JP2001355039A - Ultrahigh strength steel tube excellent in low temperature toughness of weld zone and its production method - Google Patents
Ultrahigh strength steel tube excellent in low temperature toughness of weld zone and its production methodInfo
- Publication number
- JP2001355039A JP2001355039A JP2000174186A JP2000174186A JP2001355039A JP 2001355039 A JP2001355039 A JP 2001355039A JP 2000174186 A JP2000174186 A JP 2000174186A JP 2000174186 A JP2000174186 A JP 2000174186A JP 2001355039 A JP2001355039 A JP 2001355039A
- Authority
- JP
- Japan
- Prior art keywords
- less
- low
- weld metal
- temperature toughness
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、天然ガス・原油輸
送用ラインパイプ等として用いられる低温靱性に優れ9
00MPa以上の引張り強度(TS)を有する超高強度
鋼管に関するものである。BACKGROUND OF THE INVENTION The present invention provides excellent low-temperature toughness for use in line pipes for transporting natural gas and crude oil.
The present invention relates to an ultra-high-strength steel pipe having a tensile strength (TS) of 00 MPa or more.
【0002】[0002]
【従来の技術】近年、原油・天然ガスの長距離輸送方法
としてラインパイプの重要性がますます高まっている。
現在、長距離輸送用の幹線ラインパイプとしては米国石
油協会(API)規格X65が設計の基本になってお
り、実際の使用量も圧倒的に多い。しかし、高圧化によ
る輸送効率の向上、およびラインパイプの外径・重量の
低減による現地施工能率の向上のため、より高強度のラ
インパイプの開発が切望されている。これまでにX80
(引張強さ620MPa以上)までのラインパイプの実
用化がなされているが、さらにX100(引張強さ76
0MPa以上)を超える高強度のラインパイプに対する
ニーズが強くなってきている。現在、超高強度ラインパ
イプ製造法の研究は、従来のX80ラインパイプの製造
技術(例えば、NKK技報No.138(1992), pp24-31 、お
よびThe 7th Offshore Mechanics andArctic Engineeri
ng (1988), Volume V, pp179-185)を基本に検討されて
いるが、これではせいぜい、X100(引張強さ760
MPa以上)ラインパイプの製造が限界と考えられてい
る。現在、X100を越える強度レベルの超高強度鋼板
の製造法は、既に研究・報告され、特許出願もされてい
る(例えば、PCT/JP96/00155号、同00
157号)。しかしながら、このX100を越える強度
レベルの超高強度鋼板を用いて超高強度ラインパイプを
製造する場合には、母材の強度・低温靱性バランスを始
めとして溶接金属および溶接熱影響部(HAZ)の靱
性、現地溶接性、継手軟化など多くの問題を抱えてお
り、実用化のためにはこれらの諸問題を克服する必要が
ある。2. Description of the Related Art In recent years, line pipes have become increasingly important as a long-distance transportation method of crude oil and natural gas.
At present, American Petroleum Institute (API) standard X65 is the basis of design for trunk line pipes for long-distance transportation, and actual usage is overwhelmingly large. However, development of higher-strength line pipes has been eagerly desired in order to improve transportation efficiency by increasing the pressure and to improve on-site construction efficiency by reducing the outer diameter and weight of the line pipes. X80 so far
(A tensile strength of at least 620 MPa) has been put to practical use.
There is a growing need for high-strength line pipes exceeding 0 MPa). Currently, research on ultra-high-strength linepipe manufacturing methods is based on conventional X80 linepipe manufacturing techniques (eg, NKK Technical Report No. 138 (1992), pp24-31, and The 7th Offshore Mechanics and Arctic Engineeri).
ng (1988), Volume V, pp. 179-185), but at most X100 (tensile strength of 760)
The production of line pipes is considered to be the limit. At present, methods for producing ultra-high-strength steel sheets having a strength level exceeding X100 have already been studied and reported, and patent applications have been filed (for example, PCT / JP96 / 00155, 0000).
157). However, when manufacturing an ultra-high-strength line pipe using an ultra-high-strength steel plate having a strength level exceeding X100, the strength of the base metal and the balance between the low-temperature toughness and the weld metal and the weld heat-affected zone (HAZ) are reduced. It has many problems such as toughness, on-site weldability, and softening of joints, and it is necessary to overcome these problems for practical use.
【0003】特に、超高強度(X100超)ラインパイ
プを製造する場合には、溶接部の溶接金属は、溶接後、
凝固ままで使用され、また、溶接金属の靱性は、一般に
強度の上昇とともに低下するため、ラインパイプとして
の溶接金属の所要低温靱性を確保することが大きな課題
であった。従来、超高強度厚板を溶接する際の溶接金属
の低温靱性を向上させる方法としては、一般に溶接ワイ
ヤまたはフラックス等を用いることにより、溶接金属中
に多量のNiを添加する方法(溶接接合便覧(1990.9.3
丸善)p888)が知られている。また、溶接時の入熱量
を低く規制して低入熱の多層盛り溶接を行う方法(新日
本製鐵Cat.No.EXE332(1973)p1〜69)も、従来から知ら
れている。しかしながら、これらの方法は、高価な合金
成分を使用したり、溶接能率が低下するため、何れの方
法もラインパイプの製造コストを増加させる点で問題が
あった。In particular, when manufacturing an ultra-high-strength (X100 or more) line pipe, the weld metal at the welded portion is
Since it is used as solidified and the toughness of the weld metal generally decreases with an increase in strength, it has been a major issue to secure the required low-temperature toughness of the weld metal as a line pipe. Conventionally, as a method of improving the low-temperature toughness of a weld metal when welding an ultrahigh-strength thick plate, a method of adding a large amount of Ni into a weld metal by using a welding wire or a flux or the like (welding joint handbook) (1990.9.3
Maruzen) p888) is known. A method of performing low-heat-input multi-layer welding by restricting the heat input during welding to a low level (Nippon Steel Cat. No. EXE332 (1973) p1 to 69) is also conventionally known. However, these methods have problems in that they use expensive alloy components and decrease welding efficiency, so that all methods increase the production cost of line pipes.
【0004】[0004]
【発明が解決しようとする課題】本発明は、上記従来技
術の課題を鑑みて、特に溶接部の溶接金属の低温靱性に
優れた引張強さが900MPa以上(API規格X10
0超)の超高強度鋼管およびその製造方法を経済的な方
法で提供するものである。SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, the present invention has a tensile strength excellent in low-temperature toughness of a weld metal particularly at a welded portion of 900 MPa or more (API standard X10).
0) and a method of manufacturing the same in an economical manner.
【0005】[0005]
【課題を解決するための手段】本発明は、上記課題を解
決するものであって、その要旨とするところは、下記の
通りである。 (1)溶接部の溶接金属中に粒内ベイナイトが存在する
ことを特徴とする溶接部の低温靱性に優れた超高強度鋼
管。 (2)前記溶接部の溶接金属中の粒内ベイナイト分率が
50%以上であることを特徴とする上記(1)に記載の
溶接部の低温靱性に優れた超高強度鋼管。 (3)前記溶接金属中に少なくともTiを含有するTi
含有酸化物及び該Ti含有酸化物を核としてその周辺に
少なくともMn硫化物が析出した複合粒子を含有するこ
とを特徴とする上記(1)または(2)の何れかに記載
の溶接部の低温靱性に優れた超高強度鋼管。 (4)前記Ti含有酸化物のサイズが、平均円相当径で
0.01〜5μm であり、且つ、平均密度1×103 個
/mm2 以上で溶接金属中に存在することを特徴とする
助基(1)から(3)の何れか1項に記載の溶接部の低
温靱性に優れた超高強度鋼管。 (5)前記溶接金属の成分として、質量%で、C:0.
04〜0.14%、Si:0.05〜0.4%、Mn:
1.2〜2.2%、P:0.01%以下、S:0.01
%以下、Ti:0.003〜0.05%、Al:0.0
2%以下、Ni:1.3〜3.2%、Cr、Mo及びV
の内の1種または2種以上:1〜2.5%、B:0.0
05%以下を含有し、残部がFeを主成分とすることを
特徴とする上記(1)から(4)の何れか1項に記載の
溶接部の低温靱性に優れた超高強度鋼管。 (6)前記溶接金属のベイナイト・マルテンサイト分率
が50%以上であることを特徴とする上記(1)から
(5)の何れか1項に記載の溶接部の低温靱性に優れた
超高強度鋼管。 (7)前記溶接金属の引張り強度が900MPa以上を
有することを特徴とする上記(1)から(6)の何れか
1項に記載の溶接部の低温靱性に優れた超高強度鋼管。 (8)質量%で、C:0.03〜0.1%、Si:0.
6%以下、Mn:1.7〜2.5%、P:0.015%
以下、S:0.003%以下、Ti:0.005〜0.
03%、Ni:0.1〜1%、Mo:0.15〜0.6
%、Nb:0.01〜0.1%を含有し、さらに選択的
に、Al:0.06%以下、B:0.005%以下、
N:0.001〜0.006%以下、V:0.1%以
下、Cu:1%以下、Cr:0.8%以下、Ca:0.
01%以下、REM:0.02%以下、Mg:0.006
%以下の内の1種または2種以上を含有し、残部鉄およ
び不可避的不純物からなる鋼板をUO工程で管状に成形
し、その鋼板の突き合わせ部の内外面からC:0.01
〜0.12%、Si:0.3%以下、Mn:1.2〜
2.4%、Ti:0.005〜0.15%、Ni:4〜
8.5%、Cr、Mo及びVの内の1種または2種以
上:3〜5%を含有し、残部がFeを主成分とする溶接
ワイヤ−と焼成型もしくは溶融型フラックスを使用して
サブマージドアーク溶接を行い、その後、拡管を行うこ
とを特徴とする溶接部の低温靱性に優れた超高強度鋼管
の製造方法。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and its gist is as follows. (1) An ultra-high-strength steel pipe excellent in low-temperature toughness of a weld, wherein intragranular bainite is present in the weld metal of the weld. (2) The ultra-high-strength steel pipe excellent in low-temperature toughness of a weld according to (1), wherein the fraction of bainite in the grains in the weld metal in the weld is 50% or more. (3) Ti containing at least Ti in the weld metal
The low temperature of the weld according to any one of the above (1) or (2), characterized in that the low temperature of the weld portion according to any one of the above (1) and (2), further comprising a composite particle in which at least Mn sulfide is precipitated around the titanium-containing oxide and the Ti-containing oxide. Ultra high strength steel pipe with excellent toughness. (4) The Ti-containing oxide has a mean circle equivalent diameter of 0.01 to 5 μm and an average density of 1 × 10 3 / mm 2 or more in the weld metal. The ultrahigh-strength steel pipe excellent in low-temperature toughness of a weld according to any one of the assistants (1) to (3). (5) As a component of the weld metal, C: 0.
04-0.14%, Si: 0.05-0.4%, Mn:
1.2 to 2.2%, P: 0.01% or less, S: 0.01
% Or less, Ti: 0.003 to 0.05%, Al: 0.0
2% or less, Ni: 1.3 to 3.2%, Cr, Mo and V
One or more of them: 1 to 2.5%, B: 0.0
The ultra-high-strength steel pipe according to any one of the above (1) to (4), wherein the ultra-high-strength steel pipe contains 0.05% or less and the balance contains Fe as a main component. (6) The weld metal according to any one of the above (1) to (5), wherein the weld metal has a bainite-martensite fraction of 50% or more. Strength steel pipe. (7) The ultra-high strength steel pipe according to any one of (1) to (6) above, wherein the weld metal has a tensile strength of 900 MPa or more. (8) In mass%, C: 0.03 to 0.1%, Si: 0.
6% or less, Mn: 1.7 to 2.5%, P: 0.015%
Hereinafter, S: 0.003% or less, Ti: 0.005 to 0.
03%, Ni: 0.1-1%, Mo: 0.15-0.6
%, Nb: 0.01 to 0.1%, and more selectively, Al: 0.06% or less, B: 0.005% or less,
N: 0.001 to 0.006% or less; V: 0.1% or less; Cu: 1% or less; Cr: 0.8% or less;
01% or less, REM: 0.02% or less, Mg: 0.006
% Or less, and a steel sheet comprising the balance of iron and unavoidable impurities is formed into a tube by the UO process, and C: 0.01 from the inner and outer surfaces of the butted portion of the steel sheet.
~ 0.12%, Si: 0.3% or less, Mn: 1.2 ~
2.4%, Ti: 0.005 to 0.15%, Ni: 4 to
8.5%, one or more of Cr, Mo and V: 3 to 5%, with the balance being the use of a welding wire mainly composed of Fe and a sintering or melting flux. A method for producing an ultra-high-strength steel pipe excellent in low-temperature toughness of a welded part, characterized by performing submerged arc welding and then expanding the pipe.
【0006】[0006]
【発明の実施の形態】以下、本発明の内容について詳細
に説明する。本発明は、母材部及び溶接部ともに900
MPa以上の引張強さ(TS)を有し、且つ低温靱性に
優れた超高強度鋼管とその製造方法に関するものであ
る。一般に、引張強さ(TS)が900MPa以上(A
PI規格X100超)の超高強度ラインパイプ用鋼管で
は、従来の主流であるX65と較べて約2倍の圧力に耐
えることができるため、同じサイズで約2倍のガスを輸
送することが可能になる。また、X65の場合のように
所要圧力の増加に耐え得るために肉厚を厚くする必要が
ないために、X65に比べてパイプライン敷設時の材料
費、輸送費、現地溶接施工費等の敷設費用の低下が可能
となる。これが、近年、原油・天然ガスの長距離輸送ラ
インパイプ用として900MPa以上の引張強さ(T
S)を有する超高強度鋼管の重要性がますます高まって
いる理由である。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the contents of the present invention will be described in detail. In the present invention, the base material and the welded portion are 900
The present invention relates to an ultra-high-strength steel pipe having a tensile strength (TS) of not less than MPa and excellent in low-temperature toughness, and a method for producing the same. Generally, the tensile strength (TS) is 900 MPa or more (A
Ultra-high strength steel pipes for line pipes (PI standard X100 or more) can withstand about twice the pressure compared to the conventional mainstream X65, so it is possible to transport about twice the gas with the same size. become. Also, since it is not necessary to increase the wall thickness in order to withstand the required pressure increase as in the case of X65, the laying of material costs, transportation costs, on-site welding construction costs, etc., when laying pipelines is compared to X65. Costs can be reduced. In recent years, this has been used for long-distance transportation line pipes for crude oil and natural gas, and has a tensile strength (T
This is the reason why ultra-high-strength steel pipes having S) are increasingly important.
【0007】一方、高強度になる程、急激に鋼管の製造
が困難になる。特に、900MPa以上の引張強さ(T
S)を有する超高強度ラインパイプ用鋼管を製造する場
合には、溶接部の溶接金属部の低温靱性を確保すること
が困難となる。鋼管のシーム溶接部も含めた強度・靱性
等の目標特性を確保するための一つの評価基準として、
シーム溶接部を含んだ円周方向の余盛り付き引張試験
(バースト試験)において溶接金属から破断せずに、管
体から破断させ得ることが必須と考えられている。On the other hand, the higher the strength, the more rapidly it becomes difficult to manufacture a steel pipe. In particular, a tensile strength of 900 MPa or more (T
When manufacturing a steel pipe for an ultra-high-strength line pipe having S), it is difficult to ensure low-temperature toughness of a weld metal portion of a welded portion. As one evaluation criterion to secure target properties such as strength and toughness including seam welds of steel pipes,
It is considered essential to be able to break from the pipe body without breaking from the weld metal in a circumferential tensile test (burst test) including a seam weld portion.
【0008】一般に、溶接後、凝固ままで使用され鋼管
溶接部の溶接金属の低温靱性は、強度の上昇と共に低下
するため、必要な低温靱性を確保するためには溶接金属
の強度が規制される。本発明者らの実験結果によれば、
溶接金属の強度と低温靱性の関係は、図1に示すような
関係にあり、従来の高強度鋼管の溶接金属(○)では、
例えば、−20℃で84Jのシャルピー吸収エネルギ−
を満足する低温靱性を得るためには、溶接金属の強度を
少なくとも1025MPa未満に規制する必要があっ
た。In general, the low-temperature toughness of a weld metal in a steel pipe weld is used as it is after being welded, and the low-temperature toughness of the weld metal decreases with an increase in strength. Therefore, the strength of the weld metal is regulated in order to ensure necessary low-temperature toughness. . According to the experimental results of the present inventors,
The relationship between the strength of the weld metal and the low-temperature toughness is as shown in FIG. 1. In the conventional weld metal (の) of a high-strength steel pipe,
For example, the Charpy absorbed energy of 84 J at -20 ° C.
In order to obtain low-temperature toughness satisfying the following conditions, it was necessary to regulate the strength of the weld metal to at least less than 1025 MPa.
【0009】そこで、本発明者らは、上記のような溶接
金属の強度の増加にともなう溶接金属の靱性の低下を抑
制し、高強度で高靱性の溶接金属が得られる900MP
a以上(API規格X100超)の超高強度ラインパイ
プ用鋼管の製造方法について、鋭意検討を重ねた。その
結果、溶接部の溶接金属の結晶粒内中に特定の介在物が
存在すると、それを核として後述する粒内ベイナイト組
織(以下粒内ベイナイトという。)が生成し、粒内組織
が細分化されるため、結果的に、シャルピー破面単位が
極めて小さくなり、溶接金属に靱性が向上することを見
いだした。また、粒内ベイナイトを生成させるための核
となり得る介在物としては、少なくともTiを含有する
Ti含有酸化物(Tiの他にAl,Si,Mn,Cr,
Mg,Ca等を含有しても良い)とこのTi含有酸化物
を核としてその周辺に少なくともMnを含有するMn含
有硫化物(Mnの他にCa,Cu,Mg等を含有しても
良い)が析出した複合粒子が有効であり、焼き入れ性が
高い成分系の溶接金属中の結晶粒内にこれらの介在物が
存在すると、これらを核にして粒内ベイナイトが生成す
ることが判った。Therefore, the present inventors suppressed the decrease in the toughness of the weld metal due to the increase in the strength of the weld metal as described above, and obtained a 900MPa high strength and high toughness weld metal.
The inventors conducted intensive studies on a method for producing a steel pipe for an ultra-high-strength line pipe of a or more (API standard X100 or more). As a result, if specific inclusions are present in the crystal grains of the weld metal in the welded portion, the grains will be used as nuclei to generate a later-described intragranular bainite structure (hereinafter referred to as intragranular bainite), and the intragranular structure will be subdivided. As a result, it has been found that as a result, the Charpy fracture surface unit becomes extremely small, and the toughness of the weld metal is improved. In addition, as an inclusion that can be a nucleus for generating intragranular bainite, a Ti-containing oxide containing at least Ti (Al, Si, Mn, Cr, Ti, in addition to Ti)
Mg or Ca, etc.) and an Mn-containing sulfide containing at least Mn around the Ti-containing oxide as a nucleus (Ca, Cu, Mg, etc. may be contained in addition to Mn) It has been found that the composite particles in which are precipitated are effective, and when these inclusions are present in the crystal grains in the component-type weld metal having high hardenability, intragranular bainite is formed using these as nuclei.
【0010】ここで言う粒内ベイナイトとは、図2に示
す低Al−高Tiの高焼入れ成分系でTi含有酸化物ま
たはこのTi含有酸化物とMn含有硫化物の複合粒子を
核として放射状に生成されるベイナイトであり、図3に
示される従来の比較的高Al−低Tiの高焼入れ成分系
で結晶粒界からベイナイトラスの成長により生成される
通常のベイナイト組織と区別される。[0010] The intragranular bainite mentioned here is a low Al-high Ti high quenching component system shown in Fig. 2 and is formed radially with a Ti-containing oxide or composite particles of this Ti-containing oxide and Mn-containing sulfide as nuclei. The bainite is formed, and is distinguished from a normal bainite structure formed by growing a bainite lath from a grain boundary in a conventional relatively high Al-low Ti high quenching component system shown in FIG.
【0011】本発明者らの実験結果によれば、図1に示
すように、粒内ベイナイトが顕著に存在している溶接金
属(●)は、従来の高強度鋼管の溶接金属(○)に比べ
て、粒内溶接金属の強度の増加にともなう溶接金属の靱
性の低下は抑制され、引張り強さが900MPaを超え
る強度においても−20℃でのシャルピー吸収エネルギ
ーが150J以上の低温靱性に優れた溶接金属が得られ
ることが判っている。According to the experimental results of the present inventors, as shown in FIG. 1, the weld metal (●) in which intragranular bainite is remarkably present is different from the weld metal (の) of the conventional high-strength steel pipe. In comparison, a decrease in the toughness of the weld metal with an increase in the strength of the intragranular weld metal is suppressed, and the Charpy absorbed energy at −20 ° C. at -20 ° C. is excellent in low-temperature toughness of 150 J or more even at a tensile strength exceeding 900 MPa. It has been found that a weld metal can be obtained.
【0012】上記の溶接金属の結晶粒内のTi含有酸化
物あるいはこの酸化物とMn含有硫化物の複合粒子から
粒内ベイナイトが生成する理由については、次のように
考えられる。Ti酸化物は陽イオン空孔型の酸化物であ
るので、Mnイオンを多く取り込む性質を有するため、
粒内にTi含有酸化物が存在すると、その回りにMn欠
乏層を形成させるか、または、その周囲にMn含有硫化
物を析出させてTi含有酸化物とMn含有硫化物の複合
粒子を生成させる。この場合、粒内にTi含有酸化物が
単独で存在する場合に比べて、Ti含有酸化物とMn含
有硫化物の複合粒子として存在する方がその回りのMn
欠乏層の形成をより促進する。溶接金属の粒内に存在す
るこのMn欠乏層が、高温のオーステナイト相からフェ
ライトに変態する場合の粒内フェライト変態を促進さ
せ、本発明の超高強度鋼管のように、焼き入れ性が高い
成分系で比較的冷却速度が早い条件では、フェライト変
態後、直ちにベイナイト変態が生じ、粒内ベイナイトが
生成する。このようなメカニズムにより粒内ベイナイト
が生成することにより結果的に粒内組織が細分化され、
シャルピー破面単位が極めて小さくなるため、溶接金属
の靱性が向上するものと考えられる。The reason why intragranular bainite is formed from Ti-containing oxide or composite particles of this oxide and Mn-containing sulfide in the crystal grains of the weld metal is considered as follows. Since Ti oxide is a cation vacancy type oxide, it has a property of taking in a lot of Mn ions.
When the Ti-containing oxide is present in the grains, a Mn-deficient layer is formed around the Ti-containing oxide, or a Mn-containing sulfide is precipitated around the layer to form composite particles of the Ti-containing oxide and the Mn-containing sulfide. . In this case, the presence of the Ti-containing oxide and the Mn-containing sulfide as composite particles as compared with the case where the Ti-containing oxide is present alone in the grains has a smaller Mn around it.
The formation of a depletion layer is further promoted. This Mn deficient layer present in the grains of the weld metal promotes intragranular ferrite transformation when transforming from a high-temperature austenite phase to ferrite, and a component having high hardenability, such as the ultra-high strength steel pipe of the present invention. Under conditions where the cooling rate is relatively high in the system, bainite transformation occurs immediately after ferrite transformation, and intragranular bainite is formed. The formation of intragranular bainite by such a mechanism results in the fragmentation of the intragranular structure,
It is considered that the toughness of the weld metal is improved because the Charpy fracture surface unit is extremely small.
【0013】本発明では、溶接部の溶接金属の低温靱性
を向上させるために、溶接金属中に粒内ベイナイトを生
成させる必要がある。また、溶接金属の低温靱性を向上
させるためには、粒内ベイナイト分率(溶接金属組織に
占める粒内ベイナイトの面積率(%))が多ければ多い
方が好ましく、本発明では、その効果が充分に得られる
ために50%以上とする。なお、粒内ベイナイト分率を
50%以上とするには、Ti含有酸化物が存在する条件
下で比較的冷却速度が早い場合、例えば30℃/s〜5
℃/sの条件で達成することができる。In the present invention, it is necessary to form intragranular bainite in the weld metal in order to improve the low-temperature toughness of the weld metal in the weld. In order to improve the low-temperature toughness of the weld metal, it is preferable that the intragranular bainite fraction (the area ratio (%) of the intragranular bainite in the weld metal structure) is large, and in the present invention, the effect is reduced. In order to obtain a sufficient amount, the content is set to 50% or more. In order to set the intragranular bainite fraction to 50% or more, when the cooling rate is relatively high under the condition where the Ti-containing oxide is present, for example, 30 ° C./s to 5 ° C.
C./s can be achieved.
【0014】また、本発明では、溶接部の溶接金属中に
粒内ベイナイトを生成させるために、溶溶接金属中に少
なくともTiを含有するTi含有酸化物及び該Ti含有
酸化物を核としてその周辺に少なくともMn硫化物が析
出した複合粒子を含有させることが必要である。より好
ましくは、溶接部の溶接金属中に存在するTi含有酸化
物のサイズは、平均円相当径で0.01〜5μm の範囲
とし、平均密度は、1×103 個/mm2 以上に規定す
れば、粒内のベイナイト生成が促進され溶接金属の低温
靱性を向上させる上で好ましい。なお、Ti含有酸化物
を上述した範囲とするには、サブマージアーク溶接にお
ける入熱を2.0〜5.0KJ/mmの条件で得ること
ができる。Further, in the present invention, in order to generate intragranular bainite in the weld metal of the welded portion, a Ti-containing oxide containing at least Ti in the molten weld metal and a peripheral portion of the Ti-containing oxide using the Ti-containing oxide as a nucleus. Must contain at least composite particles in which Mn sulfide is precipitated. More preferably, the size of the Ti-containing oxide present in the weld metal of the weld is in the range of 0.01 to 5 μm in terms of an average circle equivalent diameter, and the average density is defined as 1 × 10 3 pieces / mm 2 or more. This is preferable from the viewpoint of promoting formation of bainite in the grains and improving the low-temperature toughness of the weld metal. In order to set the Ti-containing oxide in the above-described range, the heat input in the submerged arc welding can be obtained under the condition of 2.0 to 5.0 KJ / mm.
【0015】また、溶接金属の引張り強度が900MP
a以上にするには、溶接金属のベイナイト・マルテンサ
イト組織においてベイナイト・マルテンサイト分率を5
0%以上とすることが好ましい。次に、本発明鋼管の溶
接部の溶接金属の成分の限定理由について説明する。な
お、以下に示す%は、特に説明がない限りは、質量%を
示すものとする。Further, the tensile strength of the weld metal is 900MP.
In order to achieve a value of at least a, the bainite-martensite fraction of the weld metal is set to 5%.
It is preferred to be 0% or more. Next, the reasons for limiting the components of the weld metal in the welded portion of the steel pipe of the present invention will be described. In addition,% shown below shall show a mass% unless there is particular description.
【0016】C量は0.04〜0.14%に限定する。
Cは鋼の強度向上に極めて有効であり、マルテンサイト
組織において目標とする強度を得るためには、最低0.
04%は必要である。しかし、C量が多すぎると溶接低
温割れが発生しやすくなり、現地溶接部とシーム溶接が
交わるいわゆるTクロス部のHAZ最高硬さの上昇を招
くので、その上限を0.14%とした。より好ましく
は、その上限値を0.1%とするのがよい。The amount of C is limited to 0.04 to 0.14%.
C is extremely effective in improving the strength of steel. To obtain a target strength in a martensitic structure, at least 0.1C is required.
04% is needed. However, when the C content is too large, low-temperature cracking of the weld is apt to occur, and the HAZ maximum hardness of the so-called T-cross portion where the on-site weld and the seam weld intersect is increased. Therefore, the upper limit is set to 0.14%. More preferably, the upper limit is set to 0.1%.
【0017】Siはブローホール防止のために0.05
%以上は必要であるが、含有量が多いと低温靱性を著し
く劣化させるので、上限を0.4%とした。特に、内外
面溶接や多層溶接を行う場合、再熱部の低温靱性を劣化
させる。Mnは優れた強度・低温靱性のバランスを確保
する上で不可欠な元素であり、また、Mn含有硫化物の
介在物を生成し、粒内ベイナイトを生成させる。特に、
粒内に陽イオン空孔型のTi含有酸化物が存在すると、
そのTi含有酸化物の周囲にMn含有硫化物が析出し、
粒内のMn含有硫化物の生成を促進し、粒内ベイナイト
の生成を促進させる。これらの効果を得られために、そ
の添加量の下限を1.2%とする。しかし、Mnが多す
ぎると偏析が助長され、低温靱性を劣化させるだけでな
く、溶接材料の製造も困難になるので、上限を2.2%
とした。Si is 0.05 to prevent blowholes.
% Or more is necessary, but if the content is large, the low-temperature toughness is remarkably deteriorated, so the upper limit was made 0.4%. In particular, when performing inner / outer surface welding or multilayer welding, the low-temperature toughness of the reheated portion is deteriorated. Mn is an indispensable element for ensuring an excellent balance between strength and low-temperature toughness, and also forms inclusions of Mn-containing sulfides and forms intragranular bainite. In particular,
When the cation vacancy type Ti-containing oxide is present in the grains,
Mn-containing sulfide precipitates around the Ti-containing oxide,
It promotes the generation of Mn-containing sulfide in the grains and promotes the formation of intragranular bainite. In order to obtain these effects, the lower limit of the added amount is set to 1.2%. However, if the Mn content is too large, segregation is promoted and not only deteriorates low-temperature toughness but also makes it difficult to produce a welding material, so the upper limit is 2.2%.
And
【0018】Niは、焼き入れ性を高めて強度を確保す
るために、さらには、低温靱性を向上させるために必要
である。1.3%以下では目標の強度・低温靱性を得る
ことが難しいため、下限を1.3%とする。一方、含有
量が多すぎると高温割れの危険があるため上限は3.2
%とした。Cr、Mo、Vは、いずれも焼き入れ性を高
め、高強度を得るために必要な元素であり、これらの元
素の内の1種または2種以上を1〜2.5%の範囲で添
加する。その含有量が1%未満ではその効果が十分でな
いため、下限を1%とし、過度に多量添加すると低温割
れの危険が増すため上限を2.5%とした。Ni is necessary for enhancing the hardenability and securing the strength, and for improving the low-temperature toughness. If it is less than 1.3%, it is difficult to obtain the target strength and low-temperature toughness, so the lower limit is made 1.3%. On the other hand, if the content is too large, there is a risk of hot cracking, so the upper limit is 3.2.
%. Cr, Mo, and V are elements necessary for enhancing hardenability and obtaining high strength, and one or more of these elements are added in the range of 1 to 2.5%. I do. If the content is less than 1%, the effect is not sufficient, so the lower limit is set to 1%. If the content is excessively large, the risk of low-temperature cracking increases, so the upper limit is set to 2.5%.
【0019】Bは微量で焼き入れ性を高め、溶接金属の
低温靱性に有効なな元素であるが、含有量が多すぎると
かえって低温靱性を劣化させるので含有範囲を0.00
5%以下とした。Tiは粒内ベイナイトを生成させるT
i含有酸化物やこの酸化物とMn含有硫化物の複合粒子
の介在物を生成させるために必須な成分であり、粒内に
これらの介在物を核として粒内ベイナイトを生成させて
溶接金属の低温靱性を向上させる。これらの効果を充分
に得るためにその含有量の下限を0.003%とする。
また、Tiが過度に多すぎるとTi炭化物が多く生成
し、低温靱性を劣化させるのでその上限を0.05%に
した。B is a very small element that enhances the hardenability and is effective for the low-temperature toughness of the weld metal. However, if the content is too large, the low-temperature toughness is rather deteriorated.
5% or less. Ti is T which forms intragranular bainite
It is an essential component for generating inclusions of i-containing oxides and composite particles of this oxide and Mn-containing sulfide, and forms intragranular bainite with these inclusions as nuclei in the grains to form a weld metal. Improves low temperature toughness. In order to sufficiently obtain these effects, the lower limit of the content is set to 0.003%.
On the other hand, if the Ti content is too large, a large amount of Ti carbide is generated and the low-temperature toughness is degraded. Therefore, the upper limit was made 0.05%.
【0020】Alは、脱酸成分として知られるが、Al
2 O3 等の酸化物を生成するが、その酸化物は、陰イオ
ン空孔型酸化物であり、MnS等のMn含有硫化物との
結合性が悪いため、本発明では、粒内でのMn含有硫化
物の生成を阻害しないために出来る限り低くすることが
望ましい。そのために、本発明では、その含有量の上限
を0.02%に規定する。Al is known as a deoxidizing component.
Although an oxide such as 2 O 3 is generated, the oxide is an anionic vacancy type oxide and has poor bonding with Mn-containing sulfides such as MnS. It is desirable to make the temperature as low as possible so as not to inhibit the production of Mn-containing sulfide. Therefore, in the present invention, the upper limit of the content is defined as 0.02%.
【0021】また、本発明でP、Sは、溶接金属の低温
靱性の劣化、低温割れ感受性の低減のために、その含有
量は低い方が望ましく、それぞれの上限を0.01%と
する。なお、溶接金属に含まれる酸素量は20ppm以
上であることが好ましい。また、本発明では、上記成分
の他に、溶接時の精錬・凝固を良好に行わせるために必
要に応じて、溶接金属中にはZr、Nb、Mg等を添加
させても良い。In the present invention, the contents of P and S are desirably low in order to lower the low-temperature toughness of the weld metal and reduce the susceptibility to low-temperature cracking. The amount of oxygen contained in the weld metal is preferably at least 20 ppm. Further, in the present invention, in addition to the above components, Zr, Nb, Mg, etc. may be added to the weld metal as necessary in order to perform refining and solidification during welding well.
【0022】次に本願発明の鋼管の製造方法について、
以下に説明する。本発明の鋼管は、鋼板をU形次いでO
形に成形するUO工程で製管し、突き合わせ部をアーク
溶接にて仮付け溶接した後に内外面からサブマージドア
ーク溶接を行い、その後拡管して真円度を高める製造方
法にて効率良く製造することができる。Next, a method for manufacturing a steel pipe according to the present invention will be described.
This will be described below. In the steel pipe of the present invention, the steel plate is formed into a U shape and then an O shape.
Pipes are formed in the UO process of forming into a shape, and the butted portions are tack-welded by arc welding, then submerged arc welding is performed from the inner and outer surfaces, and then the pipe is expanded to increase the roundness, thereby efficiently manufacturing the pipe. be able to.
【0023】鋼板の製管時のサブマージドアーク溶接は
母材の希釈率が大きい溶接であり、所望の特性すなわち
溶接金属組成を得るためには、母材の希釈を考慮した溶
接材料の選択が必要である。以下に、本発明の鋼管の製
造において用いられる溶接ワイヤ−の化学組成の限定理
由を述べる。なお、以下に示す%は、特に説明がない限
りは、質量%を示すものとする。Submerged arc welding at the time of forming a steel sheet is a welding in which the base metal has a high dilution ratio. In order to obtain desired characteristics, that is, a weld metal composition, it is necessary to select a welding material in consideration of the dilution of the base metal. is necessary. Hereinafter, the reasons for limiting the chemical composition of the welding wire used in the production of the steel pipe of the present invention will be described. In addition,% shown below shall show a mass% unless there is particular description.
【0024】Cは溶接金属で必要とされるC量の範囲を
得るために、母材成分の希釈および雰囲気からのCの混
入を考慮して0.01〜0.12%とした。Siは溶接
金属で必要とされるSi量の範囲を得るために、母材成
分による希釈を考慮して0.3%以下とした。Mnは溶
接金属で必要とされるMn量の範囲を得るために、母材
成分による希釈を考慮して1.2〜2.4%とした。C is set to 0.01 to 0.12% in consideration of the dilution of the base metal component and the mixing of C from the atmosphere in order to obtain the range of the amount of C required for the weld metal. Si is set to 0.3% or less in consideration of dilution by a base metal component in order to obtain a range of Si amount required for the weld metal. Mn was set to 1.2 to 2.4% in consideration of dilution by a base metal component in order to obtain a range of Mn amount required for the weld metal.
【0025】Niは溶接金属で必要とされるNi量の範
囲を得るために、母材成分による希釈を考慮して4〜
8.5%とした。Cr、Mo、Vは、これらの内の1種
または2種以上の含有量が溶接金属で必要とされる含有
量の範囲を得るために、母材成分による希釈を考慮して
3〜5%とした。In order to obtain a range of the amount of Ni required for the weld metal, Ni is set to 4 to 4 in consideration of dilution with a base metal component.
It was set to 8.5%. Cr, Mo, and V are contained in an amount of 3 to 5% in consideration of dilution with a base metal component in order to obtain a range of one or more of these contents required for the weld metal. And
【0026】Tiは溶接金属で必要とされるTi含有量
の範囲を得るために、母材成分による希釈を考慮して
0.005〜0.15%とした。また、P、S、Al
は、不可避成分であり、本発明では、溶接金属の低温靱
性の劣化を抑制するために、極力少ない方が望ましく、
P及びSはそれぞれ0.01%以下とし、Alは0.0
2%以下に規制する。Ti is set to 0.005 to 0.15% in consideration of dilution with a base metal component in order to obtain a range of Ti content required for the weld metal. Also, P, S, Al
Is an unavoidable component, and in the present invention, it is desirable to minimize the low-temperature toughness of the weld metal,
P and S are each 0.01% or less, and Al is 0.0% or less.
Restrict to 2% or less.
【0027】また、本発明では、溶接ワイヤー中のB
は、特に規定しないが、焼き入れ性成分として、強度調
整の必要に応じて微量添加しても良い。また、溶接ワイ
ヤー中に脱酸材として、Zr、Nb、Mg等を添加させ
ても良い。なお、本発明では、溶接ワイヤを単極で使用
するだけでなく、複数電極で用いて溶接することが可能
である。複数電極で溶接の場合は各種ワイヤーの組み合
わせが可能であり、それぞれのワイヤーが上記成分範囲
にある必要はなく、それぞれのワイヤー成分と消費量か
らの平均組成が上記成分範囲にあればよい。In the present invention, B in the welding wire
Although not particularly specified, a small amount may be added as a hardenable component as required for strength adjustment. Further, Zr, Nb, Mg, or the like may be added to the welding wire as a deoxidizing material. In the present invention, welding can be performed not only by using a single electrode but also by using a plurality of electrodes. In the case of welding with a plurality of electrodes, combinations of various wires are possible, and it is not necessary for each wire to be within the above-described component range.
【0028】また、本発明の鋼管製造時のサブマージド
アーク溶接において使用されるフラックスは焼成型フラ
ックスと溶融形フラックスに大別してされる。焼成型フ
ラックスは合金添加が可能で拡散性水素量が低い利点が
あるが、粉化しやすく繰り返し使用が難しい欠点があ
る。一方、溶融型フラックスはガラス粉状で粒強度が高
く、吸湿しにくい利点があり、拡散性水素量が高い欠点
がある。本発明では、工業的にどちらも本質的に使用可
能である。The flux used in the submerged arc welding at the time of manufacturing the steel pipe according to the present invention is roughly classified into a sintering flux and a molten flux. The calcined flux has an advantage that the alloy can be added and the amount of diffusible hydrogen is low, but there is a disadvantage that it is easily powdered and it is difficult to use repeatedly. On the other hand, the molten flux has the advantages of being glassy, having a high particle strength, being less likely to absorb moisture, and having a high diffusible hydrogen content. In the present invention, both can be used essentially in industry.
【0029】次に本発明の鋼管の製造に用いられる鋼板
の成分の限定理由を述べる。なお、以下に示す%は、特
に説明がない限りは、質量%を示すものとする。C量
は、0.03〜0.1%に限定する。Cは鋼の強度向上
に極めて有効であり、マルテンサイト組織において目標
とする強度を得るためには、最低0.03%は必要であ
る。しかし、C量が多すぎると母材、HAZ の低温靱性や
現地溶接性の著しい劣化を招くので、その上限を0.1
%とした。更に望ましくは上限は0.07%が好まし
い。Next, the reasons for limiting the components of the steel sheet used for producing the steel pipe of the present invention will be described. In addition,% shown below shall show a mass% unless there is particular description. The amount of C is limited to 0.03 to 0.1%. C is extremely effective in improving the strength of steel, and at least 0.03% is required to obtain the target strength in the martensite structure. However, if the C content is too large, the low-temperature toughness and the on-site weldability of the base material and HAZ are remarkably deteriorated.
%. More preferably, the upper limit is 0.07%.
【0030】Siは脱酸や強度向上のために添加する元
素であるが、多く添加するとHAZ 靱性、現地溶接性を著
しく劣化させるので、上限を0.6%とした。鋼の脱酸
は後述のAl、Tiでも十分可能であり、強度調整のた
めにこれらの添加量に応じて添加することが好ましい。
Mnは本発明鋼のミクロ組織をマルテンサイト主体の組
織とし、優れた強度・低温靱性のバランスを確保する上
で不可欠な元素であり、その下限は1.7%である。し
かし、Mnを多く入れすぎると鋼の焼き入れ性が増して
HAZ 靱性、現地溶接性を劣化させるだけでなく、連続鋳
造鋼片の中心偏析を助長し、母材の低温靱性をも劣化さ
せるので上限を2.5%とした。Si is an element to be added for deoxidation and to improve the strength. However, if added in a large amount, the HAZ toughness and on-site weldability are remarkably deteriorated, so the upper limit was made 0.6%. Deoxidation of steel can be sufficiently performed with Al and Ti described later, and it is preferable to add the steel in accordance with the addition amount thereof for strength adjustment.
Mn is an element indispensable for making the microstructure of the steel of the present invention a martensite-based structure and ensuring excellent balance between strength and low-temperature toughness, and the lower limit thereof is 1.7%. However, adding too much Mn increases the hardenability of steel.
In addition to deteriorating HAZ toughness and on-site weldability, it promotes center segregation of continuously cast steel slabs and also degrades the low-temperature toughness of the base metal.
【0031】Niは、低炭素鋼板の強度を低温靱性を劣
化させることなく向上させるために添加する。Niは、
MnやCr、Mo等の焼き入れ成分に比較して圧延組織
(とくに連続鋳造鋼片の中心偏析帯)中に低温靱性に有
害な硬化組織を形成させることが少ないばかりでなく、
0.1%以上の微量の添加量でHAZ 靱性の改善が可能で
あることが判明した(HAZ 靱性上、とくに有効なNi添
加量は0.3%以上である)。しかしその添加量が多す
ぎると、経済性だけでなく、HAZ 靱性や現地溶接性を劣
化させるので、その上限を1%とした。また、Ni添加
は、Cu含有鋼の連続鋳造時、熱間圧延時において発生
するCu割れの防止にも有効である。この場合、Niは
Cu含有量の1/3以上添加する必要がある。Ni is added to improve the strength of the low carbon steel sheet without deteriorating the low temperature toughness. Ni is
Compared to quenched components such as Mn, Cr, and Mo, not only is it hard to form a hardened structure harmful to low-temperature toughness in the rolled structure (especially the central segregation zone of continuous cast steel slabs),
It has been found that the HAZ toughness can be improved with a very small addition amount of 0.1% or more (the Ni addition amount that is particularly effective in terms of HAZ toughness is 0.3% or more). However, if the addition amount is too large, not only economic efficiency but also HAZ toughness and on-site weldability are deteriorated, so the upper limit is set to 1%. Further, the addition of Ni is also effective in preventing Cu cracks generated during continuous casting and hot rolling of Cu-containing steel. In this case, Ni needs to be added at least 1/3 of the Cu content.
【0032】Moは、鋼板の焼き入れ性を向上させ、目
的とするマルテンサイト主体の組織を得るために、0.
15%以上添加する。特にB添加鋼においてはMoの焼
き入れ性効果が高まり、またMoとNbと共存させるこ
とにより制御圧延時にオーステナイトの再結晶を抑制
し、オーステナイトの組織微細化にも効果がある。しか
し、過度に添加するとHAZ 靱性や現地溶接性を劣化さ
せ、さらにBの焼き入れ性向上効果を低減させるため、
その上限を0.6%とする。Mo is used in an amount of 0.1 to improve the hardenability of the steel sheet and obtain the desired structure mainly composed of martensite.
Add 15% or more. Particularly in the case of B-added steel, the quenching effect of Mo is enhanced, and coexistence of Mo and Nb suppresses austenite recrystallization during controlled rolling, and is also effective in refining the structure of austenite. However, excessive addition deteriorates HAZ toughness and on-site weldability, and further reduces the effect of improving the hardenability of B.
The upper limit is set to 0.6%.
【0033】Nbは、上記のMoと共存させることによ
り制御圧延時にオーステナイトの再結晶を抑制して組織
を微細化するだけでなく、析出硬化や焼入れ性増大にも
寄与し、鋼板を強靱化する。特にNbとBが共存すると
焼入れ性向上効果が相乗的に高まる。本発明では、これ
らの効果を得るために0.01%以上添加する。しか
し、Nb添加量が多すぎると、HAZ靱性や現地溶接性
に悪影響をもたらすので、その上限を0.1%とした。By coexisting with Mo as described above, Nb not only suppresses austenite recrystallization during controlled rolling to refine the structure, but also contributes to precipitation hardening and increase in hardenability, and makes the steel sheet tough. . In particular, when Nb and B coexist, the effect of improving hardenability increases synergistically. In the present invention, 0.01% or more is added to obtain these effects. However, if the added amount of Nb is too large, it adversely affects the HAZ toughness and the on-site weldability, so the upper limit was made 0.1%.
【0034】Tiは、鋼中で微細なTiNを形成し、ス
ラブ再加熱時およびHAZのオーステナイト粒の粗大化
を抑制してミクロ組織を微細化し、母材およびHAZの
低温靱性を改善する。また、Bの焼入れ性向上効果に有
害な固溶NをTiNとして固定する役割も有する。この
目的のために、Ti量は3.4N(各々重量%)以上添
加することが望ましい。また、Al量が少ない時(たと
えば0.005%以下)、Tiは酸化物を形成し、HA
Zにおいて粒内フェライト生成核として作用し、HAZ
組織を微細化する効果も有する。このようなTiNの効
果を発現させるためには、0.005%以上のTi添加
が必要である。しかし、Ti含有量が多すぎると、Ti
Nの粗大化やTiCによる析出硬化が生じ、低温靱性を
劣化させるので、その上限を0.03%に限定した。Ti forms fine TiN in the steel, suppresses coarsening of austenite grains in the HAZ during reheating of the slab and refines the microstructure, and improves the low-temperature toughness of the base material and the HAZ. Also, it has a role of fixing solid solution N harmful to the effect of improving the hardenability of B as TiN. For this purpose, it is desirable to add Ti in an amount of 3.4N (each wt%) or more. When the amount of Al is small (for example, 0.005% or less), Ti forms an oxide and HA
H acts as an intragranular ferrite nucleus in Z
It also has the effect of making the structure finer. In order to exert such an effect of TiN, 0.005% or more of Ti must be added. However, if the Ti content is too large,
Since the coarsening of N and the precipitation hardening due to TiC occur to deteriorate the low-temperature toughness, the upper limit thereof is limited to 0.03%.
【0035】P、Sは、不可避的不純物元素であり、本
発明では、母材およびHAZの低温靱性をより一層向上
させるために、P、Sの含有量をそれぞれ0.015
%、0.003%以下に規制する。P量の低減は連続鋳
造スラブの中心偏析を軽減するとともに、粒界破壊を防
止して低温靱性を向上させる。また、S量の低減は熱間
圧延で延伸化するMnSを低減して延靱性を向上させる
効果がある。P and S are unavoidable impurity elements. In the present invention, in order to further improve the low-temperature toughness of the base material and the HAZ, the contents of P and S are each 0.015.
%, 0.003% or less. The reduction of the P content reduces the segregation of the center of the continuously cast slab, prevents the grain boundary fracture, and improves the low-temperature toughness. Further, the reduction of the amount of S has the effect of reducing MnS to be elongated by hot rolling and improving ductility.
【0036】以上が本発明で使用する鋼板の基本成分で
あるが、さらに、選択的に以下のような成分を以下の範
囲で添加することが好ましい。Alは、通常脱酸材とし
て鋼に含まれる元素で、組織の微細化にも効果を有す
る。しかし、Al量が0.06%を越えるとAl系非金
属介在物が増加して鋼の清浄度を害するので、上限を
0.06%とした。しかし、上述の脱酸はTiあるいは
Siでも可能であるため、必ずしも必要なくこれらの使
用によりその含有量を調整する。The above are the basic components of the steel sheet used in the present invention, and it is preferable that the following components be selectively added in the following ranges. Al is an element usually contained in steel as a deoxidizing material, and also has an effect on refining the structure. However, if the amount of Al exceeds 0.06%, Al-based nonmetallic inclusions increase and impair the cleanliness of the steel, so the upper limit was made 0.06%. However, since the above-mentioned deoxidation is possible with Ti or Si, the content is adjusted by using these without necessarily being used.
【0037】Bは極微量で鋼の焼入れ性を飛躍的に高
め、目的とするマルテンサイト主体の組織を得るため
に、非常に有効な元素である。さらに、BはMoの焼入
れ性向上効果を高めると共に、Nbと共存して相乗的に
焼入れ性を増す。一方、過剰に添加すると、低温靱性を
劣化させるだけでなく、かえってBの焼入れ性向上効果
を消失せしめることもあるので、その上限を0.005
%とした。B is a very effective element for dramatically improving the hardenability of steel in a very small amount and for obtaining a desired structure mainly composed of martensite. Further, B enhances the effect of improving the hardenability of Mo, and synergistically increases the hardenability together with Nb. On the other hand, if added in excess, not only deteriorates the low-temperature toughness, but may also lose the effect of improving the hardenability of B, so the upper limit is 0.005.
%.
【0038】Nは、TiNを形成しスラブ再加熱時およ
びHAZのオーステナイト粒の粗大化を抑制して母材、
HAZの低温靱性を向上させる。このために必要な最小
量は0.001%である。しかし、N量が多すぎるとス
ラブ表面疵や固溶NによるHAZ靱性の劣化、Bの焼入
れ性向上効果の低下の原因となるので、その上限は0.
006%に抑える必要がある。N forms TiN and suppresses the coarsening of austenite grains of the HAZ during reheating of the slab and in the HAZ.
Improves the low temperature toughness of HAZ. The minimum required for this is 0.001%. However, if the amount of N is too large, it causes deterioration of the HAZ toughness due to slab surface flaws or solid solution N, and a decrease in the effect of improving the hardenability of B.
006%.
【0039】V、Cu、Cr、Ca、REM、Mgは、
本発明鋼の優れた特徴を損なうことなく、強度・靱性の
一層の向上や製造可能な鋼材サイズの拡大を図るために
以下のように適量添加することが出来る。Vは、Nbと
ほぼ同様の作用効果を有するが、その効果の程度はNb
に比較して弱い。しかし、超高強度鋼におけるV添加の
効果は大きく、NbとVの複合添加は本発明鋼の優れた
特徴をさらに顕著なものとする。本発明では、その添加
量の上限を鋼板のHAZ靱性、現地溶接性の点から0.
1%に規定する。さらに上記の効果の点から0.03〜
0.08%の添加がより望ましい範囲である。V, Cu, Cr, Ca, REM and Mg are:
In order to further improve the strength and toughness and increase the size of a steel material that can be manufactured without impairing the excellent characteristics of the steel of the present invention, an appropriate amount can be added as follows. V has almost the same function and effect as Nb, but the degree of the effect is Nb.
Weaker than. However, the effect of V addition on ultra-high strength steel is great, and the combined addition of Nb and V makes the excellent features of the steel of the present invention more remarkable. In the present invention, the upper limit of the addition amount is set at 0. 0 in view of the HAZ toughness of the steel sheet and the on-site weldability.
Specify 1%. Further, from the viewpoint of the above effects, 0.03-
A 0.08% addition is a more desirable range.
【0040】Cuは母材、溶接部の強度を増加させる
が、多すぎるとHAZ靱性や現地溶接性を著しく劣化さ
せる。このためCuは、その含有量の上限を1%として
添加する。Crは母材、溶接部の強度を増加させるが、
多すぎるとHAZ靱性や現地溶接性を著しく劣化させ
る。このためCr量は、その含有量の上限を0.8%と
して添加する。[0040] Cu increases the strength of the base material and the welded portion, but if it is too large, the HAZ toughness and on-site weldability are remarkably deteriorated. Therefore, Cu is added with the upper limit of the content being 1%. Cr increases the strength of the base material and weld,
If the amount is too large, the HAZ toughness and on-site weldability are significantly deteriorated. Therefore, the amount of Cr is added with the upper limit of the content being 0.8%.
【0041】CaおよびREMは、硫化物(MnS)の
形態を制御し、低温靱性を向上(シャルピー試験の吸収
エネルギーの増加など)させる。Caの添加量が、0.
006%を超えたり、REMの添加量が0.02%を越
えると、鋼中にCaO−CaSまたはREM−CaSが
大量に生成し、大型クラスター、大型介在物となり、鋼
の清浄度を害するだけでなく、現地溶接性にも悪影響を
およぼす。したがって、Ca添加量の上限を0.006
%とし、REM添加量の上限を0.02%に規定する。
なお超高強度ラインパイプでは、S、O量をそれぞれ
0.001%、0.002%以下に低減し、かつESS
P=(Ca)〔1−124(O)〕/1.25Sを0.
5≦ESSP≦10.0とすることがより好ましい。Ca and REM control the morphology of sulfide (MnS) and improve low-temperature toughness (increase in energy absorbed in Charpy test, etc.). When the amount of Ca added is 0.
If the content exceeds 006% or the amount of REM exceeds 0.02%, CaO-CaS or REM-CaS is generated in a large amount in the steel, resulting in large clusters and large inclusions, which only impair the cleanliness of the steel. In addition, it has an adverse effect on the on-site weldability. Therefore, the upper limit of the amount of Ca added is 0.006.
%, And the upper limit of the amount of REM is set to 0.02%.
In the ultra-high-strength line pipe, the amounts of S and O are reduced to 0.001% and 0.002%, respectively, and the ESS is reduced.
P = (Ca) [1-124 (O)] / 1.25S to 0.
More preferably, 5 ≦ ESSP ≦ 10.0.
【0042】Mgは、微細分散した酸化物を形成し、溶
接熱影響部の粒粗大化を抑制して低温靭性を向上させ
る。0.006%を超えて添加すると、粗大酸化物を生
成し逆に靭性を劣化させるために、0.006%以下の
範囲で添加する。以上の個々の添加元素の限定に加え
て、強度・低温靱性バランスを達成するために、さら
に、P=2.7C+0.4Si+Mn+0.8Cr+
0.45(Ni+Cu)+(1+β)Mo−1+βで定
まる焼き入れ性指標のP値を1.9≦P≦4.0の範囲
に制限することが望ましい。但し、B≧3ppmではβ
=1、B<3ppmではβ=0。P値の下限を1.9と
したのは900MPa以上の強度と優れた低温靱性を得
るためである。また、P値の上限を4.0としたのは優
れたHAZ靱性、現地溶接性を維持するためである。な
お、上述したP値とは焼き入れ性の指標を表すもので、
Pが高くなるほど強度が大きくなり、組織がベイナイト
・マルテンサイト組織になり易いことを意味する。Mg forms a finely dispersed oxide, suppresses the coarsening of the weld heat affected zone, and improves the low temperature toughness. If it is added in excess of 0.006%, a coarse oxide is formed and, conversely, the toughness is deteriorated. In addition to the limitation of the individual additive elements described above, in order to achieve a balance between strength and low-temperature toughness, P = 2.7C + 0.4Si + Mn + 0.8Cr +
It is desirable to limit the P value of the hardenability index determined by 0.45 (Ni + Cu) + (1 + β) Mo−1 + β to a range of 1.9 ≦ P ≦ 4.0. However, when B ≧ 3 ppm, β
= 1, β = 0 for B <3 ppm. The lower limit of the P value is set to 1.9 in order to obtain a strength of 900 MPa or more and excellent low-temperature toughness. Further, the upper limit of the P value is set to 4.0 in order to maintain excellent HAZ toughness and on-site weldability. The above-mentioned P value represents an index of hardenability,
The higher the value of P, the greater the strength, which means that the structure tends to be a bainite-martensite structure.
【0043】[0043]
【実施例】次に、本発明の実施例について述べる。30
0トン転炉で表1に示す化学成分の超高強度鋼管用鋼を
溶製後、連続鋳造鋼片とし、その後1100℃に再加熱
後、800〜900℃の温度での累積圧下量が80%の
仕上圧延を行い、その後、800℃から200℃までを
水冷して900MPa以上の引張り強度を有する16m
mの鋼板を作製した。この鋼板を用いて、UO工程で管
状に成形し、仮付け溶接後、表2に示す種々の成分の溶
接ワイヤ−およびフラックスを用いて、3電極、1.7
5m/分、入熱2.2kJ/mmの溶接条件で内外面各
1パスのサブマージドアーク溶接を行い、その後1%の
拡管を行った。表3には得られた鋼管の溶接部の溶接金
属の化学成分、組織及び特性を示す。Next, an embodiment of the present invention will be described. 30
In a 0 ton converter, steel for ultra high strength steel pipe having the chemical composition shown in Table 1 was melted and made into a continuously cast steel slab. Then, after reheating to 1100 ° C, the accumulated rolling reduction at a temperature of 800 to 900 ° C was 80%. %, And then water-cooled from 800 ° C. to 200 ° C., and having a tensile strength of 900 MPa or more.
m was prepared. This steel sheet was formed into a tube in the UO process, and after tack welding, three electrodes, 1.7 using welding wires and fluxes of various components shown in Table 2.
Under the welding conditions of 5 m / min and heat input of 2.2 kJ / mm, submerged arc welding was performed on each of the inner and outer surfaces for one pass, and then 1% pipe expansion was performed. Table 3 shows the chemical composition, structure and properties of the weld metal in the welded portion of the obtained steel pipe.
【0044】表3において、比較例No.15〜29
は、溶接金属の化学成分及び組織が本発明の範囲から外
れたものであり、以下のように本発明の目標とする溶接
金属の強度または低温靱性を満足することはできなかっ
た。実施No.15,17,25は、C,Mn,Cr+
Mn+Vの合計量がそれぞれ低いために溶接金属の強度
が低くなった。In Table 3, Comparative Example No. 15-29
The chemical composition and structure of the weld metal were out of the range of the present invention, and the target strength or low-temperature toughness of the weld metal of the present invention could not be satisfied as described below. Execution No. 15, 17, 25 are C, Mn, Cr +
Since the total amount of Mn + V was low, the strength of the weld metal was low.
【0045】実施No.16,18,26は、C,M
n,Cr+Mn+Vの合計量がそれぞれ高いために強度
は非常に高くなったが、粒内ベイナイトが生成せずに溶
接金属の低温靱性が劣化した。実施No.19〜23
は、Al含有量が高いためにTi含有酸化物及びこれを
核として析出するMn含有酸化物との複合粒子の生成が
少なく、充分な粒内ベイナイトが生成せず、低温靱性が
劣化した。Implementation No. 16, 18, and 26 are C, M
Since the total amount of n, Cr + Mn + V was high, the strength was extremely high, but the low-temperature toughness of the weld metal was deteriorated without intragranular bainite. Execution No. 19-23
However, because of the high Al content, the generation of composite particles with the Ti-containing oxide and the Mn-containing oxide precipitated using the same as the nucleus was small, sufficient intragranular bainite was not generated, and the low-temperature toughness was deteriorated.
【0046】実施No.24は、Ni含有量が高すぎる
ために、強度は高いものの溶接後に高温割れを生じた。
実施No.27は、Ti含有量が少ないためにTi含有
酸化物及びこの酸化物とMn含有酸化物との複合粒子が
充分に生成されず、粒内ベイナイトが充分生成されず低
温靱性が劣化した。Implementation No. In No. 24, although the Ni content was too high, although the strength was high, hot cracking occurred after welding.
Execution No. In No. 27, since the Ti content was small, Ti-containing oxides and composite particles of this oxide and Mn-containing oxides were not sufficiently generated, and intragranular bainite was not sufficiently generated to deteriorate the low-temperature toughness.
【0047】実施No.28は、Ti含有量が多すぎる
ためにTi炭化物が多量に生成し、低温靱性が劣化し
た。実施No.29は、Al含有量が多すぎたためにA
l酸化物が増加し、Ti含有酸化物と複合化したことに
よりTi含有酸化物のサイズが大きくなり、充分な生成
個数が得られず粒内ベイナイトの生成が減少し、低温靱
性が劣化した。Implementation No. In No. 28, since the Ti content was too large, a large amount of Ti carbide was generated, and the low-temperature toughness was deteriorated. Execution No. No. 29 was A due to too much Al content.
The amount of 1-oxide increased, and the size of the Ti-containing oxide was increased due to the compounding with the Ti-containing oxide. As a result, a sufficient number of generated Ti-containing oxides could not be obtained, and the generation of intragranular bainite was reduced, and the low-temperature toughness was deteriorated.
【0048】一方、発明例である実施No.1〜14
は、溶接金属の成分組成及び組織ともに、本発明範囲を
満たしていつため、強度、低温靱性の特性に優れた超高
強度鋼管の溶接金属が得られた。以上から、本発明によ
って、少なくとも−20℃でのシャルピー吸収エネルギ
ーが150J以上であり、引張り強さが900MPa以
上の強度、低温靱性の特性に優れた超高強度鋼管の溶接
金属が得られることが判る。On the other hand, in the embodiment No. 1-14
As a result, the weld metal of an ultra-high-strength steel pipe having excellent strength and low-temperature toughness characteristics was obtained because both the composition and the structure of the weld metal satisfied the range of the present invention. From the above, according to the present invention, it is possible to obtain a weld metal of an ultra-high-strength steel pipe having a Charpy absorption energy at least at −20 ° C. of 150 J or more, a tensile strength of 900 MPa or more, and excellent low-temperature toughness characteristics. I understand.
【0049】[0049]
【表1】 [Table 1]
【0050】[0050]
【表2】 [Table 2]
【0051】[0051]
【表3】 [Table 3]
【0052】[0052]
【表4】 [Table 4]
【0053】[0053]
【表5】 [Table 5]
【0054】[0054]
【発明の効果】本発明によれば、従来のように溶接金属
中にNi等のような高価な合金成分を使用したり、低入
熱多層盛溶接等の低能率の溶接法を用いなくとも、溶接
金属中にTi含有酸化物やTi含有酸化物とMn含有硫
化物の複合粒子を核として粒内ベイナイトを生成させる
ことにより、900MPaを超える超高強度の鋼管にお
いても優れた低温靱性(−20℃でのシャルピー吸収エ
ネルギーが150J以上)が得られる溶接部の低温靱性
に優れた超高強度ラインパイプ用鋼管の製造が可能とな
る。According to the present invention, it is possible to use expensive alloy components such as Ni in the weld metal as in the prior art, or to use a low-efficiency welding method such as low heat input multi-pass welding. By producing intragranular bainite using Ti-containing oxides or composite particles of Ti-containing oxides and Mn-containing sulfides as nuclei in a weld metal, excellent low-temperature toughness (-) can be obtained even in ultra-high-strength steel pipes exceeding 900 MPa. It is possible to manufacture a steel pipe for an ultra-high-strength line pipe excellent in low-temperature toughness of a welded portion capable of obtaining a Charpy absorbed energy at 20 ° C. of 150 J or more.
【0055】本発明をラインパイプに適用することによ
り、長距離パイプラインの敷設コストは大幅に低下し、
世界的エネルギー問題解決に寄与できるものである。By applying the present invention to a line pipe, the laying cost of a long-distance pipeline is greatly reduced,
It can contribute to solving global energy problems.
【図1】従来技術と本発明の超高強度鋼管の溶接金属の
強度と靱性(−20℃でのシャルピー吸収エネルギー)
との関係を示す図である。FIG. 1 Strength and toughness of weld metal of ultra-high strength steel pipe of the prior art and the present invention (Charpy absorbed energy at −20 ° C.)
FIG.
【図2】粒内ベイナイトが生成している組織を有する本
発明による溶接金属組織を示す図である。FIG. 2 is a view showing a weld metal structure according to the present invention having a structure in which intragranular bainite is formed.
【図3】粒内ベイナイトが生成しない組織を有する従来
の溶接金属組織を示す図である。FIG. 3 is a view showing a conventional weld metal structure having a structure in which intragranular bainite is not generated.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 9/23 B23K 9/23 C 35/30 320 35/30 320C 320F C22C 38/58 C22C 38/58 // B23K 101:10 B23K 101:10 103:04 103:04 Fターム(参考) 4E001 AA03 BB05 CA05 CC03 EA05 EA07 4E028 CB04 CB06 4E081 YX15 YX16 YX20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B23K 9/23 B23K 9/23 C 35/30 320 35/30 320C 320F C22C 38/58 C22C 38/58 / / B23K 101: 10 B23K 101: 10 103: 04 103: 04 F term (reference) 4E001 AA03 BB05 CA05 CC03 EA05 EA07 4E028 CB04 CB06 4E081 YX15 YX16 YX20
Claims (8)
存在することを特徴とする溶接部の低温靱性に優れた超
高強度鋼管。1. An ultra-high-strength steel pipe excellent in low-temperature toughness of a weld portion, wherein intragranular bainite is present in the weld metal of the weld portion.
ト分率が50%以上であることを特徴とする請求項1に
記載の溶接部の低温靱性に優れた超高強度鋼管。2. The ultra-high-strength steel pipe according to claim 1, wherein the intragranular fraction of bainite in the weld metal of the weld is 50% or more.
するTi含有酸化物及び該Ti含有酸化物を核としてそ
の周辺に少なくともMn硫化物が析出した複合粒子を含
有することを特徴とする請求項1または2の何れかに記
載の溶接部の低温靱性に優れた超高強度鋼管。3. The weld metal contains a Ti-containing oxide containing at least Ti and composite particles having at least Mn sulfide precipitated around the Ti-containing oxide as a nucleus. 3. An ultra-high-strength steel pipe excellent in low-temperature toughness of a weld according to any one of 1 and 2.
相当径で0.01〜5μm であり、且つ、平均密度1×
103 個/mm2 以上で溶接金属中に存在することを特
徴とする請求項1から3の何れか1項に記載の溶接部の
低温靱性に優れた超高強度鋼管。4. The Ti-containing oxide has an average equivalent circle diameter of 0.01 to 5 μm and an average density of 1 ×.
The ultrahigh-strength steel pipe excellent in low-temperature toughness of a welded part according to any one of claims 1 to 3, wherein the pipe is present in the weld metal at 10 3 / mm 2 or more.
C:0.04〜0.14%、Si:0.05〜0.4
%、Mn:1.2〜2.2%、P:0.01%以下、
S:0.01%以下、Ti:0.003〜0.05%、
Al:0.02%以下、Ni:1.3〜3.2%、C
r、Mo及びVの内の1種または2種以上:1〜2.5
%、B:0.005%以下を含有し、残部がFeを主成
分とすることを特徴とする請求項1から4の何れか1項
に記載の溶接部の低温靱性に優れた超高強度鋼管。5. As a component of the weld metal, in mass%,
C: 0.04 to 0.14%, Si: 0.05 to 0.4
%, Mn: 1.2 to 2.2%, P: 0.01% or less,
S: 0.01% or less, Ti: 0.003 to 0.05%,
Al: 0.02% or less, Ni: 1.3 to 3.2%, C
One or more of r, Mo and V: 1 to 2.5
%, B: 0.005% or less, the balance being Fe as a main component, the ultra-high strength excellent in low-temperature toughness of the welded part according to any one of claims 1 to 4, Steel pipe.
イト分率が50%以上であることを特徴とする請求項1
から5の何れか1項に記載の溶接部の低温靱性に優れた
超高強度鋼管。6. The weld metal according to claim 1, wherein a bainite-martensite fraction is 50% or more.
6. An ultra-high-strength steel pipe excellent in low-temperature toughness of a welded portion according to any one of items 1 to 5.
a以上を有することを特徴とする請求項1から6の何れ
か1項に記載の溶接部の低温靱性に優れた超高強度鋼
管。7. The tensile strength of the weld metal is 900MP.
The ultrahigh-strength steel pipe excellent in low-temperature toughness of a welded part according to any one of claims 1 to 6, wherein the steel pipe has at least a.
i:0.6%以下、Mn:1.7〜2.5%、P:0.
015%以下、S:0.003%以下、Ti:0.00
5〜0.03%、Ni:0.1〜1%、Mo:0.15
〜0.6%、Nb:0.01〜0.1%を含有し、さら
に選択的に、Al:0.06%以下、B:0.005%
以下、N:0.001〜0.006%以下、V:0.1
%以下、Cu:1%以下、Cr:0.8%以下、Ca:
0.01%以下、REM:0.02%以下、Mg:0.0
06%以下の内の1種または2種以上を含有し、残部鉄
および不可避的不純物からなる鋼板をUO工程で管状に
成形し、その鋼板の突き合わせ部の内外面からC:0.
01〜0.12%、Si:0.3%以下、Mn:1.2
〜2.4%、Ti:0.005〜0.15%、Ni:4
〜8.5%、Cr、Mo及びVの内の1種または2種以
上:3〜5%を含有し、残部がFeを主成分とする溶接
ワイヤ−と焼成型もしくは溶融型フラックスを使用して
サブマージドアーク溶接を行い、その後、拡管を行うこ
とを特徴とする溶接部の低温靱性に優れた超高強度鋼管
の製造方法。8. In mass%, C: 0.03-0.1%, S
i: 0.6% or less, Mn: 1.7 to 2.5%, P: 0.
015% or less, S: 0.003% or less, Ti: 0.00
5 to 0.03%, Ni: 0.1 to 1%, Mo: 0.15
-0.6%, Nb: 0.01-0.1%, and more selectively, Al: 0.06% or less, B: 0.005%
Below, N: 0.001 to 0.006% or less, V: 0.1
%, Cu: 1% or less, Cr: 0.8% or less, Ca:
0.01% or less, REM: 0.02% or less, Mg: 0.0
A steel sheet containing one or two or more of the following components of 0.6% or less, and the balance consisting of iron and unavoidable impurities is formed into a tube by the UO process, and C: 0.
01-0.12%, Si: 0.3% or less, Mn: 1.2
To 2.4%, Ti: 0.005 to 0.15%, Ni: 4
About 8.5%, one or more of Cr, Mo and V: 3 to 5%, with the balance being the use of a welding wire mainly composed of Fe and a sintering or melting flux. A method for producing an ultra-high strength steel pipe having excellent low-temperature toughness at a welded portion, wherein submerged arc welding is performed and then pipe expansion is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000174186A JP4268317B2 (en) | 2000-06-09 | 2000-06-09 | Ultra-high-strength steel pipe excellent in low temperature toughness of welded portion and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000174186A JP4268317B2 (en) | 2000-06-09 | 2000-06-09 | Ultra-high-strength steel pipe excellent in low temperature toughness of welded portion and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001355039A true JP2001355039A (en) | 2001-12-25 |
JP4268317B2 JP4268317B2 (en) | 2009-05-27 |
Family
ID=18676265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000174186A Expired - Fee Related JP4268317B2 (en) | 2000-06-09 | 2000-06-09 | Ultra-high-strength steel pipe excellent in low temperature toughness of welded portion and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4268317B2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005262253A (en) * | 2004-03-17 | 2005-09-29 | Nippon Steel Corp | Seam welding method for high-strength uo steel pipe having excellent transverse crack resistance |
WO2006049036A1 (en) * | 2004-11-05 | 2006-05-11 | Sumitomo Metal Industries, Ltd. | High strength welded steel tube |
WO2008069335A1 (en) | 2006-12-04 | 2008-06-12 | Nippon Steel Corporation | Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same |
WO2008069289A1 (en) | 2006-11-30 | 2008-06-12 | Nippon Steel Corporation | Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same |
US7485196B2 (en) | 2001-09-14 | 2009-02-03 | Nucor Corporation | Steel product with a high austenite grain coarsening temperature |
EP2060643A1 (en) * | 2006-12-20 | 2009-05-20 | Nippon Steel Corporation | Steel excelling in toughness at region affected by welding heat |
JP2009195990A (en) * | 2009-06-08 | 2009-09-03 | Nippon Steel Corp | Seam welding method of high-strength uo steel pipe excellent in resistance to lateral crack |
US7588649B2 (en) | 2001-09-14 | 2009-09-15 | Nucor Corporation | Casting steel strip |
US7690417B2 (en) | 2001-09-14 | 2010-04-06 | Nucor Corporation | Thin cast strip with controlled manganese and low oxygen levels and method for making same |
WO2011096510A1 (en) | 2010-02-04 | 2011-08-11 | 新日本製鐵株式会社 | High-strength welded steel pipe and method for producing the same |
US8016021B2 (en) | 2003-01-24 | 2011-09-13 | Nucor Corporation | Casting steel strip with low surface roughness and low porosity |
US8039118B2 (en) | 2006-11-30 | 2011-10-18 | Nippon Steel Corporation | Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same |
WO2013100106A1 (en) | 2011-12-28 | 2013-07-04 | 新日鐵住金株式会社 | High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet |
KR101351267B1 (en) | 2011-10-21 | 2014-02-13 | 한양대학교 산학협력단 | 1GPa HIGH STRENGTH WELDING JOINT HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS |
KR101365351B1 (en) | 2010-09-30 | 2014-02-19 | 가부시키가이샤 고베 세이코쇼 | HIGH-STRENGTH STEEL PLATE WITH 980 MPa OR ABOVE TENSILE STRENGTH EXCELLENT IN LOW TEMPERATURE TOUGHNESS OF MULTI-LAYER JOINT |
KR101382991B1 (en) * | 2012-12-26 | 2014-04-08 | 주식회사 포스코 | Ultra high strength flux cored arc welded joint having excellent low temperature toughness |
US9149868B2 (en) | 2005-10-20 | 2015-10-06 | Nucor Corporation | Thin cast strip product with microalloy additions, and method for making the same |
JP2016164289A (en) * | 2015-03-06 | 2016-09-08 | 新日鐵住金株式会社 | High tensile steel for weldment |
US9999918B2 (en) | 2005-10-20 | 2018-06-19 | Nucor Corporation | Thin cast strip product with microalloy additions, and method for making the same |
US10071416B2 (en) | 2005-10-20 | 2018-09-11 | Nucor Corporation | High strength thin cast strip product and method for making the same |
NO343351B1 (en) * | 2006-12-20 | 2019-02-04 | Nippon Steel Corp | Steel with excellent toughness in welding heat affected welding zone and method of manufacture thereof |
CN109415793A (en) * | 2016-06-30 | 2019-03-01 | 尤迪霍尔姆斯有限责任公司 | Steel for tool retainer |
CN111098059A (en) * | 2020-01-20 | 2020-05-05 | 西安理工大学 | Welding wire for additive manufacturing of low-carbon bainite steel and method for manufacturing low-carbon bainite steel |
US11193188B2 (en) | 2009-02-20 | 2021-12-07 | Nucor Corporation | Nitriding of niobium steel and product made thereby |
-
2000
- 2000-06-09 JP JP2000174186A patent/JP4268317B2/en not_active Expired - Fee Related
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7690417B2 (en) | 2001-09-14 | 2010-04-06 | Nucor Corporation | Thin cast strip with controlled manganese and low oxygen levels and method for making same |
US7485196B2 (en) | 2001-09-14 | 2009-02-03 | Nucor Corporation | Steel product with a high austenite grain coarsening temperature |
US8002908B2 (en) | 2001-09-14 | 2011-08-23 | Nucor Corporation | Steel product with a high austenite grain coarsening temperature |
US7588649B2 (en) | 2001-09-14 | 2009-09-15 | Nucor Corporation | Casting steel strip |
US8016021B2 (en) | 2003-01-24 | 2011-09-13 | Nucor Corporation | Casting steel strip with low surface roughness and low porosity |
JP2005262253A (en) * | 2004-03-17 | 2005-09-29 | Nippon Steel Corp | Seam welding method for high-strength uo steel pipe having excellent transverse crack resistance |
JP4482355B2 (en) * | 2004-03-17 | 2010-06-16 | 新日本製鐵株式会社 | Seam welding method for high strength UO steel pipe with excellent transverse cracking resistance |
WO2006049036A1 (en) * | 2004-11-05 | 2006-05-11 | Sumitomo Metal Industries, Ltd. | High strength welded steel tube |
US9999918B2 (en) | 2005-10-20 | 2018-06-19 | Nucor Corporation | Thin cast strip product with microalloy additions, and method for making the same |
US10071416B2 (en) | 2005-10-20 | 2018-09-11 | Nucor Corporation | High strength thin cast strip product and method for making the same |
US9149868B2 (en) | 2005-10-20 | 2015-10-06 | Nucor Corporation | Thin cast strip product with microalloy additions, and method for making the same |
WO2008069289A1 (en) | 2006-11-30 | 2008-06-12 | Nippon Steel Corporation | Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same |
US8039118B2 (en) | 2006-11-30 | 2011-10-18 | Nippon Steel Corporation | Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same |
WO2008069335A1 (en) | 2006-12-04 | 2008-06-12 | Nippon Steel Corporation | Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same |
US8084144B2 (en) | 2006-12-04 | 2011-12-27 | Nippon Steel Corporation | High strength thick welded steel pipe for line pipe superior in low temperature toughness and method of production of the same |
EP2060643A1 (en) * | 2006-12-20 | 2009-05-20 | Nippon Steel Corporation | Steel excelling in toughness at region affected by welding heat |
NO343351B1 (en) * | 2006-12-20 | 2019-02-04 | Nippon Steel Corp | Steel with excellent toughness in welding heat affected welding zone and method of manufacture thereof |
EP2060643A4 (en) * | 2006-12-20 | 2010-12-01 | Nippon Steel Corp | Steel excelling in toughness at region affected by welding heat |
US11193188B2 (en) | 2009-02-20 | 2021-12-07 | Nucor Corporation | Nitriding of niobium steel and product made thereby |
JP2009195990A (en) * | 2009-06-08 | 2009-09-03 | Nippon Steel Corp | Seam welding method of high-strength uo steel pipe excellent in resistance to lateral crack |
WO2011096510A1 (en) | 2010-02-04 | 2011-08-11 | 新日本製鐵株式会社 | High-strength welded steel pipe and method for producing the same |
US8974610B2 (en) | 2010-02-04 | 2015-03-10 | Nippon Steel & Sumitomo Metal Corporation | High-strength welded steel pipe and method for producing the same |
KR101365351B1 (en) | 2010-09-30 | 2014-02-19 | 가부시키가이샤 고베 세이코쇼 | HIGH-STRENGTH STEEL PLATE WITH 980 MPa OR ABOVE TENSILE STRENGTH EXCELLENT IN LOW TEMPERATURE TOUGHNESS OF MULTI-LAYER JOINT |
KR101351267B1 (en) | 2011-10-21 | 2014-02-13 | 한양대학교 산학협력단 | 1GPa HIGH STRENGTH WELDING JOINT HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS |
KR20140095103A (en) | 2011-12-28 | 2014-07-31 | 신닛테츠스미킨 카부시키카이샤 | High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet |
WO2013100106A1 (en) | 2011-12-28 | 2013-07-04 | 新日鐵住金株式会社 | High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet |
KR101382991B1 (en) * | 2012-12-26 | 2014-04-08 | 주식회사 포스코 | Ultra high strength flux cored arc welded joint having excellent low temperature toughness |
JP2016164289A (en) * | 2015-03-06 | 2016-09-08 | 新日鐵住金株式会社 | High tensile steel for weldment |
CN109415793A (en) * | 2016-06-30 | 2019-03-01 | 尤迪霍尔姆斯有限责任公司 | Steel for tool retainer |
US11085108B2 (en) | 2016-06-30 | 2021-08-10 | Uddeholms Ab | Steel for a tool holder |
CN109415793B (en) * | 2016-06-30 | 2021-11-30 | 尤迪霍尔姆斯有限责任公司 | Steel for tool holder |
CN111098059A (en) * | 2020-01-20 | 2020-05-05 | 西安理工大学 | Welding wire for additive manufacturing of low-carbon bainite steel and method for manufacturing low-carbon bainite steel |
Also Published As
Publication number | Publication date |
---|---|
JP4268317B2 (en) | 2009-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4268317B2 (en) | Ultra-high-strength steel pipe excellent in low temperature toughness of welded portion and manufacturing method thereof | |
KR100361471B1 (en) | Super-high- strength line pipe excellent in low temperature toughness and production method thereof | |
EP0867520B1 (en) | Welded high-strength steel structures and methods of manufacturing the same | |
KR100206151B1 (en) | Weldable high tensile steel excellent in low-temperatur toughness | |
JP5292784B2 (en) | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same | |
JP5251092B2 (en) | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same | |
JP4671959B2 (en) | Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them | |
JP2003138340A (en) | Ultrahigh strength steel pipe with excellent toughness of weld zone, and its manufacturing method | |
JP2004052104A (en) | High-strength steel excellent in low temperature toughness and toughness at weld heat affected zone, method for producing the same and method for producing high-strength steel pipe | |
JP2008163456A (en) | Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same | |
JP2008163455A (en) | Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same | |
JP4171169B2 (en) | Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof | |
JPWO2018185851A1 (en) | Vertical seam welded steel pipe | |
JP3814112B2 (en) | Super high strength steel pipe excellent in low temperature toughness of seam welded portion and manufacturing method thereof | |
JP4341395B2 (en) | High strength steel and weld metal for high heat input welding | |
JP3258207B2 (en) | Ultra high strength steel with excellent low temperature toughness | |
JP4477707B2 (en) | Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same | |
JP2004099930A (en) | High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same | |
JP4119706B2 (en) | High strength welded steel pipe with excellent weld toughness and manufacturing method thereof | |
JP2002146471A (en) | Ultrahigh strength steel plate and ultrahigh strength steel pipe each having excellent toughness at low temperature and toughness in heat-affected zone, and their manufacturing method | |
JP3244981B2 (en) | Weldable high-strength steel with excellent low-temperature toughness | |
JP3244986B2 (en) | Weldable high strength steel with excellent low temperature toughness | |
JP4523908B2 (en) | Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof | |
JP2001207242A (en) | Thick-walled sour-resisting steel tube excellent in toughness at low temperature in circumferential weld zone, and pipeline | |
JP2002285283A (en) | Superhigh strength steel pipe having excellent high speed ductile fracture characteristic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090220 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140227 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |