JP2002212635A - Method for producing grain oriented silicon steel sheet having excellent magnetic property - Google Patents
Method for producing grain oriented silicon steel sheet having excellent magnetic propertyInfo
- Publication number
- JP2002212635A JP2002212635A JP2001005525A JP2001005525A JP2002212635A JP 2002212635 A JP2002212635 A JP 2002212635A JP 2001005525 A JP2001005525 A JP 2001005525A JP 2001005525 A JP2001005525 A JP 2001005525A JP 2002212635 A JP2002212635 A JP 2002212635A
- Authority
- JP
- Japan
- Prior art keywords
- silicon steel
- steel sheet
- annealing
- mass
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、方向性珪素鋼板の
製造方法、特に、低鉄損高磁束密度の一方向性珪素鋼板
を安価に製造する製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet, and more particularly to a method for producing a grain-oriented silicon steel sheet with low iron loss and high magnetic flux density at low cost.
【0002】[0002]
【従来の技術】一方向性珪素鋼板は、主として変圧器そ
の他の電気機器の鉄心材料として使用されており、磁束
密度および鉄損値等の磁気特性に優れることが要求され
る。この一方向性珪素鋼板を製造するために、一般に採
用されている方法は、厚さ100〜300mmのスラブを
再加熱してから、熱間圧延し、得られた熱延板を1回ま
たは中間焼鈍をはさむ2回以上の冷間圧延によって最終
板厚とし、さらに、脱炭焼鈍後、焼鈍分離剤を塗布して
からフォルステライトを主成分とするグラス皮膜の形
成、二次再結晶および純化を目的とした仕上げ焼鈍を行
うのが一般的である。2. Description of the Related Art A grain-oriented silicon steel sheet is mainly used as an iron core material for transformers and other electric equipment, and is required to have excellent magnetic properties such as magnetic flux density and iron loss value. In order to manufacture this unidirectional silicon steel sheet, a generally adopted method is to reheat a slab having a thickness of 100 to 300 mm, then hot-roll the slab, and apply the obtained hot-rolled sheet once or in the middle. The final thickness is obtained by cold rolling two or more times with annealing, and after decarburization annealing, an annealing separating agent is applied, and then the formation of a glass film mainly composed of forsterite, secondary recrystallization and purification are performed. It is common to carry out the desired finish annealing.
【0003】すなわち、まず、スラブを高温加熱してイ
ンヒビター成分を完全に固溶させた後、熱間圧延、さら
には、1回または2回以上の冷間圧延および1回または
2回以上の焼鈍によって得られる一次再結晶粒組織を制
御し、しかる後、仕上げ焼鈍でその一次再結晶粒{11
0}<001>方位の結晶粒に二次再結晶させることによ
り、必要な磁気特性を確保するようにしたものである。That is, first, a slab is heated at a high temperature to completely dissolve the inhibitor component, followed by hot rolling, one or more times of cold rolling and one or more times of annealing. The primary recrystallized grain structure obtained by the above method is controlled, and then the primary recrystallized grain # 11 is subjected to finish annealing.
The necessary magnetic properties are ensured by secondary recrystallization into crystal grains having a 0} <001> orientation.
【0004】このような二次再結晶を効果的に促進させ
るためには、まず、一次再結晶粒の正常粒成長を抑制す
るためのインヒビターと呼ばれる分散相を、鋼中に均一
かつ適正なサイズで分散するようにその析出状態を制御
し、かつ、一次再結晶粒組織を板厚全体にわたって適当
な大きさの結晶粒でしかも均一な分布とすることが重要
である。In order to effectively promote such secondary recrystallization, first, a dispersed phase called an inhibitor for suppressing normal growth of primary recrystallized grains is uniformly and appropriately sized in steel. It is important to control the precipitation state so as to disperse the particles and to make the primary recrystallized grain structure uniform in size and uniform in size throughout the plate thickness.
【0005】かかるインヒビターの代表的なものとし
て、MnS、MnSe、AlNおよびVNのような硫化
物、セレン化物や窒化物等で、鋼中への溶解度が極めて
小さい物質が用いられている。また、Sb、Sn、A
s、Pb、Ce、CuおよびMo等の粒界偏析型元素も
インヒビターとして利用されている。一方向性珪素鋼板
の製造でAlNを主なインヒビターとして用いる方法
は、大きく2つに別けられる。一つは、例えば、特公昭
40−15644号公報に記載のように、インヒビター
をスラブ加熱段階で完全に固溶させる方法である。この
方法では、スラブ加熱炉内での温度不均一が不可避的に
生じるので、少なくとも、スラブ最低温度位置でのスラ
ブ厚み方向の半分以上でインヒビターを固溶させること
が必須である。このため、実操業では超高温スラブ加熱
を行うか、スラブ均一加熱のための特別な装置が必要に
なる。それ故、従来から言われているノロの発生や、熱
延鋼板の端部割れ等の弊害が生じ、また、大きな設備投
資が必要となる。As typical examples of such inhibitors, substances such as sulfides, selenides and nitrides such as MnS, MnSe, AlN and VN, which have extremely low solubility in steel, are used. Also, Sb, Sn, A
Grain boundary segregation elements such as s, Pb, Ce, Cu and Mo are also used as inhibitors. The method of using AlN as a main inhibitor in the production of a unidirectional silicon steel sheet is roughly classified into two methods. One is a method of completely dissolving the inhibitor in the slab heating step as described in Japanese Patent Publication No. 40-15644. In this method, since the temperature in the slab heating furnace is inevitably non-uniform, it is essential to dissolve the inhibitor in at least half of the slab thickness direction at the slab lowest temperature position. For this reason, in the actual operation, an ultra-high-temperature slab heating is performed or a special device for uniform slab heating is required. Therefore, adverse effects such as generation of slag and cracks at the ends of the hot-rolled steel sheet, which have been hitherto called, occur, and a large capital investment is required.
【0006】他の一つは、例えば、特開昭59−565
22号公報に記載のように、スラブ加熱段階では固溶さ
せず積極的に析出させ、脱炭焼鈍後二次再結晶開始間に
窒化処理により二次インヒビター(二次再結晶現象に作
用するインヒビター)を確保する方法である。この場
合、スラブ加熱温度を低くすることができるので、上記
の高温過熱に伴う困難はないが、一次インヒビター(脱
炭焼鈍後の一次再結晶粒径を決めるインヒビター)強度
が弱いため、良好なGOSS方位集合組織を得るために
は、脱炭焼鈍での温度を変更し一次再結晶粒系を調節す
る必要が生じ、また、グラス皮膜形成が行われる仕上げ
焼鈍時における窒素含有量が、上記固溶法の場合より多
くなることから、グラス皮膜の品質が安定しないことが
ある。Another one is disclosed, for example, in JP-A-59-565.
As described in Japanese Patent Publication No. 22, the slab is heated not to form a solid solution at the slab heating stage, but to be positively precipitated. ). In this case, since the slab heating temperature can be lowered, there is no difficulty associated with the above-mentioned high-temperature superheating, but the strength of the primary inhibitor (inhibitor that determines the primary recrystallized grain size after decarburization annealing) is weak, so that good GOSS is achieved. In order to obtain the orientation texture, it is necessary to change the temperature in the decarburizing annealing to adjust the primary recrystallized grain system, and the nitrogen content at the time of the final annealing in which the glass film is formed is increased by the solid solution. The quality of the glass film may not be stable because the amount is larger than in the case of the method.
【0007】以上のように、Alを含有する一方向性珪
素鋼板は、その磁気特性は優れているものの実工業生産
において多大な困難が存在する。いずれにしても、良好
な二次再結晶組織を得るためには、インヒビターの成分
元素、熱間圧延におけるインヒビターの析出から、それ
以降の二次再結晶焼鈍に至までのインヒビターの制御が
重要な要件であり、より優れた磁気特性を確保するため
には、かかるインヒビター制御の重要性はますます大き
くなってきたといえる。As described above, the Al-containing unidirectional silicon steel sheet has excellent magnetic properties, but has great difficulties in actual industrial production. In any case, in order to obtain a good secondary recrystallization structure, it is important to control the inhibitor from the precipitation of the inhibitor element in the hot rolling to the subsequent secondary recrystallization annealing. It is a requirement, and it can be said that such inhibitor control becomes more and more important in order to secure better magnetic properties.
【0008】ところで、固溶法ではインヒビター制御の
観点から、熱間圧延工程における仕上げ圧延から巻き取
りまでの温度履歴に着目した従来技術として、例えば、
特公昭38−14009号公報、特開昭56−3343
1号公報、特開昭59−50118号公報、特開昭64
−73023号公報、特開平2−263924号公報、
特開平4−323号公報、特開平2−274811号公
報、特開平5−295442号公報記載のものが知られ
ている。[0008] By the way, in the solid solution method, from the viewpoint of inhibitor control, as a conventional technique focusing on the temperature history from finish rolling to winding in a hot rolling step, for example,
JP-B-38-14409, JP-A-56-3343
No. 1, JP-A-59-50118, JP-A-64
-73023, JP-A-2-263924,
JP-A-4-323, JP-A-2-274811, and JP-A-5-295442 are known.
【0009】特開昭56−33431号公報には、巻取
温度を700〜1000℃の温度範囲にコントールする
方法、700〜1000℃の高温巻取後該コイルを10
分〜5時間保熱する方法、および、700〜1000℃
の高温巻取後該コイルを急冷する方法が開示されてい
る。この技術は、インヒビターとしてのAlNの析出分
散状態を改善する方法であるが、巻き取り後のコイル形
状での自己焼鈍により不均一な脱炭が進み、その後の冷
延集合組織の形成も不安定となり製品特性のばらつきが
大きくなる。とくにコイル形状での水冷等は、冷却速度
の不均一を招くことで製品特性のばらつきの要因とな
る。Japanese Patent Application Laid-Open No. 56-33431 discloses a method of controlling the winding temperature to a temperature range of 700 to 1000 ° C.
Method of keeping heat for minutes to 5 hours, and 700 to 1000 ° C
A method of quenching the coil after high-temperature winding is disclosed. This technique is a method of improving the precipitation and dispersion of AlN as an inhibitor. However, non-uniform decarburization proceeds due to self-annealing in the coil shape after winding, and the formation of the cold rolled texture is also unstable. And the variation in product characteristics becomes large. In particular, water cooling or the like in a coil shape causes unevenness in the cooling rate, thereby causing variations in product characteristics.
【0010】特開昭59−50118号公報には熱延鋼
帯を仕上最終スタンドを離れてから下記の(1)、
(2)式より算出される温度の範囲まで7〜40℃/秒
の冷却速度で冷却し、その後、巻取り放冷する方法、お
よび、熱延鋼帯を仕上最終スタンドを離れてから下記の
(3)式より算出される温度以下に7〜30℃/秒で冷
却した後、巻取り、さらに、該巻取り鋼帯を水冷する方
法が開示されている。Japanese Unexamined Patent Publication (Kokai) No. 59-50118 discloses the following (1) after finishing a hot-rolled steel strip and leaving the final stand.
A method of cooling at a cooling rate of 7 to 40 ° C./sec to a temperature range calculated from the formula (2), and then winding and cooling the hot rolled steel strip. A method of cooling at a temperature of 7 to 30 ° C./sec below the temperature calculated from the equation (3), winding, and further cooling the wound steel strip with water is disclosed.
【0011】 (35×logV+515)℃ ・・・・・・(1) (445×logV−570)℃・・・・・・(2) (20×logV+555)℃ ・・・・・・(3) 〔ただし、V:仕上げ最終スタンドを離れてから巻取る
までの熱延鋼帯の冷却速度(℃/秒)〕 ただし、この技術が対象とするのはインヒビターとして
AlNを用いない場合である。(35 × logV + 515) ° C. (1) (445 × logV-570) ° C. (2) (20 × logV + 555) ° C. (3) [However, V: Cooling rate of hot-rolled steel strip from leaving the final finishing stand to winding it up (° C./sec)] However, this technique is applicable when AlN is not used as an inhibitor.
【0012】また、特開平2−263924号公報で
は、質量%でC:0.02〜0.100%、Si:2.
5〜4.5%ならびに通常のインヒビター成分を含み、
残部はFeおよび不可避的不純物よりなる珪素鋼スラブ
を熱延し、熱延板焼鈍することなく、引き続き圧下率8
0%以上の冷延、脱炭焼鈍、最終仕上げ焼鈍を施して一
方向性珪素鋼板を製造する方法において、熱延終了温度
を750〜1150℃とし、熱延終了後少なくとも1秒
以上、700℃以上の温度を保持し、巻取り温度700
℃未満とする技術が開示されている。In Japanese Patent Application Laid-Open No. 2-263924, C: 0.02 to 0.100% by mass%, Si: 2.
Containing 5-4.5% as well as the usual inhibitor components,
The remainder is hot-rolled with a silicon steel slab composed of Fe and unavoidable impurities, and without a hot-rolled sheet annealed, a reduction rate of 8
In a method for producing a unidirectional silicon steel sheet by performing cold rolling, decarburizing annealing, and final finish annealing of 0% or more, the hot rolling end temperature is set to 750 to 1150 ° C, and at least 1 second or more, 700 ° C after the end of hot rolling. The above temperature is maintained and the winding temperature is 700
A technique for lowering the temperature to less than ° C is disclosed.
【0013】この技術は、コストダウンの観点から、仕
上げ圧延後に高温保持することにより再結晶を促進さ
せ、組織を改善し、熱延板焼鈍を省略しようというもの
である。この技術により熱延後の再結晶を促進すること
で、組織的には改善され、熱延板焼鈍を省略することは
できるが、従来に増して良好なインヒビター析出状態を
得るには至っていない。しかも、この技術は、熱延板焼
鈍を省略していることから、インヒビターの析出制御を
犠牲にしなければならないという問題点がある。From the viewpoint of cost reduction, this technique is intended to promote recrystallization by maintaining a high temperature after finish rolling, improve the structure, and omit hot rolled sheet annealing. By promoting the recrystallization after hot rolling by this technique, the structure is improved and the annealing of the hot rolled sheet can be omitted, but a better inhibitor precipitation state has not yet been obtained as compared with the prior art. In addition, this technique has a problem in that the control of inhibitor precipitation must be sacrificed because the hot-rolled sheet annealing is omitted.
【0014】また、特開平2−274811号公報で
は、質量%でC:0.021〜0.075%、Si:
2.5〜4.5%、酸可溶性Al:0.010〜0.0
60%、N:0.0030〜0.0130%、S+0.
405Se:0.014%以下、Mn:0.05〜0.
8%を含有し、残部はFeおよび不可避的不純物よりな
るスラブを1280℃未満の温度で加熱してから、熱延
を行い、引き続き、必要に応じて熱延板焼鈍を行い、次
いで圧下率80%以上の最終冷延を含み、必要に応じ
て、中間焼鈍をはさむ一回以上の冷延を行い、その後、
脱炭焼鈍と最終仕上げ焼鈍を施して一方向性珪素鋼板を
製造する方法において、熱延終了温度を750〜115
0℃とし、熱延終了後少なくとも1秒以上、700℃以
上の温度に保持し、巻き取り温度を700℃未満とする
技術が開示されている。In Japanese Patent Laid-Open No. 2-74811, C: 0.021 to 0.075% by mass, Si:
2.5-4.5%, acid-soluble Al: 0.010-0.0
60%, N: 0.0030 to 0.0130%, S + 0.
405Se: 0.014% or less, Mn: 0.05-0.
A slab containing 8% and the remainder consisting of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., then hot-rolled, and subsequently, if necessary, hot-rolled sheet annealing, and then a reduction of 80%. % Or more, including one or more final cold rollings, and if necessary, one or more cold rollings with intermediate annealing.
In the method for producing a grain-oriented silicon steel sheet by performing decarburizing annealing and final finishing annealing, the hot rolling end temperature is set to 750 to 115.
A technique is disclosed in which the temperature is set to 0 ° C., the temperature is maintained at 700 ° C. or higher for at least 1 second or more after completion of hot rolling, and the winding temperature is set to less than 700 ° C.
【0015】この技術は、低温スラブ加熱を施す製造プ
ロセスにおいて仕上げ圧延後に高温保持することにより
再結晶を促進させ、磁気特性を向上、安定化しようとす
るものである。しかしながら、低温スラブ加熱ではAl
Nは十分に固溶せず、AlNの析出挙動が鋼板位置によ
り変動するため、磁気特性に優れた製品を安定して製造
することはできない。すなわち、低温スラブ加熱を行う
工程では、スラブ加熱・熱間圧延におけるインヒビター
の制御が効を奏しないため、磁気特性に優れた製品を安
定して製造することができないという問題がある。This technique aims to promote recrystallization by maintaining a high temperature after finish rolling in a manufacturing process in which low-temperature slab heating is performed, thereby improving and stabilizing magnetic properties. However, in low-temperature slab heating, Al
Since N does not form a solid solution sufficiently and the precipitation behavior of AlN fluctuates depending on the position of the steel sheet, it is impossible to stably produce a product having excellent magnetic properties. That is, in the step of performing low-temperature slab heating, there is a problem in that the control of the inhibitor in slab heating and hot rolling is ineffective, so that a product having excellent magnetic properties cannot be stably manufactured.
【0016】また、特開平8−100216号公報は、
AlNを主なインヒビターとする場合の熱延のでの冷却
条件が規定されており、Cuの含有も記述されているが
その効用について記載はなくCuは必須ではない。Also, Japanese Patent Application Laid-Open No. Hei 8-100216 discloses that
Cooling conditions for hot rolling when AlN is used as the main inhibitor are specified, and the content of Cu is also described, but its effect is not described and Cu is not essential.
【0017】[0017]
【発明が解決しようとする課題】上記の従来技術に共通
していることは、AlNを主なインヒビターとする一方
向性珪素鋼板の製造においては、良好なインヒビターの
機能を確保するために、超高温スラブ加熱(1350℃
を超える温度)、または、窒化処理によるグラス皮膜欠
陥等の本質的課題が存在していることである。What is common to the above-mentioned prior arts is that, in the production of a unidirectional silicon steel sheet using AlN as a main inhibitor, an ultra-high-strength inhibitor is required in order to ensure a good inhibitor function. High temperature slab heating (1350 ° C
Or a substantial problem such as a glass film defect due to the nitriding treatment.
【0018】そこで、本発明者らは、インヒビターを各
種鋭意検討して、スラブ加熱温度が超高温度でなくて
も、また、脱炭焼鈍温度を変更させることなく一方向性
電磁鋼板を安定的に製造できる方法を見いだすことを試
みた。AlNを主なインヒビターとして用いる一方向性
珪素鋼板の製造において補助インヒビターとしてMn
S、Cu2S 、MnSeを用いる方法は、固溶法では、
例えば、特開昭58−217630号公報に、また、析
出法でも、例えば、特開平7−204781号公報に開
示されている。本発明者らはこれらに代えて、補助イン
ヒビターとして銅のセレン化合物が有効であることを見
いだし、本発明を完成した。Therefore, the present inventors have studied the inhibitors in various ways and have found that even if the slab heating temperature is not an ultra-high temperature and the decarburization annealing temperature is not changed, the unidirectional electrical steel sheet can be stably produced. We tried to find a way to manufacture it. Mn as an auxiliary inhibitor in the production of a grain-oriented silicon steel sheet using AlN as the main inhibitor
The method using S, Cu 2 S and MnSe is a solid solution method.
For example, it is disclosed in JP-A-58-217630, and the precipitation method is disclosed in JP-A-7-204781. Instead of these, the present inventors have found that a copper selenium compound is effective as an auxiliary inhibitor, and have completed the present invention.
【0019】[0019]
【課題を解決するための手段】(1) C:0.01〜
0.10質量%、Si:2.5〜4.5質量%、Al:
0.015〜0.035質量%、N:0.003〜0.
008質量%、Cu:0.02〜0.15質量%、S
e:0.007〜0.025質量%を含み、残部Feお
よび不可避的不純物からなる珪素鋼スラブを、1200
℃以上1350℃以下のAlNが固溶する温度に加熱し
てから、熱間圧延し、次いで、熱延板焼鈍を施した後、
1回または中間焼鈍をはさむ2回以上の冷間圧延を行
い、その後、脱炭焼鈍を行い、MgOを主成分とする焼
鈍分離剤を塗布し、次いで、箱型焼鈍炉で二次再結晶、
グラス皮膜形成と純化を起こさしめ、次いで形状矯正の
熱処理を行うことを特徴とするに磁気特性に優れる一方
向性珪素鋼板の製造方法。Means for Solving the Problems (1) C: 0.01 to
0.10% by mass, Si: 2.5 to 4.5% by mass, Al:
0.015 to 0.035 mass%, N: 0.003 to 0.
008% by mass, Cu: 0.02 to 0.15% by mass, S
e: A silicon steel slab containing 0.007 to 0.025% by mass, the balance being Fe and inevitable impurities was 1200
After heating to a temperature at which AlN of not less than 1350 ° C. and not more than 1350 ° C. is solid-dissolved, hot-rolled, and then subjected to hot-rolled sheet annealing,
Perform cold rolling once or twice or more with intermediate annealing, then perform decarburizing annealing, apply an annealing separator containing MgO as a main component, and then perform secondary recrystallization in a box-type annealing furnace.
A method for producing a unidirectional silicon steel sheet having excellent magnetic properties, characterized by forming a glass film, purifying the glass film, and then performing a heat treatment for shape correction.
【0020】(2) 前記珪素鋼スラブ中のSeとSと
が、 1/18(0.215−5[Se])≦[S]≦1/1
8(0.430−10[Se])(ただし、[Se]、
[S]は質量%) を満たすことを特徴とする(1)の磁気特性に優れる一
方向性珪素鋼板の製造方法。(2) The ratio of Se and S in the silicon steel slab is 1/18 (0.215-5 [Se]) ≦ [S] ≦ 1/1
8 (0.430-10 [Se]) (where [Se],
[S] is% by mass.] (1) The method for producing a unidirectional silicon steel sheet having excellent magnetic properties according to (1).
【0021】(3) 前記熱間圧延の仕上げ圧延終了温
度を900〜1100℃の範囲とし、かつ前記仕上げ圧
延終了後巻き取りまでの冷却を下記式; T(t)<FDT−(FDT−700)×t/6 2≦t≦6 〔ただし、T(t):鋼板温度(℃)、FDT:仕上げ
圧延終了温度(℃) 、t:熱間圧延の仕上げ圧延終了からの経過時間
(秒)〕を満足するように処理し、700℃以下で巻き
取ることを特徴とする(1)、または(2)の磁気特性
に優れる一方向性珪素鋼板の製造方法。(3) The finish rolling finish temperature of the hot rolling is in the range of 900 to 1100 ° C., and the cooling from the completion of the finish rolling to the winding is represented by the following formula: T (t) <FDT- (FDT-700) ) × t / 6 2 ≦ t ≦ 6 [where T (t): steel sheet temperature (° C.), FDT: finish rolling finish temperature (° C.), t: elapsed time from finish finish of hot rolling (second) And (2) the method of producing a unidirectional silicon steel sheet having excellent magnetic properties.
【0022】(4) 前記珪素鋼スラブの成分として、
さらに、Mnを0.02〜0.10質量%含有すること
を特徴とする(1)〜(3)のいずれかの磁気特性に優
れる一方向性珪素鋼板の製造方法。 (5) 前記脱炭焼鈍完了後の一次再結晶粒の平均粒径
を7μm以上18μm未満とすることを特徴とする
(1)〜(4)のいずれかの磁気特性に優れる一方向性
珪素鋼板の製造方法。(4) As a component of the silicon steel slab,
Further, the method for producing a unidirectional silicon steel sheet having excellent magnetic properties according to any one of (1) to (3), wherein Mn is contained in an amount of 0.02 to 0.10% by mass. (5) The unidirectional silicon steel sheet having excellent magnetic properties according to any one of (1) to (4), wherein the average grain size of the primary recrystallized grains after completion of the decarburizing annealing is set to 7 μm or more and less than 18 μm. Manufacturing method.
【0023】(6) 前記珪素鋼スラブの成分として、
さらに、Sn、Sb、Pの少なくとも1種を0.02〜
0.30質量%含有することを特徴とする(1)〜
(5)のいずれかの磁気特性に優れる一方向性珪素鋼板
の製造方法。 (7) 前記珪素鋼スラブの成分として、さらに、Cr
を0.02〜0.30質量%含有することを特徴とする
(1)〜(6)のいずれかの磁気特性に優れる一方向性
珪素鋼板の製造方法。(6) As a component of the silicon steel slab,
Further, at least one of Sn, Sb, and P may
(1)-characterized by containing 0.30% by mass.
(5) The method for producing a unidirectional silicon steel sheet having excellent magnetic properties according to any of (5). (7) As a component of the silicon steel slab, Cr
(1) to (6), characterized by containing 0.02 to 0.30% by mass.
【0024】(8) 前記珪素鋼スラブの成分として、
さらに、Niを0.03〜0.30質量%含有すること
を特徴とする(1)〜(7)のいずれかの磁気特性に優
れる一方向性珪素鋼板の製造方法。 (9) 前記珪素鋼スラブの成分として、さらに、M
o、Cdの少なくとも1種を0.005〜0.30質量
%含有することを特徴とする(1)〜(8)の磁気特性
に優れる一方向性珪素鋼板の製造方法。(8) As a component of the silicon steel slab,
Further, the method for producing a unidirectional silicon steel sheet excellent in magnetic properties according to any one of (1) to (7), wherein Ni is contained in an amount of 0.03 to 0.30% by mass. (9) As a component of the silicon steel slab, M
(1) The method for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to (1) to (8), wherein at least one of Cd and 0.005% by mass is contained.
【0025】(10)前記冷間圧延における最終冷間圧
延の直前の鋼板焼鈍において、その焼鈍温度を950〜
1150℃、焼鈍時間を30秒以上600秒以下とする
ことを特徴とする(1)〜(9)のいずれかの磁気特性
に優れる一方向性珪素鋼板の製造方法。 (11) 前記冷間圧延における最終冷間圧延の圧延率
を80〜92%とすることを特徴とする(1)〜(1
0)のいずれかの磁気特性に優れる一方向性珪素鋼板の
製造方法。(10) In the steel sheet annealing just before the final cold rolling in the cold rolling, the annealing temperature is set to 950 to 950.
(1) The method for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to any one of (1) to (9), wherein the annealing time is 30 seconds or more and 600 seconds or less. (11) The rolling rate of the final cold rolling in the cold rolling is set to 80 to 92% (1) to (1).
0) The method for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to any one of (1) and (2).
【0026】(12) 前記冷間圧延における最終冷間
圧延の少なくとも1パスにおいて、鋼板を100〜30
0℃の温度範囲に1分以上保つことを特徴とする(1)
〜(11)のいずれかの磁気特性に優れる一方向性珪素
鋼板の製造方法。(12) In at least one pass of the final cold rolling in the cold rolling, a steel sheet is
It is characterized in that it is kept in a temperature range of 0 ° C. for 1 minute or more (1).
A method for producing a unidirectional silicon steel sheet having excellent magnetic properties according to any one of (1) to (11).
【0027】[0027]
【発明の実施の形態】本発明の最大の特徴は、次の2点
である。まず第1に、インヒビターとして用いるAlN
のみでなく、CuとSeを含有することにより、銅のセ
レン化合物Cu−Seのインヒビター効果を見いだした
ことである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The most significant features of the present invention are the following two points. First, AlN used as an inhibitor
Not only that, by containing Cu and Se, an inhibitory effect of the copper selenium compound Cu—Se was found.
【0028】次に、従来熱延での加熱炉の温度不均一で
生じる磁気特性不良(主に所謂スキットマーク)は、主
にAlNの固溶程度の差で生じることを見いだした。ま
た、Mn系とCu系の析出物は、相手元素S、Seの含
有量が少ない場合は微細に少量析出し、その結果、磁気
特性不良が生じるが、本発明の範囲では、二次再結晶に
影響しないことを見いだした。Next, it has been found that the magnetic property defect (mainly a so-called skit mark) which occurs due to the non-uniform temperature of the heating furnace in the conventional hot rolling mainly occurs due to the difference in the degree of solid solution of AlN. Further, when the content of the counter elements S and Se is small, the Mn-based and Cu-based precipitates are finely precipitated in small amounts, resulting in poor magnetic properties. However, within the scope of the present invention, secondary recrystallization occurs. Has not been affected.
【0029】また、このインヒビター複合と脱炭焼鈍後
二次再結晶開始までの間の窒化により、さらに、磁気特
性が良好となることを見いだした。以下、本発明につい
て詳細に述べる。本発明者らは、上掲の目的の実現に向
けて詳細に検討した結果、Al含有の一方向性珪素鋼板
において、Cu−Seが、一方向性珪素鋼板製造におけ
るGOSS方位粒を確保するための非常に大きな補助イ
ンヒビター効果を有することを見いだした。もちろん、
Cu−Seのインヒビション効果(粒成長抑制効果)に
ついては、CAMP-ISIJ Vol.3(1990)-1837に記載されてい
るが、この文献の材料はAlを含有しておらず、さら
に、一方向性珪素鋼板の磁気特性については何ら言及し
ていない。Further, it has been found that the magnetic properties are further improved by the inhibitor complex and the nitriding before the start of the secondary recrystallization after the decarburizing annealing. Hereinafter, the present invention will be described in detail. The present inventors have conducted a detailed study for realizing the above-mentioned object, and as a result, in the Al-containing unidirectional silicon steel sheet, Cu-Se is used to secure GOSS orientation grains in the production of the unidirectional silicon steel sheet. Have a very large auxiliary inhibitor effect. of course,
The inhibition effect (grain growth suppression effect) of Cu-Se is described in CAMP-ISIJ Vol. 3 (1990) -1837, but the material in this document does not contain Al, and furthermore, No mention is made of the magnetic properties of the unidirectional silicon steel sheet.
【0030】本発明者らは、検討の結果、AlNはスラ
ブ加熱時に固溶させ熱延板では固溶させ、続く最終冷間
圧延前の連続焼鈍で微細析出させると、Cu系、Mn系
化合物の析出がある程度不均一でも、また、脱炭焼鈍・
一次再結晶温度を810℃〜900℃まで変化させて
も、一次再結晶焼鈍後の粒径は大きく変動しないことを
見いだした。逆に、熱延での再加熱時にAlNを完全固
溶させず、また、熱延での固溶が不十分であると、脱炭
焼鈍・一次再結晶温度の粒径は変動する。As a result of the study, the present inventors have found that AlN forms a solid solution at the time of slab heating, forms a solid solution in a hot-rolled sheet, and finely precipitates by continuous annealing before final cold rolling. Even if the precipitation of the alloy is somewhat uneven,
It has been found that even if the primary recrystallization temperature is changed from 810 ° C to 900 ° C, the grain size after the primary recrystallization annealing does not change significantly. Conversely, if AlN is not completely dissolved in hot rolling at the time of reheating in hot rolling and the solid solution in hot rolling is insufficient, the particle size of the decarburizing annealing / primary recrystallization temperature fluctuates.
【0031】言い換えれば、一度固溶し、その後微細析
出したAlNは従来技術での一次・二次インヒビター機
能の両方を持たせるための量がなくても、非常に強い一
次インヒビター効果があることを見いだした。しかし、
この微細AlNのみでは一方向性電磁鋼板での二次再結
晶GOSS方位を安定的に得ることはできない。In other words, it can be seen that AlN which has been dissolved once and then finely precipitated has a very strong primary inhibitor effect even if there is no amount for providing both primary and secondary inhibitor functions in the prior art. I found it. But,
It is not possible to stably obtain the secondary recrystallized GOSS orientation in the grain-oriented electrical steel sheet only with this fine AlN.
【0032】そこで、本発明者は、一方向性珪素鋼板で
安定的にGOSS方位二次再結晶を得るために、この微
細AlNを主なインヒビターとし、補助インヒビターと
してCuのセレン化物を用いると、良好なGOSS二次
再結晶が得られることを見いだした。Cu−Seは固溶
後の析出速度は非常に早く、特にMnが少ない場合は優
先的に析出する。また、このCu−Seが、AlNの補
助二次インヒビターとして効果的であることを見いだし
た。この理由としては、析出サイズがMnSより大きく
均一で熱的に安定なためであると推定している。In order to stably obtain the secondary recrystallization of the GOSS orientation in a unidirectional silicon steel sheet, the present inventor uses the fine AlN as a main inhibitor and uses a selenide of Cu as an auxiliary inhibitor. It has been found that good GOSS secondary recrystallization can be obtained. Cu-Se has a very high deposition rate after solid solution, and is preferentially precipitated when Mn is small. In addition, they have found that this Cu-Se is effective as an auxiliary secondary inhibitor of AlN. It is presumed that the reason for this is that the precipitate size is larger than MnS and is uniform and thermally stable.
【0033】スラブ加熱温度を1200〜1350℃に
規定するのは、1200℃未満ではAlNの固溶に不均
一が生じるからである。1350℃を超えると熱延の加
熱炉の操業が超高温度となり、従来から言われている数
々の困難が伴う。この温度範囲では、Cuが存在すると
Mnの化合物の固溶温度が下がると推定され、結果とし
て、Mn化合物単体の場合よりインヒビターの析出が均
一にもなる。なお、好ましい加熱温度範囲は1250〜
1315℃である。The reason why the slab heating temperature is set to 1200 to 1350 ° C. is that if the temperature is less than 1200 ° C., the solid solution of AlN becomes non-uniform. When the temperature exceeds 1350 ° C., the operation of the heating furnace for hot rolling becomes an extremely high temperature, and there are various difficulties conventionally known. In this temperature range, it is estimated that the presence of Cu lowers the solid solution temperature of the Mn compound, and as a result, the precipitation of the inhibitor becomes more uniform than in the case of the Mn compound alone. In addition, a preferable heating temperature range is 1250 to
1315 ° C.
【0034】この均一に析出したCu−Seは、二次再
結晶焼鈍時に二次インヒビターとしてAlNを補強し、
GOSS({110}<001>)方位粒の優先成長を
助長して良好な磁気特性が得られる。仕上げ圧延終了温
度(FDT)を900〜1100℃としたのは、900
℃未満では仕上げ圧延スタンド内で望ましくないインヒ
ビター析出が起こり、1100℃を超えて高温になる
と、通板と冷却の両立が極めて困難となるためである。
なお、好ましい仕上げ圧延終了温度範囲は950〜10
00℃である。This uniformly precipitated Cu—Se reinforces AlN as a secondary inhibitor during secondary recrystallization annealing,
Good magnetic properties can be obtained by promoting preferential growth of GOSS ({110} <001>) oriented grains. The reason why the finish rolling end temperature (FDT) was set to 900 to 1100 ° C. was 900
If the temperature is lower than 1 ° C., undesirable inhibitor precipitation occurs in the finishing rolling stand, and if the temperature is higher than 1100 ° C., it becomes extremely difficult to achieve both passing and cooling.
The preferred finish rolling end temperature range is 950 to 10
00 ° C.
【0035】巻き取り温度を700℃以下としたのは、
700℃を超えた高温では、巻き取り後の自己焼鈍によ
りAlNが析出し、磁気特性不良となる。なお、好まし
い巻き取り温度範囲は500〜600℃である。すなわ
ち、熱延の仕上げ圧延終了から巻き取りまでの温度履歴
を規定するのは、規定範囲ではAlNを析出させず固溶
を十分行わしめるためである。規定範囲より遅くすると
熱延中に析出して磁気特性が不良となる。The reason why the winding temperature is set to 700 ° C. or less is as follows.
At a high temperature exceeding 700 ° C., AlN precipitates due to self-annealing after winding, resulting in poor magnetic properties. In addition, the preferable winding temperature range is 500-600 degreeC. That is, the reason for defining the temperature history from the finish rolling of hot rolling to winding up is to sufficiently dissolve the solid solution without precipitating AlN in the specified range. If it is slower than the specified range, it precipitates during hot rolling and the magnetic properties become poor.
【0036】仕上げ熱延終了後の温度履歴によってかか
る効果の得られる理由については明らかである。添加さ
れたインヒビター成分のAlNの熱延でのほぼ完全な固
溶とCu−Seの析出をより均一とするためである。し
たがって、仕上げ熱延終了直後の高温滞留時間を短くす
ることが、良好なインヒビターの析出形態を得るために
基本的に重要である。The reason why such an effect can be obtained by the temperature history after the completion of the finishing hot rolling is apparent. This is because AlN of the added inhibitor component is made almost completely solid solution by hot rolling and precipitation of Cu-Se is made more uniform. Therefore, it is basically important to shorten the high-temperature residence time immediately after finishing hot-rolling in order to obtain a favorable inhibitor precipitation form.
【0037】本発明においては、上述した条件以外の、
熱間圧延、熱延板焼鈍、酸洗、中間焼鈍、冷間圧延、脱
炭焼鈍、焼鈍分離剤塗布および仕上げ焼鈍などの各工程
における製造条件は、それぞれ、公知の方法に従って行
えばよい。本発明の素材である含珪素鋼としては、溶鋼
段階からは主にAlNとCu−Seをインヒビターとし
て複合添加したものが適合する。その成分組成を挙げる
と次のとおりである。In the present invention, other than the conditions described above,
The production conditions in each of the steps such as hot rolling, hot rolled sheet annealing, pickling, intermediate annealing, cold rolling, decarburizing annealing, application of an annealing separator, and finish annealing may be performed according to known methods. As the silicon-containing steel which is a material of the present invention, a steel containing a combination of AlN and Cu-Se as an inhibitor mainly suitable from the molten steel stage. The component composition is as follows.
【0038】C:0.01〜0.10質量% Cは、熱間圧延、冷間圧延中の組成の均一微細化のみな
らず、ゴス方位の発達に有用な元素であり、少なくとも
0.01質量%は含有させる必要がある。しかし、0.
10質量%を超えて含有すると脱炭が困難となり、かえ
ってゴス方位に乱れが生じるので上限は0.10質量%
とする。なお、好ましいC含有量は0.03〜0.08
質量%である。C: 0.01 to 0.10% by mass C is an element useful not only for making the composition uniform and fine during hot rolling and cold rolling, but also for developing the Goss orientation. It is necessary to contain the content by mass%. However, 0.
If the content exceeds 10% by mass, decarburization becomes difficult and the Goss orientation is rather disturbed. Therefore, the upper limit is 0.10% by mass.
And In addition, preferable C content is 0.03-0.08.
% By mass.
【0039】Si:2.5〜4.5質量% Siは、鋼板の比抵抗を高め、鉄損の低減に寄与する。
Si含有量が、2.5質量%未満では鉄損低減効果が十
分ではなく、また、純化と2次再結晶のため行われる高
温での仕上げ焼鈍において、α−γ変態による結晶方位
のランダム化が生じ、十分な磁気特性が得られない。一
方、4.5質量%を超えると冷間圧延性が損なわれ、製
造が困難となる。したがって、Si含有量は、2.5〜
4.5質量%とする。なお、好ましくは3.0〜3.7
質量%の範囲とする。Si: 2.5 to 4.5% by mass Si increases the specific resistance of the steel sheet and contributes to a reduction in iron loss.
When the Si content is less than 2.5% by mass, the effect of reducing iron loss is not sufficient, and in the finish annealing at a high temperature performed for purification and secondary recrystallization, randomization of crystal orientation due to α-γ transformation. And sufficient magnetic properties cannot be obtained. On the other hand, if it exceeds 4.5% by mass, the cold rollability is impaired, and the production becomes difficult. Therefore, the Si content is 2.5 to
It is set to 4.5% by mass. Preferably, 3.0 to 3.7.
% By mass.
【0040】Mn:0.02〜0.10質量% Mnは、不可避的に溶鋼に存在するが、本発明ではCu
を主なインヒビターとして用いるため、インヒビター元
素としては必須ではない。しかし、Mnは熱間脆性によ
る熱間圧延時の割れを防止するのに有効な元素であり、
その効果は0.02質量%未満では得られない。一方、
0.10質量%を超えて添加すると、スラブ加熱時に固
溶せず磁気特性の変動の要因となり、該特性を劣化させ
る。したがって、Mn含有量は、0.02〜0.10質
量%とする。なお、好ましくは0.03〜0.07質量
%の範囲とする。Mn: 0.02 to 0.10% by mass Mn is inevitably present in molten steel.
Is used as a main inhibitor and is not essential as an inhibitor element. However, Mn is an effective element for preventing cracking during hot rolling due to hot embrittlement,
The effect cannot be obtained at less than 0.02% by mass. on the other hand,
If it is added in excess of 0.10% by mass, it does not form a solid solution at the time of slab heating, which causes a change in magnetic properties and deteriorates the properties. Therefore, the Mn content is set to 0.02 to 0.10% by mass. In addition, it is preferably in the range of 0.03 to 0.07% by mass.
【0041】Al:0.015〜0.035質量% Alは、AlNを形成してインヒビターとして作用する
元素である。Al含有量が、0.015質量%未満では
抑制力の確保が十分ではなく、一方、0.035質量%
を超えるとその効果が損なわれるので、Al含有量は
0.015〜0.035質量%とする。なお、好ましい
範囲は0.024〜0.030質量%である。Al: 0.015 to 0.035% by mass Al is an element that forms AlN and acts as an inhibitor. If the Al content is less than 0.015% by mass, the suppression power is not sufficiently ensured.
If the content exceeds 1, the effect is impaired. Therefore, the Al content is set to 0.015 to 0.035% by mass. In addition, a preferable range is 0.024 to 0.030 mass%.
【0042】N:0.003〜0.008質量% Nは、AlNを形成してインヒビターとして作用する元
素である。本発明ではAlNはスラブ加熱時には完全に
固溶させる必要が有るので、Alとのバランスで制限を
受ける。N含有量が、0.003質量%未満では抑制力
の確保が十分ではなく、二次再結晶不良で磁気特性が劣
化する。一方、0.01質量%を超えるとブリスターな
る欠陥(膨れ)が生じるが、Alが上記範囲で固溶する
ので0.008質量%となる。なお、好ましい範囲は
0.004〜0.006質量%である。N: 0.003 to 0.008% by mass N is an element that forms AlN and acts as an inhibitor. In the present invention, AlN needs to be completely dissolved in the slab during heating, so that the balance with Al is limited. If the N content is less than 0.003% by mass, the suppression force is not sufficiently secured, and the magnetic properties are deteriorated due to poor secondary recrystallization. On the other hand, when the content exceeds 0.01% by mass, blister defects (swelling) occur, but the content is 0.008% by mass since Al forms a solid solution within the above range. Note that a preferable range is 0.004 to 0.006% by mass.
【0043】Se:単独で0.007〜0.025質量
% Seは、Cu−Seを形成してインヒビターとして作用
する有力な元素である。Se含有量が、単独で0.00
7質量%未満では微細に少量析出して、抑制力の確保が
均一ではなくなり、一方、0.025質量%を超えると
同様に磁気特性が不良となる。Se: 0.007 to 0.025% by mass alone Se is a powerful element that forms Cu—Se to act as an inhibitor. Se content is 0.00
If the amount is less than 7% by mass, a small amount of fine particles is precipitated, and the suppression force is not secured uniformly.
【0044】S:下記式を満たす量 Sは、従来はMnSを形成してインヒビターとして作用
する有力な元素であり、本発明の場合はSeを補完する
効果があるが、あまり多いとMnSを形成し固溶しな
い。Seとのバランスで、 1/18(0.215−5[Se])≦[S]≦1/1
8(0.430−10[Se])(ただし、[Se]、
[S]ともに質量%) とする。もちろん、Sは不可避的に0.003質量%程
度溶鋼に含有されているので現実的には複合含有とな
る。 Cu:0.02〜0.15質量% Cuは、本発明では補助インヒビターとして非常に重要
であり、0.02質量%未満であれば、Cu−Seとし
てのインヒビター効果はない。また、0.15質量%を
超えると鋼板表面に疵が生じ易くなる。このため、Cu
含有量は、0.02〜0.15質量%とする。S: an amount satisfying the following formula: S is a powerful element that forms MnS and acts as an inhibitor conventionally. In the case of the present invention, S has the effect of complementing Se, but if it is too large, it forms MnS. Do not form a solid solution. 1/18 (0.215-5 [Se]) ≦ [S] ≦ 1/1 in balance with Se
8 (0.430-10 [Se]) (where [Se],
[S] is mass%). Of course, S is inevitably contained in molten steel in an amount of about 0.003% by mass, so that it is practically a complex content. Cu: 0.02 to 0.15% by mass Cu is very important as an auxiliary inhibitor in the present invention, and if it is less than 0.02% by mass, there is no inhibitory effect as Cu—Se. On the other hand, if it exceeds 0.15% by mass, the surface of the steel sheet tends to have flaws. Therefore, Cu
The content is set to 0.02 to 0.15% by mass.
【0045】なお、本発明においては、インヒビター成
分として上記した元素の他に、Sn、Sb、P、Crも
有利に作用するので、それぞれ前記成分に併せて含有さ
せることもできる。これらの成分の好適添加範囲は、そ
れぞれ、0.02〜0.30質量%である。さらに、N
iは0.03〜0.30質量%、Mo、Cdは0.00
5〜0.30質量%で効果がある。In the present invention, Sn, Sb, P, and Cr act as an inhibitor component in addition to the above-mentioned elements, so that they can be contained together with the above components. The preferable addition range of these components is 0.02 to 0.30% by mass, respectively. Furthermore, N
i is 0.03 to 0.30 mass%, Mo and Cd are 0.00
The effect is effective at 5 to 0.30% by mass.
【0046】[0046]
【実施例】(実施例1)表1に示す化学組成を有し、残
部は実質的にFeよりなる厚み200mm、幅1000mm
の珪素鋼連続鋳造スラブを通常のガス加熱炉にて130
0℃で、AlNを溶体化すべく加熱し、熱間粗圧延した
後、圧延終了温度950℃の熱間仕上げ圧延を行い2.
3mm厚とし、その後、図1に示す各温度履歴で制御冷却
し、550℃で巻き取った。EXAMPLE 1 Example 1 has the chemical composition shown in Table 1, and the balance is substantially 200 mm in thickness and 1000 mm in width made of Fe.
Silicon steel continuous casting slab of 130
1. At 0 ° C., the AlN is heated to form a solution and hot rough rolling is performed, followed by hot finishing rolling at a rolling end temperature of 950 ° C.
The thickness was adjusted to 3 mm, and then controlled and cooled at each temperature history shown in FIG.
【0047】この熱延板に、980℃×3分間の熱延板
焼鈍、酸洗を施した後、1.55mmの中間板厚までの冷
間圧延、1120℃×45秒の中間焼鈍を経た後、0.
23mmの最終板厚まで冷間圧延した。次いで、得られた
冷延板を、湿水素雰囲気中で850℃、2分の脱炭焼鈍
を施し、次いで、MgOを主体成分とする焼鈍分離剤を
塗布し、窒素25%、水素75%雰囲気中で900〜1
100℃間の昇温速度15℃/時間で二次再結晶させ、
その後、水素雰囲気中で1200℃×20時間の最終仕
上げ純化焼鈍を施し、その後、形状矯正と張力を有する
絶縁皮膜を塗布して成品とした。かくして得られた成品
について、磁気特性を測定した。その結果を、表2に示
す。This hot-rolled sheet was subjected to hot-rolled sheet annealing at 980 ° C. × 3 minutes and pickling, and then cold-rolled to an intermediate sheet thickness of 1.55 mm, and intermediate annealing at 1120 ° C. × 45 seconds. Later, 0.
It was cold rolled to a final thickness of 23 mm. Next, the obtained cold-rolled sheet is subjected to decarburizing annealing at 850 ° C. for 2 minutes in a wet hydrogen atmosphere, and then an annealing separator containing MgO as a main component is applied, and the atmosphere is subjected to an atmosphere of 25% nitrogen and 75% hydrogen. 900-1 in
Secondary recrystallization at a heating rate of 15 ° C./hour between 100 ° C.,
Thereafter, final finishing purification annealing was performed at 1200 ° C. for 20 hours in a hydrogen atmosphere, and thereafter, an insulating film having shape correction and tension was applied to obtain a finished product. The magnetic properties of the obtained product were measured. Table 2 shows the results.
【0048】表2に示すように、本発明の方法によれ
ば、いずれも、高磁束密度かつ低鉄損の優れた磁気特性
を示すことがわかる。これに対し、本発明の範囲を外れ
た比較例では、磁気特性も劣っていることがわかる。As shown in Table 2, according to the method of the present invention, it can be seen that all of them show excellent magnetic properties such as high magnetic flux density and low iron loss. On the other hand, it can be seen that the magnetic properties of the comparative examples outside the range of the present invention are inferior.
【0049】[0049]
【表1】 [Table 1]
【0050】[0050]
【表2】 [Table 2]
【0051】(実施例2)表3に示す化学組成を有し、
残部は実質的にFeよりなる厚み250mm、幅1000
mmの珪素鋼連続鋳造スラブを通常のガス加熱炉にて12
90℃でインヒビター成分を溶体化すべく加熱し、熱間
粗圧延した後、圧延終了温度950℃の熱間仕上げ圧延
を行い2.3mm厚とし、その後、図1に示すA、Bの温
度履歴で制御冷却し、560℃で巻き取った。Example 2 Having the chemical composition shown in Table 3,
The balance is substantially 250 mm in thickness and 1000 mm in width made of Fe.
mm continuous cast silicon steel slab in a normal gas heating furnace.
After heating at 90 ° C. to form a solution of the inhibitor component and hot rough rolling, hot finishing rolling at a rolling end temperature of 950 ° C. was performed to a thickness of 2.3 mm, and then the temperature history of A and B shown in FIG. Controlled cooling and winding at 560 ° C.
【0052】この熱延板に、熱延板焼鈍(1120℃、
90秒)、酸洗を施した後、最終板厚(0.29mm)ま
で180℃〜250℃の温間で圧延した。次いで、得ら
れた冷延板を、湿水素雰囲気中で850℃、3分の脱炭
焼鈍を施し、次いで、MgOを主体成分とする焼鈍分離
剤を塗布し、窒素25%、水素75%雰囲気中で900
〜1100℃間の昇温速度10℃/時間15℃/時間で
二次再結晶をさせその後、水素雰囲気中で1200℃、
20時間の最終仕上げ純化焼鈍を施し、その後、形状矯
正と張力を有する絶縁皮膜を塗布して成品とした。かく
して得られた成品について、磁気特性を測定した。その
結果を、表4に示す。The hot rolled sheet was annealed (1120 ° C.,
(90 seconds), and after pickling, rolled to a final sheet thickness (0.29 mm) at a temperature of 180 ° C to 250 ° C. Next, the obtained cold-rolled sheet is subjected to decarburizing annealing at 850 ° C. for 3 minutes in a wet hydrogen atmosphere, and then an annealing separating agent containing MgO as a main component is applied, and an atmosphere of 25% nitrogen and 75% hydrogen is applied. 900 in
The secondary recrystallization is performed at a heating rate of 10 ° C./hour 15 ° C./hour between −1100 ° C. and 1200 ° C. in a hydrogen atmosphere.
The product was subjected to final finishing purification annealing for 20 hours, and thereafter, an insulating film having shape correction and tension was applied to obtain a finished product. The magnetic properties of the obtained product were measured. Table 4 shows the results.
【0053】表4に示すように、本発明の方法によれ
ば、いずれも高磁束密度かつ低鉄損の優れた磁気特性を
示すことがわかる。これに対し、本発明の範囲を外れた
比較例では、磁気特性も劣っていることがわかる。As shown in Table 4, according to the method of the present invention, it can be seen that all of them show excellent magnetic properties such as high magnetic flux density and low iron loss. On the other hand, it can be seen that the magnetic properties of the comparative examples outside the range of the present invention are inferior.
【0054】[0054]
【表3】 [Table 3]
【0055】[0055]
【表4】 [Table 4]
【0056】[0056]
【発明の効果】上述したように、本発明によれば、イン
ヒビターとしてAlNとCu−Seを複合して用いる一
方向性珪素鋼板の製造では、従来の方法が抱えていた超
高温加熱の問題点が解消され、また、脱炭焼鈍の条件、
特に焼鈍温度を変更する必要がなく、磁気特性の優れた
一方向性珪素鋼板の製造が可能となる。As described above, according to the present invention, in the production of a unidirectional silicon steel sheet using a combination of AlN and Cu-Se as an inhibitor, the problem of the ultra-high temperature heating which the conventional method has had. And the conditions of decarburization annealing,
In particular, there is no need to change the annealing temperature, and it is possible to manufacture a unidirectional silicon steel sheet having excellent magnetic properties.
【図1】熱間圧延の仕上げ圧延終了後の冷却履歴を示す
図である。FIG. 1 is a diagram showing a cooling history after finishing rolling of hot rolling.
フロントページの続き (72)発明者 藤井 宣憲 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 大畑 喜史 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 Fターム(参考) 4K033 AA02 BA02 CA01 CA02 CA03 CA04 CA07 CA08 DA01 FA01 FA03 FA10 FA12 HA01 HA03 JA04 LA01 MA00 MA02 RA04 SA02 5E041 AA02 AA19 CA02 HB11 NN01 NN06 NN18 Continued on the front page (72) Inventor Noriyoshi Fujii 1-1 Niwahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works (72) Inventor Yoshifumi Ohata Tobihata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 1-1 Nippon Steel Corporation Yawata Works (72) Inventor Katsuro Kuroki 59-46 Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka F-term (reference) 4K033 AA02 BA02 CA01 CA02 CA03 CA04 CA07 CA08 DA01 FA01 FA03 FA10 FA12 HA01 HA03 JA04 LA01 MA00 MA02 RA04 SA02 5E041 AA02 AA19 CA02 HB11 NN01 NN06 NN18
Claims (12)
2.5〜4.5質量%、Al:0.015〜0.035
質量%、N:0.003〜0.008質量%、Cu:
0.02〜0.15質量%、Se:0.007〜0.0
25質量%を含み、残部Feおよび不可避的不純物から
なる珪素鋼スラブを、1200℃以上1350℃以下の
AlNが固溶する温度に加熱してから、熱間圧延し、次
いで、熱延板焼鈍を施した後、1回または中間焼鈍をは
さむ2回以上の冷間圧延を行い、その後、脱炭焼鈍を行
い、MgOを主成分とする焼鈍分離剤を塗布し、次い
で、箱型焼鈍炉で二次再結晶、グラス皮膜形成と純化を
起こさしめ、次いで、形状矯正の熱処理を行うことを特
徴とする磁気特性に優れる一方向性珪素鋼板の製造方
法。1. C: 0.01 to 0.10% by mass, Si:
2.5 to 4.5% by mass, Al: 0.015 to 0.035
% By mass, N: 0.003 to 0.008% by mass, Cu:
0.02 to 0.15 mass%, Se: 0.007 to 0.0
A silicon steel slab containing 25% by mass, the balance being Fe and inevitable impurities, is heated to a temperature at which AlN of 1200 ° C. or more and 1350 ° C. or less is dissolved, then hot-rolled, and then hot-rolled sheet annealing is performed. After that, cold rolling is performed once or twice or more with intermediate annealing, followed by decarburizing annealing, applying an annealing separator containing MgO as a main component, and then using a box-type annealing furnace. A method for producing a unidirectional silicon steel sheet having excellent magnetic properties, characterized by causing secondary recrystallization, glass film formation and purification, and then performing a heat treatment for shape correction.
8(0.430−10[Se])(ただし、[Se]、
[S]は質量%) を満たすことを特徴とする請求項1に記載の磁気特性に
優れる一方向性珪素鋼板の製造方法。2. The ratio of Se and S in the silicon steel slab is 1/18 (0.215-5 [Se]) ≦ [S] ≦ 1/1.
8 (0.430-10 [Se]) (where [Se],
The method for producing a unidirectional silicon steel sheet having excellent magnetic properties according to claim 1, wherein [S] is mass%.
00〜1100℃の範囲とし、かつ、仕上げ圧延終了後
巻き取りまでの冷却を下記式; T(t)<FDT−(FDT−700)×t/6 2≦t≦6 〔ただし、T(t):鋼板温度(℃)、FDT:仕上げ
圧延終了温度(℃) 、t:熱間圧延の仕上げ圧延終了からの経過時間
(秒)〕を満足するように処理し、700℃以下で巻き
取ることを特徴とする請求項1または2に記載の磁気特
性に優れる一方向性珪素鋼板の製造方法。3. The finish rolling end temperature of the hot rolling is 9
In the range of 00 to 1100 ° C., and the cooling from the finish rolling to the winding after the end of the finish rolling is represented by the following formula: T (t) <FDT− (FDT−700) × t / 6 2 ≦ t ≦ 6 [where T (t ): Steel sheet temperature (° C.), FDT: finish rolling finish temperature (° C.), t: elapsed time (seconds) from finish rolling of hot rolling] and winding at 700 ° C. or less. The method for producing a unidirectional silicon steel sheet having excellent magnetic properties according to claim 1 or 2.
に、Mnを0.02〜0.10質量%含有することを特
徴とする請求項1〜3のいずれかの項に記載の磁気特性
に優れる一方向性珪素鋼板の製造方法。4. The magnetic property according to claim 1, wherein the silicon steel slab further contains Mn in an amount of 0.02 to 0.10% by mass. A method for producing a unidirectional silicon steel sheet.
均粒径を7μm以上18μm未満とすることを特徴とす
る請求項1〜4のいずれかの項に記載の磁気特性に優れ
る一方向性珪素鋼板の製造方法。5. The magnetic material according to claim 1, wherein an average particle diameter of primary recrystallized grains after completion of the decarburizing annealing is 7 μm or more and less than 18 μm. A method for producing a grain-oriented silicon steel sheet.
に、Sn、Sb、Pの少なくとも1種を0.02〜0.
30質量%含有することを特徴とする請求項1〜5項の
いずれかの項に記載の磁気特性に優れる一方向性珪素鋼
板の製造方法。6. The composition of the silicon steel slab further comprises at least one of Sn, Sb, and P in an amount of 0.02-0.
The method for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to any one of claims 1 to 5, characterized by containing 30% by mass.
に、Crを0.02〜0.30質量%含有することを特
徴とする請求項1〜6のいずれかの項に記載の磁気特性
に優れる一方向性珪素鋼板の製造方法。7. The magnetic material according to claim 1, further comprising 0.02 to 0.30% by mass of Cr as a component of the silicon steel slab. A method for producing a unidirectional silicon steel sheet.
に、Niを0.03〜0.30質量%含有することを特
徴とする請求項1〜7のいずれかの項に記載の磁気特性
に優れる一方向性珪素鋼板の製造方法。8. The magnetic properties according to claim 1, wherein the silicon steel slab further contains Ni in an amount of 0.03 to 0.30% by mass. A method for producing a unidirectional silicon steel sheet.
に、Mo、Cdの少なくとも1種を0.005〜0.3
0質量%含有することを特徴とする請求項1〜8のいず
れかの項に記載の磁気特性に優れる一方向性珪素鋼板の
製造方法。9. The silicon steel slab further contains at least one of Mo and Cd in an amount of 0.005 to 0.3.
The method for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to any one of claims 1 to 8, characterized by containing 0% by mass.
直前の鋼板焼鈍において、その焼鈍温度を950〜11
50℃、焼鈍時間を30秒以上600秒以下とすること
を特徴とする請求項1〜9のいずれかの項に記載の磁気
特性に優れた一方向性電磁鋼板の製造方法。10. The steel sheet annealing just before final cold rolling in said cold rolling, wherein the annealing temperature is 950-11.
The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 9, wherein the annealing temperature is 50 ° C and the annealing time is 30 seconds or more and 600 seconds or less.
圧延率を80〜92%とすることを特徴とする請求項1
〜10のいずれかの項に記載の磁気特性に優れる一方向
性珪素鋼板の製造方法。11. The rolling rate of final cold rolling in the cold rolling is set to 80 to 92%.
10. The method for producing a unidirectional silicon steel sheet having excellent magnetic properties according to any one of items 10 to 10.
少なくとも1パスにおいて、鋼板を100〜300℃の
温度範囲に1分以上保つことを特徴とする請求項1〜1
1のいずれかの項に記載の磁気特性に優れる一方向性珪
素鋼板の製造方法。12. The steel sheet is maintained in a temperature range of 100 to 300 ° C. for at least one minute in at least one pass of final cold rolling in the cold rolling.
A method for producing a unidirectional silicon steel sheet having excellent magnetic properties according to any one of the above items.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001005525A JP4279993B2 (en) | 2001-01-12 | 2001-01-12 | Method for producing unidirectional silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001005525A JP4279993B2 (en) | 2001-01-12 | 2001-01-12 | Method for producing unidirectional silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002212635A true JP2002212635A (en) | 2002-07-31 |
JP4279993B2 JP4279993B2 (en) | 2009-06-17 |
Family
ID=18873566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001005525A Expired - Fee Related JP4279993B2 (en) | 2001-01-12 | 2001-01-12 | Method for producing unidirectional silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4279993B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063655A (en) * | 2006-08-07 | 2008-03-21 | Nippon Steel Corp | Method for producing grain oriented silicon steel sheet capable of stably obtaining magnetic property in sheet width direction |
JP2011246750A (en) * | 2010-05-25 | 2011-12-08 | Nippon Steel Corp | Method for producing low iron loss unidirectional magnetic steel sheet |
CN103451515A (en) * | 2013-08-23 | 2013-12-18 | 安阳钢铁股份有限公司 | Method for controlling AlN inhibitor content in oriented silicon steel |
JP2021138984A (en) * | 2020-03-03 | 2021-09-16 | Jfeスチール株式会社 | Manufacturing method of directional magnetic steel sheet |
JP2021139040A (en) * | 2020-02-28 | 2021-09-16 | Jfeスチール株式会社 | Manufacturing method of directional magnetic steel sheet |
CN115992331A (en) * | 2021-10-19 | 2023-04-21 | 宝山钢铁股份有限公司 | High-magnetic-induction oriented silicon steel and manufacturing method thereof |
-
2001
- 2001-01-12 JP JP2001005525A patent/JP4279993B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063655A (en) * | 2006-08-07 | 2008-03-21 | Nippon Steel Corp | Method for producing grain oriented silicon steel sheet capable of stably obtaining magnetic property in sheet width direction |
JP2011246750A (en) * | 2010-05-25 | 2011-12-08 | Nippon Steel Corp | Method for producing low iron loss unidirectional magnetic steel sheet |
CN103451515A (en) * | 2013-08-23 | 2013-12-18 | 安阳钢铁股份有限公司 | Method for controlling AlN inhibitor content in oriented silicon steel |
JP2021139040A (en) * | 2020-02-28 | 2021-09-16 | Jfeスチール株式会社 | Manufacturing method of directional magnetic steel sheet |
JP7463976B2 (en) | 2020-02-28 | 2024-04-09 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
JP2021138984A (en) * | 2020-03-03 | 2021-09-16 | Jfeスチール株式会社 | Manufacturing method of directional magnetic steel sheet |
JP7338511B2 (en) | 2020-03-03 | 2023-09-05 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
CN115992331A (en) * | 2021-10-19 | 2023-04-21 | 宝山钢铁股份有限公司 | High-magnetic-induction oriented silicon steel and manufacturing method thereof |
CN115992331B (en) * | 2021-10-19 | 2024-06-04 | 宝山钢铁股份有限公司 | High-magnetic-induction oriented silicon steel and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4279993B2 (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2006132095A1 (en) | Oriented electrical steel sheet with extremely excellent magnetic properties and method for producing the same | |
JP5782527B2 (en) | Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof | |
JP4272557B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP5332946B2 (en) | Coil winding method after nitriding of nitriding grain-oriented electrical steel sheet | |
JP3359449B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP4714637B2 (en) | Method for producing grain-oriented electrical steel sheet with high magnetic flux density | |
WO2020218328A1 (en) | Method for producing grain-oriented electromagnetic steel sheet | |
US5330586A (en) | Method of producing grain oriented silicon steel sheet having very excellent magnetic properties | |
JPH03294427A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP4279993B2 (en) | Method for producing unidirectional silicon steel sheet | |
KR100831756B1 (en) | Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips | |
JP3357603B2 (en) | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss | |
JP4205816B2 (en) | Method for producing unidirectional electrical steel sheet with high magnetic flux density | |
JPH08100216A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP2002030340A (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic property | |
JP2001192787A (en) | Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method | |
JP2001303131A (en) | Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property | |
JP6228956B2 (en) | Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof | |
JP4473357B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP2003089821A (en) | Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet | |
JPH10110218A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JPH02259017A (en) | Production of grain-oriented silicon steel sheet excellent in film characteristic as well as in magnetic property | |
JP2002363646A (en) | Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing | |
JPH07305116A (en) | Production of high magnetic flux density grain-oriented silicon steel sheet | |
JP3849310B2 (en) | Method for producing grain-oriented electrical steel sheet without ear cracks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090313 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4279993 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |