Nothing Special   »   [go: up one dir, main page]

JP2002114536A - Ultraviolet ray resistant glass - Google Patents

Ultraviolet ray resistant glass

Info

Publication number
JP2002114536A
JP2002114536A JP2000302361A JP2000302361A JP2002114536A JP 2002114536 A JP2002114536 A JP 2002114536A JP 2000302361 A JP2000302361 A JP 2000302361A JP 2000302361 A JP2000302361 A JP 2000302361A JP 2002114536 A JP2002114536 A JP 2002114536A
Authority
JP
Japan
Prior art keywords
glass
transmittance
ultraviolet
composition
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000302361A
Other languages
Japanese (ja)
Other versions
JP4799726B2 (en
Inventor
Shigeto Sawanobori
成人 沢登
Nobuyoshi Baba
信義 馬場
Koichi Tsuchiya
宏一 土谷
Hideo Hosono
秀雄 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Sumita Optical Glass Inc
Original Assignee
Rikogaku Shinkokai
Sumita Optical Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai, Sumita Optical Glass Inc filed Critical Rikogaku Shinkokai
Priority to JP2000302361A priority Critical patent/JP4799726B2/en
Publication of JP2002114536A publication Critical patent/JP2002114536A/en
Application granted granted Critical
Publication of JP4799726B2 publication Critical patent/JP4799726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical material which suppresses the formation of coloring sites due to UV absorption and can be used in the UV region. SOLUTION: The UV resistant glass comprises, by mol, 3-65% SiO2, 5-70% B2O3, 15-50%, in total, of one or more selected from LiF, NaF and KF, 0-20% AlF3, 0-20% MgF2, 0-20% CaF2, 0-20% SrF2, 0-20% BaF2, 0-20% YF3 and 0-20% LaF3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐紫外線ガラス、特
に紫外線の照射によって透過率が低下しないガラスに関
するもので、紫外線領域における光学素子とか紫外線伝
送用光ファイバとして使用するのに適する耐紫外線ガラ
スに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet resistant glass, and more particularly to a glass whose transmittance is not reduced by irradiation of ultraviolet rays, and more particularly to an ultraviolet resistant glass suitable for use as an optical element in the ultraviolet region or an optical fiber for transmitting ultraviolet light. .

【0002】[0002]

【従来の技術】光学ガラスや板ガラスのような多成分ガ
ラスは紫外線のような高エネルギーの光を吸収すると着
色中心を生成し、可視域から紫外域にかけて透過率が低
下する。このようないわゆるソラリゼーションは特に光
学ガラスにおいて評価の対象となる特性の一つと考えら
れ、評価方法も決められている(日本光学硝子工業会規
格JOGIS 04−1994)。ここで、ソラリゼー
ションの評価はこの規格によると高圧水銀ランプを用
い、一定光量の紫外線をガラスに照射して、照射前と照
射後の透過率を測定し、その変化(透過率の低下)の割
合を求めることによって行う。
2. Description of the Related Art A multi-component glass such as an optical glass or a plate glass absorbs high-energy light such as ultraviolet light to form a coloring center, and the transmittance decreases from the visible region to the ultraviolet region. Such a so-called solarization is considered to be one of the properties to be evaluated especially in optical glass, and an evaluation method is determined (JOGIS 04-1994, Japan Optical Glass Industrial Association Standard). According to this standard, solarization is evaluated by irradiating glass with a fixed amount of ultraviolet light using a high-pressure mercury lamp and measuring the transmittance before and after irradiation, and the rate of change (decrease in transmittance) according to this standard. Is done by asking for

【0003】従来提案されている紫外線透過ガラスとし
ては、特開昭60−77144号、特開昭60−218
30号、特開昭60−200842号各公報に開示され
ているようなSiO2 −B2 3 −Al2 3 −Na2
O系ガラスが多い。これらは紫外線ランプに用いられる
ガラス管などが主な用途となっている。例えば、特開昭
60−77144号公報には、SiO2 56〜70%、
2 3 16〜35%、Na2 O4.7〜13.0%、
Na2 O/B2 3 <0.55、SiO2 +B 2 3
Na2 O+Al2 3 ≧95%で、かつ酸素イオンをフ
ッ素イオンで置換して該組成中に2.5〜10質量%の
フッ素を含ませた組成を有し、紫外線透過性能の向上
と、半導体用アルミナパッケージに融着可能であること
を目的としたガラスが記載されている。すなわち、これ
らのガラスは組成的にSiO2 量が多いのでF成分の揮
発が多くなるという特徴を有している。このように、F
成分がガラス中に残存しないと耐紫外線性はまったく期
待できない。そのためにはできるだけ低い温度で溶解で
きるような組成系が望ましい。このようなことから本発
明の組成はSiO2 の少ない組成を選び、また可能な限
りF成分を多くした。本発明の実質的な組成ではFは1
0質量%を超え、SiO2 は50質量%程度である。
[0003] Conventionally proposed ultraviolet transmitting glass
JP-A-60-77144, JP-A-60-218
No. 30, JP-A-60-200842.
SiO likeTwo-BTwoOThree-AlTwoOThree-NaTwo
There are many O-based glasses. These are used for UV lamps
Main applications are glass tubes. For example,
No. 60-77144 discloses SiO 2Two56-70%,
BTwoOThree16-35%, NaTwoO4.7-13.0%,
NaTwoO / BTwoOThree<0.55, SiOTwo+ B TwoOThree+
NaTwoO + AlTwoOThree≧ 95% and oxygen ions
2.5 to 10% by weight of the composition
Having a composition containing fluorine to improve ultraviolet transmission performance
And can be fused to alumina package for semiconductor
A glass for the purpose is described. That is, this
These glasses are composed of SiOTwoBecause of the large amount, the volatility of the F component
It has the characteristic that the number of departures increases. Thus, F
Unless the components remain in the glass, the UV resistance is not at all expected
I can't wait. To do this, we need to dissolve at the lowest possible temperature.
A composition system that can be used is desirable. From such a thing
The light composition is SiOTwoSelect a composition with low
The F component was increased. In the substantial composition of the present invention, F is 1
0% by mass, SiOTwoIs about 50% by mass.

【0004】[0004]

【発明が解決しようとする課題】紫外線によるガラスの
着色現象に関して、「ガラスハンドブック」第838〜
840頁(朝倉書店、昭和50年9月30日初版発行)
にはガラス中にできる着色中心の生成メカニズムについ
て古くからの研究が記述されている。この着色現象は、
主に着色イオンが生成する場合とガラス構造中の欠
陥が着色中心に変化する場合が多いと考えられている。
の着色イオンの場合は次のようなメカニズムが働いて
いる。多成分ガラス中には重金属イオンが不純物として
含まれるが、光の吸収によってそのような金属イオン間
で酸化還元反応が起こり、例えば(1)のような酸化還
元反応が起こる。
Regarding the coloring phenomenon of glass by ultraviolet rays, "Glass Handbook" No. 838-
840 pages (Asakura Shoten, first edition issued on September 30, 1975)
Describes a long-standing study on the mechanism of formation of colored centers in glass. This coloring phenomenon
It is considered that there are many cases in which colored ions are mainly generated and defects in the glass structure change to colored centers in many cases.
In the case of the colored ion, the following mechanism works. Heavy metal ions are included as impurities in the multi-component glass, and an oxidation-reduction reaction occurs between such metal ions due to light absorption, for example, an oxidation-reduction reaction as shown in (1) occurs.

【0005】[0005]

【式1】 Mn2+ → Mn3+ + e- Fe3+ + e- → Fe2+ (1)[Formula 1] Mn 2+ → Mn 3+ + e Fe 3+ + e → Fe 2+ (1)

【0006】Mn2+は吸収係数が小さく、厚みが薄いガ
ラスの場合ほとんど影響がない。しかしMn3+は可視域
に吸収帯を持ち、また吸収係数も大きいので肉薄のガラ
スでも着色がはっきり分かる。このように光反応により
吸収係数の大きなイオンが生成し、着色の原因となって
いる。
[0006] Mn 2+ has a small absorption coefficient and has little effect on thin glass. However, since Mn 3+ has an absorption band in the visible region and has a large absorption coefficient, coloring can be clearly recognized even with thin glass. In this way, ions having a large absorption coefficient are generated by the photoreaction, causing coloring.

【0007】また、の場合はガラス中に存在する非架
橋酸素が紫外線を吸収して電子を放出し、着色中心へ変
化すると考えられている。また、このような非架橋酸素
は紫外線領域の透過率も低下させている。金属イオンに
よる着色は使用するガラス原料の高純度化、製造方法の
クリーン化などにより防ぐことができるが、ガラス構造
に起因するソラリゼーションはガラス組成に由来するも
ので、本質的な問題であるから防ぐことが難しい。一般
に市販されているガラス、例えば光学ガラス、板ガラ
ス、ビンガラスなどには、ガラスを構成する化合物の中
で最も重要なSiO2 にアルカリ酸化物などを加えた多
成分ガラスが用いられている。このような多成分化は非
架橋酸素を生成することを意味しており、上記の非架橋
酸素に起因する問題は避けられない。
[0007] In this case, it is considered that the non-crosslinked oxygen present in the glass absorbs ultraviolet rays to emit electrons, and changes to a color center. Such non-crosslinked oxygen also reduces the transmittance in the ultraviolet region. Coloring with metal ions can be prevented by purifying the glass raw material used, making the manufacturing method cleaner, etc., but solarization due to the glass structure is derived from the glass composition and is an essential problem, so it is prevented It is difficult. In general commercially available glass, for example, optical glass, plate glass, bottle glass, and the like, multi-component glass obtained by adding an alkali oxide or the like to SiO 2 , which is the most important of the compounds constituting glass, is used. Such multi-component formation means that non-crosslinked oxygen is generated, and the above-mentioned problems caused by non-crosslinked oxygen cannot be avoided.

【0008】本発明は、上記従来技術の問題点を解消
し、紫外線吸収による着色中心の生成を減少させ、紫外
線領域(250〜400nm)において使用することの
できる光学材料を提供することを目的とする。本発明の
他の目的は、ガラス構造に依存する紫外線照射の影響を
小さくするために非架橋酸素の生成を抑制することがで
きるガラス組成を開発し、それにより紫外線透過率のよ
いガラスを提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, to reduce the generation of colored centers due to ultraviolet absorption, and to provide an optical material that can be used in the ultraviolet region (250 to 400 nm). I do. Another object of the present invention is to develop a glass composition capable of suppressing the generation of non-crosslinked oxygen in order to reduce the influence of ultraviolet irradiation depending on the glass structure, thereby providing a glass having a good ultraviolet transmittance. It is in.

【0009】[0009]

【課題を解決するための手段】上記の目的は、以下の各
発明によって好ましくは達成される。(1)モル%でS
iO2 が3〜65%、B2 3 が5〜70%、LiF,
NaF及びKFから選ばれた1種又は2種以上の合計が
15〜50%、更にAlF3 が0〜20%、MgF2
CaF2 ,SrF2 及びBaF2 がそれぞれ0〜20
%、YF3 が0〜20%及びLaF3 が0〜20%から
なる耐紫外線用ガラス。(2)モル%でSiO2 が5〜
60%、B2 3 が10〜65%、LiF,NaF及び
KFから選ばれた1種あるいは2種以上の合計が20〜
45%、更にAlF3 が0〜15%、MgF2 ,CaF
2 ,SrF2 及びBaF2 がそれぞれ0〜10%、YF
3 が0〜15%及びLaF3 が0〜15%からなる耐紫
外線用ガラス。
The above objects are preferably achieved by the following inventions. (1) S in mole%
iO 2 is 3~65%, B 2 O 3 is 5 to 70%, LiF,
The total of one or two or more selected from NaF and KF is 15 to 50%, AlF 3 is 0 to 20%, MgF 2 ,
CaF 2 , SrF 2 and BaF 2 are each 0-20.
%, YF 3 0 to 20% and LaF 3 is UV resistant glass consisting of 0-20%. (2) 5% by mole of SiO 2
60%, B 2 O 3 is 10 to 65%, LiF, one kind or the sum of two or more species selected from NaF and KF. 20 to
45%, further 0-15% AlF 3 , MgF 2 , CaF
2 , SrF 2 and BaF 2 are each 0-10%, YF
3 is 0-15% and LaF 3 is 0-15%.

【0010】紫外線の吸収によって着色中心を生成する
原因のひとつとして考えられる非架橋酸素は、SiO2
のようなガラス網目構成酸化物にアルカリ酸化物のよう
なガラス網目修飾化合物を加えたときに生成する。ハロ
ゲンの中でフッ素のみが色中心を形成しにくく、かつホ
ウ素やシリコンと酸素よりも強い結合を形成する。この
ため、フッ素を含む系では色中心を生成しやすい非架橋
酸素が生成しにくく、かつ紫外吸収端が短波長にシフト
するために紫外線に対して安定なガラスとなる。このよ
うなことから、本発明では非架橋酸素の生成量を減少さ
せるためにアルカリフッ化物を使用した。
[0010] Non-crosslinked oxygen, which is considered as one of the causes of forming a colored center by absorbing ultraviolet light, is SiO 2
It is formed when a glass network modifying compound such as an alkali oxide is added to a glass network constituting oxide such as. Of the halogens, only fluorine hardly forms a color center, and forms a stronger bond with boron or silicon than oxygen. For this reason, in a system containing fluorine, non-crosslinked oxygen that easily generates a color center is hardly generated, and the ultraviolet absorption edge shifts to a short wavelength, so that the glass is stable against ultraviolet light. For this reason, in the present invention, an alkali fluoride is used to reduce the amount of non-crosslinked oxygen produced.

【0011】[0011]

【発明の実施の形態】以下本発明を更に詳細に説明す
る。表1に本発明のガラス組成を示す。組成はモル%で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Table 1 shows the glass composition of the present invention. The composition is mol%.

【0012】[0012]

【表1】 [Table 1]

【0013】SiO2 及びB2 3 はガラス形成酸化物
で、上記の組成範囲外ではガラスが得られない。RFは
アルカリフッ化物で、本発明では重要な成分である。L
iF,NaF,KFのいずれかを用いるが、単独あるい
はその合計が15%未満では溶融温度が高くなり、揮発
などによりフッ素成分が失われる。また、50%を超え
るとガラス化が困難になる。MgF2 ,CaF2 ,Sr
2 ,BaF2 はガラス化を容易にするために加えられ
るが、それぞれが20%を超えるとその効果がなくな
る。AlF3 ,YF3 ,LaF3 はガラスの化学的耐久
性を高めるが、それぞれが20%を超えるとガラス化が
困難になってくる。本発明のガラスは紫外線領域(波
長:250〜400nm)で使用できる透過材料を提供
するものであるが、窓材などの透過材料だけでなく、光
ファイバとしても有用である。そのような熱加工を必要
とするガラス製品を得るためには、十分な熱的安定性を
持ってガラス組成が必要である。
[0013] SiO 2 and B 2 O 3 are glass-forming oxides, and no glass can be obtained outside the above composition range. RF is an alkali fluoride, which is an important component in the present invention. L
Any one of iF, NaF, and KF is used, but if it is used alone or the total is less than 15%, the melting temperature becomes high and the fluorine component is lost due to volatilization and the like. If it exceeds 50%, vitrification becomes difficult. MgF 2 , CaF 2 , Sr
F 2 and BaF 2 are added to facilitate vitrification, but if each exceeds 20%, the effect is lost. AlF 3 , YF 3 , and LaF 3 increase the chemical durability of glass, but if each exceeds 20%, vitrification becomes difficult. The glass of the present invention provides a transmission material that can be used in the ultraviolet region (wavelength: 250 to 400 nm), but is useful not only as a transmission material such as a window material but also as an optical fiber. In order to obtain a glass product requiring such thermal processing, a glass composition having sufficient thermal stability is required.

【0014】本発明のガラス組成域で上記のような用途
に対応するためには表1に示したガラス組成よりも好ま
しい組成範囲を表2に示す。SiO2 及びB2 3 はガ
ラス形成酸化物で、これらの組成範囲外ではガラスを得
るのが難しくなる。RFはアルカリフッ化物で、本発明
では重要な成分である。LiF,NaF,KFのいずれ
かを用いるが、単独あるいはその合計が20%未満では
溶融温度が若干高くなり、揮発などによりフッ素成分が
失われる場合がある。また、45%を超えるとガラス化
が困難になる場合がある。MgF2 ,CaF2 ,SrF
2 ,BaF2 はガラス化を容易にするために加えられる
が、それぞれが10%を超えるとその効果が減少する。
AlF3 ,YF3 ,LaF3 はガラスの化学的耐久性を
高めるが、それぞれが10%を超えるとガラス化が稍難
しくなる。
In order to meet the above-mentioned applications in the glass composition range of the present invention, a composition range more preferable than the glass composition shown in Table 1 is shown in Table 2. SiO 2 and B 2 O 3 are glass-forming oxides, and it becomes difficult to obtain glass outside of these composition ranges. RF is an alkali fluoride, which is an important component in the present invention. Any one of LiF, NaF, and KF is used, but if it is used alone or the total is less than 20%, the melting temperature is slightly increased, and the fluorine component may be lost due to volatilization or the like. On the other hand, if it exceeds 45%, vitrification may be difficult. MgF 2 , CaF 2 , SrF
2 and BaF 2 are added to facilitate the vitrification, but if each exceeds 10%, the effect decreases.
AlF 3 , YF 3 , and LaF 3 increase the chemical durability of glass, but if each exceeds 10%, vitrification becomes somewhat difficult.

【0015】本発明の多成分系ガラス組成物において
は、上記のような構成とすることにより可視域から紫外
域にかけて着色を防止するとともに透過率の低下を防止
することができる。添付の図1及び図3は後述の実施例
における透過率の測定結果を示すもので図2の比較例の
結果と比べると紫外線の照射後の透過率の変化が殆どな
いことが分かる。
In the multi-component glass composition of the present invention, by adopting the above-mentioned constitution, it is possible to prevent coloring from the visible region to the ultraviolet region and to prevent a decrease in transmittance. FIGS. 1 and 3 show the measurement results of the transmittance in the examples described later. It can be seen that there is almost no change in the transmittance after the irradiation with the ultraviolet rays as compared with the result of the comparative example in FIG.

【0016】本発明はこれ以外のガラス成分として、着
色を伴わない成分、あるいはガラス製造上必要で、紫外
線による着色を起こさない成分であればフッ化物あるい
は酸化物を問わず使用しても差し支えない。本発明の耐
紫外線用ガラス組成物を作製するには、SiO2 ,B2
3 ,LiF,NaF,KFなどを目的組成物の割合に
応じて秤量し、よく混合した後、大気中1100〜13
00℃の温度で2〜3時間焼成する。本発明の組成物の
作製法は上記の方法に限定されるものではなく、目的と
する組成物が得られればどのような方法でもよい。例え
ば、原料の混合法は原料が均一に混ざればよいので、共
沈法・湿式法・乾式法・ゾルゲル法その他いずれの方法
でもよい。
In the present invention, any other glass component may be used regardless of fluoride or oxide as long as it is a component not accompanied by coloring or a component which is necessary for glass production and does not cause coloring by ultraviolet rays. . In order to prepare the glass composition for ultraviolet light resistance of the present invention, SiO 2 , B 2
O 3 , LiF, NaF, KF, etc. are weighed according to the ratio of the target composition, mixed well, and then mixed in air at 1100-13.
Bake at a temperature of 00 ° C for 2-3 hours. The method for producing the composition of the present invention is not limited to the above method, and any method may be used as long as the desired composition is obtained. For example, since the raw materials may be mixed uniformly as long as the raw materials are uniformly mixed, a coprecipitation method, a wet method, a dry method, a sol-gel method, or any other method may be used.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【実施例】以下、実施例により本発明を説明するが、本
発明はこれらの実施例に限定されるものではない。 (実施例1)表3の実施例No.1に示したガラス組
成、5.4モル%のSiO2 、56.8モル%のB2
3 、37.8モル%のKFとなるように所定の重量割合
に調合したガラス原料を1200℃の電気炉で3時間溶
融した。この時用いた容器は白金製のるつぼで、溶融中
は白金製のふたをした。均質化されたガラス融液を鋳型
に流し込み、ブロック状のガラスを得た。得られたガラ
スを厚さ5mmに研磨して透過率測定用の試料とした。
このガラス試料に高圧水銀ランプを用いて、2500m
W/cm2 の紫外光(365nm)を100時間照射し
た時の透過率の変化を図1に示す。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. (Embodiment 1) The embodiment Nos. Glass composition shown in No. 1, 5.4 mol% of SiO 2 , 56.8 mol% of B 2 O
3. A glass raw material prepared in a predetermined weight ratio so as to have a KF of 37.8 mol% was melted in an electric furnace at 1200 ° C. for 3 hours. The container used at this time was a platinum crucible, and a platinum lid was applied during melting. The homogenized glass melt was poured into a mold to obtain a glass block. The obtained glass was polished to a thickness of 5 mm to obtain a sample for transmittance measurement.
Using a high-pressure mercury lamp on this glass sample, 2500 m
FIG. 1 shows the change in transmittance when irradiated with W / cm 2 ultraviolet light (365 nm) for 100 hours.

【0019】紫外線の照射による透過率の低下は測定上
では現れず、全く影響を受けていないことがわかる。ま
た、比較例として表3の比較例No.1にある厚さ5m
mの酸化物ガラスを同様に紫外線照射して透過率を調べ
たところ、図2のように、照射後の透過率に大きな変化
があった。このような透過率の低下が起こると、光学部
品としての使用は困難になる。これに対した実施例1の
ガラスは透過率の変化がなく、紫外線が照射される環境
下でも十分に使用ができるものである。
The decrease in transmittance due to the irradiation of ultraviolet light does not appear on the measurement, and it can be seen that it is not affected at all. In addition, as a comparative example, the comparative example No. 5m thickness in one
When the transmittance was examined by similarly irradiating the oxide glass of m with ultraviolet rays, as shown in FIG. 2, there was a large change in the transmittance after irradiation. When such a decrease in transmittance occurs, it becomes difficult to use the optical component. On the other hand, the glass of Example 1 has no change in transmittance and can be sufficiently used even in an environment where ultraviolet rays are irradiated.

【0020】(実施例2〜19)表3の2〜19に示し
た組成のガラスを実施例1と同様の方法で作製した。こ
れらのガラス試料に実施例1と同様に高圧水銀ランプを
用いて、紫外線を照射し、透過率の変化を測定した。こ
のうちで実施例11のガラスの透過率を図3に示す。実
施例1と同様に、紫外線の照射前後で透過率に変化はな
かった。
Examples 2 to 19 Glasses having the compositions shown in Tables 2 to 19 in Table 3 were produced in the same manner as in Example 1. These glass samples were irradiated with ultraviolet rays using a high-pressure mercury lamp as in Example 1, and the change in transmittance was measured. Among these, the transmittance of the glass of Example 11 is shown in FIG. As in Example 1, there was no change in transmittance before and after irradiation with ultraviolet light.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【発明の効果】本発明により、SiO2 −B2 3 系ガ
ラス組成にアルカリ金属フッ化物を添加すると、可視域
から紫外域にかけて(波長250〜400nm)の透過
率の低下を防ぐことが可能となり、多成分系ガラスによ
くみられるUV着色が避けられる。
According to the present invention, when an alkali metal fluoride is added to a SiO 2 —B 2 O 3 system glass composition, it is possible to prevent a decrease in transmittance in the visible region to the ultraviolet region (wavelength 250 to 400 nm). And the UV coloring often seen in the multi-component glass is avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例No.1で作製した厚さ5mmの耐紫外
線用ガラスに高圧水銀ランプを用いて、2500mW/
cm2 の紫外光(365nm)を100時間照射した時
の透過率の変化を示すグラフ。
FIG. Using a high-pressure mercury lamp on the 5 mm-thick UV resistant glass prepared in 1 above, 2500 mW /
7 is a graph showing a change in transmittance when irradiated with cm 2 ultraviolet light (365 nm) for 100 hours.

【図2】比較例No.1の厚さ5mmの酸化物ガラスを
実施例No.1と同様に紫外線照射(24時間)して透
過率の変化を調べた結果を示すグラフ。
FIG. In Example No. 1, a 5 mm thick oxide glass was used. 7 is a graph showing the results of examining the change in transmittance by irradiating with ultraviolet rays (24 hours) in the same manner as in FIG.

【図3】実施例No.11のガラスについて実施例1と
同様に紫外線照射(70時間)して透過率の変化を調べ
た結果を示すグラフ。
FIG. 11 is a graph showing the results of examining the change in transmittance of the glass of No. 11 by irradiating with ultraviolet rays (70 hours) in the same manner as in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 信義 埼玉県浦和市針ケ谷4丁目7番25号 株式 会社住田光学ガラス内 (72)発明者 土谷 宏一 埼玉県浦和市針ケ谷4丁目7番25号 株式 会社住田光学ガラス内 (72)発明者 細野 秀雄 神奈川県大和市下鶴間2786の4の212 Fターム(参考) 4G062 AA04 AA06 BB01 BB05 BB17 CC10 DA03 DA04 DA05 DA06 DB01 DB02 DB03 DB04 DC03 DC04 DC05 DC06 DD01 DE01 DF01 EA01 EA02 EA03 EA04 EA05 EB01 EB02 EB03 EB04 EB05 EC01 EC02 EC03 EC04 EC05 ED01 ED02 ED03 ED04 EE01 EE02 EE03 EE04 EF01 EF02 EF03 EF04 EG01 EG02 EG03 EG04 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FJ02 FJ03 FJ04 FK01 FK02 FK03 FK04 FL01 GA01 GB01 GC01 GD01 GE02 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM04 NN16 NN35  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuyoshi Baba 4-7-25 Harigaya, Urawa-shi, Saitama Prefecture Sumitomo Optical Glass Co., Ltd. (72) Inventor Koichi Tsuchiya 4-725-25 Harigaya, Urawa-shi, Saitama Stock (72) Inventor Hideo Hosono 2786-4, 212F, Shimotsuruma, Yamato City, Kanagawa Pref. EA01 EA02 EA03 EA04 EA05 EB01 EB02 EB03 EB04 EB05 EC01 EC02 EC03 EC04 EC05 ED01 ED02 ED03 ED04 EE01 EE02 EE03 EE04 EF01 EF02 EF03 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 F01 GB01 GC01 GD01 GE02 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 M M04 NN16 NN35

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 モル%でSiO2 が3〜65%、B2
3 が5〜70%、LiF,NaF及びKFから選ばれた
1種又は2種以上の合計が15〜50%、更にAlF3
が0〜20%、MgF2 ,CaF2 ,SrF2 及びBa
2 がそれぞれ0〜20%、YF3 が0〜20%、La
3 が0〜20%からなる耐紫外線用ガラス。
1. The method according to claim 1, wherein the content of SiO 2 is 3 to 65% in mole%, and the content of B 2 O
3 is 5 to 70%, the total of one or more selected from LiF, NaF and KF is 15 to 50%, and further AlF 3
Is 0 to 20%, MgF 2 , CaF 2 , SrF 2 and Ba
0 to 20% F 2, respectively, YF 3 is 0 to 20%, La
UV resistant glass for F 3 consists of 0-20%.
【請求項2】 モル%でSiO2 が5〜60%、B2
3 が10〜65%、LiF,NaF及びKFから選ばれ
た1種又は2種以上の合計が20〜45%、更にAlF
3 が0〜15%、MgF2 ,CaF2 ,SrF2 及びB
aF2 がそれぞれ0〜10%、YF3 が0〜15%及び
LaF3 が0〜15%からなる耐紫外線用ガラス。
Wherein SiO 2 5 to 60 percent by mol%, B 2 O
3 is 10-65%, the total of one or more selected from LiF, NaF and KF is 20-45%,
3 is 0 to 15%, MgF 2 , CaF 2 , SrF 2 and B
0% aF 2 respectively, YF 3 0 to 15% and LaF 3 is UV resistant glass consisting of 0-15%.
JP2000302361A 2000-10-02 2000-10-02 UV resistant glass Expired - Lifetime JP4799726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302361A JP4799726B2 (en) 2000-10-02 2000-10-02 UV resistant glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000302361A JP4799726B2 (en) 2000-10-02 2000-10-02 UV resistant glass

Publications (2)

Publication Number Publication Date
JP2002114536A true JP2002114536A (en) 2002-04-16
JP4799726B2 JP4799726B2 (en) 2011-10-26

Family

ID=18783723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302361A Expired - Lifetime JP4799726B2 (en) 2000-10-02 2000-10-02 UV resistant glass

Country Status (1)

Country Link
JP (1) JP4799726B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176351A (en) * 2004-12-21 2006-07-06 Sumita Optical Glass Inc Optical glass for precision press forming
WO2013051436A1 (en) * 2011-10-04 2013-04-11 オーエムジー株式会社 Ultraviolet light-transmitting glass
WO2016194780A1 (en) * 2015-05-29 2016-12-08 旭硝子株式会社 Ultraviolet light-transmitting glass
WO2021106457A1 (en) 2019-11-27 2021-06-03 株式会社住田光学ガラス Multicomponent oxide glass, optical element, optical fiber, and multicomponent oxide glass manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439424A (en) * 1977-07-01 1979-03-26 Leitz Ernst Gmbh
US4164610A (en) * 1977-05-23 1979-08-14 Corning Glass Works Glasses exhibiting high lithium ion mobility
JPS5727938A (en) * 1980-07-26 1982-02-15 Matsushita Electric Works Ltd Opal glass composition
US4322500A (en) * 1979-06-12 1982-03-30 International Standard Electric Corporation Potassium fluoroborate silicate glasses
JPH05193978A (en) * 1992-01-21 1993-08-03 Sumita Kogaku Glass:Kk Optical glass for precision press forming
WO1999028255A1 (en) * 1997-12-02 1999-06-10 Corning Incorporated Rare earth element-halide environments in oxyhalide glasses
JP2001089187A (en) * 1999-09-27 2001-04-03 Okuno Chem Ind Co Ltd Glass composition for dielectric substance of plasma display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164610A (en) * 1977-05-23 1979-08-14 Corning Glass Works Glasses exhibiting high lithium ion mobility
JPS5439424A (en) * 1977-07-01 1979-03-26 Leitz Ernst Gmbh
US4322500A (en) * 1979-06-12 1982-03-30 International Standard Electric Corporation Potassium fluoroborate silicate glasses
JPS5727938A (en) * 1980-07-26 1982-02-15 Matsushita Electric Works Ltd Opal glass composition
JPH05193978A (en) * 1992-01-21 1993-08-03 Sumita Kogaku Glass:Kk Optical glass for precision press forming
WO1999028255A1 (en) * 1997-12-02 1999-06-10 Corning Incorporated Rare earth element-halide environments in oxyhalide glasses
JP2001089187A (en) * 1999-09-27 2001-04-03 Okuno Chem Ind Co Ltd Glass composition for dielectric substance of plasma display panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176351A (en) * 2004-12-21 2006-07-06 Sumita Optical Glass Inc Optical glass for precision press forming
JP4594067B2 (en) * 2004-12-21 2010-12-08 株式会社住田光学ガラス Optical glass for precision press molding
WO2013051436A1 (en) * 2011-10-04 2013-04-11 オーエムジー株式会社 Ultraviolet light-transmitting glass
WO2016194780A1 (en) * 2015-05-29 2016-12-08 旭硝子株式会社 Ultraviolet light-transmitting glass
JPWO2016194780A1 (en) * 2015-05-29 2018-03-15 旭硝子株式会社 UV transmitting glass
US10689288B2 (en) 2015-05-29 2020-06-23 AGC Inc. Ultraviolet transmitting glass
WO2021106457A1 (en) 2019-11-27 2021-06-03 株式会社住田光学ガラス Multicomponent oxide glass, optical element, optical fiber, and multicomponent oxide glass manufacturing method

Also Published As

Publication number Publication date
JP4799726B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
EP0151346B1 (en) Glasses for ophthalmic applications
EP1382582B1 (en) An optical glass
JP2565813B2 (en) Optical glass
EP2495223A1 (en) Optical glass and core material for optical fiber
US3877953A (en) Niobium pentoxide-containing borosilicate glasses
JP4671647B2 (en) Optical glass with small photoelastic constant
JPH03137036A (en) Rapidly fading, highly refractive index photoenantiotropic glass
US4390635A (en) Alkali metal aluminoborosilicate photochromic glasses
US4346176A (en) Glass for optical fiber
EP1015394A1 (en) Improved photochromic glasses
JP2004292301A (en) Optical glass
JPS6341859B2 (en)
JP2002114536A (en) Ultraviolet ray resistant glass
EP0105670A1 (en) Lead aluminoborofluorosilicate moldable glasses
JP2000053441A (en) Lead-free optical glass
JPH05193978A (en) Optical glass for precision press forming
JP3749276B2 (en) Infrared transmission glass
US4385128A (en) Germanium-containing glass of high infrared transmission and low density
JP2613978B2 (en) Optical glass filter for transmittance or absorbance calibration
JPH0428655B2 (en)
JP3075908B2 (en) Optical glass filter and method for calibrating transmittance or absorbance in ultraviolet region using the same
JP3022292B2 (en) Corrective lens
JP3152679B2 (en) Optical glass
JP2908604B2 (en) Optical glass
JP2021073163A (en) Optical glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090408

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250