Nothing Special   »   [go: up one dir, main page]

JP2002332528A - Method for recycling high purity ruthenium, and method for producing target from recycled high purity ruthenium - Google Patents

Method for recycling high purity ruthenium, and method for producing target from recycled high purity ruthenium

Info

Publication number
JP2002332528A
JP2002332528A JP2001138335A JP2001138335A JP2002332528A JP 2002332528 A JP2002332528 A JP 2002332528A JP 2001138335 A JP2001138335 A JP 2001138335A JP 2001138335 A JP2001138335 A JP 2001138335A JP 2002332528 A JP2002332528 A JP 2002332528A
Authority
JP
Japan
Prior art keywords
ruthenium
purity
purity ruthenium
target
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001138335A
Other languages
Japanese (ja)
Other versions
JP3792535B2 (en
Inventor
Yuichiro Shindo
裕一朗 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2001138335A priority Critical patent/JP3792535B2/en
Publication of JP2002332528A publication Critical patent/JP2002332528A/en
Application granted granted Critical
Publication of JP3792535B2 publication Critical patent/JP3792535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily recycling high purity ruthenium from the scrap of ruthenium cut chips, mills ends or the like, and to inexpensively produce a sputtering target which has excellent properties from the high purity ruthenium obtained in this method. SOLUTION: Ruthenium scrap containing >=80 wt.% ruthenium is subjected to alkali or acid treatment to remove impurities stuck to the surface, and after that, its purity is made high by EB(electron beam) dissolution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ルテニウム切削
屑又は端材等のスクラップから高純度ルテニウムをリサ
イクルする方法及びリサイクルされた高純度ルテニウム
からターゲットを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recycling high-purity ruthenium from scrap such as ruthenium chips or scraps and a method for producing a target from recycled high-purity ruthenium.

【0002】[0002]

【従来の技術】近年、高純度のルテニウムは、強誘電体
電極等のエレクトロニクス材料又は触媒やその他の加工
用原料として使用されているが、一般にルテニウム薄膜
を形成する場合にはスパッタリング法を用いることが多
い。スパッタリング法自体は、エレクトロニクス分野に
おいてよく知られた方法であるが、このスパッタリング
に適合する均一でかつ安定した特性を持つ高純度ルテニ
ウムターゲットが要求されている。例えば、最近のエレ
クトロニクス分野で使用される材料は、ノイズ発生を防
止し、特性を向上させる目的から、高純度化が要求され
ており、高純度ルテニウムスパッタリングターゲットと
しても純度5Nレベルが必要とされている。一方、この
ような高純度ルテニウムターゲットの製作工程におい
て、平研研削で発生する切削屑や端材が、かなりの量で
発生する。ターゲットの製造においてはこのようなスク
ラップを再利用できることが望ましいのであるが、上記
切削等の加工工程において汚染され不純物が多量に混入
する。特に酸素の混入や切削バイトからの汚染が著し
い。この不純物量は加工条件によってかなり変動する
が、その量は表1に示す通りである。
2. Description of the Related Art In recent years, high-purity ruthenium has been used as an electronic material such as a ferroelectric electrode, a catalyst, or other raw material for processing. In general, when a ruthenium thin film is formed, a sputtering method is used. There are many. Although the sputtering method itself is a well-known method in the field of electronics, a high-purity ruthenium target having uniform and stable characteristics suitable for the sputtering is required. For example, materials used in recent electronics are required to have high purity for the purpose of preventing noise generation and improving characteristics, and a high purity ruthenium sputtering target is required to have a purity level of 5N. I have. On the other hand, in the process of manufacturing such a high-purity ruthenium target, a considerable amount of cuttings and scraps generated by flat grinding are generated. In the production of the target, it is desirable that such scraps can be reused. However, in the processing steps such as the above-mentioned cutting, the scraps are contaminated and a large amount of impurities are mixed. Particularly, contamination of oxygen and contamination from the cutting tool are remarkable. Although the amount of this impurity varies considerably depending on the processing conditions, the amount is as shown in Table 1.

【0003】[0003]

【表1】 [Table 1]

【0004】一般に、ルテニウム材料は貴金属にしては
安価であるが、ルテニウム自体が難溶解性の金属なため
に、上記のようなスクラップを再利用しようとした場
合、リサイクルが非常に難しくコスト高になるという欠
点を有している。しかし、市販されている3N(99.
9%)レベルの比較的低純度のルテニウム粉末から、最
近のエレクトロニクス分野で使用される材料に適合する
純度5Nレベルの高純度ルテニウムスパッタリングター
ゲットするには、さらに工程の複雑さとコスト増があ
り、上記のスクラップのリサイクルの要求は高いが、現
在のところ有効な手段がない。このようなことから、不
純物が混入するルテニウムスクラップをアーク溶解等に
より不純物を揮発させて純度を高めた金属ルテニウムの
溶解鋳造品(インゴット)を作製し、これから高純度ル
テニウムスパッタリングターゲットを製造しようとする
ことが考えられる。しかし、この方法では純度は必ずし
も向上せず、また金属ルテニウムの溶解鋳造品(インゴ
ット)は、硬くかつ脆いため通常の圧延や鍛造等の加工
が極めて難しいという問題があった。
In general, ruthenium materials are inexpensive for noble metals, but since ruthenium itself is a hardly soluble metal, it is very difficult to recycle such scraps when recycling such scraps. Disadvantage. However, commercially available 3N (99.
From a relatively low-purity ruthenium powder at a level of 9%) to a high-purity ruthenium sputtering target at a purity level of 5N, which is compatible with materials used in modern electronics, there is an additional process complexity and cost. The demand for scrap recycling is high, but there is no effective means at present. For this reason, a ruthenium scrap containing impurities is volatilized by arc melting or the like to evaporate the impurities to produce a metal ruthenium molten casting (ingot) whose purity has been increased, and a high-purity ruthenium sputtering target is to be manufactured therefrom. It is possible. However, there is a problem that the purity is not necessarily improved by this method, and that a molten cast product of metal ruthenium (an ingot) is hard and brittle, so that ordinary rolling, forging, and other processes are extremely difficult.

【0005】一般に、このような難加工性材料を加工す
る方法として金属容器に包んで(キャニング法)圧延す
るという方法がある。しかし、この方法を使用して金属
ルテニウムのインゴットを、例えば圧延する場合には、
金属ルテニウムインゴットを他の金属薄板や箔等で包む
工程もさることながら、圧延後それを除去する作業を必
要とするなど、工程が極めて煩雑となり、またこれによ
って歩留りも低下し、著しくコスト高となる欠点があっ
た。したがって、従来鍛造や圧延でルテニウムターゲッ
トを試験的に製作することがあっても、実製造上では使
用に耐えないものであった。
In general, as a method of processing such a difficult-to-process material, there is a method of rolling in a metal container (canning method). However, when rolling ingots of metallic ruthenium using this method, for example, when rolling,
In addition to the process of wrapping the metal ruthenium ingot with other metal sheets or foils, the process of removing it after rolling is extremely complicated, and the process becomes extremely complicated, and this also lowers the yield and significantly increases the cost. There were disadvantages. Therefore, even if a ruthenium target is conventionally produced on a trial basis by forging or rolling, it cannot be used in actual production.

【0006】このようなことから、従来高純度ルテニウ
ムスパッタリングターゲットを製造する場合には粉末冶
金法が使用され、例えば、低い純度のルテニウム粉末を
一旦電子ビーム(EB)溶解して精製し、これに塩素ガ
スを接触させて塩化ルテニウムとした後、これをさらに
水素還元して高純度化した粉末を得、これをさらに焼結
してスパッタリングターゲットとする方法が採られてい
る(特開平9−227965、特開平9−227966
参照)。しかし、このような焼結による方法は精製工程
数が多く、また最終的に得られたターゲットには焼結体
に特有の空孔が存在し、またこれによってガス等の吸着
が増加するという問題がある。したがって、スパッタリ
ングターゲットとして溶解鍛造品(理論的に相対密度1
00%)に比べ特性に劣ることは否めず、またコスト高
となる欠点を有している。もとより、ルテニウムスクラ
ップを再利用することは通常考えられておらず、全体と
してのスパッタリングターゲット製造コストの増加は必
然的なものであった。
For this reason, conventionally, a powder metallurgy method has been used to produce a high-purity ruthenium sputtering target. For example, a low-purity ruthenium powder is once purified by melting with an electron beam (EB), and then purified. A method has been adopted in which a ruthenium chloride is brought into contact with chlorine gas, which is further reduced with hydrogen to obtain a highly purified powder, which is further sintered and used as a sputtering target (JP-A-9-227965). And JP-A-9-227966.
reference). However, such a sintering method has many purification steps, and the final target has pores peculiar to the sintered body, which increases the adsorption of gas and the like. There is. Therefore, a melt-forged product (theoretically, a relative density of 1
(00%), it is inevitable that the characteristics are inferior, and the cost is high. Of course, the reuse of ruthenium scrap was not usually considered, and the increase in the sputtering target manufacturing cost as a whole was inevitable.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の問題
を解決するために、ルテニウム切削屑又は端材等のスク
ラップから高純度ルテニウムを容易にリサイクルする方
法を確立し、さらにこのようにして得られた高純度ルテ
ニウムから特性に優れたスパッタリングターゲットを安
価に製造する方法を得ることを課題とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has established a method for easily recycling high-purity ruthenium from scrap such as ruthenium cuttings or scraps. It is an object of the present invention to provide a method for manufacturing a sputtering target excellent in characteristics at low cost from the obtained high-purity ruthenium.

【0008】[0008]

【課題を解決するための手段】本発明は、 1.80wt%以上のルテニウムを含有するルテニウム
スクラップをアルカリ又は酸処理し、表面に付着した不
純物を除去した後、EB溶解により高純度化することを
特徴とする高純度ルテニウムのリサイクル方法。 2.ルテニウム中の酸素含有量が100wtppm以下
であることを特徴とする上記1記載の高純度ルテニウム
のリサイクル方法。 3.リサイクル率が70%以上であることを特徴とする
上記1又は2記載の高純度ルテニウムのリサイクル方
法。 4.80wt%以上のルテニウムを含有するルテニウム
スクラップをアルカリ又は酸処理し、表面に付着した不
純物を除去した後、EB溶解により高純度化し、次にこ
れを凝固させてインゴットを形成し、さらに該インゴッ
トを1400〜2000°Cで鍛造することを特徴とす
る高純度ルテニウムターゲットの製造方法。 5.ルテニウムスクラップをアルゴン又は水素ガス雰囲
気中、800〜1600°Cで焼結した後、EB溶解す
ることを特徴とする上記4に記載の高純度ルテニウムタ
ーゲットの製造方法。 6.酸素100wtppm以下であることを特徴とする
上記4又は5に記載の高純度ルテニウムターゲットの製
造方法。 7.平均結晶粒度が5mm以下であることを特徴とする
上記4〜7のそれぞれに記載の高純度ルテニウムターゲ
ットの製造方法。 8.5Nレベル以上(ガス成分を除く)の純度を有する
ことを特徴とする上記4〜7のそれぞれに記載の高純度
ルテニウムターゲットの製造方法。 9.2回以上のEB溶解を行うことを特徴とする上記4
〜8のそれぞれに記載の高純度ルテニウムターゲットの
製造方法。を提供する。
According to the present invention, a ruthenium scrap containing at least 1.80 wt% of ruthenium is treated with an alkali or an acid to remove impurities adhering to the surface, and is then highly purified by EB dissolution. A method for recycling high-purity ruthenium, characterized in that: 2. 2. The method for recycling high-purity ruthenium according to 1 above, wherein the oxygen content in ruthenium is 100 wtppm or less. 3. 3. The method for recycling high-purity ruthenium according to 1 or 2, wherein the recycling rate is 70% or more. Ruthenium scrap containing at least 4.80 wt% of ruthenium is treated with an alkali or an acid to remove impurities attached to the surface, and then highly purified by EB dissolution, and then solidified to form an ingot. A method for producing a high-purity ruthenium target, comprising forging an ingot at 1400 to 2000 ° C. 5. 5. The method for producing a high-purity ruthenium target according to the above item 4, wherein the ruthenium scrap is sintered at 800 to 1600 ° C. in an argon or hydrogen gas atmosphere and then EB-dissolved. 6. 6. The method for producing a high-purity ruthenium target according to 4 or 5, wherein the oxygen content is 100 wtppm or less. 7. 8. The method for producing a high-purity ruthenium target according to any one of the above items 4 to 7, wherein the average crystal grain size is 5 mm or less. 8. The method for producing a high-purity ruthenium target according to any one of the above items 4 to 7, wherein the method has a purity of 8.5N level or more (excluding gas components). 9. The above-mentioned item 4 wherein EB dissolution is performed twice or more.
9. The method for producing a high-purity ruthenium target according to any one of Items 1 to 8. I will provide a.

【0009】[0009]

【発明の実施の形態】本発明は、80wt%以上のルテ
ニウムを含有するルテニウムスクラップを、例えばNa
ClOとNaOHの混合液等のアルカリ又は弗酸等の酸
処理し、表面に付着したSiO等の不純物を除去した
後、EB溶解により高純度化する。このアルカリ又は酸
処理によりルテニウムの表面を若干溶解することによっ
て、平研研削時等に付着又は突き刺さった不純物(WC
やSiC)を取り除くことができる。ルテニウム中の酸
素等のガス成分又は揮発性の金属はEB溶解時に揮散除
去でき、またその他の不純物はスラグとして効果的に除
去できる。そして、酸素含有量は100wtppm以下
を達成できる。高純度ルテニウムのリサイクル率を70
%以上とすることができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ruthenium scrap containing at least 80 wt% of ruthenium, for example, Na
After treating with an alkali such as a mixed solution of ClO and NaOH or an acid such as hydrofluoric acid to remove impurities such as SiO 2 adhered to the surface, high purity is achieved by dissolving EB. By slightly dissolving the ruthenium surface by this alkali or acid treatment, impurities (WC
And SiC) can be removed. Gas components such as oxygen or volatile metals in ruthenium can be volatilized and removed during EB dissolution, and other impurities can be effectively removed as slag. And the oxygen content can achieve 100 wtppm or less. High-purity ruthenium recycling rate of 70
% Or more.

【0010】高純度ルテニウムターゲットの製造に際し
ては、上記80wt%以上のルテニウムを含有するルテ
ニウムスクラップをアルカリ又は酸処理し、表面に付着
した不純物を除去した後、EB溶解により高純度化し、
次にこれを凝固させてインゴットを形成し、さらに該イ
ンゴットを1400〜2000°Cで鍛造することによ
り製造する。EB溶解に際しては、必要に応じてルテニ
ウムスクラップ(粉末を含む)を予めPVA(ポリビニ
ルアルコール)等を混ぜて固め、アルゴン又は水素ガス
(非酸素、非窒素)雰囲気中、800〜1600°Cで
焼結して焼結体とした後、EB溶解する。焼結温度80
0〜1600°Cの範囲で焼結するのは、EB溶解時の
スプラッシュを少なくすることができるという理由によ
る。
In manufacturing a high-purity ruthenium target, the above-mentioned ruthenium scrap containing at least 80 wt% of ruthenium is treated with an alkali or an acid to remove impurities attached to the surface, and then purified by EB dissolution.
Next, this is solidified to form an ingot, and the ingot is manufactured by forging at 1400 to 2000 ° C. When dissolving EB, ruthenium scrap (including powder) is solidified by mixing PVA (polyvinyl alcohol) or the like in advance, if necessary, and sintered at 800 to 1600 ° C. in an argon or hydrogen gas (non-oxygen, non-nitrogen) atmosphere. After sintering to obtain a sintered body, EB is melted. Sintering temperature 80
The reason for sintering in the range of 0 to 1600 ° C. is that splash during EB melting can be reduced.

【0011】EB溶解2回以上行うことが望ましい。1
回のEB溶解では内部に巣が多く発生し易く、品質低下
や歩留り低下となり易いからである。このEB溶解によ
り、上記の通り、ルテニウムに存在する不純物の揮発成
分は除去され、またスラグとして除去できる。これによ
って、5Nレベル(ガス成分を除く)の高純度ルテニウ
ムインゴットをスクラップから容易に得ることができ
る。特に、酸素含有量を100wtppm以下すること
ができる。
It is desirable to carry out the EB dissolution twice or more. 1
This is because a large number of nests are apt to be generated in the EB dissolution at a time, and the quality and the yield are likely to be reduced. By this EB dissolution, as described above, the volatile components of the impurities present in ruthenium are removed and can be removed as slag. This makes it possible to easily obtain a high-purity ruthenium ingot having a 5N level (excluding gas components) from scrap. In particular, the oxygen content can be reduced to 100 wtppm or less.

【0012】次に、このようにして得た5Nレベルの高
純度ルテニウムインゴットを1400〜2000°Cの
範囲で鍛造する。1400°C未満では鍛造により割れ
が入り、また2000°Cを超える温度ではエネルギー
コストが増大し、好ましくないからである。また、鍛造
中に温度低下するとターゲット材に割れが発生するの
で、恒温鍛造が望ましい。上記温度範囲において、割れ
の発生の無い鍛造品が得られる。鍛造によりほぼターゲ
ットに近い形にまで加工するが、さらに旋盤等で表面を
加工しかつ仕上げ加工してターゲットに仕上げる。これ
によって、平均結晶粒度が5mm以下であり、成分が均
一で、高密度、5Nレベル以上(ガス成分を除く)の高
純度ルテニウムスパッタリングターゲットを低コストで
得ることができる。また、リサイクル率を70%以上に
することができる。
Next, the 5N-level high-purity ruthenium ingot thus obtained is forged in a range of 1400 to 2000 ° C. If the temperature is lower than 1400 ° C., cracking is caused by forging, and if the temperature exceeds 2000 ° C., energy cost increases, which is not preferable. Further, if the temperature is lowered during forging, a crack occurs in the target material, so that constant temperature forging is desirable. Within the above temperature range, a forged product free from cracks can be obtained. It is processed by forging to a shape almost similar to the target, but the surface is further processed with a lathe or the like and finish processing is performed to finish the target. As a result, a high-purity ruthenium sputtering target having an average crystal grain size of 5 mm or less, uniform components, high density, and a level of 5N or more (excluding gas components) can be obtained at low cost. Further, the recycling rate can be 70% or more.

【0013】[0013]

【実施例】次に、実施例について説明する。なお、本実
施例は発明の一例を示すためのものであり、本発明はこ
れらの実施例に制限されるものではない。すなわち、本
発明の技術思想に含まれる他の態様及び変形を含むもの
である。
Next, an embodiment will be described. It should be noted that the present embodiment is merely an example of the present invention, and the present invention is not limited to these embodiments. That is, it includes other aspects and modifications included in the technical idea of the present invention.

【0014】(実施例1)前記表1で示した不純物を含
有する平研、切削屑及び端材の合計重量約11kgのル
テニウムスクラップをNaClO+NaOHの洗浄剤を
使用して1時間洗浄し、ルテニウム表面を若干溶解除去
するとともにそこに付着する不純物を除去した。次に、
この洗浄したスクラップを予めPVA(ポリビニルアル
コール)を混ぜて固め、アルゴンガス雰囲気中、100
0°Cで焼結し焼結体とした。このようにして得た焼結
体を、3回のEB溶解を実施し、約10kgのインゴッ
トを得た。この溶解により巣の発生は小さかった。な
お、インゴット上部に浮いたスラグは切削により除去し
た。これにより約9kgのインゴットを得た。このイン
ゴットをさらに、1600°Cの条件で鍛造し、φ35
0×8mmtの板を得た。これを旋盤加工し高純度ルテ
ニウムスパッタリングターゲットを得た。このようにし
て得たターゲットの不純物濃度を表2に示す。なお、表
2の濃度はwtppmである。また、平均結晶粒径は約
2mmであった。
(Example 1) Ruthenium scrap having a total weight of about 11 kg consisting of plain steel, cutting chips and offcuts containing the impurities shown in Table 1 above was washed with a NaClO + NaOH detergent for 1 hour, and the ruthenium surface was removed. Was slightly dissolved and removed, and impurities adhering thereto were removed. next,
The washed scrap is mixed with PVA (polyvinyl alcohol) in advance and solidified.
It was sintered at 0 ° C. to obtain a sintered body. The sintered body thus obtained was subjected to EB melting three times to obtain an ingot of about 10 kg. The nest was small due to this dissolution. The slag floating above the ingot was removed by cutting. As a result, an ingot of about 9 kg was obtained. The ingot was further forged at 1600 ° C.
A plate of 0 × 8 mmt was obtained. This was turned into a high-purity ruthenium sputtering target. Table 2 shows the impurity concentrations of the target thus obtained. The concentrations in Table 2 are wtppm. Further, the average crystal grain size was about 2 mm.

【0015】[0015]

【表2】 [Table 2]

【0016】表2に示す通り、酸素及び窒素の含有量は
10ppm未満であり、5Nレベルの高純度のルテニウ
ムスパッタリングターゲットを得ることができた。本発
明は従来廃棄されていたルテニウムスクラップから、高
純度、高密度のターゲットを低コストで製造することが
できる。また、リサイクル率は80%以上に達した。
As shown in Table 2, the contents of oxygen and nitrogen were less than 10 ppm, and a 5N level high purity ruthenium sputtering target could be obtained. According to the present invention, a high-purity, high-density target can be manufactured at low cost from ruthenium scrap that has been conventionally discarded. The recycling rate has reached 80% or more.

【0017】実施例1と同様に、前記表1で示した不純
物を含有する平研、切削屑及び端材の合計重量約11k
gのルテニウムスクラップをNaClO+NaOHの洗
浄剤を使用して1時間洗浄し、ルテニウム表面を若干溶
解除去するとともにそこに付着する不純物を除去した。
次に、この洗浄したスクラップを予めPVA(ポリビニ
ルアルコール)を混ぜて固め、アルゴンガス雰囲気中、
1000°Cで焼結し焼結体とした。このようにして得
た焼結体を、2回のEB溶解を実施し、約10kgのイ
ンゴットを得た。この溶解により巣の発生は小さかっ
た。なお、インゴット上部に浮いたスラグは切削により
除去した。これにより約9kgのインゴットを得た。こ
のインゴットをさらに、1800°Cの条件で鍛造し、
φ350×8mmtの板を得た。これを旋盤加工し高純
度ルテニウムスパッタリングターゲットを得た。このよ
うにして得たターゲットの分析結果は実施例1の表2と
同じであり、良好な結果となったが、平均結晶粒径は約
4mmであった。
In the same manner as in Example 1, the total weight of the flattening material containing the impurities shown in Table 1 above, cutting chips and offcuts is about 11 k.
g of the ruthenium scrap was washed for one hour using a NaClO + NaOH detergent to dissolve and remove the ruthenium surface slightly and to remove impurities adhering thereto.
Next, the washed scrap is mixed with PVA (polyvinyl alcohol) in advance and solidified.
It was sintered at 1000 ° C. to obtain a sintered body. The sinter thus obtained was subjected to EB melting twice, to obtain an ingot of about 10 kg. The nest was small due to this dissolution. The slag floating above the ingot was removed by cutting. As a result, an ingot of about 9 kg was obtained. This ingot is further forged at 1800 ° C.
A plate of φ350 × 8 mmt was obtained. This was turned into a high-purity ruthenium sputtering target. The analysis results of the target thus obtained were the same as those in Table 2 of Example 1, and the results were good, but the average crystal grain size was about 4 mm.

【0018】(比較例1)EB溶解を1回実施した以外
は、実施例1と同一の材料を使用し、同様の条件でイン
ゴットを得た。しかし、EB溶解が十分でないためにイ
ンゴット内に巣が多く、この巣が発生した多くの部分を
インゴットから削除する必要があるため、歩留りが悪く
なった。また、SiC等の異物も観察された。したがっ
て、その後の鍛造工程を実施しなかった。
Comparative Example 1 An ingot was obtained using the same materials as in Example 1 except that the EB melting was performed once, and under the same conditions. However, because the EB dissolution is not sufficient, there are many nests in the ingot, and it is necessary to delete many portions where the nests have occurred from the ingot, so that the yield has deteriorated. In addition, foreign substances such as SiC were also observed. Therefore, the subsequent forging process was not performed.

【0019】実施例1と同一の材料を使用し、EB溶解
を3回実施し他は同様の条件でインゴットを得た。そし
てその後1300°Cで鍛造した。しかし、鍛造温度が
低いためにインゴットの加工が難しく、割れが発生し
た。このためターゲットへの加工は中断した。
Using the same material as in Example 1, EB melting was performed three times, and an ingot was obtained under the same conditions except for the above. Then, it was forged at 1300 ° C. However, processing of the ingot was difficult due to the low forging temperature, and cracks occurred. For this reason, processing on the target was suspended.

【0020】[0020]

【発明の効果】本発明は、ルテニウム切削屑又は端材等
のスクラップを使用して、高純度ルテニウムを容易にリ
サイクルできるという特長を有し、またルテニウムター
ゲットの製造に際しては、従来の金属容器に包んで(キ
ャニング法)圧延するなどの複雑及びコスト増となる手
法をとる必要がなく、また粉末冶金特有の空孔の発生
(密度低下)することなく、焼結品に比べ工程数がはる
かに少なく、高純度、高密度のルテニウムスパッタリン
グターゲットを安価に得ることができるという優れた効
果を有する。
The present invention has the advantage that high-purity ruthenium can be easily recycled using scraps of ruthenium cuttings or scraps. It is not necessary to take complicated and cost-increasing methods such as wrapping (canning method) and rolling. Also, there is no porosity (density reduction) peculiar to powder metallurgy. It has an excellent effect that a small, high-purity, high-density ruthenium sputtering target can be obtained at low cost.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 80wt%以上のルテニウムを含有する
ルテニウムスクラップをアルカリ又は酸処理し、表面に
付着した不純物を除去した後、EB溶解により高純度化
することを特徴とする高純度ルテニウムのリサイクル方
法。
1. A method for recycling high-purity ruthenium, comprising subjecting a ruthenium scrap containing at least 80 wt% ruthenium to an alkali or acid treatment to remove impurities attached to the surface, and then purifying the ruthenium by EB dissolution. .
【請求項2】 ルテニウム中の酸素含有量が100wt
ppm以下であることを特徴とする請求項1記載の高純
度ルテニウムのリサイクル方法。
2. The oxygen content in ruthenium is 100 wt.
2. The method for recycling high-purity ruthenium according to claim 1, wherein the content is less than ppm.
【請求項3】 リサイクル率が70%以上であることを
特徴とする請求項1又は2記載の高純度ルテニウムのリ
サイクル方法。
3. The method for recycling high-purity ruthenium according to claim 1, wherein the recycling rate is 70% or more.
【請求項4】 80wt%以上のルテニウムを含有する
ルテニウムスクラップをアルカリ又は酸処理し、表面に
付着した不純物を除去した後、EB溶解により高純度化
し、次にこれを凝固させてインゴットを形成し、さらに
該インゴットを1400〜2000°Cで鍛造すること
を特徴とする高純度ルテニウムターゲットの製造方法。
4. Ruthenium scrap containing at least 80 wt% of ruthenium is treated with an alkali or an acid to remove impurities attached to the surface, and then purified by EB dissolution, and then solidified to form an ingot. A method for producing a high-purity ruthenium target, further comprising forging the ingot at 1400 to 2000 ° C.
【請求項5】 ルテニウムスクラップをアルゴン又は水
素ガス雰囲気中、800〜1600°Cで焼結した後、
EB溶解することを特徴とする請求項4に記載の高純度
ルテニウムターゲットの製造方法。
5. After sintering ruthenium scrap at 800 to 1600 ° C. in an argon or hydrogen gas atmosphere,
The method for producing a high-purity ruthenium target according to claim 4, wherein EB is dissolved.
【請求項6】 酸素100wtppm以下であることを
特徴とする請求項4又は5に記載の高純度ルテニウムタ
ーゲットの製造方法。
6. The method for producing a high-purity ruthenium target according to claim 4, wherein the oxygen content is 100 wtppm or less.
【請求項7】 平均結晶粒度が5mm以下であることを
特徴とする請求項4〜6のそれぞれに記載の高純度ルテ
ニウムターゲットの製造方法。
7. The method for producing a high-purity ruthenium target according to claim 4, wherein the average crystal grain size is 5 mm or less.
【請求項8】 5Nレベル以上(ガス成分を除く)の純
度を有することを特徴とする請求項4〜7のそれぞれに
記載の高純度ルテニウムターゲットの製造方法。
8. The method for producing a high-purity ruthenium target according to claim 4, wherein the target has a purity of 5N level or more (excluding gas components).
【請求項9】 2回以上のEB溶解を行うことを特徴と
する請求項4〜8のそれぞれに記載の高純度ルテニウム
ターゲットの製造方法。
9. The method for producing a high-purity ruthenium target according to claim 4, wherein EB melting is performed twice or more.
JP2001138335A 2001-05-09 2001-05-09 Manufacturing method of high purity ruthenium target Expired - Fee Related JP3792535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138335A JP3792535B2 (en) 2001-05-09 2001-05-09 Manufacturing method of high purity ruthenium target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138335A JP3792535B2 (en) 2001-05-09 2001-05-09 Manufacturing method of high purity ruthenium target

Publications (2)

Publication Number Publication Date
JP2002332528A true JP2002332528A (en) 2002-11-22
JP3792535B2 JP3792535B2 (en) 2006-07-05

Family

ID=18985289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138335A Expired - Fee Related JP3792535B2 (en) 2001-05-09 2001-05-09 Manufacturing method of high purity ruthenium target

Country Status (1)

Country Link
JP (1) JP3792535B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2055793A1 (en) * 2007-10-29 2009-05-06 Heraeus, Inc. Methodology for recycling RU and RU-alloy deposition targets & targets made of recycled RU and RU-based alloy powders
WO2011118931A2 (en) * 2010-03-25 2011-09-29 희성금속 주식회사 Method for preparing fine ruthenium powder having higher purity using waste ruthenium target
JP2014518565A (en) * 2011-04-26 2014-07-31 ヒ スング メタル リミテッド Ultra high purity ruthenium (Ru) powder using waste ruthenium (Ru) target and method for producing target
JP2014194085A (en) * 2007-12-19 2014-10-09 Quantam Global Technologies Llc Method for cleaning process kit and chamber, and method for recovering ruthenium
WO2016038974A1 (en) * 2014-09-08 2016-03-17 石福金属興業株式会社 Method for producing platinum group metal or platinum group-based alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2055793A1 (en) * 2007-10-29 2009-05-06 Heraeus, Inc. Methodology for recycling RU and RU-alloy deposition targets & targets made of recycled RU and RU-based alloy powders
JP2009108400A (en) * 2007-10-29 2009-05-21 Heraeus Inc METHODOLOGY FOR RECYCLING RUTHENIUM (Ru) AND RUTHENIUM (Ru) ALLOY DEPOSITION TARGET AND TARGET MADE OF RECYCLED RUTHENIUM (Ru) AND RUTHENIUM (Ru)-BASED ALLOY POWDER
US8118906B2 (en) 2007-10-29 2012-02-21 Heraeus Inc. Methodology for recycling Ru and Ru-alloy deposition targets and targets made of recycled Ru and Ru-based alloy powders
JP2014194085A (en) * 2007-12-19 2014-10-09 Quantam Global Technologies Llc Method for cleaning process kit and chamber, and method for recovering ruthenium
WO2011118931A2 (en) * 2010-03-25 2011-09-29 희성금속 주식회사 Method for preparing fine ruthenium powder having higher purity using waste ruthenium target
WO2011118931A3 (en) * 2010-03-25 2011-12-22 희성금속 주식회사 Method for preparing fine ruthenium powder having higher purity using waste ruthenium target
JP2013522473A (en) * 2010-03-25 2013-06-13 ヒ スング メタル リミテッド Method for producing highly purified and refined ruthenium (Ru) powder using used ruthenium (Ru) target
JP2014518565A (en) * 2011-04-26 2014-07-31 ヒ スング メタル リミテッド Ultra high purity ruthenium (Ru) powder using waste ruthenium (Ru) target and method for producing target
WO2016038974A1 (en) * 2014-09-08 2016-03-17 石福金属興業株式会社 Method for producing platinum group metal or platinum group-based alloy
JP2016065264A (en) * 2014-09-08 2016-04-28 石福金属興業株式会社 Method for manufacturing platinum group metal or platinum group alloy

Also Published As

Publication number Publication date
JP3792535B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP2010047843A (en) METHOD FOR MANUFACTURING Ni-Pt ALLOY, AND METHOD FOR MANUFACTURING TARGET MADE FROM THE SAME ALLOY
AU2009200027A1 (en) Method of manufacturing titanium and titanium alloy products
KR101435481B1 (en) Preparation method of ternary titanium alloy powder using Ti-Mo alloy scrap
JP4874879B2 (en) Erbium sputtering target and manufacturing method thereof
JP4174526B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
JP3792535B2 (en) Manufacturing method of high purity ruthenium target
JP5088927B2 (en) Manufacturing method of high purity titanium ingot
JP5403825B2 (en) Method for storing high-purity sponge titanium particles and method for producing high-purity titanium ingot using the same
JP3878432B2 (en) High-purity ruthenium target and method for producing the target
JP3673919B2 (en) High-purity titanium recovery method
JP2011012300A (en) Copper alloy and method for producing copper alloy
KR20170045273A (en) Cast titanium slab for use in hot rolling and unlikely to exhibit surface defects, and method for producing same
JPH06264233A (en) Sputtering target for producing tft
JP2000327488A (en) Production of silicon substrate for solar battery
JPH10259432A (en) Production of low oxygen titanium material and low oxygen titanium melting stock
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
JPH1161392A (en) Production of sputtering target for forming ru thin film
JPH11158565A (en) Production of titanium ingot
JP2002206103A (en) Method for manufacturing high-purity zirconium or hafnium powder
JP2708277B2 (en) Method for producing hot rolled titanium alloy bar with excellent forgeability as rolled
WO2015099119A1 (en) High-purity copper or copper alloy sputtering target, and method for producing same
JP2553967B2 (en) Ultra-high cleanliness stainless steel manufacturing method
JPS5952217B2 (en) Surface melting treatment method for preformed bodies of high melting point metals, active metals, or their alloys
JP2003138322A (en) Method of manufacturing high-purity metal, high-purity metal, sputtering target consisting of this high-purity metal and thin film formed by this sputtering target
RU2349658C1 (en) Method of manufacturing tungsten of high purity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees