JP2001300836A - Tool positional displacement correcting machining method - Google Patents
Tool positional displacement correcting machining methodInfo
- Publication number
- JP2001300836A JP2001300836A JP2000118039A JP2000118039A JP2001300836A JP 2001300836 A JP2001300836 A JP 2001300836A JP 2000118039 A JP2000118039 A JP 2000118039A JP 2000118039 A JP2000118039 A JP 2000118039A JP 2001300836 A JP2001300836 A JP 2001300836A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- machining
- displacement
- spindle
- positional displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Automatic Control Of Machine Tools (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マシニングセンタ
などの数値制御工作機械において、主軸の熱膨張等に起
因する工具位置の変位を補正しながら加工を行なうため
の工具位置変位補正加工方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting a tool position displacement for a numerically controlled machine tool such as a machining center, while correcting a tool position displacement caused by a thermal expansion of a main spindle. is there.
【0002】[0002]
【従来の技術】従来、数値制御工作機械の主軸に取付け
た工具の工具長、工具径は非回転時に測定して、加工終
了までその値を変更することは出来なかった。2. Description of the Related Art Conventionally, a tool length and a tool diameter of a tool mounted on a spindle of a numerically controlled machine tool are measured when the tool is not rotating, and the values cannot be changed until the end of machining.
【0003】しかしながら、最近の数値制御工作機械の
主軸の高速化に伴い、主軸の軸受部分の発熱による機械
の熱変形、主軸の伸長などにより工具の位置が加工中に
変位することがわかってきた。However, with the recent increase in the speed of the spindle of a numerically controlled machine tool, it has been found that the position of the tool is displaced during machining due to thermal deformation of the machine due to heat generation of a bearing portion of the spindle, extension of the spindle, and the like. .
【0004】今までの非回転時に工具を測定する方法で
は、数値制御工作機械の主軸の回転による工具の位置変
位が加工に影響を及ぼし、被加工物の精度が維持できな
いという問題があった。In the conventional method of measuring a tool during non-rotation, there has been a problem that the displacement of the tool due to the rotation of the spindle of the numerically controlled machine tool affects the machining, and the accuracy of the workpiece cannot be maintained.
【0005】そこで回転中の工具の工具長、工具径、工
具中心位置のずれ、工具先端形状などを測定し、工具刃
先位置変位を求める提案がなされている。Therefore, a proposal has been made for measuring the tool length, tool diameter, deviation of the center position of the tool, the shape of the tool tip, etc. of the rotating tool to obtain the displacement of the tool edge position.
【0006】例えば、特開平10−138097号公報
に開示されている技術は、レーザ光線により非接触で工
具の刃先位置変位を測定可能とした工具寸法の測定方法
に関するものである。For example, the technique disclosed in Japanese Patent Application Laid-Open No. Hei 10-138097 relates to a method for measuring a tool dimension which makes it possible to measure a displacement of a blade edge position of a tool in a non-contact manner by a laser beam.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記の
特開平10−138097号公報に開示されている技術
では、回転中の工具の刃先位置変位を自動的に迅速に測
定可能ではあるものの、測定した刃先位置変位を即座に
被加工物の加工の補正にフィードバックすることは困難
である。However, in the technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 10-138097, although the displacement of the cutting edge position of the rotating tool can be measured automatically and quickly, the displacement is measured. It is difficult to immediately feed back the edge position displacement to the correction of the processing of the workpiece.
【0008】従って、本発明は上述した課題に鑑みてな
されたものであり、その目的は、工具の刃先位置変位を
即座に被加工物の補正にフィードバックすることができ
る工具位置変位補正加工方法を提供することである。Accordingly, the present invention has been made in view of the above-mentioned problem, and an object of the present invention is to provide a tool position displacement correction machining method capable of immediately feeding back the tool edge position displacement to the correction of a workpiece. To provide.
【0009】[0009]
【課題を解決するための手段】上述した課題を解決し、
目的を達成するために、本発明に係わる工具位置変位補
正加工方法は、数値制御工作機械の主軸に取り付けられ
た工具の加工部の位置変位を補正しながら被加工物を加
工するための、工具位置変位補正加工方法であって、主
軸の温度変化を検出する温度検出工程と、予め測定して
おいた、前記主軸の温度変化と前記工具の加工部の位置
変位との関係に基づいて、前記温度検出工程で検出され
た温度から前記工具の加工部の変位を予測する予測工程
と、該予測工程で予測された変位量を補正するように前
記数値制御工作機械のX、Y、Zの各軸を駆動しながら
加工を行なう加工工程とを具備することを特徴としてい
る。Means for Solving the Problems To solve the above-mentioned problems,
In order to achieve the object, a tool position displacement correction processing method according to the present invention is directed to a tool for processing a workpiece while correcting a position displacement of a processing portion of a tool attached to a spindle of a numerical control machine tool. A position displacement correction processing method, a temperature detection step of detecting a temperature change of the spindle, and a previously measured, based on the relationship between the temperature change of the spindle and the position displacement of the processing portion of the tool, A prediction step of predicting the displacement of the machining portion of the tool from the temperature detected in the temperature detection step; and X, Y, and Z of the numerically controlled machine tool so as to correct the displacement amount predicted in the prediction step. And a processing step of performing processing while driving the shaft.
【0010】また、この発明に係わる工具位置変位補正
加工方法において、前記数値制御工作機械のテーブル上
に配置されたタッチセンサにより、加工開始直前の主軸
の静止状態での基準工具長を測定する測定工程を更に具
備することを特徴としている。[0010] In the tool position displacement correction machining method according to the present invention, a touch sensor disposed on a table of the numerically controlled machine tool measures a reference tool length in a stationary state of a spindle immediately before the start of machining. It is characterized by further comprising a step.
【0011】[0011]
【発明実施の形態】以下、本発明の好適な一実施形態に
ついて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below.
【0012】まず、一実施形態の概要について説明す
る。First, an outline of an embodiment will be described.
【0013】本実施形態の工具の位置変位補正加工法
は、まず、数値制御工作機械の主軸の回転数による、
X,Y,Zの各軸の変位量を測定することにより達成さ
れる。The position displacement correcting machining method for a tool according to the present embodiment firstly uses the rotational speed of a spindle of a numerically controlled machine tool.
This is achieved by measuring the displacement of each of the X, Y, and Z axes.
【0014】また本実施形態は、上記の変位量と主軸の
温度の関係に相関関係が概ねあることに基づいている。The present embodiment is based on the fact that there is a general correlation between the displacement amount and the temperature of the spindle.
【0015】この測定方法について、図2を参照しなが
ら説明する。This measuring method will be described with reference to FIG.
【0016】数値制御工作機械の回転主軸1に先端が球
状の精密なゲージ31を取付ける。この球精密ゲージ3
1に対して、X,Y,Zの各軸に沿って電気マイクロ測
定器19a,19b,19cをテーブル5上に設置し、
回転主軸1を所定の回転数で回転させながら、時間τの
変化に伴うX,Y,Zの各軸の変位量δを測定する。A precision gauge 31 having a spherical tip is attached to the rotating spindle 1 of the numerical control machine tool. This ball precision gauge 3
For 1, the electric micro-measuring devices 19a, 19b, and 19c are set on the table 5 along the X, Y, and Z axes,
While rotating the rotating main shaft 1 at a predetermined number of revolutions, the displacement δ of each of the X, Y, and Z axes with the change of the time τ is measured.
【0017】また、主軸頭3には温度センサー13を回
転主軸1に近接するように内蔵し、合わせて主軸温度t
の測定をする。A temperature sensor 13 is built in the spindle head 3 so as to be close to the rotating spindle 1.
Measurement.
【0018】この結果の一例を図3に示す。FIG. 3 shows an example of the result.
【0019】図3は、主軸の回転による時間τの経過と
各軸の変位量δの関係を示しており、横軸は時間τ、縦
軸は変位量δである。FIG. 3 shows the relationship between the lapse of time τ due to the rotation of the main shaft and the displacement δ of each axis. The horizontal axis represents time τ, and the vertical axis represents the displacement δ.
【0020】τ=0のときに回転主軸1が10000m
in-1で回転を開始すると、この主軸は、時間の経過と
ともに軸受部の発熱により変位量δを生じる。When τ = 0, the rotating spindle 1 is 10,000 m
When the rotation is started at in −1 , the main shaft generates a displacement amount δ due to heat generation of the bearing portion over time.
【0021】これを上記手段により測定することによ
り、X,Y,Zの各軸の変位量δが判明する。By measuring this by the above means, the displacement δ of each of the X, Y, and Z axes can be determined.
【0022】さらに図4は、回転数を変更しながら、回
転数を変更する間に一定の待機時間を設定して測定した
結果である。これより回転数が上がると変位量δも大き
くなることが理解できる。FIG. 4 shows the result of measurement while changing the rotation speed while setting a constant standby time while changing the rotation speed. From this, it can be understood that the displacement amount δ increases as the rotation speed increases.
【0023】この図4に主軸頭3に内蔵した温度センサ
ー13の温度変化を当てはめると概ね相関関係があるこ
とが判明した。By applying the temperature change of the temperature sensor 13 built in the spindle head 3 to FIG. 4, it is found that there is a general correlation.
【0024】たとえば、主軸の回転数が2000min
-1の場合の主軸の温度tが1℃上昇したときの変位量δ
と、回転数が10000min-1の場合の主軸の温度t
が1℃上昇したときの変位量δとは概ね一致している。For example, when the rotation speed of the spindle is 2000 min
Displacement δ when the temperature t of the spindle increases by 1 ° C. in the case of -1
And the temperature t of the main shaft when the rotation speed is 10,000 min -1.
Is approximately the same as the displacement amount δ when the temperature rises by 1 ° C.
【0025】これにより主軸の温度tが1℃上昇すると
きのX,Y,Zの各軸の変位量δの変位量データが採取
されたことになる。これを所定単位温度毎の変位量δと
して、基準値記憶装置21に記憶する。Thus, the displacement data of the displacement δ of each of the X, Y, and Z axes when the temperature t of the main shaft rises by 1 ° C. is collected. This is stored in the reference value storage device 21 as the displacement amount δ for each predetermined unit temperature.
【0026】更に本実施形態では、使用工具を工具交換
装置により交換する機能を有した数値制御工作機械にお
いて、交換初期にテーブル上に配置されたタッチセンサ
などの検出器により、初期状態の位置が測定されていれ
ば、その後は、主軸頭3に内蔵された温度センサ13に
より、温度変化を測定することで変位量δの予測が可能
となる。Further, in the present embodiment, in a numerically controlled machine tool having a function of exchanging a tool to be used by a tool exchanging device, a position of an initial state is determined by a detector such as a touch sensor arranged on a table at an initial stage of exchange. If it has been measured, the displacement δ can be predicted by measuring the temperature change with the temperature sensor 13 built in the spindle head 3 thereafter.
【0027】以下、本発明の一実施形態について具体的
に説明する。Hereinafter, one embodiment of the present invention will be specifically described.
【0028】以下の実施形態では、数値制御工作機械
は、工具ホルダー式で工具交換装置を備え、回転切削工
具Tは、図1に示すように、工具ホルダーを介して回転
主軸1からの回転を得られるように構成されている。In the following embodiment, a numerically controlled machine tool is provided with a tool changer in the form of a tool holder, and a rotary cutting tool T is rotated from a rotary spindle 1 via a tool holder as shown in FIG. It is configured to be obtained.
【0029】図1は、本発明の工具の位置変位補正加工
方法の機能を備えた数値制御工作機械の一実施形態の構
成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of an embodiment of a numerically controlled machine tool having the function of the tool position displacement correction machining method of the present invention.
【0030】図1において、数値制御工作機械は、回転
主軸1を内蔵する主軸頭3と、被加工物(図示せず)を
固定するテーブル5と、X,Y,Zの各軸に配置され、
NC装置7の指令によって、X,Y,Zの各軸を相対移
動させる送りモータ9a,9b,9cとを備えている。In FIG. 1, a numerically controlled machine tool is arranged on a spindle head 3 containing a rotating spindle 1, a table 5 for fixing a workpiece (not shown), and X, Y and Z axes. ,
There are provided feed motors 9a, 9b, 9c for relatively moving the X, Y, and Z axes in accordance with a command from the NC device 7.
【0031】回転主軸1の先端には回転切削工具Tが取
付けられ、回転切削工具Tを回転させながら被加工物に
所望の加工を施す。A rotary cutting tool T is attached to the tip of the rotary spindle 1. The rotary cutting tool T is rotated to perform desired processing on a workpiece.
【0032】まず、回転切削工具Tの工具径および取付
け振れ工具長などは、予め別の手段により測定してある
ものとし、その値は既に工具No.毎のオフセット用メ
モリへ格納されている。First, it is assumed that the tool diameter of the rotary cutting tool T, the length of the run-out tool, and the like are measured in advance by another means. It is stored in each offset memory.
【0033】その後、回転切削工具Tの使用回転速度で
回転主軸1を向転させ、所望の加工を開始する。Thereafter, the rotary spindle 1 is rotated at the rotation speed of the rotary cutting tool T to start desired machining.
【0034】加工の間、主軸頭3に内蔵した温度センサ
13の値から、X,Y,Zの各軸方向の工具刃先の変位
量δを演算装置23で演算し、その演算結果を補正装置
25に送出し、ワーク座標系を補正して、NC装置7へ
送出する。NC装置7からX,Y,Zの各軸の送りモー
タ9a,9b,9cに移動指令を出して加工を続行す
る。During machining, the displacement amount δ of the tool edge in each of the X, Y, and Z directions is computed by the computing device 23 from the value of the temperature sensor 13 built in the spindle head 3, and the computed result is corrected by the correcting device. 25, the work coordinate system is corrected, and the work coordinate system is sent to the NC device 7. A machining command is issued from the NC device 7 to the feed motors 9a, 9b, 9c for the X, Y, and Z axes to continue machining.
【0035】また、回転切削工具Tの工具長は、被加工
物の加工の直前にテーブル5上の加工の障害にならない
場所に設置されたタッチセンサ11により測定される。Further, the tool length of the rotary cutting tool T is measured by the touch sensor 11 installed at a place on the table 5 which does not interfere with the processing immediately before the processing of the workpiece.
【0036】回転主軸1に回転切削工具Tを取付けて、
静止状態でタッチセンサ11により回転切削工具Tの工
具長を測定して、工具No.毎に工具長測定部15に測
定値を格納する。A rotary cutting tool T is mounted on the rotary spindle 1,
When the tool length of the rotary cutting tool T is measured by the touch sensor 11 in a stationary state, the tool No. The measured value is stored in the tool length measuring unit 15 every time.
【0037】その後、回転切削工具Tの使用回転速度で
回転主軸1を回転させ所望の加工を開始する。Thereafter, the rotary spindle 1 is rotated at the rotation speed of the rotary cutting tool T to start desired machining.
【0038】一定の加工工程に達した所で、主軸頭3に
内蔵した温度センサ13の値からZ軸方向の工具刃先の
変位量を演算装置23で演算し、その演算結果を補正装
置25に伝え、工具長のオフセット値としてNC装置7
に送出して、Z軸の送りモータ9cに移動指令を出し、
被加工物の加工を行う。When a certain processing step is reached, the amount of displacement of the tool edge in the Z-axis direction is calculated by the calculating device 23 from the value of the temperature sensor 13 built in the spindle head 3, and the calculated result is sent to the correcting device 25. NC device 7 as the tool length offset value
And issues a movement command to the Z-axis feed motor 9c.
Work on the workpiece.
【0039】以上説明したように、本実施形態によれ
ば、回転中の工具の位置変位量、工具長変位量を主軸頭
3の温度変化を測定することにより、加工中のどの工程
においても迅速に補正することが可能となる。As described above, according to this embodiment, the amount of displacement of the rotating tool and the amount of displacement of the tool length are measured by measuring the temperature change of the spindle head 3 so that it can be quickly performed in any process during machining. Can be corrected.
【0040】特に、最近の数値制御工作機械の主軸の高
速化による熱変形での加工誤差を取り除き、被加工物の
加工精度の向上ができるようになる。In particular, machining errors due to thermal deformation due to the recent increase in speed of the spindle of the numerically controlled machine tool can be eliminated, and the machining accuracy of the workpiece can be improved.
【0041】[0041]
【発明の効果】以上説明したように、本発明によれば、
工具の刃先位置変位を即座に被加工物の補正にフィード
バックすることができ、高精度な加工を行なうことが可
能となる。As described above, according to the present invention,
The displacement of the cutting edge position of the tool can be immediately fed back to the correction of the workpiece, and high-precision machining can be performed.
【図1】本発明の工具の位置変位補正加工方法の機能を
備えた数値制御工作機械の一実施形態の構成を示すブロ
ック図である。FIG. 1 is a block diagram showing a configuration of an embodiment of a numerically controlled machine tool having a function of a tool position displacement correction machining method of the present invention.
【図2】主軸の回転数によるX,Y,Zの各軸の変位量
の測定方法を示す図である。FIG. 2 is a diagram showing a method of measuring displacement amounts of X, Y, and Z axes according to the number of revolutions of a main shaft.
【図3】主軸の回転による時間経過と各軸の変位量の関
係を示す図である。FIG. 3 is a diagram showing a relationship between a lapse of time due to rotation of a main shaft and a displacement amount of each shaft.
【図4】主軸の回転による温度変化と各軸の変位量の関
係を示す図である。FIG. 4 is a diagram showing a relationship between a temperature change due to rotation of a main shaft and a displacement amount of each shaft.
1 回転主軸 3 主軸頭 5 テーブル 7 NC装置 9a X軸送りモータ 9b Y軸送りモータ 9c Z軸送りモータ 11 タッチセンサ 13 温度センサ 15 工具長測定部 17 主軸温度測定部 19a X軸電気マイクロ測定器 19b Y軸電気マイクロ測定器 19c Z軸電気マイクロ測定器 21 基準値記憶装置 23 演算装置 25 補正装置 31 球精密ゲージ T 回転切削工具 Reference Signs List 1 rotating spindle 3 spindle head 5 table 7 NC device 9a X-axis feed motor 9b Y-axis feed motor 9c Z-axis feed motor 11 touch sensor 13 temperature sensor 15 tool length measurement unit 17 spindle temperature measurement unit 19a X-axis electric micro measurement device 19b Y-axis electric micro-measuring device 19c Z-axis electric micro-measuring device 21 Reference value storage device 23 Computing device 25 Correction device 31 Ball precision gauge T Rotary cutting tool
Claims (2)
た工具の加工部の位置変位を補正しながら被加工物を加
工するための、工具位置変位補正加工方法であって、 主軸の温度変化を検出する温度検出工程と、 予め測定しておいた、前記主軸の温度変化と前記工具の
加工部の位置変位との関係に基づいて、前記温度検出工
程で検出された温度から前記工具の加工部の変位を予測
する予測工程と、 該予測工程で予測された変位量を補正するように前記数
値制御工作機械のX、Y、Zの各軸を駆動しながら加工
を行なう加工工程とを具備することを特徴とする工具位
置変位補正加工方法。1. A tool position displacement correction processing method for processing a workpiece while correcting a position displacement of a processing portion of a tool attached to a spindle of a numerical control machine tool, the method comprising: A temperature detection step to be detected, and a processing section of the tool from the temperature detected in the temperature detection step based on a relationship between a temperature change of the spindle and a positional displacement of the processing section of the tool, which is measured in advance. And a machining step of performing machining while driving the X, Y, and Z axes of the numerically controlled machine tool so as to correct the displacement amount predicted in the prediction step. A tool position displacement correction processing method characterized by the above-mentioned.
置されたタッチセンサにより、加工開始直前の主軸の静
止状態での基準工具長を測定する測定工程を更に具備す
ることを特徴とする請求項1に記載の工具位置変位補正
加工方法。2. The method according to claim 1, further comprising a measuring step of measuring a reference tool length in a stationary state of the spindle immediately before the start of machining by a touch sensor arranged on a table of the numerically controlled machine tool. 2. The tool position displacement correction processing method according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000118039A JP2001300836A (en) | 2000-04-19 | 2000-04-19 | Tool positional displacement correcting machining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000118039A JP2001300836A (en) | 2000-04-19 | 2000-04-19 | Tool positional displacement correcting machining method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001300836A true JP2001300836A (en) | 2001-10-30 |
Family
ID=18629253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000118039A Withdrawn JP2001300836A (en) | 2000-04-19 | 2000-04-19 | Tool positional displacement correcting machining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001300836A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005202844A (en) * | 2004-01-19 | 2005-07-28 | Murata Mach Ltd | Numerical controller |
JP2008264883A (en) * | 2007-04-16 | 2008-11-06 | Jtekt Corp | Machining device |
CN110587223A (en) * | 2019-09-26 | 2019-12-20 | 贵州永红航空机械有限责任公司 | Thin-wall high-position-precision hole series part machining method |
-
2000
- 2000-04-19 JP JP2000118039A patent/JP2001300836A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005202844A (en) * | 2004-01-19 | 2005-07-28 | Murata Mach Ltd | Numerical controller |
JP2008264883A (en) * | 2007-04-16 | 2008-11-06 | Jtekt Corp | Machining device |
CN110587223A (en) * | 2019-09-26 | 2019-12-20 | 贵州永红航空机械有限责任公司 | Thin-wall high-position-precision hole series part machining method |
CN110587223B (en) * | 2019-09-26 | 2020-08-28 | 贵州永红航空机械有限责任公司 | Thin-wall high-position-precision hole series part machining method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7530878B2 (en) | Grinding machine with a concentricity correction system | |
JP2706420B2 (en) | Method and apparatus for correcting tool edge position of NC machine tool | |
CN104368886B (en) | The processing method of cutting element and wire electric discharge machine | |
US6973738B2 (en) | Measuring method and device, machine tool having such device, and work processing method | |
US11883973B2 (en) | Cutting apparatus and contact position specifying program | |
JP4727634B2 (en) | Processing method | |
JP2002103220A (en) | Measuring method and working method for working portion | |
JP3305216B2 (en) | NC machine tool with tool edge position displacement measurement function | |
JP2000198047A (en) | Machine tool | |
US20070145932A1 (en) | Controller for machine tool | |
US20030204287A1 (en) | Machining error correction method adapted for numerically controlled machine tool and grinding machine using the same | |
JP2021074806A (en) | Correction value measurement method of position measurement sensor and correction value measurement system in machine tool | |
JP6803043B2 (en) | How to measure geometric error of machine tools | |
JP4172614B2 (en) | Ball screw feed drive correction method | |
JP2007257606A (en) | Method for correcting tool alignment error | |
US8152422B2 (en) | Control method for a machine tool with numerical control | |
JP4245375B2 (en) | Machine tool control method and machine tool | |
JPH07266194A (en) | Tool cutting edge measurement compensator | |
US20210331261A1 (en) | Gear machining apparatus | |
JP2005034934A (en) | Numerically controlled apparatus, machine tool equipped with the same, and method for calculating coordinate of workpiece | |
JP2013255982A (en) | Machine tool, and correction method of thermal deformation thereof | |
JP2001300836A (en) | Tool positional displacement correcting machining method | |
JP3756793B2 (en) | Machine tool thermal displacement compensation device | |
WO2013187106A1 (en) | Machine tool and method for correcting thermal deformation thereof | |
JP2018027599A (en) | Method for correcting machining error of machine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070703 |