JP2003049172A - Desulfurization of liquid hydrocarbon fuel - Google Patents
Desulfurization of liquid hydrocarbon fuelInfo
- Publication number
- JP2003049172A JP2003049172A JP2001240227A JP2001240227A JP2003049172A JP 2003049172 A JP2003049172 A JP 2003049172A JP 2001240227 A JP2001240227 A JP 2001240227A JP 2001240227 A JP2001240227 A JP 2001240227A JP 2003049172 A JP2003049172 A JP 2003049172A
- Authority
- JP
- Japan
- Prior art keywords
- desulfurization
- desulfurizer
- activated carbon
- fuel
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Fuel Cell (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、灯油等の液体燃料
中に微量含まれる硫黄化合物を除去する脱硫方法、詳し
くは主として燃料電池の燃料に用いる水素を目的成分と
する燃料ガス等、水素リッチなガスを製造する際の原料
である液体燃料を脱硫処理する方法に関する。
【0002】
【従来の技術】現在、我が国における燃料電池の水素源
として実用化されているのは天然ガスのみであり、液体
である灯油を水素源とする技術は確立されていない。灯
油のような液体炭化水素燃料は、水素源としてのエネル
ギー密度が非常に高く、可搬性、貯蔵性に富み、家庭用
定置型燃料電池システムの燃料として適している。とこ
ろが、灯油中にはまだ硫黄分がかなり含まれており(3
0〜100ppm)、多量の硫黄分は燃料電池システム
における水蒸気改質処理が円滑に進まない原因となるた
め、このままで燃料電池用水素を製造するのには不適当
であり、そのために脱硫操作が必要となる。石油産業に
おける通常の脱硫技術は水素化脱硫触媒を用いた高温高
圧の反応で行われるが、(ジ)ベンゾチオフェンを基本
骨格とするような、化学的に安定な芳香族アルキル誘導
体として硫黄が含有されている場合には、これを還元す
ること自体が困難な場合があり、十分な脱硫効果を挙げ
ることができないという欠点があった。通常の水素化脱
硫技術にもかなり高いレベルの技術が多数必要となる
が、これらの技術は10kg/cm2以上の高圧で操業
するものであるため、家庭、小規模事業場(病院、ビル
等)に設置するには経済的にペイしないし、高圧ガス取
扱の免許取得者がいなければならない。したがって、小
規模事業場にでも設置できる燃料電池システムを構築す
るためには、低圧下で脱硫が可能な触媒を新しく開発す
る必要がある。
【0003】従来、石油産業における中軽質油の深度脱
硫、及び灯油など液体燃料を用いた燃料電池における脱
硫では、燃料中の硫黄化合物を水素化分解し硫化水素と
した後に、酸化亜鉛により脱硫を行う方式が用いられて
いる。事例として、特開平6−91173号公報にはY
型ゼオライトのNiイオン交換他にNi−Moを担持さ
せた触媒が燃料電池システムにおける水蒸気改質装置の
前段に使用するための水素化分解脱硫に有効であること
が開示されている。しかし、この技術は、脱硫工程への
水素の供給または電極から排出された水素リッチガスの
リサイクルが必要であるため脱硫設備が複雑になる。更
に、また水素添加分解反応の反応温度400〜450
℃、2〜6kg/cm2程度の高圧で操業するものであ
るため、エネルギーの損失が大きく、設備・運転コスト
も高い。また家庭用燃料電池システムにおける運転、保
守も困難である。
【0004】更に、特開平3−261002号公報に
は、中軽質油の深度脱硫をNiまたはNiOをZnOに
担持させた触媒の存在下に水素と共に接触させて、有機
硫黄化合物を水素添加分解により硫化水素に転換した
後、触媒に吸着させて除去する方法が開示されている。
この場合も、脱硫工程への水素の供給または電極から排
出された水素リッチガスのリサイクルが必要であるため
脱硫設備が複雑になり、また水素添加分解反応及び硫化
水素吸着反応の反応温度がいずれも200〜400℃と
高いのでエネルギーの損失が大きい。
【0005】特に、民生用として病院や事務所等に使用
する出力500KW以下の分散型燃料電池では、電池本
体の設置場所がビルの地下室や建物の近接地等になるの
で、燃料ガス製造設備は可能な限り小型なものが求めら
れており、常温で使用できしかもコンパクトな装置で実
用できる脱硫方法が求められている。
【0006】特開平11−140462号公報には、
有機硫黄化合物含有する液体中に酸化剤を添加し、触媒
を用いて酸化することにより有機硫黄化合物をスルホキ
シド化合物及び/又はスルホン化合物に酸化し、次いで
生成したスルホキシド化合物及びスルホン化合物を吸
着、ろ過等の手段によって分離除去する脱硫方法が開示
されている。この方法は、接触水素化還元法に比べて温
和な条件下で効率よく脱硫することが可能であるが、有
機過酸化物、有機次亜塩素酸化合物及び有機次亜臭素酸
化合物等の酸化剤を、有機硫黄化合物中の硫黄原子の酸
化に必要な化学量論量以上添加する必要があるうえに、
生成したスルホン酸及びスルホンの分離操作を家庭等の
小規模施設で行うのは困難となる。
【0007】特開平11−169601号公報には、還
元処理されかつ安定化処理を施されたニッケル系吸着剤
を用いてチオフェン系硫黄化合物を効率よく吸着除去す
る方法が開示されている。しかし、この方法は温度17
0〜220℃、圧力0.8MPaを必要とするものであ
る。
【0008】
【発明が解決しようとする課題】本発明は、液体炭化水
素燃料に微量含まれる硫黄化合物を常温で除去でき、し
かもコンパクトな装置で実用できる脱硫方法の提供を課
題とするものである。又用途としては、灯油を用いる燃
料電池システムにおける水蒸気改質装置の前段に使用す
るための脱硫装置、或いは中軽質油の水素化脱硫塔の後
段に、残存する微量硫黄分の脱硫手段としても使用可能
である。
【0009】
【課題を解決するための手段】本発明の上記の課題及び
目的は、各種活性炭、NaY型ゼオライトのいずれかを含
む吸着剤を100−500℃で加熱脱水処理したもの、
もしくはCu, K,Znメタ珪酸ナトリウムから選ばれる少な
くとも1種の添加物を活性炭またはNaY型ゼオライトに
担持したものを吸着剤とし、チオフェン、ベンゾチオフ
ェン、ジベンゾチオフェン等の難分解性微量硫黄化合物
を含有する液体炭化水素燃料を温度0℃−80℃、圧力
が1kg/cm2 、液体流速がLHSV 0.1−10
h-1の条件下で、脱硫剤と接触させることを特徴とする
液体炭化水素燃料の脱硫方法によって達成された。
【0010】本発明における有機硫黄化合物含有液体は
特に限定されるものではないが、特に、水素化脱硫反応
後のものであると共に、その中に含有される有機硫黄化
合物が、一般に最も除去することが難しいとされている
ベンゾチオフェン、ジベンゾチオフェン等のチオフェン
類であって、硫黄分の残存量が数千ppm〜数ppm以
下となったナフサ、ガソリン、灯油、軽油、重油、アス
ファルテン、オイルサンド油、石炭液化油、石炭系重質
油等であることが好ましい。
【0011】
【発明の実施の形態】本発明に用いる脱硫剤に使用され
る活性炭は、市販品を使用することができ、例えば、武
田製薬(株)製、FAC-10等が挙げられる。本発明に用い
る脱硫剤に使用されるY型ゼオライトは、市販品を使用
することができ、例えば、水澤化学(株)製Y型ゼオラ
イト等が挙げられる。
【0012】次いで活性炭もしくはY型ゼオライトに、
Cu, K,Znメタ珪酸ナトリウムよりなる群から選ばれる1
種類または2種類以上の添加物を担持して本発明に用い
る脱硫剤を得る。担持の方法としは、当業界で常用する
含浸法或はイオン交換法を用いることができる。担持量
は0.1重量%−10重量%の範囲が好ましい。
【0013】前記吸着剤を空気中で、温度100〜50
0℃において0.5時間以上熱処理することにより、吸
着水を脱離させた脱硫剤を得る。
【0014】上記の如く脱硫剤を使用することにより、
硫黄化合物の吸着除去は室温でも速やかに進行する。ま
た、温度が高いと吸着の平衡が脱離に有利になるので、
本発明では室温50℃以下、特に室温40℃で吸着を行
わせることが好ましい。
【0015】LHSVが0.1h-1より低い場合は吸着
能率が低く、またLHSVが10h -1より高い場合は脱
硫剤と硫黄化合物の接触が不充分となり、実用的ではな
い。
【0016】本発明における硫黄化合物の例として、チ
オフェン、ベンゾチオフェン、ジベンゾチオフェン類、
t−ブチルメルカプタン等のチオール類或いはジメチル
スルフィド等のチオエーテル類、硫化カルボニル(CO
S)等が挙げられる。
【0017】
【実施例】本発明を更に詳しく説明するために実施例を
示すが、本発明はこれに限定されるものではない。
【0018】実施例1
100ミリリットルのナス型フラスコに、前処理を施し
た各種吸着剤0.1gを入れた後、硫黄重量にして40
ppmのジベンゾチオフェン、1800ppmの1-メ
チルナフタレンを含有するn-ヘプタン20ミリリットル
を加え、室温で攪拌し、残存するチオフェン濃度を高速
液体クロマトグラフィーにより分析した。活性炭を用い
ることにより、ほぼ1時間でチオフェンの吸着除去率が
99%で飽和に達した。
【0019】実施例2
直径6mm、長さ100mmの円筒状脱硫器に、400
℃、30分空気中で加熱処理した粉末状の脱硫剤0.42ml
を充填した(充填密度0.5g/l)。この脱硫器に、
硫黄分で400ppm(8.53mmol/l)の4,6-ジメチルジベ
ンゾチオフェン、等モル濃度(8.53mmol/l)の1-メチル
ナフタレンを含有するn-ヘプタンを流通して接触させ、
吸着層出口の液体の組成を高速液体クロマトグラフィー
によりに分析した。図1に活性炭1を脱硫剤とした場合
の破過曲線を例示する。流通開始後6時間で1-MNが先に
破過し、その後1-MN濃度は原料濃度を大きく上回った。
一方、4,6-DMDBTについては、流通開始直後から16時
間まで流出油中の硫黄分は50ppb以下であり、17時間
目に流出油中の硫黄分が1.0ppmを超えた。16時
間目までの脱硫剤の吸着能力は18wt%−S/ g−吸
着剤であった。種々の脱硫剤で同様の試験を行い、硫黄
濃度が1ppmとなった時点を破過点とした場合の、破
過点までの4,6-ジメチルジベンゾチオフェン(4,6-DMDB
T)、1-メチルナフタレン(1-MN)の吸着量を表1に示し
た。
【表1】【0020】実施例3
実施例2同様の試験を、活性炭1を用いて、硫黄分で40
ppmの4,6-ジメチルジベンゾチオフェン(0.85mmol/l)、
モル濃度100倍(85.3mmol/l)の1-メチルナフタレンをを
含有するn-ヘプタンを流通して接触させた。4,6-DMDBT
濃度は破過時間(約22時間)まで50ppb程度の低いレベ
ルを保った。22時間目までの脱硫剤の吸着能力は2.5w
t%−S/ g−吸着剤であった。
【0021】実施例4
実施例2同様の試験を、活性炭1を用いて、硫黄分で4
0ppmの4,6-ジメチルジベンゾチオフェン(0.85mmol/
l)、モル濃度1000倍(853mmol/l)の1-メチルナフタレン
をを含有するn-ヘプタンを流通して接触させた。4,6-DM
DBT濃度は破過時間(約4時間)まで100ppb程度の低いレ
ベルを保った。4時間目までの脱硫剤の吸着能力は0.5w
t%−S/ g−吸着剤であった。
【0022】実施例5
実施例2同様の試験を、活性炭1を用いて、流黄分で4
0ppmの4,6-ジメチルジベンゾチオフェン(0.85mmol/
l)、モル濃度1000倍(853mmol/l)の1-メチルナフタレン
をを含有するn-ドデカンを流通して接触させた。4,6-DM
DBT濃度は破過時間(約1時間)まで100ppb程度の低い
レベルを保った。1時間目までの脱硫剤の吸着能力は0.
13wt%−S/ g−吸着剤であった。
【0023】
【発明の効果】本発明の脱硫方法は、常温常圧において
脱硫処理を行うので、省エネルギー型プロセスを提供で
きる。本発明の脱硫方法は、充填した固体吸着体に有機
硫黄化合物含有液体を温和な条件で通過させるだけで良
いので、灯油等の液体燃料を用いた家庭用燃料電池シス
テムにおける脱硫プロセスとして使用可能である。ま
た、石油産業における水素化脱硫塔の後工程としても前
工程に特別の変更を付加する必要がないので、工業的価
値が極めて大きい。
【0024】本発明の脱硫方法は、従来技術の水素添加
分解とは原理が異なるので、水素の供給を要しない。従
って、燃料電池の燃料ガス製造の場合、水素含有ガスを
燃料ガス製造工程の途中または燃料電池の電極排気口か
ら脱硫工程へリサイクルする配管、ガス圧縮機、熱交換
器等の付帯機器が不要となり、装置が従来法に比べ格段
にコンパクトになる。DETAILED DESCRIPTION OF THE INVENTION
[0001]
TECHNICAL FIELD The present invention relates to a liquid fuel such as kerosene.
Desulfurization method to remove sulfur compounds contained in trace amounts, details
In other words, hydrogen used mainly as fuel for fuel cells
Raw material for producing hydrogen-rich gas such as fuel gas
And a method for desulfurizing a liquid fuel.
[0002]
2. Description of the Related Art At present, hydrogen sources for fuel cells in Japan
Only natural gas is practically used as
The technology for using kerosene as a hydrogen source has not been established. light
Liquid hydrocarbon fuels, such as oil, use energy as a source of hydrogen.
Extremely high energy density, portable, storable, household
Suitable as fuel for stationary fuel cell systems. Toko
However, kerosene still contains a considerable amount of sulfur (3
0-100ppm), a large amount of sulfur is fuel cell system
Causes steam reforming to not proceed smoothly
Unsuitable for producing hydrogen for fuel cells
Therefore, a desulfurization operation is required. In the oil industry
Conventional desulfurization technology in high temperature high temperature using hydrodesulfurization catalyst
Pressure reaction, but based on (di) benzothiophene
Chemically stable aromatic alkyl derivatives such as skeleton
If the body contains sulfur, reduce it
In some cases, it is difficult to achieve a sufficient desulfurization effect.
There was a disadvantage that it could not be done. Normal hydrodehydration
Sulfur technology also requires a number of fairly high-level technologies
However, these technologies operate at a high pressure of 10 kg / cm2 or more.
Households, small businesses (hospitals, buildings, etc.)
Do not pay economically to install
There must be a license holder. Therefore, small
Build a fuel cell system that can be installed in large-scale business establishments
To develop a new catalyst capable of desulfurization under low pressure
Need to be
[0003] Conventionally, in the petroleum industry, medium and light oils
Fuel cells using liquid fuels such as sulfuric acid and kerosene
In sulfuric acid, sulfur compounds in fuel are hydrocracked to form hydrogen sulfide.
After that, the method of desulfurization with zinc oxide is used
I have. As an example, JP-A-6-91173 discloses Y
Ni-Mo supported in addition to Ni ion exchange of zeolite
Catalyst is used for the steam reformer in the fuel cell system.
Effective for hydrocracking desulfurization for use in the first stage
Is disclosed. However, this technology is not suitable for the desulfurization process.
Supply of hydrogen or hydrogen-rich gas discharged from electrodes
The need for recycling complicates the desulfurization equipment. Change
At a reaction temperature of 400 to 450 for the hydrogenolysis reaction.
Operating at a high pressure of about 2-6 kg / cm2
Energy loss and equipment and operating costs
Is also expensive. Operation and maintenance of home fuel cell systems
Defense is also difficult.
Further, Japanese Patent Application Laid-Open No. 3-261002 discloses
Replaces deep desulfurization of medium and light oil with Ni or NiO with ZnO
Contact with hydrogen in the presence of a supported catalyst to
Sulfur compounds converted to hydrogen sulfide by hydrogenolysis
Then, a method of removing the catalyst by adsorption to a catalyst is disclosed.
Also in this case, supply of hydrogen to the desulfurization process or discharge from the electrode
It is necessary to recycle the released hydrogen-rich gas
The desulfurization equipment becomes complicated, and the hydrogenolysis reaction and sulfuration
The reaction temperature of the hydrogen adsorption reaction is 200 to 400 ° C.
High energy loss is high.
[0005] In particular, used in hospitals and offices for consumer use
In a distributed fuel cell with an output of 500 kW or less,
The place of installation of the body is in the basement of the building, near the building, etc.
Fuel gas production facilities must be as small as possible
It can be used at room temperature and is compact
There is a need for a desulfurization method that can be used.
[0006] JP-A-11-140462 discloses that
An oxidizing agent is added to the liquid containing the organic sulfur compound, and the catalyst is added.
Oxidation using an organic compound
Oxidize to a side compound and / or a sulfone compound, and then
Absorbs the generated sulfoxide and sulfone compounds.
A desulfurization method that separates and removes by means such as deposition and filtration is disclosed.
Have been. This method is warmer than the catalytic hydrogenation reduction method.
Although desulfurization can be performed efficiently under mild conditions,
Peroxide, organic hypochlorite compound and organic hypobromite
An oxidizing agent such as a compound is converted to an acid of a sulfur atom in an organic sulfur compound.
It is necessary to add more than the stoichiometric amount necessary for
Separation operation of generated sulfonic acid and sulfone
It is difficult to do in small facilities.
[0007] Japanese Patent Application Laid-Open No. 11-169601 discloses a
-Treated and stabilized nickel-based adsorbent
Efficient adsorption and removal of thiophene-based sulfur compounds
A method is disclosed. However, this method has a temperature of 17
0-220 ° C, pressure 0.8MPa
You.
[0008]
SUMMARY OF THE INVENTION The present invention relates to a liquid hydrocarbon
Sulfur compounds in trace amounts in raw fuel can be removed at room temperature.
Provision of a desulfurization method that can be used with compact equipment
It is a subject. For applications, use kerosene
Used before the steam reformer in the fuel cell system
After the desulfurization unit or the hydrodesulfurization tower for medium and light oil
Can also be used as a desulfurization means for residual trace sulfur in stages
It is.
[0009]
SUMMARY OF THE INVENTION The above objects of the present invention and
The purpose is to include either activated carbon or NaY-type zeolite.
Heat-dehydrated adsorbent at 100-500 ° C,
Or a small amount selected from Cu, K, Zn sodium metasilicate
At least one additive to activated carbon or NaY type zeolite
Thiophene, benzothiophene
Hardly decomposable trace sulfur compounds such as diene and dibenzothiophene
A liquid hydrocarbon fuel containing a temperature of 0 ° C. to 80 ° C. and pressure
Is 1kg / cmTwo, Liquid flow rate is LHSV 0.1-10
h-1Characterized by contacting with a desulfurizing agent under the following conditions:
Achieved by the desulfurization method of liquid hydrocarbon fuel.
The liquid containing an organic sulfur compound in the present invention is
Although not particularly limited, in particular, hydrodesulfurization reaction
The later, and the organic sulfuration contained therein
Compounds are generally considered the most difficult to remove
Thiophenes such as benzothiophene and dibenzothiophene
And the residual amount of sulfur is from several thousand ppm to several ppm or less.
Naphtha, gasoline, kerosene, light oil, heavy oil,
Falten, oil sand oil, coal liquefied oil, coal-based heavy
It is preferably oil or the like.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Commercially available activated carbon can be used.
And FAC-10 manufactured by Tadashi Pharmaceutical Co., Ltd. Used in the present invention
Y-type zeolite used in desulfurizing agents
For example, Y-type Zeola manufactured by Mizusawa Chemical Co., Ltd.
And the like.
Next, activated carbon or Y-type zeolite
1 selected from the group consisting of Cu, K, Zn sodium metasilicate
Carrying one or more kinds of additives for use in the present invention
To obtain a desulfurizing agent. The method of loading is commonly used in the industry.
An impregnation method or an ion exchange method can be used. Carry amount
Is preferably in the range of 0.1% by weight to 10% by weight.
The adsorbent is heated in air at a temperature of 100 to 50.
Heat treatment at 0 ° C for 0.5 hours or more
A desulfurizing agent from which water is removed is obtained.
By using a desulfurizing agent as described above,
The removal of sulfur compounds by adsorption proceeds quickly even at room temperature. Ma
Also, if the temperature is high, the equilibrium of adsorption is advantageous for desorption,
In the present invention, adsorption is performed at room temperature of 50 ° C. or less, particularly at room temperature of 40 ° C.
Preferably.
LHSV is 0.1h-1Adsorb if lower
Low efficiency, LHSV is 10h -1If higher
Insufficient contact between the sulfuric acid and the sulfur compound makes it impractical.
No.
As an example of the sulfur compound in the present invention,
Ofen, benzothiophene, dibenzothiophenes,
Thiols such as t-butyl mercaptan or dimethyl
Thioethers such as sulfide, carbonyl sulfide (CO
S) and the like.
[0017]
The following examples are provided to further illustrate the present invention.
Although shown, the invention is not so limited.
Embodiment 1
Pre-treat 100ml eggplant type flask
After adding 0.1 g of various adsorbents, 40 wt.
ppm dibenzothiophene, 1800 ppm 1-me
20 ml of n-heptane containing tilnaphthalene
And stir at room temperature to increase the residual thiophene concentration at high speed.
Analyzed by liquid chromatography. Using activated carbon
The thiophene adsorption and removal rate can be
Saturation was reached at 99%.
Embodiment 2
400mm in a cylindrical desulfurizer of 6mm in diameter and 100mm in length
0.42 ml of powdery desulfurizing agent heat-treated in air at ℃ for 30 minutes
(Filling density 0.5 g / l). In this desulfurizer,
400 ppm (8.53 mmol / l) of 4,6-dimethyl dibe
Nzothiophene, equimolar (8.53 mmol / l) 1-methyl
Flowing and contacting n-heptane containing naphthalene,
High-performance liquid chromatography of the liquid composition at the outlet of the adsorption layer
Was analyzed by Fig. 1 when activated carbon 1 is used as desulfurizing agent
FIG. 6 hours after distribution starts, 1-MN first
After that, the 1-MN concentration greatly exceeded the raw material concentration.
On the other hand, for 4,6-DMDBT,
The sulfur content in the spilled oil is less than 50 ppb until 17 hours
The eyes had a sulfur content in the spilled oil exceeding 1.0 ppm. 16:00
The adsorbing capacity of the desulfurizing agent up to about 18 wt% -S / g-
It was an adhesive. Similar tests were conducted with various desulfurizing agents, and sulfur
When the point when the concentration reaches 1 ppm is taken as the breakthrough point,
4,6-dimethyldibenzothiophene (4,6-DMDB
Table 1 shows the adsorption amount of T) and 1-methylnaphthalene (1-MN).
Was.
[Table 1]Embodiment 3
The same test as in Example 2 was carried out using activated carbon 1 and a sulfur content of 40%.
ppm 4,6-dimethyldibenzothiophene (0.85 mmol / l),
100-fold molar concentration (85.3 mmol / l) of 1-methylnaphthalene
The n-heptane contained was contacted by flowing. 4,6-DMDBT
The concentration should be as low as about 50 ppb until the breakthrough time (about 22 hours).
Kept. Up to 22 hours desulfurizing agent adsorption capacity is 2.5W
t% -S / g-adsorbent.
Embodiment 4
The same test as in Example 2 was carried out using activated carbon 1 with sulfur content of 4%.
0 ppm of 4,6-dimethyldibenzothiophene (0.85 mmol /
l), molar concentration 1000 times (853mmol / l) 1-methylnaphthalene
Was contacted by flowing n-heptane containing 4,6-DM
DBT concentration is as low as about 100 ppb until breakthrough time (about 4 hours).
Kept the bell. 0.5W desulfurizing agent adsorption capacity up to 4 hours
t% -S / g-adsorbent.
Embodiment 5
The same test as in Example 2 was carried out using activated carbon 1 with flowing yellow content of 4%.
0 ppm of 4,6-dimethyldibenzothiophene (0.85 mmol /
l), molar concentration 1000 times (853mmol / l) 1-methylnaphthalene
Was contacted by flowing n-dodecane containing 4,6-DM
DBT concentration is as low as about 100ppb until breakthrough time (about 1 hour)
I kept the level. The adsorbing capacity of the desulfurizing agent is 0.
It was 13 wt% -S / g-adsorbent.
[0023]
The desulfurization method of the present invention can be used at normal temperature and normal pressure.
Desulfurization treatment provides an energy-saving process
Wear. The desulfurization method of the present invention uses an organic
Only passing sulfur compound-containing liquid under mild conditions
Therefore, household fuel cell systems using liquid fuel such as kerosene
It can be used as a desulfurization process in a system. Ma
Also, as a post-process for hydrodesulfurization tower in the petroleum industry
No need to add any special changes to the process
The value is extremely large.
The desulfurization method of the present invention uses the prior art hydrogenation
Since the principle is different from that of decomposition, no hydrogen supply is required. Obedience
Therefore, when producing fuel gas for fuel cells, hydrogen-containing gas
During the fuel gas production process or at the fuel cell electrode exhaust port
Piping, gas compressor, heat exchange
Eliminates the need for ancillary equipment such as vessels
It becomes compact.
【図面の簡単な説明】 【図1】活性炭1を脱硫剤とした場合の特性図。 【符号の説明】[Brief description of the drawings] FIG. 1 is a characteristic diagram when activated carbon 1 is used as a desulfurizing agent. [Explanation of symbols]
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10G 25/00 C10G 25/00 29/04 29/04 29/06 29/06 C10L 1/00 C10L 1/00 H01M 8/06 H01M 8/06 G (72)発明者 北山 淑江 新潟県新潟市五十嵐二の町8050 新潟大学 内 (72)発明者 籏町 剛 新潟県新潟市五十嵐二の町8050 新潟大学 内 Fターム(参考) 4D017 AA04 BA04 CA01 CA03 CA06 DA03 EA01 EB02 4G040 EA03 EA06 EB01 4G066 AA05B AA05C AA13D AA15D AA18D AA30D AA61B AA61C BA22 CA25 DA09 FA21 FA34 4H013 AA03 5H027 AA02 BA01 BA16 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C10G 25/00 C10G 25/00 29/04 29/04 29/06 29/06 C10L 1/00 C10L 1/00 H01M 8 / 06 H01M 8/06 G (72) Inventor Yoshie Kitayama 8050 Igarashi Ninomachi, Niigata City, Niigata Prefecture Inside (72) Inventor Go Hatamachi 8050 Igarashi Ninomachi, Niigata City, Niigata Prefecture F50 term in Niigata University 4D017 AA04 BA04 CA01 CA03 CA06 DA03 EA01 EB02 4G040 EA03 EA06 EB01 4G066 AA05B AA05C AA13D AA15D AA18D AA30D AA61B AA61C BA22 CA25 DA09 FA21 FA34 4H013 AA03 5H027 AA02 BA01 BA16
Claims (1)
む吸着剤を100〜500℃で加熱脱水処理したもの、
もしくはCu, K,Znメタ珪酸ナトリウムから選ばれる少な
くとも1種の添加物を活性炭またはNaY型ゼオライトに
担持したものを脱硫剤とし、常温、常圧、LHSV0.
1〜10h-1の条件下で液体燃料を接触させる脱硫方
法。Claims 1. An adsorbent containing either activated carbon or NaY-type zeolite that has been heated and dehydrated at 100 to 500 ° C.
Alternatively, at least one additive selected from Cu, K, Zn sodium metasilicate is supported on activated carbon or NaY-type zeolite as a desulfurizing agent, and at room temperature, normal pressure, LHSV 0.
A desulfurization method in which a liquid fuel is brought into contact under the conditions of 1 to 10 h -1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001240227A JP2003049172A (en) | 2001-08-08 | 2001-08-08 | Desulfurization of liquid hydrocarbon fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001240227A JP2003049172A (en) | 2001-08-08 | 2001-08-08 | Desulfurization of liquid hydrocarbon fuel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003049172A true JP2003049172A (en) | 2003-02-21 |
Family
ID=19070877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001240227A Pending JP2003049172A (en) | 2001-08-08 | 2001-08-08 | Desulfurization of liquid hydrocarbon fuel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003049172A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003097771A1 (en) * | 2002-05-22 | 2003-11-27 | Japan Energy Corporation | Adsorption desulfurization agent for desulfurizing petroleum fraction and desulfurization method using the same |
JP2004319401A (en) * | 2003-04-18 | 2004-11-11 | Nippon Oil Corp | Fuel for fuel cell system, its manufacturing method, and fuel cell system |
JP2004319400A (en) * | 2003-04-18 | 2004-11-11 | Nippon Oil Corp | Fuel for fuel cell system and fuel cell system |
JP2005002317A (en) * | 2003-03-20 | 2005-01-06 | Japan Energy Corp | Desulfurization method of liquid hydrocarbon containing organic sulfur compound |
WO2005073348A1 (en) * | 2004-02-02 | 2005-08-11 | Japan Energy Corporation | Method of desulfurizing hydrocarbon oil |
JP2006117921A (en) * | 2004-09-22 | 2006-05-11 | Idemitsu Kosan Co Ltd | Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system |
JP2006173045A (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co Ltd | Liquid fuel for fuel cell, and desulfurizating method |
EP1660215A4 (en) * | 2003-07-28 | 2007-10-24 | Fuelcell Energy Inc | High-capacity sulfur adsorbent bed and gas desulfurization method |
JP2008255254A (en) * | 2007-04-06 | 2008-10-23 | Japan Energy Corp | Method of manufacturing ultralow-sulfur light oil base material |
WO2009031613A1 (en) | 2007-09-07 | 2009-03-12 | Japan Energy Corporation | Solid acid, process for producing the solid acid, method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent |
WO2010135434A2 (en) * | 2009-05-20 | 2010-11-25 | Chevron U.S.A. Inc. | Deep desulfurization process |
JP2011178625A (en) * | 2010-03-02 | 2011-09-15 | Jx Nippon Oil & Energy Corp | Metal-supporting fibrous activated carbon and method for producing the same, and desulfurizing unit using the same and method for desulfurizing hydrocarbon oil |
JP2011192650A (en) * | 2011-03-28 | 2011-09-29 | Eneos Celltech Co Ltd | Transporting device of spent desulfurizer, and maintenance method of fuel cell power generation system |
JP5048495B2 (en) * | 2005-08-01 | 2012-10-17 | Jx日鉱日石エネルギー株式会社 | Hydrocarbon oil desulfurization method |
CN113750956A (en) * | 2021-09-24 | 2021-12-07 | 深圳大学 | Preparation method and application of core-shell structure composite molecular sieve shape-selective desulfurization adsorbent |
-
2001
- 2001-08-08 JP JP2001240227A patent/JP2003049172A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003097771A1 (en) * | 2002-05-22 | 2003-11-27 | Japan Energy Corporation | Adsorption desulfurization agent for desulfurizing petroleum fraction and desulfurization method using the same |
JP2005002317A (en) * | 2003-03-20 | 2005-01-06 | Japan Energy Corp | Desulfurization method of liquid hydrocarbon containing organic sulfur compound |
JP2004319401A (en) * | 2003-04-18 | 2004-11-11 | Nippon Oil Corp | Fuel for fuel cell system, its manufacturing method, and fuel cell system |
JP2004319400A (en) * | 2003-04-18 | 2004-11-11 | Nippon Oil Corp | Fuel for fuel cell system and fuel cell system |
JP4684539B2 (en) * | 2003-04-18 | 2011-05-18 | Jx日鉱日石エネルギー株式会社 | Fuel for fuel cell system, method for producing the same, and fuel cell system |
JP4537666B2 (en) * | 2003-04-18 | 2010-09-01 | 新日本石油株式会社 | Fuel for fuel cell system and fuel cell system |
EP1660215A4 (en) * | 2003-07-28 | 2007-10-24 | Fuelcell Energy Inc | High-capacity sulfur adsorbent bed and gas desulfurization method |
WO2005073348A1 (en) * | 2004-02-02 | 2005-08-11 | Japan Energy Corporation | Method of desulfurizing hydrocarbon oil |
US8021540B2 (en) | 2004-02-02 | 2011-09-20 | Japan Energy Corporation | Method of desulfurizing hydrocarbon oil |
JP2006117921A (en) * | 2004-09-22 | 2006-05-11 | Idemitsu Kosan Co Ltd | Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system |
JP2006173045A (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co Ltd | Liquid fuel for fuel cell, and desulfurizating method |
WO2006068069A1 (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co., Ltd. | Liquid fuel for fuel cell and method of desulfurization |
JP5048495B2 (en) * | 2005-08-01 | 2012-10-17 | Jx日鉱日石エネルギー株式会社 | Hydrocarbon oil desulfurization method |
JP2008255254A (en) * | 2007-04-06 | 2008-10-23 | Japan Energy Corp | Method of manufacturing ultralow-sulfur light oil base material |
WO2009031613A1 (en) | 2007-09-07 | 2009-03-12 | Japan Energy Corporation | Solid acid, process for producing the solid acid, method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent |
WO2010135434A3 (en) * | 2009-05-20 | 2011-03-03 | Chevron U.S.A. Inc. | Deep desulfurization process |
WO2010135434A2 (en) * | 2009-05-20 | 2010-11-25 | Chevron U.S.A. Inc. | Deep desulfurization process |
JP2011178625A (en) * | 2010-03-02 | 2011-09-15 | Jx Nippon Oil & Energy Corp | Metal-supporting fibrous activated carbon and method for producing the same, and desulfurizing unit using the same and method for desulfurizing hydrocarbon oil |
JP2011192650A (en) * | 2011-03-28 | 2011-09-29 | Eneos Celltech Co Ltd | Transporting device of spent desulfurizer, and maintenance method of fuel cell power generation system |
CN113750956A (en) * | 2021-09-24 | 2021-12-07 | 深圳大学 | Preparation method and application of core-shell structure composite molecular sieve shape-selective desulfurization adsorbent |
CN113750956B (en) * | 2021-09-24 | 2023-12-01 | 深圳大学 | Preparation method and application of core-shell structured composite molecular sieve shape-selective desulfurization adsorbent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Saha et al. | Review on recent advances in adsorptive desulfurization | |
Babich et al. | Science and technology of novel processes for deep desulfurization of oil refinery streams: a review☆ | |
KR100643625B1 (en) | Method for desulphurisation of natural gas | |
Al Mamun et al. | Enhancement of methane concentration by removing contaminants from biogas mixtures using combined method of absorption and adsorption | |
JP2003049172A (en) | Desulfurization of liquid hydrocarbon fuel | |
Shen et al. | Selective adsorption for removing sulfur: a potential ultra-deep desulfurization approach of jet fuels | |
CN101253256B (en) | Method for desulfurization of hydrocarbon oil | |
CN101347708B (en) | Method for processing sulphur-containing exhaust air with fetor escaped from storage tank | |
KR101725459B1 (en) | Biochar for removing organosulphur compound from seaweed and preparing method thereof | |
CA2523006A1 (en) | Method for purifying a liquid medium | |
JP4722429B2 (en) | Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite | |
JP5032992B2 (en) | Hydrocarbon oil desulfurization agent and desulfurization method | |
JP2007311143A (en) | Liquid raw fuel for fuel cell cogeneration systems, and fuel cell cogeneration system | |
Dimitrova | CHEMICAL TREATMENTS APPROACH TOWARDS REDUCING EXISTING SULPHUR COMPOUNDS IN DIFFERENT OIL CUTS. | |
CN105688645B (en) | A kind of superelevation Sulfur capacity desulfurizing agent and preparation method and application | |
JP2013094732A (en) | Method for producing desulfurizing agent, desulfurizing agent and method for desulfurizing hydrocarbon | |
JP2001279257A (en) | Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery | |
JP7455296B2 (en) | Removal agent for refractory sulfur compounds mainly composed of acid clay, manufacturing method for the removal agent, and removal method | |
JP2006312663A (en) | Method for desulfurizing hydrocarbon oil | |
JP5911551B2 (en) | Method for producing desulfurizing agent and method for desulfurizing hydrocarbon | |
Ho et al. | Adsorptive Desulfurization of Diesel for Fuel Cell Applications: A Screening Test | |
CA2453155A1 (en) | Propane desulphurization | |
JP2001278602A (en) | Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell | |
Song et al. | Desulfurization technologies | |
JP2013199533A (en) | Method for producing desulfurized gaseous fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090421 |