先頭部(ヘッダー部)に上記
プリアンブル信号に加えて所要の情報を配置するように
すればよい。
When performing the above-mentioned modulation method control and carrier wave OFF control based on the CNR information obtained on the receiving side, it is necessary to inform the transmission partner device of information related to this, and therefore the frame In addition to the above-mentioned preamble signal, required information may be arranged at the head portion (header portion).

【0040】[0040]

【発明の効果】本発明は以上説明したように伝送路に係
わるCNR特性を推定して搬送波ごとに最適な変調方式を
選択するようにしたので、通信品質の劣化を改善でき、
また、通信不能となる搬送波を最初から使用しないよう
にしたので、送信電力の無駄を改善できるOFDM通信装置
を実現する上で著効を奏す。
As described above, according to the present invention, the CNR characteristic related to the transmission path is estimated and the optimum modulation method is selected for each carrier, so that the deterioration of communication quality can be improved.
Further, since the carrier wave that cannot be communicated is not used from the beginning, it is very effective in realizing an OFDM communication apparatus that can reduce waste of transmission power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるOFDM装置の実施の形態例を示す
機能ブロック図
FIG. 1 is a functional block diagram showing an embodiment of an OFDM device according to the present invention.

【図2】本発明に係わるOFDM装置において用いるCNR推定
部を示す機能ブロック図
FIG. 2 is a functional block diagram showing a CNR estimation unit used in the OFDM device according to the present invention.

【図3】本発明に係わるOFDM装置において実施するCNR推
定の原理を説明する図
FIG. 3 is a diagram illustrating the principle of CNR estimation performed in the OFDM device according to the present invention.

【図4】本発明に係わるOFDM装置において使用する送信
信号の構成例を示す図
FIG. 4 is a diagram showing a configuration example of a transmission signal used in the OFDM device according to the present invention.

【図5】本発明に係わるOFDM装置において使用する送信
信号の他の構成例を示す図
FIG. 5 is a diagram showing another configuration example of a transmission signal used in the OFDM device according to the present invention.

【図6】本発明に係わるOFDM装置においてプリアンブル
信号を増やした拡張プリアンブル信号を使用する利点を
説明する図
FIG. 6 is a diagram for explaining the advantage of using an extended preamble signal with an increased number of preamble signals in the OFDM device according to the present invention.

【図7】従来のOFDM装置の構成例を示す機能ブロック図FIG. 7 is a functional block diagram showing a configuration example of a conventional OFDM device.

【図8】OFDM信号のスペクトルを説明する図FIG. 8 is a diagram explaining a spectrum of an OFDM signal.

【図9】16キャリアを用いるOFDM信号の多重化波形を示
す模式図
FIG. 9 is a schematic diagram showing a multiplexed waveform of an OFDM signal using 16 carriers.

【符号の説明】[Explanation of symbols]

11・・シンボルマッパ 12・・S/P変換器 13・・高速逆フーリエ変換器 14・・P/S変換器 15・・送信側ガードインターバル回路 21・・受信側ガードインターバル回路 22・・S/P変換器 23・・第1の高速フーリエ変換器 24・・P/S変換器 25・・シンボルデマッパ 26・・CNR推定部 27・・変調方式/キャリア制御部 ..Symbol mapper 12 ... S / P converter ..High-speed inverse Fourier transformer 14 ... P / S converter ..Sending side guard interval circuit 21..Reception side guard interval circuit 22 ... S / P converter 23..First fast Fourier transformer 24 ... P / S converter ..Symbol demapper 26 ... CNR estimation unit 27..Modulation system / carrier control unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 予め決められた固定データから構成され
る複数のプリアンブル信号を有するOFDM信号を受信する
とともに、この受信信号から少なくとも2個以上の前記
プリアンブル信号を取り出し連結させて拡張プリアンブ
ル信号を生成し、これをフーリエ変換手段を用いて周波
数データに変換することにより、前記拡張プリアンブル
信号に係わる搬送波成分とそれ以外の雑音成分とを一括
して算出し、この結果に基づき前記各搬送波成分のCNR
推定を行うことを特徴とするOFDM通信装置。
1. An extended preamble signal is generated by receiving an OFDM signal having a plurality of preamble signals composed of predetermined fixed data and extracting and concatenating at least two preamble signals from the received signals. Then, by converting this into frequency data by using a Fourier transform means, a carrier component related to the extended preamble signal and other noise components are collectively calculated, and based on this result, the CNR of each carrier component is calculated.
An OFDM communication device characterized by performing estimation.
【請求項2】 少なくとも送信系として送信データを各
周波数成分が一部重複しつつ直交する複数の搬送波に分
散し複数の変調方式に基づいて所定の被変調信号を生成
するシンボルマッパと、前記被変調信号を時間領域にお
いて多重化しOFDM信号を出力する逆フーリエ変換手段と
を備えるとともに、受信系として受信OFDM信号から前記
直交する複数の搬送波を生成するフーリエ変換手段と、
所定の復調処理を行うシンボルデマッパとを備えるOFDM
通信装置であって、 前記受信OFDM信号には予め決められた固定データから構
成される複数のプリアンブル信号を有し、当該プリアン
ブル信号を少なくとも2個以上取り出し連結させて拡張
プリアンブル信号を生成し、これをフーリエ変換手段を
用いて周波数データに変換することにより、前記拡張プ
リアンブル信号に係わる搬送波成分とそれ以外の雑音成
分とを一括して算出し、この結果に基づき前記各搬送波
成分のCNR推定を行うことを特徴とするOFDM通信装置。
2. A symbol mapper as at least a transmission system, which disperses transmission data into a plurality of orthogonal carrier waves in which respective frequency components partially overlap with each other and generates a predetermined modulated signal based on a plurality of modulation systems, and the symbol mapper. With an inverse Fourier transform means for multiplexing the modulated signal in the time domain and outputting an OFDM signal, and a Fourier transform means for generating a plurality of orthogonal carrier waves from the received OFDM signal as a receiving system,
OFDM with a symbol demapper that performs a predetermined demodulation process
A communication device, wherein the received OFDM signal has a plurality of preamble signals composed of predetermined fixed data, and at least two or more preamble signals are extracted and concatenated to generate an extended preamble signal. Is converted into frequency data by using a Fourier transform means to collectively calculate a carrier component related to the extended preamble signal and other noise components, and CNR estimation of each carrier component is performed based on this result. An OFDM communication device characterized by the above.
【請求項3】 前記CNR推定により求めたCNR値に基づき
前記搬送波ごとに前記複数の変調方式から送信データの
伝送レートが最適となる変調方式を選択する通信制御を
行うことを特徴とする請求項2記載のOFDM通信装置。
3. The communication control is performed to select a modulation scheme that optimizes a transmission rate of transmission data from the plurality of modulation schemes for each carrier based on a CNR value obtained by the CNR estimation. 2. The OFDM communication device described in 2.
【請求項4】 前記CNR推定により求めたCNR値が所定値
より低い場合に当該搬送波を使用しないよう通信制御を
行うことを特徴とする請求項2または請求項3記載のOFDM
通信装置。
4. The OFDM according to claim 2, wherein when the CNR value obtained by the CNR estimation is lower than a predetermined value, communication control is performed so that the carrier is not used.
Communication device.
【請求項5】 前記複数のプリアンブル信号が所定数連
続しており、これを少なくとも2個以上連続するように
取り出して拡張プリアンブル信号としたことを特徴とす
る請求項1、請求項2、請求項3または請求項4記載のOFDM
通信装置。
5. The extended preamble signal according to claim 1, wherein the plurality of preamble signals are consecutive for a predetermined number, and at least two or more consecutive preamble signals are taken out as an extended preamble signal. 3 or the OFDM according to claim 4
Communication device.
JP2001259542A 2001-08-29 2001-08-29 OFDM communication device Expired - Fee Related JP4138280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259542A JP4138280B2 (en) 2001-08-29 2001-08-29 OFDM communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259542A JP4138280B2 (en) 2001-08-29 2001-08-29 OFDM communication device

Publications (2)

Publication Number Publication Date
JP2003069523A true JP2003069523A (en) 2003-03-07
JP4138280B2 JP4138280B2 (en) 2008-08-27

Family

ID=19086900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259542A Expired - Fee Related JP4138280B2 (en) 2001-08-29 2001-08-29 OFDM communication device

Country Status (1)

Country Link
JP (1) JP4138280B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204307A (en) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd Apparatus and method for estimating interference and noise in communication system
JP2007500489A (en) * 2003-05-14 2007-01-11 クゥアルコム・インコーポレイテッド Interference and noise estimation in OFDM systems
JP2007267517A (en) * 2006-03-29 2007-10-11 Mitsubishi Electric Corp Power distribution supervisory control system
JP2010081014A (en) * 2008-09-24 2010-04-08 Panasonic Electric Works Co Ltd Modulation method, transmitter, ofdm modulation method and ofdm transmitter
US8023950B2 (en) 2003-02-18 2011-09-20 Qualcomm Incorporated Systems and methods for using selectable frame durations in a wireless communication system
US8081598B2 (en) 2003-02-18 2011-12-20 Qualcomm Incorporated Outer-loop power control for wireless communication systems
US8150407B2 (en) 2003-02-18 2012-04-03 Qualcomm Incorporated System and method for scheduling transmissions in a wireless communication system
US8201039B2 (en) 2003-08-05 2012-06-12 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US8526966B2 (en) 2003-02-18 2013-09-03 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8548387B2 (en) 2003-03-06 2013-10-01 Qualcomm Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication system
US8576894B2 (en) 2003-03-06 2013-11-05 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
US8699452B2 (en) 2003-02-18 2014-04-15 Qualcomm Incorporated Congestion control in a wireless data network
US9998379B2 (en) 2003-02-18 2018-06-12 Qualcomm Incorporated Method and apparatus for controlling data rate of a reverse link in a communication system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US9998379B2 (en) 2003-02-18 2018-06-12 Qualcomm Incorporated Method and apparatus for controlling data rate of a reverse link in a communication system
US8977283B2 (en) 2003-02-18 2015-03-10 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8699452B2 (en) 2003-02-18 2014-04-15 Qualcomm Incorporated Congestion control in a wireless data network
US8526966B2 (en) 2003-02-18 2013-09-03 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8023950B2 (en) 2003-02-18 2011-09-20 Qualcomm Incorporated Systems and methods for using selectable frame durations in a wireless communication system
US8081598B2 (en) 2003-02-18 2011-12-20 Qualcomm Incorporated Outer-loop power control for wireless communication systems
US8150407B2 (en) 2003-02-18 2012-04-03 Qualcomm Incorporated System and method for scheduling transmissions in a wireless communication system
US8676128B2 (en) 2003-03-06 2014-03-18 Qualcomm Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication system
US8548387B2 (en) 2003-03-06 2013-10-01 Qualcomm Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication system
US8576894B2 (en) 2003-03-06 2013-11-05 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
US8705588B2 (en) 2003-03-06 2014-04-22 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
US8477592B2 (en) 2003-05-14 2013-07-02 Qualcomm Incorporated Interference and noise estimation in an OFDM system
JP2007500489A (en) * 2003-05-14 2007-01-11 クゥアルコム・インコーポレイテッド Interference and noise estimation in OFDM systems
US8201039B2 (en) 2003-08-05 2012-06-12 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
JP2005204307A (en) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd Apparatus and method for estimating interference and noise in communication system
US7623569B2 (en) 2004-01-14 2009-11-24 Samsung Electronics Co., Ltd. Apparatus and method for estimating interference and noise in a communication system
JP2007267517A (en) * 2006-03-29 2007-10-11 Mitsubishi Electric Corp Power distribution supervisory control system
JP2010081014A (en) * 2008-09-24 2010-04-08 Panasonic Electric Works Co Ltd Modulation method, transmitter, ofdm modulation method and ofdm transmitter

Also Published As

Publication number Publication date
JP4138280B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
US7369531B2 (en) Apparatus and method for transmitting/receiving a pilot signal for distinguishing a base station in a communication system using an OFDM scheme
EP1503534B1 (en) Method and device for selecting subcarriers according to quality of service requirements in a multicarrier communications system
US20050238109A1 (en) Communication apparatus and communication method using digital wavelet multi carrier transmission system
JP2005524278A (en) Apparatus and method for transmitting / receiving additional information of partial transmission sequence in orthogonal frequency division multiplexing communication system
JP2010016913A (en) Transmitter and transmitting method, and device and method for calculating delay times
JP4138280B2 (en) OFDM communication device
JP2005322998A (en) Wireless communication system, wireless transmitter, and wireless receiver
JP4644978B2 (en) OFDM communication system, OFDM communication method, and OFDM communication apparatus
JP2000115116A (en) Orthogonal frequency division multiplex signal generator, orthogonal frequency division multiplex signal generation method and communication equipment
KR20080084709A (en) Radio communication method, radio transmission apparatus and receiving apparatus
KR20040077301A (en) Orthogonal Frequency Division Multiplexor transceiving unit of wireless Local Area Network system providing for long-distance communication by double symbol transmitting in several channels and transceiving method thereof
JP2003101499A (en) Method and device for generating multi-carrier signal and method and device for decoding the same
JPH09266466A (en) Digital transmission system
US7606196B2 (en) Radio communication system, radio communication method, and transmitter apparatus and receiver apparatus suitable for use in the same
JP2002319919A (en) Power line communication apparatus
JP2002344417A (en) Power line communication apparatus
JP5213879B2 (en) Transmitting apparatus and modulation method
Mefenza et al. FPGA implementation of subcarrier index modulation OFDM transceiver
JP2003283441A (en) Signal transmission system, transmission apparatus, and receiver
JP4152370B2 (en) Diversity method and apparatus
KR100431202B1 (en) A Baseband Modem Apparatus Suitable for Bluetooth System by using OFDM Modem
JP2000196560A (en) Digital communication equipment
JP5294327B2 (en) Orthogonal frequency division multiplex communication apparatus and symbol synchronization method in orthogonal frequency division multiplex communication
JP5473568B2 (en) Transmission / reception system, signal transmission device, and signal reception device
JP2002359606A (en) Ofdm device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees