Nothing Special   »   [go: up one dir, main page]

JP2002346561A - 高濃度の塩類を含む廃水の処理方法 - Google Patents

高濃度の塩類を含む廃水の処理方法

Info

Publication number
JP2002346561A
JP2002346561A JP2001159915A JP2001159915A JP2002346561A JP 2002346561 A JP2002346561 A JP 2002346561A JP 2001159915 A JP2001159915 A JP 2001159915A JP 2001159915 A JP2001159915 A JP 2001159915A JP 2002346561 A JP2002346561 A JP 2002346561A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
treatment
electrodialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001159915A
Other languages
English (en)
Inventor
Toshiyuki Nakamura
利幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2001159915A priority Critical patent/JP2002346561A/ja
Publication of JP2002346561A publication Critical patent/JP2002346561A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

(57)【要約】 【課題】放流水中の塩類濃度を低下させるとともに、再
利用可能な再利用水および塩濃縮水を回収することが可
能な、高濃度の塩類を含む廃水処理方法を提供する。 【解決手段】高濃度の塩類を含む廃水W2を逆浸透膜処
理して、逆浸透膜処理水P1と逆浸透膜濃縮水C1とに分
離し、さらにその逆浸透膜処理水C1を電気透析処理し
て、電気透析処理水P2と電気透析濃縮水C2とに分離
し、前記逆浸透膜処理水P1、電気浸透膜処理水P2およ
び電気透析濃縮水C2とを得る、高濃度の塩類を含む廃
水の処理方法によって解決される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、高濃度の塩類を含
む廃水を、逆浸透膜処理および電気透析処理して、再利
用水、放流水および塩濃縮水を得る、高濃度の塩類を含
む廃水の処理方法に関する。
【0002】
【従来の技術】高濃度の塩類を含む廃水としては、例え
ば、一般廃棄物最終処分場の浸出水がある。かかる浸出
水は、廃棄物から浸出するClイオン、カルシウムイオ
ン等の塩類、溶解性シリカ等の非解離性溶解物質のほ
か、重金属、有機性成分、SS成分など種々の物質を含
んでおり、また、生物学的酸素要求量(BOD)や化学
的酸素要求量(COD)も高い。このような廃水は、そ
のままでは河川に放流することができないため、放流前
に、重金属、有機性成分およびSS成分を除去処理し、
BODおよびCODを低減させる処理が行われている。
かかる処理方法としては、従来、カルシウム除去処理、
生物処理、凝集沈殿処理、砂ろ過処理、オゾン処理、活
性炭吸着処理、重金属キレート処理、精密膜処理等を適
宜組み合わせた処理方法が採られている。これらの処理
によって、浸出水中の重金属や有機性成分やSS成分は
十分に除去され、BOD、CODも河川に放流するのに
十分な値まで低減されている。
【0003】さらに近年では、環境保護を重視する風潮
のなか、水資源の再利用や放流河川の水質保護や周辺環
境への影響を考慮し、BOD、CODの低減処理などに
加えて塩類の除去回収や処理水の再利用の必要性が高ま
っている。これにともない塩類を除去回収して放流水中
の塩類濃度を低減させるとともに、再利用可能な処理水
をも回収することが可能な廃水処理方法の構築が模索さ
れている。
【0004】塩類を含む溶液から塩類を除去する方法と
しては種々なものが知られているが、代表的なものとし
ては逆浸透膜を用いた逆浸透膜処理および電気透析によ
る電気透析処理が挙げられる。逆浸透膜処理は、塩類の
水との分離能力が高く、得られる脱塩水の塩類濃度が非
常に低いという点で優れている。一方、電気透析処理
は、水回収率が高く、高濃度の濃縮水が得られるという
点で優れている。
【0005】
【発明が解決しようとする課題】しかしながら、前者の
逆浸透膜処理は、処理水の脱塩効果は大であるが水回収
率が低い。廃水の処理に採用するとなると、濃縮水の水
分を低減させる処理、例えば蒸発缶などを用いて再濃縮
を行う必要性が生じる、濃縮水量が多いと水分低減のた
めに必要となるエネルギー量が多大なものとなり、コス
ト面および省エネルギー化などの点からみて非常に効率
が悪くなる。一方、後者の電気透析膜処理は、脱塩水の
回収率は高いが、高濃度の塩類を含む廃水を処理すると
なると、脱塩水の塩類濃度を再利用可能な値までは低減
することが難しい。
【0006】このように上述の方法は、高濃度の塩類を
含む廃水を処理するに単独で採用するとなるとそれぞれ
欠点を有する。
【0007】そこで、本発明の主たる課題は、一般廃棄
物最終処分場の浸出水のような高濃度の塩類を含む廃水
を処理するにあたり、放流水中の塩類濃度を低減すると
ともに、その放流水よりもさらに塩類濃度の低い再利用
可能な再利用水を回収することが可能で、さらには塩類
をも好適に濃縮回収可能な、高濃度の塩類を含む廃水の
処理方法を提供することにある。
【0008】
【課題を解決するための手段】上記の問題点に鑑みて本
発明者らが鋭意研究した結果、脱塩処理として逆浸透膜
処理および電気透析処理の双方を採用し、双方の欠点を
補完しあうように構成することで、塩類濃度が低減され
た放流水とするに加えて、それよりもさらに塩類濃度の
低い再利用可能な再利用水を得るとともに、さらに廃水
中の塩類をも容易に濃縮回収することが可能になること
を知見し、本発明を完成するに至った。
【0009】すなわち、本発明請求項1記載の発明は、
高濃度の塩類を含む廃水の処理方法であって、前記高濃
度の塩類を含む廃水を、逆浸透膜処理して逆浸透膜処理
水と逆浸透膜濃縮水とに分離し、前記逆浸透膜処理水は
再利用水とするかまた処理系外に放流し、前記逆浸透膜
濃縮水は電気透析処理して、電気透析処理水と電気透析
濃縮水とに分離し、前記電気透析濃縮水は回収し、前記
電気透析処理水は、前記逆浸透膜処理の前段に返送して
再脱塩処理することなく処理系外に排出することを特徴
とする高濃度の塩類を含む廃水の処理方法である。
【0010】
【発明の実施の形態】本発明の実施の形態として、本発
明の高濃度の塩類を含む廃水の処理方法を一般廃棄物最
終処分場の浸出水に対して適用した例を、図面を参照し
ながら以下に詳述する。図1は、本発明の処理方法を行
うための処理装置例を示す概略図である。1は脱塩前処
理設備、2は逆浸透膜装置、3は電気透析装置、4は電
気透析濃縮水を結晶固化するための結晶固化装置であ
る。
【0011】前記前処理設備1は、重金属、有機性成
分、SS成分の除去、およびBOD、CODの低減など
をおこなう各種処理装置からなる処理装置群であり、従
来、浸出水W1の処理に用いられている公知の設備であ
る。前記前処理設備1は、具体的には、カルシウム除去
処理装置、生物処理装置、凝集沈殿処理装置、砂ろ過装
置、AOP装置、活性炭吸着処理装置、重金属キレート
吸着装置、MFろ過装置、などによって構成されてい
る。
【0012】前記浸出水W1はこれらの処理設備で脱塩
前処理された後(以下、脱塩前処理済みの廃水を原水W
2と記載する)、逆浸透膜装置2に導かれる。この逆浸
透膜装置2は特殊なものである必要はなく、海水の淡水
化などに用いられている海水淡水化高圧逆浸透膜装置な
ど従来既知のものでよい。前記逆浸透膜装置2に導かれ
た原水W2は、装置内の逆浸透膜によって、逆浸透膜処
理水P1と逆浸透膜濃縮水C1とに分離される。逆浸透膜
処理の利点は、先にも述べたように、非常に低濃度の脱
塩水が得られることである。前記原水W2を逆浸透膜処
理して得られる逆浸透膜処理水P1中の塩類濃度は、一
般に放流水よりも水質要求の厳しい再利用水程度の値ま
で低減される。具体的には、全TDS(溶解性蒸発残留
物)濃度200mg/l以下、Clイオン濃度90mg
/l以下まで低減される。従って、前記逆浸透膜処理水
1は、処理系外に放流するよりも再利用水として再利
用するのが望ましい。前記逆浸透膜処理水の具体的な再
利用用途例を挙げれば、例えば、廃水処理設備内で使用
する機器の冷却や空調等に使用する冷却設備内の冷却塔
補給水としての使用が挙げられる。冷却塔の補給水に要
求される水質は、全TDS濃度が250mg/l以下、
特に、Clイオン濃度については100mg/l以下で
あることが一般に要求されるが、上記のとおり逆浸透膜
処理水P1は、十分にこの要求を満たし、冷却塔の補給
水として再利用可能である。
【0013】一方、前記逆浸透膜装置2で分離された逆
浸透膜濃縮水C1は電気透析装置3に導かれる。この電
気透析装置3は、特殊なものである必要はなく、従来公
知の電気透析装置でよい。電気透析装置3に導かれた前
記逆浸透膜濃縮水C1は、電気透析処理されて電気透析
処理水P2と電気透析濃縮水C2とに分離される。前記電
気透析処理水P2は、再利用可能な水質にまでは塩類は
低減されないが、原水W2と比較すれば十分に塩類の濃
度が低減されており、河川などに放流しても塩類による
周辺環境への影響は生じない。また、処理系外などで再
利用の用途があるならば再利用してもよい。
【0014】ただし、前記電気透析処理水P2を逆浸透
膜処理装置2に返送して再処理することは行わない。そ
の理由は、次記のとおりである。原水W2中には溶解性
シリカや微量の有機物など非解離性溶解物質が含まれ
る。逆浸透膜装置2は、解離性および前記非解離性のい
ずれの溶解物質に対しても一般に分離する特性がある。
すなわち非解離性の溶解物質(溶解性シリカ、微量の有
機物等)の分離濃縮も行われる。一方、電気透析処理装
置3は、解離性の溶解物質に対しては作用するが、非解
離性の溶解物質については作用しない。すなわち非解離
性の溶解物質については分離濃縮が行われない。このた
め、逆浸透膜濃縮水C1を電気透析処理した電気透析処
理水P2中には、逆浸透膜処理によって濃縮された非解
離性の溶解成分がそのまま含まれている。従って、この
電気透析処理水を逆浸透膜装置に返送してしまうと、非
解離性の溶解物質の濃縮が行われることになり、逆浸透
膜装置2内に非解離性の溶解物質例えば溶解性シリカが
スケールとして析出し、その分離能力が著しく低下する
ことになる。逆浸透膜装置2のスケール析出を防止する
手段として分散剤などを使用することも考えられるが、
塩類濃度が十分に低減され放流可能であることを考慮す
れば、安定運転に対するリスクの多い分散剤を用いた再
利用法よりも処理系外に放流するのが好適である。
【0015】他方、前記電気浸透濃縮水C2は、結晶固
化装置4に導かれる。前記電気透析濃縮水C2は、この
結晶固化装置4で乾燥して結晶固化して結晶固化塩Sと
される。結晶固化装置4としては、蒸発缶やドラムドラ
イヤーなどが挙げられる。前記電気透析濃縮水C2は、
非常に高濃度で水分量が少ないため、蒸発缶などを用い
て乾燥しても使用するエネルギー量は少ない。回収され
た結晶固化塩Sは、廃棄処分してもよいが、浸出水を含
め種々の廃水を処理するさいには前処理設備内で重金属
除去処理を行うのが一般的であり、得られる結晶固化塩
中に有害な重金属類などは含まれないので、例えば、工
業用塩などとして再利用するのが望ましい。
【0016】本実施の形態においては、浸出水に適用し
た例について述べたが、その他、塩類を含む廃水の処理
に好適に用いることができる。また、本発明の処理方法
は、塩類濃度が著しく高濃度である場合に限らず、塩類
を含む廃水に対しては本発明の効果を奏する。また、結
晶固化塩については、処理する原水中に含まれる塩類の
種類および得られた結晶固化塩の純度などを考慮して適
した用途で再利用すればよい。
【0017】<実験例>次いで、本発明の実験例につい
て述べる。浸出水W1を前処理した後の原水W2を逆浸透
膜処理して逆浸透膜処理水P1と逆浸透膜濃縮水C1とに
分離し、さらに前記逆浸透膜濃縮水C1の全量を電気透
析処理して電気透析処理水P2と電気透析濃縮水C2とに
分離した。
【0018】図2は、実験のフローチャートを示すもの
であり、原水W2の全量をQとして、各処理における分
離後の割合がαQで示されている。また、全TDS(溶
解性蒸発残留物)濃度、塩類であるClイオン濃度およ
び非解離性の溶解成分である溶解性SiO2濃度も示さ
れている。また、下記の表1は、原水W2、逆浸透膜処
理水P1、逆浸透膜濃縮水C1、電気透析処理水P2およ
び電気透析濃縮水C2のそれぞれの含有成分を示すもの
である。
【0019】
【表1】
【0020】図2および表1より、逆浸透膜処理水P1
は、全原水量の65%程度得られる。また、この逆浸透
膜処理水P1は、全TDS濃度が200mg/l以下、
Clイオン濃度が82mg/lであり、その他の含有物
質に関しても非常に低い数値まで低減されており、冷却
塔の補給液等として十分に再利用可能であることがわか
る。電気透析処理水P2は、原水W2と比較して塩類濃度
が低減されている。原水W2を放流するよりも電気透析
処理水P2を放流するほうが環境に与える影響が少ない
ことがわかる。電気透析濃縮水C2は、全原水量の10
%程度得られる。この電気透析濃縮水C2は、TDS濃
度が200000mg/l程度と非常に高く、水分量が
少ないので水分を低減させることが容易である。
【0021】本実験例より、本発明の処理方法とする
と、放流水中の塩類濃度が低減され、原水量の65%程
度の再利用水を回収することが可能で、さらに高濃度の
塩濃縮水をも回収可能である、ということが確認され
た。
【0022】<比較実験例>電気浸透膜処理水を逆浸透
膜装置に返送するようにして実験を行った。このように
返送した場合、非解離性の溶解物質である溶解性シリカ
が7.5倍程度に濃縮されることが知見された。
【0023】逆浸透膜処理装置では、常用運転するにあ
たり溶解性シリカの濃度を100mg/l以下にする必
要がある。表1より原水中の溶解性シリカ濃度は20m
g/l程度であることから、返送する処理系とした場
合、溶解性シリカ濃度は150mg/l程度まで濃縮さ
れることになり、逆浸透膜処理装置の常用運転基準濃度
を超えてしまう。なお、150mg/l程度まで溶解性
シリカが濃縮された場合、分散剤を用いても安定運転す
るには問題があり、運転管理上のリスクが大といえる。
【0024】
【発明の効果】以上詳説のとおり、本発明によれば、処
理系外に排出する放流水中の塩類濃度が低減されるとと
もに、再利用可能な再利用水および濃縮塩を回収するこ
とが可能な、高濃度の塩類を含む廃水の処理方法が提供
される。
【図面の簡単な説明】
【図1】本発明の実施の形態の処理方法に用いる処理装
置の概略図である。
【図2】本発明の処理方法の概略を示すフローチャート
である。
【符号の説明】
1…前処理設備、2…逆浸透膜装置、3…電気透析装
置、4…結晶固化装置、W1…浸出水、W2…前処理済廃
水、P1…逆浸透膜処理水、P2…電気透析処理水、C1
…逆浸透膜濃縮水、C2…電気透析濃縮水、S…結晶固
化塩
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA03 GA17 JA71 KA01 KB12 KB13 KB14 KB15 KB21 KB30 PA01 PB08 PC80 4D061 DA04 DB13 DB15 DC06 DC08 DC18 EA09 EB01 EB04 FA06 FA09 FA13 FA14 FA15 FA20

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】高濃度の塩類を含む廃水の処理方法であっ
    て、 前記高濃度の塩類を含む廃水を、逆浸透膜処理して逆浸
    透膜処理水と逆浸透膜濃縮水とに分離し、前記逆浸透膜
    処理水は再利用水とするかまた処理系外に放流し、 前記逆浸透膜濃縮水は電気透析処理して、電気透析処理
    水と電気透析濃縮水とに分離し、前記電気透析濃縮水は
    回収し、前記電気透析処理水は前記逆浸透膜処理の前段
    に返送して再処理することなく、処理系外に排出するこ
    とを特徴とする高濃度の塩類を含む廃水の処理方法。
JP2001159915A 2001-05-29 2001-05-29 高濃度の塩類を含む廃水の処理方法 Pending JP2002346561A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159915A JP2002346561A (ja) 2001-05-29 2001-05-29 高濃度の塩類を含む廃水の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159915A JP2002346561A (ja) 2001-05-29 2001-05-29 高濃度の塩類を含む廃水の処理方法

Publications (1)

Publication Number Publication Date
JP2002346561A true JP2002346561A (ja) 2002-12-03

Family

ID=19003415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159915A Pending JP2002346561A (ja) 2001-05-29 2001-05-29 高濃度の塩類を含む廃水の処理方法

Country Status (1)

Country Link
JP (1) JP2002346561A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220019A (ja) * 2008-03-17 2009-10-01 Metawater Co Ltd 廃水処理方法および装置
JP2012061402A (ja) * 2010-09-15 2012-03-29 Toshiba Corp 淡水化システム
CN103342432A (zh) * 2013-07-23 2013-10-09 南京工业大学 一种含盐废水的近零排放工艺
WO2017043741A1 (ko) * 2015-09-08 2017-03-16 한국전력공사 담수화 장치 및 이를 이용한 담수화 방법
JP2018086649A (ja) * 2016-11-29 2018-06-07 中国石油化工股▲ふん▼有限公司 ブライン廃水の処理のための方法およびシステム
CN109111010A (zh) * 2018-10-26 2019-01-01 陕西燎原净化设备有限公司 一种含盐废水处理系统及其使用方法
JP2019147098A (ja) * 2018-02-27 2019-09-05 住友重機械エンバイロメント株式会社 脱塩水回収装置、水処理システム及び水処理方法
CN110304751A (zh) * 2018-03-20 2019-10-08 国家能源投资集团有限责任公司 含盐废水的处理方法和系统
CN114671554A (zh) * 2020-12-24 2022-06-28 大连波美科技有限公司 一种含有胍盐的污水零排放系统及应用方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220019A (ja) * 2008-03-17 2009-10-01 Metawater Co Ltd 廃水処理方法および装置
JP2012061402A (ja) * 2010-09-15 2012-03-29 Toshiba Corp 淡水化システム
CN103342432A (zh) * 2013-07-23 2013-10-09 南京工业大学 一种含盐废水的近零排放工艺
CN103342432B (zh) * 2013-07-23 2015-10-28 南京工业大学 一种含盐废水的近零排放工艺
US10308529B2 (en) 2015-09-08 2019-06-04 Korea Electric Power Corporation Desalination apparatus and desalination method using same
WO2017043741A1 (ko) * 2015-09-08 2017-03-16 한국전력공사 담수화 장치 및 이를 이용한 담수화 방법
KR101748183B1 (ko) 2015-09-08 2017-06-20 한국전력공사 담수화 장치 및 이를 이용한 담수화 방법
JP2018086649A (ja) * 2016-11-29 2018-06-07 中国石油化工股▲ふん▼有限公司 ブライン廃水の処理のための方法およびシステム
JP2019147098A (ja) * 2018-02-27 2019-09-05 住友重機械エンバイロメント株式会社 脱塩水回収装置、水処理システム及び水処理方法
JP7052183B2 (ja) 2018-02-27 2022-04-12 住友重機械エンバイロメント株式会社 脱塩水回収装置、水処理システム及び水処理方法
CN110304751A (zh) * 2018-03-20 2019-10-08 国家能源投资集团有限责任公司 含盐废水的处理方法和系统
CN109111010A (zh) * 2018-10-26 2019-01-01 陕西燎原净化设备有限公司 一种含盐废水处理系统及其使用方法
CN114671554A (zh) * 2020-12-24 2022-06-28 大连波美科技有限公司 一种含有胍盐的污水零排放系统及应用方法

Similar Documents

Publication Publication Date Title
JP3909793B2 (ja) 高濃度の塩類を含有する有機性廃水の処理方法及びその装置
CN104445788B (zh) 高含盐废水处理回用零排放集成工艺
EP2646375A1 (en) Method for recovering gas from shale reservoirs and purifying resulting produced water
JP5966514B2 (ja) チオ尿素含有水の処理方法および装置
CN106045168A (zh) 一种脱硫废水的零排放方法
JPH10272495A (ja) 高濃度の塩類を含有する有機性廃水の処理方法
JP2005334736A (ja) 塩類含有処理水の脱塩方法及びその装置
JP2002346561A (ja) 高濃度の塩類を含む廃水の処理方法
JP3800449B2 (ja) 高濃度の塩類を含有する有機性廃水の処理方法及び装置
CN106007093A (zh) 一种重金属废水的零排放方法
SI1565918T1 (sl) Postopek za obdelavo radioaktivne odpadne vode
JPH05131191A (ja) 洗浄排水の処理方法
CN209890428U (zh) 一种印染高浓废水无害化处理系统
KR100193785B1 (ko) 정밀여과와 역삼투막을 이용한 불산 폐수 처리및 재이용 방법과 그 장치
JP4899565B2 (ja) 水処理装置及び水処理方法
JP5986819B2 (ja) 水処理方法及び設備
CN215102340U (zh) 一种煤化工高盐废水低成本资源化处理系统
JP3028391B2 (ja) めっき廃液の処理方法
JP2002143850A (ja) 排水処理装置
KR0148444B1 (ko) 슬러지내의 알루미늄 회수 공정
JP6318193B2 (ja) 水処理方法及び設備
JP2007098270A (ja) 純水製造方法および装置
KR19980083856A (ko) 전기투석과 역삼투막에 의한 산폐수의 재이용 방법 및 그 장치
JP2002187707A (ja) ヨウ素含有かん水中からの溶解物の採取方法
JP2009233633A (ja) 水処理方法および水処理装置