Nothing Special   »   [go: up one dir, main page]

JP2001294416A - Device for producing polycrystalline silicon - Google Patents

Device for producing polycrystalline silicon

Info

Publication number
JP2001294416A
JP2001294416A JP2000106658A JP2000106658A JP2001294416A JP 2001294416 A JP2001294416 A JP 2001294416A JP 2000106658 A JP2000106658 A JP 2000106658A JP 2000106658 A JP2000106658 A JP 2000106658A JP 2001294416 A JP2001294416 A JP 2001294416A
Authority
JP
Japan
Prior art keywords
furnace
silicon
insulating material
heat insulating
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000106658A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
洋 池田
Hisayuki Takesue
久幸 竹末
Shinrin Fu
森林 符
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Polycrystalline Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Polycrystalline Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Polycrystalline Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Polycrystalline Silicon Corp
Priority to JP2000106658A priority Critical patent/JP2001294416A/en
Publication of JP2001294416A publication Critical patent/JP2001294416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide production device with which a polycrystalline silicon rod whose whole surface is smooth and which has small residual stress can be obtained. SOLUTION: In the production device for producing the polycrystalline silicon, silicon core rods are arranged in the standing state in a closed furnace, and a source gas is introduced into the furnace and at the same time, the core rods are heated to a high temperature, thereby, polycrystalline silicon formed by pyrolysis of the source gas is deposited on the surface of each core rod, the temperature in the furnace is made uniform by providing a heat-insulating material in the furnace in such a manner that the silicon rods are surrounded by the heat-insulating material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、赤熱したシリコン
芯棒表面に多結晶シリコンを析出させる製造炉におい
て、表面性状が良好で残留応力が低い多結晶シリコンロ
ッドを得ることができる多結晶シリコンの製造装置に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a production furnace for depositing polycrystalline silicon on the surface of a red-heated silicon core rod, and to a polycrystalline silicon rod having good surface properties and low residual stress. It relates to a manufacturing device.

【0002】[0002]

【従来の技術】半導体材料となる高純度の多結晶シリコ
ンの製造方法としてシーメンス法が知られている。この
方法は、クロルシランと水素の混合ガス等からなる原料
ガスを赤熱したシリコン芯棒に接触させて、原料ガスの
熱分解等により生じたシリコンをその表面に析出させ、
次第に径の太い多結晶のシリコンロッドに成長させる製
造方法であり、密閉した反応炉に多数のシリコン芯棒を
立設した製造装置が用いられている。一般に、このシリ
コン芯棒は逆U字状に形成されており、その両端が反応
炉の炉底に設置した電極に固定されている。操業時に
は、この両端の電極からシリコン芯棒に電気を通じ、そ
の抵抗熱によってシリコン芯棒を高温に赤熱し、生じた
シリコンを上記芯棒表面に析出させる。原料ガスの反応
としては、四塩化ケイ素やトリクロルシランの高温下で
の水素還元、あるいはシランやクロルシランの熱分解な
どが利用され、原料ガスに応じてシリコン芯棒が約80
0〜1150℃程度の高温に加熱される。
2. Description of the Related Art The Siemens method is known as a method for producing high-purity polycrystalline silicon as a semiconductor material. In this method, a raw material gas such as a mixed gas of chlorosilane and hydrogen is brought into contact with a glowed silicon core rod, and silicon generated by thermal decomposition of the raw material gas is deposited on its surface.
This is a manufacturing method of growing a polycrystalline silicon rod having a gradually increasing diameter, and a manufacturing apparatus in which a number of silicon core rods are erected in a closed reaction furnace is used. Generally, this silicon core rod is formed in an inverted U-shape, and both ends thereof are fixed to electrodes installed on the bottom of the reaction furnace. During operation, electricity is passed from the electrodes at both ends to the silicon core rod, the silicon core rod is glowed to a high temperature by the resistance heat, and the generated silicon is deposited on the surface of the core rod. As the reaction of the raw material gas, hydrogen reduction of silicon tetrachloride or trichlorosilane at a high temperature or thermal decomposition of silane or chlorosilane is used.
It is heated to a high temperature of about 0 to 1150 ° C.

【0003】[0003]

【発明の解決課題】反応炉の炉壁は一般にステンレス鋼
やニッケル基合金などの金属材料によって形成されてい
るが、炉内が高温に加熱されるので、この金属材料によ
るシリコンの汚染を防止するために反応炉には炉壁を冷
却する水冷ジャケット等が設けられている。このため炉
内温度は炉壁周辺の温度が炉の中心部よりも低くなり、
このような不均一な炉内温度によってシリコンロッドの
品質が低下すると云う問題がある。具体的には、炉壁付
近に配置したシリコンロッドの温度が低く、炉内中心側
に配置したシリコンロッドの温度が高くなるため、炉壁
側のシリコンロッドを基準に炉内温度を制御すると中心
側のシリコンロッドが高温になり、反応速度が早くなる
ので起伏の激しい荒れた表面になる。このため、ロッド
の表面積が大きくなって隙間に不純物が付着し易くな
り、またエッチング洗浄の際に、洗浄液が隙間に入り込
み難く、付着した不純物の洗い出しが不十分になり易
い。さらに、洗浄液等が隙間に滞留しやすく、これらが
不純物汚染の原因になる。一方、中心側のシリコンロッ
ドを基準に炉内温度を制御すると、炉壁側の温度が低く
なるので原料ガスの熱分解等が不十分になり、反応効率
が低下する。これは炉内全体に限らず、炉壁側の個々の
シリコンロッドについても同様であり、炉壁側の表面と
中心側の表面温度が異なるので表面性状が不均一な残留
応力の大きいシリコンロッドになる。
A furnace wall of a reaction furnace is generally formed of a metal material such as stainless steel or a nickel-based alloy. However, since the inside of the furnace is heated to a high temperature, contamination of silicon by the metal material is prevented. For this purpose, the reaction furnace is provided with a water-cooling jacket for cooling the furnace wall. For this reason, the temperature inside the furnace becomes lower around the furnace wall than at the center of the furnace,
There is a problem that the quality of the silicon rod deteriorates due to such uneven furnace temperature. Specifically, since the temperature of the silicon rod placed near the furnace wall is low and the temperature of the silicon rod placed on the center side inside the furnace is high, controlling the furnace temperature based on the silicon rod on the furnace wall side will cause As the silicon rod on the side becomes hot and the reaction speed becomes faster, the surface becomes rough and rough. For this reason, the surface area of the rod becomes large, and impurities easily adhere to the gaps. Further, at the time of etching cleaning, the cleaning liquid hardly enters the gaps, and washing out of the adhered impurities tends to be insufficient. Further, the cleaning liquid or the like easily stays in the gap, which causes impurity contamination. On the other hand, if the furnace temperature is controlled on the basis of the silicon rod on the center side, the temperature on the furnace wall side becomes low, so that the thermal decomposition of the raw material gas becomes insufficient and the reaction efficiency decreases. This is not limited to the whole inside of the furnace, but also applies to individual silicon rods on the furnace wall side.Since the surface temperature on the furnace wall side and the surface temperature on the center side are different, silicon rods with uneven surface properties and large residual stress Become.

【0004】本発明は従来の製造炉における上記問題を
解決したものであり、炉内温度を均一化することによっ
て、表面が滑らかで残留応力の小さいシリコンロッドを
効率よく製造することができ、かつ電力量ないし製造コ
ストを低減できる製造装置を提供するものである。
The present invention has solved the above-mentioned problems in the conventional manufacturing furnace. By making the furnace temperature uniform, a silicon rod having a smooth surface and small residual stress can be efficiently manufactured, and An object of the present invention is to provide a manufacturing apparatus capable of reducing the amount of power or the manufacturing cost.

【0005】[0005]

【課題を解決する手段】本発明の製造装置は、シリコン
ロッドを囲むように炉内に断熱材を設けることによって
炉内温度の均一化を図ったものであり、以下の構成から
なる多結晶シリコンの製造装置が提供される。
According to the manufacturing apparatus of the present invention, the temperature inside the furnace is made uniform by providing a heat insulating material in the furnace so as to surround the silicon rod. Is provided.

【0006】(1)密閉された炉内にシリコン製の芯棒
を立設し、炉内に原料ガスを導入すると共に上記芯棒を
高温に加熱し、原料ガスの加熱分解によって生じた多結
晶シリコンを上記芯棒表面に析出させる多結晶シリコン
の製造装置において、シリコン芯棒を囲むよう炉内に断
熱材を設けることによって炉内温度を均一化したことを
特徴とする多結晶シリコンの製造装置。 (2)炉内の周壁と底面に断熱材を内張した上記(1)の
製造装置。 (3)炉内の周壁と底面、および天井に断熱材を設けた
上記(1)の製造装置。 (4)天井面に断熱材を内張するか、または天井を覆う
ように断熱材を炉内に架設した上記(3)の製造装置。 (5)炉内の周面および天井面に断熱材をコーテングし
た上記(1)の製造装置。 (6)断熱材として、炭素、窒化ケイ素、石英、炭化珪
素、酸化ジルコニウム、またはこれらの複合材料を用い
た上記(1)の製造装置。 (7)表面にシリコンをコーテングした断熱材を用いる
上記(1)の製造装置。
(1) A silicon core rod is erected in a closed furnace, a raw material gas is introduced into the furnace, and the core rod is heated to a high temperature. An apparatus for producing polycrystalline silicon, wherein silicon is deposited on the surface of said core rod, wherein the temperature inside the furnace is made uniform by providing a heat insulating material in the furnace so as to surround the silicon core rod. . (2) The manufacturing apparatus according to the above (1), wherein a heat insulating material is lined on a peripheral wall and a bottom surface in the furnace. (3) The manufacturing apparatus according to the above (1), wherein a heat insulating material is provided on a peripheral wall, a bottom surface, and a ceiling in the furnace. (4) The manufacturing apparatus according to (3) above, wherein a heat insulating material is lined on the ceiling surface or the heat insulating material is installed in the furnace so as to cover the ceiling. (5) The manufacturing apparatus according to the above (1), wherein a heat insulating material is coated on a peripheral surface and a ceiling surface in the furnace. (6) The production apparatus according to (1), wherein carbon, silicon nitride, quartz, silicon carbide, zirconium oxide, or a composite material thereof is used as the heat insulating material. (7) The manufacturing apparatus according to the above (1), using a heat insulating material coated with silicon on the surface.

【0007】以上のように、本発明の多結晶シリコン
は、炉壁の冷却手段を有し、多数のシリコンロッドが炉
内に立設される反応炉について、そのシリコンロッドを
囲むように断熱材を炉内に設けて炉内温度、特に炉壁付
近の温度を均一化して最適温度に調整したものであり、
この温度制御によってロッド表面全体が滑らかで、しか
も残留応力が小さくて割れ難いシリコンロッドを得るこ
とができる。
As described above, the polycrystalline silicon of the present invention has a cooling means for a furnace wall, and a heat insulating material is provided so as to surround the silicon rod in a reactor in which a large number of silicon rods are erected in the furnace. In the furnace, the temperature inside the furnace, especially the temperature near the furnace wall, was made uniform and adjusted to the optimum temperature.
By this temperature control, it is possible to obtain a silicon rod in which the entire rod surface is smooth, has a small residual stress, and is not easily broken.

【0008】断熱材は炉内底面およびシリコンロッドを
囲むように炉内周面に設ければ一応の効果があり、好ま
しくは、更に天井部分にも断熱材を設けて炉内全体を断
熱材によって覆った状態に形成すると良い。この断熱材
は板状の部材を梁材などによって壁面に取付てもよく、
あるいは液状ないし粉状の断熱材を壁面にコーテングし
ても良い。
The heat insulating material has a certain effect if it is provided on the furnace inner peripheral surface so as to surround the furnace inner bottom surface and the silicon rod. Preferably, a heat insulating material is further provided on the ceiling portion so that the entire furnace interior is made of heat insulating material. It is good to form it in a covered state. This heat insulating material may be a plate-like member attached to a wall surface by a beam material or the like,
Alternatively, a liquid or powdery heat insulating material may be coated on the wall surface.

【0009】[0009]

【発明の実施の形態】以下、本発明を図面に示す実施態
様に基づいて具体的に説明する。図1は多結晶シリコン
製造炉の概略構造を示す部分切欠斜視図、図2〜図6は
本発明に係る装置構成を示す反応炉の概略縦断面図ない
し概略底面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments shown in the drawings. FIG. 1 is a partially cutaway perspective view showing a schematic structure of a polycrystalline silicon production furnace, and FIGS. 2 to 6 are schematic longitudinal sectional views or schematic bottom views of a reaction furnace showing an apparatus configuration according to the present invention.

【0010】多結晶シリコン反応炉の概略構造を図1に
示す。図示するように、反応炉10は炉台11とこれを
覆う釣鐘状のベルジャ12によって形成されている。炉
台11およびベルジャ12には熱損傷を防止するために
水冷ジャケット等の冷却手段(図示省略)が設けられてい
る。炉台11にはシリコン芯棒13を保持する電極14
が多数突設されており、さらに原料ガスを炉内に導入す
る導入口15、反応後のガスを炉外に排出する排気口1
6が設けられている。シリコン芯棒13は電極14によ
って炉内に立設されており、この電極14を通じてシリ
コン芯棒13に通電し、シリコン棒全体が赤く発熱する
状態(赤熱)に加熱する。電極14には冷却手段(図示省
略)が設けられている。炉の中心にはシリコン芯棒13
を通電可能な状態に加熱するカーボンロッド17が設け
られており、このカーボンロッド17を囲んで多数のシ
リコン芯棒13が同心円状に設置されている。シリコン
芯棒13は通電することにより、原料ガスに応じて約8
00℃〜1150℃程度に加熱され、炉内に導入された
原料ガスが加熱したシリコン芯棒13に接触して熱分解
し、その表面に多結晶シリコンが析出し、次第に太く成
長して数十センチ径の多結晶シリコン棒になる。原料ガ
スとしてはシラン、クロルシランあるいはこれらと水素
の混合ガス等が用いられる。シリコン芯棒の配列および
個数、原料ガス導入口および排気口の位置や個数は炉の
大きさなどに応じて適宜に定められる。
FIG. 1 shows a schematic structure of a polycrystalline silicon reactor. As shown in the drawing, the reaction furnace 10 is formed by a furnace base 11 and a bell-shaped bell jar 12 covering the furnace base. Cooling means (not shown) such as a water-cooled jacket is provided in the furnace base 11 and the bell jar 12 to prevent thermal damage. An electrode 14 for holding a silicon core 13 is provided on the furnace base 11.
Are protruded, and an inlet 15 for introducing the raw material gas into the furnace, and an exhaust port 1 for discharging the reacted gas out of the furnace.
6 are provided. The silicon core rod 13 is erected in the furnace by an electrode 14, and electricity is supplied to the silicon core rod 13 through the electrode 14 to heat the silicon rod to a state in which the entire silicon rod generates heat (red heat). The electrode 14 is provided with a cooling means (not shown). Silicon core 13 in the center of the furnace
There is provided a carbon rod 17 for heating the carbon rods so that they can be energized. A large number of silicon core rods 13 are concentrically arranged around the carbon rod 17. When the silicon core rod 13 is energized, the silicon core rod 13 has about 8
The raw material gas introduced into the furnace is heated to about 00 ° C. to 1150 ° C., and thermally decomposes by contacting the heated silicon core rod 13, and polycrystalline silicon is deposited on the surface thereof, and gradually grows thick to several tens. It becomes a polycrystalline silicon rod of centimeter diameter. As the raw material gas, silane, chlorosilane or a mixed gas of these and hydrogen is used. The arrangement and number of the silicon core rods, and the positions and numbers of the raw material gas inlets and exhaust ports are appropriately determined according to the size of the furnace.

【0011】上記構成において、本発明の製造装置は、
図2〜図6に示すように、反応炉10の炉内壁および炉
底面に断熱材20が内張りされている。シリコンロッド
13と断熱材とは放電防止のために5mm以上の間隔を設
けるのが好ましい。断熱材の材質は、炭素、窒化ケイ
素、石英、炭化珪素、酸化ジルコニウム、またはこれら
の複合材料を用いることができる。これらの断熱材は内
部に多数の独立気孔を有する多孔質のものが断熱効果が
良い。また、炭素や炭化珪素などのシリコン以外の断熱
材は表面にシリコンをコーテングしたものを用いること
によって、炭素などによる不純物汚染を防止することが
できる。
In the above configuration, the manufacturing apparatus of the present invention comprises:
As shown in FIGS. 2 to 6, a heat insulating material 20 is lined on a furnace inner wall and a furnace bottom of the reaction furnace 10. It is preferable to provide an interval of 5 mm or more between the silicon rod 13 and the heat insulating material to prevent discharge. As a material of the heat insulating material, carbon, silicon nitride, quartz, silicon carbide, zirconium oxide, or a composite material thereof can be used. As for these heat insulating materials, a porous material having a large number of independent pores therein has a good heat insulating effect. Further, by using a heat insulating material other than silicon, such as carbon or silicon carbide, whose surface is coated with silicon, impurity contamination due to carbon or the like can be prevented.

【0012】板状の断熱材20を炉内の壁面に取り付け
るには、図示するように、L字形断面の梁材21を壁面
に設け、この梁材21によって形成された溝部分に断熱
材20の端部を差し込んで固定すれば良い。梁材21は
反応炉と同じ材質で形成し、冷却手段を設けると良い。
この冷却手段としては梁材の内部に冷却水の流路を設け
る等の方法によることができる。また、断熱材20を分
割して設ける場合にはモリブデン等の高融点材料からな
るネット22を梁材20に取り付け、このネット22に
よって断熱材20を支えるようにしても良い。
To attach the plate-shaped heat insulating material 20 to the wall surface in the furnace, as shown in the figure, an L-shaped beam member 21 is provided on the wall surface, and the heat insulating material 20 is formed in a groove formed by the beam material 21. Can be inserted and fixed. The beam 21 is preferably made of the same material as the reaction furnace, and a cooling means is preferably provided.
As the cooling means, a method such as providing a flow path of cooling water inside the beam material can be used. When the heat insulating material 20 is provided separately, a net 22 made of a material having a high melting point such as molybdenum may be attached to the beam member 20, and the heat insulating material 20 may be supported by the net 22.

【0013】図2に示すように、断熱材20を炉内底面
と内周壁とに内張することによって炉内温度をかなり均
一にすることができる。図1および図2の装置例では、
炉内の底部と周壁部の隅部、および周壁部と天井部の境
目部分におのおの炉内を巡るように細長い梁材21が設
けられており、炉の内周面に張り付けられた断熱材20
の上下両端がこの梁材21の溝部分に嵌め込まれて固定
されている。また、図3に示すように、炉内底面には断
熱材20が敷き詰められており、その周縁部が梁材21
によって固定されている。
As shown in FIG. 2, the temperature inside the furnace can be made fairly uniform by lining the heat insulating material 20 on the inner bottom surface and the inner peripheral wall. In the device examples of FIGS. 1 and 2,
An elongated beam member 21 is provided so as to go around the inside of the furnace at the bottom of the furnace and at the corner of the peripheral wall, and at the boundary between the peripheral wall and the ceiling.
The upper and lower ends are fitted into and fixed to the grooves of the beam 21. As shown in FIG. 3, a heat insulating material 20 is laid on the bottom surface of the furnace, and the periphery thereof is
Has been fixed by.

【0014】図4および図5に示すように、断熱材20
を炉内周面および炉内底面と共に天井部分に設けること
によって炉内温度を更に均一化することができる。この
天井部分の断熱材20はその両端を梁材21によって固
定し、また高融点材料のネット22によって支持すると
良い。
As shown in FIG. 4 and FIG.
Is provided on the ceiling together with the furnace inner peripheral surface and the furnace inner bottom surface, whereby the furnace temperature can be made more uniform. Preferably, both ends of the heat insulating material 20 at the ceiling are fixed by beams 21 and supported by a net 22 of a high melting point material.

【0015】この天井部分の断熱材20は、図5に示す
ように、数個(図示する例では5個)の梁材21を反応炉
10の天井面に取り付け、この梁材21によって断熱材
20の端部を押さえ付けることによって断熱材20を天
井面に固定しても良い。さらに、高融点材料からなるネ
ット22を梁材21に取り付けて断熱材20を支持する
と良い。
As shown in FIG. 5, a plurality of (five in the illustrated example) beam members 21 are attached to the ceiling surface of the reactor 10 and the heat insulating material 20 at the ceiling portion is used as the heat insulating material. The heat insulating material 20 may be fixed to the ceiling surface by pressing the end of the heat insulating material 20. Further, a net 22 made of a high melting point material is preferably attached to the beam 21 to support the heat insulating material 20.

【0016】図2〜図5に示す態様に代えて、図6に示
すように、断熱材20を炉内壁面にコーテングしても良
い。コーテング方法は断熱材20の層が壁面に形成され
る方法であればよく、特に限定されない。
Instead of the embodiment shown in FIGS. 2 to 5, a heat insulating material 20 may be coated on the inner wall of the furnace as shown in FIG. The coating method is not particularly limited as long as the layer of the heat insulating material 20 is formed on the wall surface.

【0017】[0017]

【発明の効果】本発明の製造装置は、炉内のシリコンロ
ッドを囲むように断熱材が設けられているので、炉内温
度が均一化され最適温度に制御されるので、ロッド表面
が滑らかで表面性状に優れた高品質のシリコンロッドを
得ることができる。また、本発明の製造装置で造られた
シリコンロッドは残留応力が小さいので割れ難く、長尺
のロッドを安定に得ることができる。さらに、炉内の温
度が均一に最適範囲に制御されるので電力コストを低減
でき、シリコンロッド製造の経済性を高めることができ
る。
According to the manufacturing apparatus of the present invention, since the heat insulating material is provided so as to surround the silicon rod in the furnace, the furnace temperature is made uniform and controlled to the optimum temperature, so that the rod surface is smooth and smooth. A high quality silicon rod having excellent surface properties can be obtained. In addition, the silicon rod manufactured by the manufacturing apparatus of the present invention has a small residual stress, so that it is difficult to break, and a long rod can be stably obtained. Further, since the temperature in the furnace is uniformly controlled within the optimum range, the power cost can be reduced, and the economic efficiency of silicon rod production can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 多結晶シリコン製造装置(炉)の部分切欠斜視
FIG. 1 is a partially cutaway perspective view of a polycrystalline silicon manufacturing apparatus (furnace).

【図2】 本発明に係る製造装置(炉)の概略縦断面図FIG. 2 is a schematic longitudinal sectional view of a manufacturing apparatus (furnace) according to the present invention.

【図3】 図2の製造装置(炉)の概略横断面図FIG. 3 is a schematic cross-sectional view of the manufacturing apparatus (furnace) of FIG. 2;

【図4】 本発明に係る他の製造装置(炉)の概略縦断面
FIG. 4 is a schematic longitudinal sectional view of another manufacturing apparatus (furnace) according to the present invention.

【図5】 本発明に係る他の製造装置(炉)の概略縦断面
FIG. 5 is a schematic longitudinal sectional view of another manufacturing apparatus (furnace) according to the present invention.

【図6】 本発明に係る他の製造装置(炉)の概略縦断面
FIG. 6 is a schematic longitudinal sectional view of another manufacturing apparatus (furnace) according to the present invention.

【符号の説明】[Explanation of symbols]

10−反応炉、11−炉台、12−ベルジャ、13−シ
リコン芯棒、14−電極、15−原料ガス導入口、16
−排気口、17−カーボンロッド、20−断熱材、21
−梁材、22−ネット
10-reactor, 11-furnace base, 12-bell jar, 13-silicon core rod, 14-electrode, 15-source gas inlet, 16
-Exhaust port, 17-carbon rod, 20-thermal insulation, 21
-Beams, 22-net

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹末 久幸 三重県四日市市三田町5番地 三菱マテリ アルポリシリコン株式会社内 (72)発明者 符 森林 東京都千代田区大手町一丁目5番1号 三 菱マテリアル株式会社内 Fターム(参考) 4G072 AA01 BB12 GG04 HH01 NN01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisayuki Takesue 5 Mitacho, Yokkaichi-shi, Mie Prefecture Inside Mitsubishi Materi AlPolysilicon Co., Ltd. (72) Inventor Mark Forest 1-5-1, Otemachi, Chiyoda-ku, Tokyo Material Co., Ltd. F term (reference) 4G072 AA01 BB12 GG04 HH01 NN01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 密閉された炉内にシリコン製の芯棒を立
設し、炉内に原料ガスを導入すると共に上記芯棒を高温
に加熱し、原料ガスの加熱分解によって生じた多結晶シ
リコンを上記芯棒表面に析出させる多結晶シリコンの製
造装置において、シリコン芯棒を囲むよう炉内に断熱材
を設けることによって炉内温度を均一化したことを特徴
とする多結晶シリコンの製造装置。
1. A silicon core rod is erected in a sealed furnace, a raw material gas is introduced into the furnace, and the core rod is heated to a high temperature. In the apparatus for producing polycrystalline silicon, wherein the temperature inside the furnace is made uniform by providing a heat insulating material in the furnace so as to surround the silicon core rod.
【請求項2】 炉内の周壁と底面に断熱材を内張した請
求項1の製造装置。
2. The manufacturing apparatus according to claim 1, wherein a heat insulating material is lined on a peripheral wall and a bottom surface in the furnace.
【請求項3】 炉内の周壁と底面、および天井に断熱材
を設けた請求項1の製造装置。
3. The manufacturing apparatus according to claim 1, wherein a heat insulating material is provided on a peripheral wall, a bottom surface, and a ceiling in the furnace.
【請求項4】 天井面に断熱材を内張するか、または天
井を覆うように断熱材を炉内に架設した請求項3の製造
装置。
4. The manufacturing apparatus according to claim 3, wherein a heat insulating material is lined on the ceiling surface or the heat insulating material is installed in the furnace so as to cover the ceiling.
【請求項5】 炉内の周面および天井面に断熱材をコー
テングした請求項1の製造装置。
5. The manufacturing apparatus according to claim 1, wherein a heat insulating material is coated on a peripheral surface and a ceiling surface in the furnace.
【請求項6】 断熱材として、炭素、窒化ケイ素、石
英、炭化珪素、酸化ジルコニウム、またはこれらの複合
材料を用いた請求項1の製造装置。
6. The manufacturing apparatus according to claim 1, wherein carbon, silicon nitride, quartz, silicon carbide, zirconium oxide, or a composite material thereof is used as the heat insulating material.
【請求項7】 表面にシリコンをコーテングした断熱材
を用いる請求項1の製造装置。
7. The manufacturing apparatus according to claim 1, wherein a heat insulating material coated with silicon on the surface is used.
JP2000106658A 2000-04-07 2000-04-07 Device for producing polycrystalline silicon Pending JP2001294416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106658A JP2001294416A (en) 2000-04-07 2000-04-07 Device for producing polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106658A JP2001294416A (en) 2000-04-07 2000-04-07 Device for producing polycrystalline silicon

Publications (1)

Publication Number Publication Date
JP2001294416A true JP2001294416A (en) 2001-10-23

Family

ID=18619792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106658A Pending JP2001294416A (en) 2000-04-07 2000-04-07 Device for producing polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP2001294416A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768147B1 (en) 2006-05-11 2007-10-18 한국화학연구원 Apparatus and methods for preparation of high-purity silicon rods using mixed core means
JP2009062252A (en) * 2007-09-10 2009-03-26 Mitsubishi Materials Corp Polycrystalline silicon reaction furnace
JP2010180097A (en) * 2009-02-05 2010-08-19 Tokuyama Corp Method for regenerating carbon heater used for silicon production
JP2010235440A (en) * 2009-03-10 2010-10-21 Mitsubishi Materials Corp Manufacturing apparatus of polycrystalline silicon
US20110126761A1 (en) * 2009-12-02 2011-06-02 Woongjin polysilicon Co., Ltd. Cvd reactor with energy efficient thermal-radiation shield
WO2012004968A1 (en) * 2010-07-06 2012-01-12 信越化学工業株式会社 Polycrystalline silicon rod and production method for polycrystalline silicon rod
WO2012004969A1 (en) * 2010-07-06 2012-01-12 信越化学工業株式会社 Polycrystalline silicon rod, method for inspecting polycrystalline silicon rod, and method for manufacturing polycrystalline silicon rod
EP2423352A1 (en) * 2010-08-24 2012-02-29 Centesil S.L. Thermal shield for silicon production reactors
CN102618921A (en) * 2012-04-11 2012-08-01 浙江金瑞泓科技股份有限公司 Double-exhaust flat-plate epitaxial furnace
CN102659109A (en) * 2012-04-27 2012-09-12 四川新光硅业科技有限责任公司 Polycrystalline silicon reduction furnace
CN102923708A (en) * 2012-11-04 2013-02-13 张海峰 Reducing furnace for producing polysilicon
CN102992325A (en) * 2012-12-01 2013-03-27 西安超码科技有限公司 Thermal protection shield for polycrystalline silicon reduction furnace, and preparation method thereof
CN103342362A (en) * 2013-07-12 2013-10-09 新特能源股份有限公司 Heat shield of polysilicon CVD (chemical vapor deposition) reactor
KR101440049B1 (en) * 2010-11-08 2014-09-12 주식회사 엘지화학 Reflector and cvd reactor for manufacturing polysillicon by using the same
CN104528732A (en) * 2014-12-25 2015-04-22 大连理工大学 Novel device and method for reducing energy consumption of electron beam melting technology
CN104528734A (en) * 2014-12-25 2015-04-22 大连理工大学 Device and method of lowering energy consumption of electron beam melting polysilicon
CN104556050A (en) * 2014-12-25 2015-04-29 大连理工大学 Method and device for removing metal impurities in polycrystalline silicon by electron beam overheat smelting
CN104556041A (en) * 2015-01-16 2015-04-29 中国矿业大学 Polycrystalline silicon reduction furnace body
KR101620635B1 (en) 2008-06-24 2016-05-12 미쓰비시 마테리알 가부시키가이샤 Apparatus for producing polycrystalline silicon
CN107904658A (en) * 2017-11-27 2018-04-13 亚洲硅业(青海)有限公司 A kind of reduction furnace inner wall preparation method of composite coating
CN111286731A (en) * 2020-02-20 2020-06-16 亚洲硅业(青海)股份有限公司 Inner wall coating of polycrystalline silicon reduction furnace bell jar, preparation method of inner wall coating, spraying device of inner wall coating of polycrystalline silicon reduction furnace bell jar and application
CN113526510A (en) * 2021-08-17 2021-10-22 昆明学院 Method for reducing radiation heat loss of polycrystalline silicon reduction furnace and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281009A (en) * 1985-06-05 1986-12-11 Koujiyundo Silicon Kk Apparatus for producing polycrystal silicon
JPS62123011A (en) * 1985-11-25 1987-06-04 Koujiyundo Silicon Kk Method for producing trichlorosilane and apparatus therefor
JPH01208312A (en) * 1988-02-15 1989-08-22 Shin Etsu Handotai Co Ltd Process for producing high-purity polycrystalline rod and reaction vessel used in said production process
JPH026317A (en) * 1988-01-15 1990-01-10 Union Carbide Corp Reactor system and method for forming polycrystalline bars of uniformly large diameter by thermal decomposition of silane
JPH07109198A (en) * 1992-10-08 1995-04-25 Advanced Silicon Materials Inc Device and method for producing bar-like high-purity silicon for semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281009A (en) * 1985-06-05 1986-12-11 Koujiyundo Silicon Kk Apparatus for producing polycrystal silicon
JPS62123011A (en) * 1985-11-25 1987-06-04 Koujiyundo Silicon Kk Method for producing trichlorosilane and apparatus therefor
JPH026317A (en) * 1988-01-15 1990-01-10 Union Carbide Corp Reactor system and method for forming polycrystalline bars of uniformly large diameter by thermal decomposition of silane
JPH01208312A (en) * 1988-02-15 1989-08-22 Shin Etsu Handotai Co Ltd Process for producing high-purity polycrystalline rod and reaction vessel used in said production process
JPH07109198A (en) * 1992-10-08 1995-04-25 Advanced Silicon Materials Inc Device and method for producing bar-like high-purity silicon for semiconductor

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768147B1 (en) 2006-05-11 2007-10-18 한국화학연구원 Apparatus and methods for preparation of high-purity silicon rods using mixed core means
JP2009062252A (en) * 2007-09-10 2009-03-26 Mitsubishi Materials Corp Polycrystalline silicon reaction furnace
KR101620635B1 (en) 2008-06-24 2016-05-12 미쓰비시 마테리알 가부시키가이샤 Apparatus for producing polycrystalline silicon
JP2010180097A (en) * 2009-02-05 2010-08-19 Tokuyama Corp Method for regenerating carbon heater used for silicon production
JP2010235440A (en) * 2009-03-10 2010-10-21 Mitsubishi Materials Corp Manufacturing apparatus of polycrystalline silicon
KR101115697B1 (en) 2009-12-02 2012-03-06 웅진폴리실리콘주식회사 Cvd reactor with energy efficient thermal-radiation shield
US20110126761A1 (en) * 2009-12-02 2011-06-02 Woongjin polysilicon Co., Ltd. Cvd reactor with energy efficient thermal-radiation shield
EP2330232A1 (en) * 2009-12-02 2011-06-08 Woongjin polysilicon Co., Ltd. CVD reactor with energy efficient thermal-radiation shield
CN102971624A (en) * 2010-07-06 2013-03-13 信越化学工业株式会社 Polycrystalline silicon rod and production method for polycrystalline silicon rod
JP2012017997A (en) * 2010-07-06 2012-01-26 Shin Etsu Chem Co Ltd Polycrystalline silicon rod and method of manufacturing the same
WO2012004969A1 (en) * 2010-07-06 2012-01-12 信越化学工業株式会社 Polycrystalline silicon rod, method for inspecting polycrystalline silicon rod, and method for manufacturing polycrystalline silicon rod
US9006002B2 (en) 2010-07-06 2015-04-14 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod and method for manufacturing polycrystalline silicon rod
WO2012004968A1 (en) * 2010-07-06 2012-01-12 信越化学工業株式会社 Polycrystalline silicon rod and production method for polycrystalline silicon rod
AU2011275287B2 (en) * 2010-07-06 2013-10-03 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod and production method for polycrystalline silicon rod
EP2423352A1 (en) * 2010-08-24 2012-02-29 Centesil S.L. Thermal shield for silicon production reactors
WO2012025513A1 (en) * 2010-08-24 2012-03-01 Centesil S.L. Thermal shield for silicon production reactors
KR101440049B1 (en) * 2010-11-08 2014-09-12 주식회사 엘지화학 Reflector and cvd reactor for manufacturing polysillicon by using the same
CN102618921A (en) * 2012-04-11 2012-08-01 浙江金瑞泓科技股份有限公司 Double-exhaust flat-plate epitaxial furnace
CN102618921B (en) * 2012-04-11 2015-06-03 浙江金瑞泓科技股份有限公司 Double-exhaust flat-plate epitaxial furnace
CN102659109A (en) * 2012-04-27 2012-09-12 四川新光硅业科技有限责任公司 Polycrystalline silicon reduction furnace
CN102923708A (en) * 2012-11-04 2013-02-13 张海峰 Reducing furnace for producing polysilicon
CN102992325A (en) * 2012-12-01 2013-03-27 西安超码科技有限公司 Thermal protection shield for polycrystalline silicon reduction furnace, and preparation method thereof
CN103342362A (en) * 2013-07-12 2013-10-09 新特能源股份有限公司 Heat shield of polysilicon CVD (chemical vapor deposition) reactor
CN104528732A (en) * 2014-12-25 2015-04-22 大连理工大学 Novel device and method for reducing energy consumption of electron beam melting technology
CN104528734A (en) * 2014-12-25 2015-04-22 大连理工大学 Device and method of lowering energy consumption of electron beam melting polysilicon
CN104556050A (en) * 2014-12-25 2015-04-29 大连理工大学 Method and device for removing metal impurities in polycrystalline silicon by electron beam overheat smelting
CN104556041A (en) * 2015-01-16 2015-04-29 中国矿业大学 Polycrystalline silicon reduction furnace body
CN107904658A (en) * 2017-11-27 2018-04-13 亚洲硅业(青海)有限公司 A kind of reduction furnace inner wall preparation method of composite coating
CN111286731A (en) * 2020-02-20 2020-06-16 亚洲硅业(青海)股份有限公司 Inner wall coating of polycrystalline silicon reduction furnace bell jar, preparation method of inner wall coating, spraying device of inner wall coating of polycrystalline silicon reduction furnace bell jar and application
CN111286731B (en) * 2020-02-20 2020-12-15 亚洲硅业(青海)股份有限公司 Inner wall coating of polycrystalline silicon reduction furnace bell jar, preparation method of inner wall coating, spraying device of inner wall coating of polycrystalline silicon reduction furnace bell jar and application
CN113526510A (en) * 2021-08-17 2021-10-22 昆明学院 Method for reducing radiation heat loss of polycrystalline silicon reduction furnace and application

Similar Documents

Publication Publication Date Title
JP2001294416A (en) Device for producing polycrystalline silicon
EP1257684B1 (en) Method and apparatus for chemical vapor deposition of polysilicon
US6284312B1 (en) Method and apparatus for chemical vapor deposition of polysilicon
US6365225B1 (en) Cold wall reactor and method for chemical vapor deposition of bulk polysilicon
US4123989A (en) Manufacture of silicon on the inside of a tube
JP5194003B2 (en) Method for producing high purity polycrystalline silicon rod using metal core means
JP3763104B2 (en) Hydrogenation of tetrachlorosilane
WO2003106338A1 (en) Reaction apparatus for producing silicon
JP2001146412A (en) Fluidized bed reactor and method for producing high- purity polycrystalline silicon
WO2008053786A1 (en) Trichlorosilane production apparatus
US9416014B2 (en) Method for producing trichlorosilane
JP5360147B2 (en) Polycrystalline silicon reduction furnace
US8034300B2 (en) Apparatus for producing trichlorosilane
JP2003166059A (en) Film-forming apparatus and film-forming method
JP2010006689A (en) Apparatus for producing trichlorosilane, and method for producing trichlorosilane
JP2001181846A (en) Cvd system
KR20130057424A (en) Bell jar for siemens reactor including thermal radiation shield
WO2011123998A1 (en) Reactor and corresponding system for polysilicon production
WO2006064797A1 (en) Semiconductor single crystal producing device and producing method
JP2003020217A (en) Method for manufacturing silicon and trichlorosilane
JP2006206387A (en) Polycrystalline silicon reducing furnace and polycrystalline silicon rod
JP2001278611A (en) Method of producing polycrystalline silicon and apparatus therefor
WO1992000245A1 (en) Method of producing polycrystalline silicon rods for semiconductors and thermal decomposition furnace therefor
KR101111681B1 (en) Apparatus to produce hyper-pure single crystal silicon ingot
JPH07226384A (en) Reactor for chemical vapor deposition of semiconductor grade silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316