Nothing Special   »   [go: up one dir, main page]

JP2001165507A - High temperature air generating device - Google Patents

High temperature air generating device

Info

Publication number
JP2001165507A
JP2001165507A JP35018099A JP35018099A JP2001165507A JP 2001165507 A JP2001165507 A JP 2001165507A JP 35018099 A JP35018099 A JP 35018099A JP 35018099 A JP35018099 A JP 35018099A JP 2001165507 A JP2001165507 A JP 2001165507A
Authority
JP
Japan
Prior art keywords
heat
air
temperature
regenerative
temperature air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35018099A
Other languages
Japanese (ja)
Inventor
Shigehiro Miyamae
茂広 宮前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP35018099A priority Critical patent/JP2001165507A/en
Publication of JP2001165507A publication Critical patent/JP2001165507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high temperature air generating device to suppress the occurrence of an excess combustion air ratio, recover heat heretofore thrown as a sensible heat, and improve heat-exchange efficiency. SOLUTION: A heat resisting flame stabilizing member 17 having high thermal capacity is disposed in a position situated right downstream from a burner 1, and a heat transfer tube 19 of which a boiler 18 consists is disposed in a position situated downstream from the heat resisting flame stabilizing member 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温空気発生装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature air generator.

【0002】[0002]

【従来の技術】一般に、従来の高温空気発生装置は、図
6及び図7に示される如く、バーナ1から噴射される燃
料と燃焼用空気とを混合させて燃焼させ、高温の燃焼ガ
スをセラミックス等の蓄熱体2に流通させることによ
り、蓄熱体2を加熱した後、該蓄熱体2に空気を流通さ
せることにより、高温空気を発生させる蓄熱式空気加熱
器3を並設し、一方の蓄熱式空気加熱器3における蓄熱
体2の加熱行程中に他方の蓄熱式空気加熱器3における
高温空気の発生行程が行われ、且つ一方の蓄熱式空気加
熱器3における高温空気の発生行程中に他方の蓄熱式空
気加熱器3における蓄熱体2の加熱行程が行われるよ
う、蓄熱式空気加熱器3の運転をそれぞれ交互に切り換
えて連続的に高温空気を発生させるようにしてなる構成
を有している。
2. Description of the Related Art Generally, as shown in FIGS. 6 and 7, a conventional high-temperature air generator mixes a fuel injected from a burner 1 with combustion air and burns the mixture, thereby converting a high-temperature combustion gas into ceramics. After the heat storage element 2 is heated by flowing through the heat storage element 2, a heat storage type air heater 3 that generates high-temperature air by flowing air through the heat storage element 2 is provided in parallel, During the heating process of the regenerator 2 in the regenerative air heater 3, the process of generating high-temperature air in the other regenerative air heater 3 is performed, and during the process of generating high-temperature air in one regenerative air heater 3, The operation of the regenerative air heater 3 is alternately switched so as to continuously generate high-temperature air so that the regenerative air heater 3 performs the heating step of the regenerator 2 in the regenerative air heater 3. I have.

【0003】前記バーナ1にはそれぞれ、三方切換弁4
の切換により燃料供給ライン5に接続される燃料供給分
岐ライン6を接続すると共に、前記バーナ1が接続され
る蓄熱式空気加熱器3の風箱7にはそれぞれ、三方切換
弁8の切換により燃焼用空気供給ライン9に接続される
燃焼用空気供給分岐ライン10を接続してあり、前記蓄
熱式空気加熱器3の蓄熱体2側にはそれぞれ、四方切換
弁11の切換により空気導入ライン12或いは排気ライ
ン13に接続される導入排出ライン14を接続してあ
る。
Each of the burners 1 has a three-way switching valve 4
The fuel supply branch line 6 connected to the fuel supply line 5 is connected by switching, and the combustion chamber 7 of the regenerative air heater 3 to which the burner 1 is connected is burned by switching the three-way switching valve 8, respectively. A combustion air supply branch line 10 connected to a supply air supply line 9 is connected to the regenerator 2 side of the regenerative air heater 3 by switching a four-way switching valve 11 to an air introduction line 12 or an air introduction line 12. An introduction / exhaust line 14 connected to the exhaust line 13 is connected.

【0004】又、前記蓄熱式空気加熱器3の中途部所要
箇所は連通路15によって連通せしめ、該連通路15
に、図示していないガス化装置等につながる導出路16
を形成し、発生した高温空気を導出路16からガス化装
置等へ供給するようにしてある。
A required portion in the middle of the regenerative air heater 3 is communicated by a communication path 15.
Outflow path 16 leading to a gasifier not shown
Is formed, and the generated high-temperature air is supplied to the gasifier or the like from the outlet path 16.

【0005】前述の如き高温空気発生装置においては、
三方切換弁4と三方切換弁8と四方切換弁11とをそれ
ぞれ図6に示されるポジションに切り換えた状態で、燃
料を燃料供給ライン5から三方切換弁4と一方の燃料供
給分岐ライン6とを介して一方の蓄熱式空気加熱器3の
バーナ1へ供給して噴射しつつ、燃焼用空気を燃焼用空
気供給ライン9から三方切換弁8と一方の燃焼用空気供
給分岐ライン10とを介して一方の蓄熱式空気加熱器3
の風箱7へ供給すると、前記バーナ1から噴射される燃
料と燃焼用空気とが混合して燃焼し、高温の燃焼ガスが
一方の蓄熱式空気加熱器3の蓄熱体2を通過して、該蓄
熱体2を加熱した後、一方の導入排出ライン14から四
方切換弁11と排気ライン13とを介して外部へ排出さ
れる。
In the high-temperature air generator as described above,
With the three-way switching valve 4, the three-way switching valve 8 and the four-way switching valve 11 switched to the positions shown in FIG. 6, respectively, fuel is transferred from the fuel supply line 5 to the three-way switching valve 4 and one of the fuel supply branch lines 6. The combustion air is supplied from the combustion air supply line 9 through the three-way switching valve 8 and the one combustion air supply branch line 10 while being supplied to the burner 1 of one regenerative air heater 3 and injected therethrough. One regenerative air heater 3
When the fuel is supplied to the wind box 7, the fuel injected from the burner 1 and the combustion air are mixed and burned, and the high-temperature combustion gas passes through the heat storage body 2 of one regenerative air heater 3, After heating the heat storage body 2, the heat storage body 2 is discharged from one of the introduction / discharge lines 14 to the outside via the four-way switching valve 11 and the exhaust line 13.

【0006】図6に示される状態で所要時間(例えば、
30[sec]程度)経過して、一方の蓄熱式空気加熱
器3の蓄熱体2が所要温度(例えば、1200〜130
0[℃]程度)に達すると、前記三方切換弁4と三方切
換弁8と四方切換弁11とがそれぞれ図6に示されるポ
ジションから図7に示されるポジションに切り換えら
れ、空気が空気導入ライン12から四方切換弁11と一
方の導入排出ライン14とを介して前記加熱された一方
の蓄熱体2に流通され、これにより、およそ1000
[℃]程度の高温空気が発生し、連通路15から導出路
16を経て図示していないガス化装置等へ供給される。
In the state shown in FIG. 6, the required time (for example,
After the elapse of about 30 [sec], the heat storage body 2 of one of the heat storage air heaters 3 has reached a required temperature (for example, 1200 to 130).
0 [° C.]), the three-way switching valve 4, the three-way switching valve 8, and the four-way switching valve 11 are respectively switched from the position shown in FIG. 6 to the position shown in FIG. 12 flows through the four-way switching valve 11 and one of the introduction / discharge lines 14 to the heated one heat storage body 2, whereby about 1000
High-temperature air of about [° C.] is generated and supplied from the communication path 15 to the gasifier (not shown) via the outlet path 16.

【0007】この間、燃料は燃料供給ライン5から三方
切換弁4と他方の燃料供給分岐ライン6とを介して他方
の蓄熱式空気加熱器3のバーナ1へ供給されて噴射さ
れ、且つ燃焼用空気は燃焼用空気供給ライン9から三方
切換弁8と他方の燃焼用空気供給分岐ライン10とを介
して他方の蓄熱式空気加熱器3の風箱7へ供給され、前
記バーナ1から噴射される燃料と燃焼用空気とが混合し
て燃焼し、高温の燃焼ガスが他方の蓄熱式空気加熱器3
の蓄熱体2を通過して、該蓄熱体2を加熱した後、他方
の導入排出ライン14から四方切換弁11と排気ライン
13とを介して外部へ排出されており、図7に示される
状態で所要時間(例えば、30[sec]程度)経過し
て、他方の蓄熱式空気加熱器3の蓄熱体2が所要温度
(例えば、1200〜1300[℃]程度)に達する
と、前記三方切換弁4と三方切換弁8と四方切換弁11
とがそれぞれ図7に示されるポジションから再び図6に
示されるポジションに切り換えられ、空気が空気導入ラ
イン12から四方切換弁11と他方の導入排出ライン1
4とを介して前記加熱された他方の蓄熱体2に流通さ
れ、これにより、およそ1000[℃]程度の高温空気
が発生し、連通路15から導出路16を経て図示してい
ないガス化装置等へ供給され、以下、前述と同様の操作
が繰り返し行われ、連続的に高温空気の供給が行われ
る。
During this time, the fuel is supplied from the fuel supply line 5 to the burner 1 of the other regenerative air heater 3 via the three-way switching valve 4 and the other fuel supply branch line 6, and is injected there. Is supplied from the combustion air supply line 9 to the wind box 7 of the other regenerative air heater 3 via the three-way switching valve 8 and the other combustion air supply branch line 10, and the fuel injected from the burner 1 And combustion air are mixed and burned, and the high-temperature combustion gas is supplied to the other regenerative air heater 3.
After heating the heat accumulator 2 and heating the heat accumulator 2, the heat is discharged from the other introduction / discharge line 14 to the outside via the four-way switching valve 11 and the exhaust line 13, and the state shown in FIG. When a required time (for example, about 30 [sec]) elapses and the heat storage body 2 of the other regenerative air heater 3 reaches a required temperature (for example, about 1200 to 1300 [° C.]), the three-way switching valve is used. 4 and 3 way switching valve 8 and 4 way switching valve 11
Are switched from the position shown in FIG. 7 to the position shown in FIG. 6 again, and air flows from the air introduction line 12 to the four-way switching valve 11 and the other introduction / discharge line 1.
4 through the other heat storage element 2 which is heated, thereby generating high-temperature air of about 1000 [° C.]. Etc., and thereafter, the same operation as described above is repeatedly performed, and the supply of high-temperature air is continuously performed.

【0008】[0008]

【発明が解決しようとする課題】前述の如き従来の高温
空気発生装置の場合、通常の理論空気量で燃料の燃焼を
行うと、断熱火炎温度はおよそ2000[℃]近くまで
上昇してしまい、蓄熱体2の寿命が短くなってしまうと
共に、およそ1000[℃]程度の高温空気を得るため
には、およそ1400[℃]程度の燃焼温度で充分であ
ることから、大幅に過剰となる燃焼用空気を蓄熱式空気
加熱器3の風箱7へ供給して燃焼を行っている、又は適
度な過剰空気で燃焼させてその燃焼部ケーシングから放
熱させているのが現状であるが、このように大幅に過剰
となる燃焼用空気を用いたり、放熱させた場合、熱交換
効率が60〜65[%]程度しか得られず、効率が悪い
という欠点を有していた。
In the case of the conventional high-temperature air generator as described above, when fuel is burned with a normal theoretical air amount, the adiabatic flame temperature rises to nearly 2000 [° C.], The combustion temperature of about 1400 [° C.] is sufficient to obtain the high-temperature air of about 1000 [° C.] in addition to shortening the life of the heat storage body 2. At present, air is supplied to the wind box 7 of the regenerative air heater 3 to perform combustion, or the air is burned with a moderate excess of air to release heat from the combustion part casing. When the combustion air which becomes excessively large is used or heat is radiated, the heat exchange efficiency is only about 60 to 65 [%], and the efficiency is poor.

【0009】本発明は、斯かる実情に鑑み、燃焼用空気
過剰率を抑え得ると共に、従来において顕熱として捨て
られていた熱を回収し得、熱交換効率の向上を図り得る
高温空気発生装置を提供しようとするものである。
In view of such circumstances, the present invention provides a high-temperature air generator capable of suppressing excess combustion air, recovering heat previously discarded as sensible heat, and improving heat exchange efficiency. It is intended to provide.

【0010】[0010]

【課題を解決するための手段】本発明は、バーナから噴
射される燃料と燃焼用空気とを混合させて燃焼させ、高
温の燃焼ガスを蓄熱体に流通させることにより、蓄熱体
を加熱した後、該蓄熱体に空気を流通させることによ
り、高温空気を発生させる蓄熱式空気加熱器を並設し、
一方の蓄熱式空気加熱器における蓄熱体の加熱行程中に
他方の蓄熱式空気加熱器における高温空気の発生行程が
行われ、且つ一方の蓄熱式空気加熱器における高温空気
の発生行程中に他方の蓄熱式空気加熱器における蓄熱体
の加熱行程が行われるよう、蓄熱式空気加熱器の運転を
それぞれ交互に切り換えて連続的に高温空気を発生させ
るよう構成した高温空気発生装置において、バーナの直
下流位置に、熱容量の大きい耐熱保炎部材を配設すると
共に、該耐熱保炎部材の下流位置に、ボイラを形成する
伝熱管を配設したことを特徴とする高温空気発生装置に
かかるものである。
SUMMARY OF THE INVENTION The present invention relates to a method of mixing a fuel injected from a burner and combustion air, burning the mixture, and flowing a high-temperature combustion gas through the regenerator to heat the regenerator. By circulating air through the heat storage body, a regenerative air heater that generates high-temperature air is provided in parallel,
During the heating process of the regenerator in one regenerative air heater, the process of generating high-temperature air in the other regenerative air heater is performed, and during the process of generating high-temperature air in one regenerative air heater, the other In a high-temperature air generator configured to generate high-temperature air continuously by alternately switching the operation of the regenerative air heaters so that the heat storage element is heated in the regenerative air heater, the device is disposed immediately downstream of the burner. And a heat transfer tube forming a boiler is disposed downstream of the heat-resistant flame-holding member at a position downstream of the heat-resistant flame-holding member. .

【0011】前記高温空気発生装置においては、伝熱管
で発生した蒸気を蓄熱体に流通させる空気に混入するよ
う構成することができる。
In the high-temperature air generator, the steam generated in the heat transfer tube may be mixed with the air flowing through the heat storage unit.

【0012】又、前記高温空気発生装置においては、耐
熱保炎部材をセラミックス系耐熱材で形成することもで
きる。
In the high-temperature air generator, the heat-resistant flame-holding member may be formed of a ceramic heat-resistant material.

【0013】上記手段によれば、以下のような作用が得
られる。
According to the above means, the following effects can be obtained.

【0014】並設された蓄熱式空気加熱器においては、
一方の蓄熱式空気加熱器のバーナから噴射される燃料と
燃焼用空気とが混合されて燃焼し、高温の燃焼ガスが一
方の蓄熱式空気加熱器の蓄熱体に流通して該蓄熱体が加
熱された後、切換が行われて他方の蓄熱式空気加熱器の
バーナから噴射される燃料と燃焼用空気とが混合されて
燃焼し、高温の燃焼ガスが他方の蓄熱式空気加熱器の蓄
熱体に流通して該蓄熱体が加熱され、一方の蓄熱式空気
加熱器における蓄熱体の加熱行程と他方の蓄熱式空気加
熱器における蓄熱体の加熱行程とが交互に繰り返され、
他方の蓄熱式空気加熱器における蓄熱体の加熱行程中に
は、前記加熱された一方の蓄熱式空気加熱器の蓄熱体に
空気が流通され、高温空気が発生され、一方の蓄熱式空
気加熱器における蓄熱体の加熱行程中には、前記加熱さ
れた他方の蓄熱式空気加熱器の蓄熱体に空気が流通さ
れ、高温空気が発生され、これにより、連続的に高温空
気が発生される。
In the regenerative air heaters arranged side by side,
The fuel injected from the burner of one regenerative air heater and the combustion air are mixed and burnt, and the high-temperature combustion gas flows through the regenerator of one regenerative air heater to heat the regenerator. After that, switching is performed, the fuel injected from the burner of the other regenerative air heater and the combustion air are mixed and burnt, and the high-temperature combustion gas is stored in the regenerator of the other regenerative air heater. The heat accumulator is heated by flowing through the heat accumulator, and the heating process of the heat accumulator in one heat accumulating air heater and the heating process of the heat accumulator in the other heat accumulating air heater are alternately repeated,
During the heating process of the regenerator in the other regenerative air heater, air is circulated through the heated regenerator of the one regenerative air heater to generate high-temperature air. During the heating process of the regenerator in the above, air is circulated to the regenerator of the other heated regenerative air heater to generate high-temperature air, thereby generating high-temperature air continuously.

【0015】ここで、バーナの直下流位置には、熱容量
の大きい耐熱保炎部材を配設してあると共に、該耐熱保
炎部材の下流位置には、ボイラを形成する伝熱管を配設
してあるため、蓄熱式空気加熱器へ供給される燃焼用空
気の過剰率を通常のボイラと同程度まで低下させたとし
ても、その際に発生する余剰の熱は、耐熱保炎部材の昇
温並びに伝熱管における蒸気発生という形で回収され、
熱交換効率を向上させることが可能となり、又、蓄熱式
空気加熱器の蓄熱体の温度も必要以上に上昇することが
抑えられる。
Here, a heat-resistant flame holding member having a large heat capacity is provided immediately downstream of the burner, and a heat transfer tube forming a boiler is provided downstream of the heat-resistant flame holding member. Therefore, even if the excess rate of combustion air supplied to the regenerative air heater is reduced to about the same level as that of a normal boiler, the excess heat generated at that time increases the temperature of the heat-resistant flame holding member. And recovered in the form of steam generation in heat transfer tubes,
The heat exchange efficiency can be improved, and the temperature of the heat storage body of the regenerative air heater can be prevented from rising more than necessary.

【0016】仮に、耐熱保炎部材がバーナの直下流位置
に配設されておらず、バーナの下流位置に、ボイラを形
成する伝熱管しか配設されていないとすると、非燃焼側
の蓄熱式空気加熱器のバーナから再度燃料を噴射させて
燃焼させようとした場合に、前記伝熱管による熱の吸収
によりバーナ周辺の温度が低下し、燃焼が不安定となる
可能性があるが、バーナの直下流位置には熱容量の大き
い耐熱保炎部材を配設してあるため、該耐熱保炎部材に
よって非燃焼側の蓄熱式空気加熱器のバーナ周辺の温度
低下が抑えられ、燃焼を安定化させることが可能とな
る。
If the heat-resistant flame-holding member is not disposed immediately downstream of the burner and only the heat transfer tube forming the boiler is disposed downstream of the burner, the non-combustion-side heat storage type When the fuel is injected again from the burner of the air heater and burned, the temperature around the burner may decrease due to the absorption of heat by the heat transfer tube, and combustion may become unstable. Since a heat-resistant flame-holding member having a large heat capacity is disposed immediately downstream, the heat-resistant flame-holding member suppresses a temperature drop around the burner of the regenerative air heater on the non-combustion side and stabilizes combustion. It becomes possible.

【0017】前記伝熱管で発生した蒸気を蓄熱体に流通
させる空気に混入するようにすると、高温空気における
蒸気の含有率が高められ、特に高温空気がガス化装置へ
供給される場合に、ガス化装置におけるガス化効率のア
ップにつながることとなる。
When the steam generated in the heat transfer tube is mixed with the air flowing through the heat accumulator, the content of the steam in the high-temperature air is increased. This leads to an increase in gasification efficiency in the gasifier.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1〜図4は本発明を実施する形態の一例
であって、図中、図6及び図7と同一の符号を付した部
分は同一物を表わしており、基本的な構成は図6及び図
7に示す従来のものと同様であるが、本図示例の特徴と
するところは、図1〜図4に示す如く、バーナ1の直下
流位置に、熱容量の大きい耐熱保炎部材17を配設する
と共に、該耐熱保炎部材17の下流位置に、ボイラ18
を形成する伝熱管19を配設した点にある。
FIGS. 1 to 4 show an embodiment of the present invention. In the drawings, the parts denoted by the same reference numerals as those in FIGS. 6 and 7 represent the same parts. This is similar to the conventional one shown in FIGS. 6 and 7, but the feature of the illustrated example is that, as shown in FIGS. 1 to 4, a heat-resistant flame holding member having a large heat capacity is provided immediately downstream of the burner 1. And a boiler 18 at a position downstream of the heat-resistant flame-holding member 17.
In that a heat transfer tube 19 that forms

【0020】前記伝熱管19で発生した蒸気が集められ
るボイラ18の蒸気ドラム20から延びる蒸気ライン2
1は、空気導入ライン12に接続してあり、伝熱管19
で発生した蒸気を、ボイラ18の蒸気ドラム20から蒸
気ライン21を経て空気導入ライン12へ導き、蓄熱体
2に流通させる空気に混入するようにしてある。
A steam line 2 extending from a steam drum 20 of a boiler 18 in which steam generated in the heat transfer tube 19 is collected.
1 is connected to the air introduction line 12,
Is generated from the steam drum 20 of the boiler 18 through the steam line 21 to the air introduction line 12 and mixed with the air flowing through the heat storage body 2.

【0021】前記耐熱保炎部材17は、バーナ1の直下
流位置に、図3に示す如く、所要間隔をあけて多数並設
してあり、それらは各々、図4に示すように、例えば、
中空のアルミナチューブ等のセラミックス系耐熱材で形
成してある。尚、温度条件が厳しく、耐熱保炎部材17
の溶損等が懸念されるような場合には、図5に示す如
く、耐熱保炎部材17に、内部に冷却媒体が流通される
冷却管22を貫通せしめるようにしてもよい。
As shown in FIG. 3, a large number of the heat-resistant flame holding members 17 are juxtaposed at a required interval as shown in FIG. 3, and each of them is, for example, as shown in FIG.
It is formed of a ceramic heat-resistant material such as a hollow alumina tube. Note that the temperature conditions are severe, and
In the case where there is a possibility of melting of the cooling medium, as shown in FIG. 5, the heat-resistant flame holding member 17 may be made to penetrate a cooling pipe 22 through which a cooling medium flows.

【0022】次に、上記図示例の作動を説明する。Next, the operation of the illustrated example will be described.

【0023】三方切換弁4と三方切換弁8と四方切換弁
11とをそれぞれ図1に示されるポジションに切り換え
た状態で、燃料を燃料供給ライン5から三方切換弁4と
一方の燃料供給分岐ライン6とを介して一方の蓄熱式空
気加熱器3のバーナ1へ供給して噴射しつつ、燃焼用空
気を燃焼用空気供給ライン9から三方切換弁8と一方の
燃焼用空気供給分岐ライン10とを介して一方の蓄熱式
空気加熱器3の風箱7へ供給すると、前記バーナ1から
噴射される燃料と燃焼用空気とが混合して燃焼し、高温
の燃焼ガスが一方の蓄熱式空気加熱器3の蓄熱体2を通
過して、該蓄熱体2を加熱した後、一方の導入排出ライ
ン14から四方切換弁11と排気ライン13とを介して
外部へ排出される。
With the three-way switching valve 4, three-way switching valve 8, and four-way switching valve 11 switched to the positions shown in FIG. 1, fuel is supplied from the fuel supply line 5 to the three-way switching valve 4 and one fuel supply branch line. 6, the combustion air is supplied from the regenerative air heater 3 to the burner 1 of the regenerative air heater 3 and injected therefrom, while the combustion air is supplied from the combustion air supply line 9 to the three-way switching valve 8 and the one combustion air supply branch line 10. When the fuel is supplied to the wind box 7 of one regenerative air heater 3 through the air, the fuel injected from the burner 1 and the combustion air are mixed and burnt, and the high-temperature combustion gas is heated by the one regenerative air heater. After passing through the heat storage unit 2 of the vessel 3 and heating the heat storage unit 2, the heat storage unit 2 is discharged from one introduction / discharge line 14 to the outside via the four-way switching valve 11 and the exhaust line 13.

【0024】ここで、バーナ1の直下流位置には、熱容
量の大きい耐熱保炎部材17を配設してあると共に、該
耐熱保炎部材17の下流位置には、ボイラ18を形成す
る伝熱管19を配設してあるため、蓄熱式空気加熱器3
の風箱7へ供給される燃焼用空気の過剰率を通常のボイ
ラと同様に5〜10[%]程度まで低下させたとして
も、その際に発生する余剰の熱は、耐熱保炎部材17の
昇温並びに伝熱管19における蒸気発生という形で回収
され、熱交換効率を85[%]程度まで向上させること
が可能となり、又、蓄熱式空気加熱器3の蓄熱体2の温
度も1200〜1300[℃]程度に抑えられ、必要以
上に上昇しない。
Here, a heat-resistant flame holding member 17 having a large heat capacity is disposed immediately downstream of the burner 1, and a heat transfer tube forming a boiler 18 is provided downstream of the heat-resistant flame holding member 17. 19, the regenerative air heater 3
Even if the excess rate of the combustion air supplied to the wind box 7 is reduced to about 5 to 10% similarly to a normal boiler, the excess heat generated at that time is reduced by the heat-resistant flame-holding member 17. And the heat exchange efficiency is increased to about 85%, and the temperature of the heat storage body 2 of the heat storage type air heater 3 is also increased to 1200 to 100%. It is suppressed to about 1300 [° C.] and does not rise more than necessary.

【0025】図1に示す状態で所要時間(例えば、30
[sec]程度)経過すると、前記三方切換弁4と三方
切換弁8と四方切換弁11とがそれぞれ図1に示すポジ
ションから図2に示すポジションに切り換えられ、空気
が空気導入ライン12から四方切換弁11と一方の導入
排出ライン14とを介して前記加熱された一方の蓄熱体
2に流通され、これにより、およそ1000[℃]程度
の高温空気が発生し、連通路15から導出路16を経て
図示していないガス化装置等へ供給される。
In the state shown in FIG. 1, the required time (for example, 30
[Sec], the three-way switching valve 4, three-way switching valve 8, and four-way switching valve 11 are switched from the position shown in FIG. 1 to the position shown in FIG. The heat is passed through the heated one heat storage unit 2 through the valve 11 and the one introduction / discharge line 14, thereby generating high-temperature air of about 1000 [° C.]. After that, it is supplied to a gasifier not shown.

【0026】この間、燃料は燃料供給ライン5から三方
切換弁4と他方の燃料供給分岐ライン6とを介して他方
の蓄熱式空気加熱器3のバーナ1へ供給されて噴射さ
れ、且つ燃焼用空気は燃焼用空気供給ライン9から三方
切換弁8と他方の燃焼用空気供給分岐ライン10とを介
して他方の蓄熱式空気加熱器3の風箱7へ供給され、前
記バーナ1から噴射される燃料と燃焼用空気とが混合し
て燃焼し、高温の燃焼ガスが他方の蓄熱式空気加熱器3
の蓄熱体2を通過して、該蓄熱体2を加熱した後、他方
の導入排出ライン14から四方切換弁11と排気ライン
13とを介して外部へ排出されるが、ここでも、バーナ
1の直下流位置には、熱容量の大きい耐熱保炎部材17
を配設してあると共に、該耐熱保炎部材17の下流位置
には、ボイラ18を形成する伝熱管19を配設してある
ため、蓄熱式空気加熱器3の風箱7へ供給される燃焼用
空気の過剰率を通常のボイラと同様に5〜10[%]程
度まで低下させたとしても、その際に発生する余剰の熱
は、耐熱保炎部材17の昇温並びに伝熱管19における
蒸気発生という形で回収され、熱交換効率を85[%]
程度まで向上させることが可能となり、又、蓄熱式空気
加熱器3の蓄熱体2の温度も1200〜1300[℃]
程度に抑えられ、図2に示す状態で所要時間(例えば、
30[sec]程度)経過すると、前記三方切換弁4と
三方切換弁8と四方切換弁11とがそれぞれ図2に示す
ポジションから再び図1に示すポジションに切り換えら
れ、空気が空気導入ライン12から四方切換弁11と他
方の導入排出ライン14とを介して前記加熱された他方
の蓄熱体2に流通され、これにより、およそ1000
[℃]程度の高温空気が発生し、連通路15から導出路
16を経て図示していないガス化装置等へ供給され、以
下、前述と同様の操作が繰り返し行われ、連続的に高温
空気の供給が行われる。
During this time, fuel is supplied from the fuel supply line 5 to the burner 1 of the other regenerative air heater 3 via the three-way switching valve 4 and the other fuel supply branch line 6, and is injected therewith. Is supplied from the combustion air supply line 9 to the wind box 7 of the other regenerative air heater 3 via the three-way switching valve 8 and the other combustion air supply branch line 10, and the fuel injected from the burner 1 And combustion air are mixed and burned, and the high-temperature combustion gas is supplied to the other regenerative air heater 3.
After passing through the heat storage body 2 and heating the heat storage body 2, the heat is discharged from the other introduction / discharge line 14 to the outside through the four-way switching valve 11 and the exhaust line 13. Immediately downstream, a heat-resistant flame holding member 17 having a large heat capacity is provided.
Is provided, and a heat transfer tube 19 forming a boiler 18 is provided at a downstream position of the heat-resistant flame holding member 17, so that the heat transfer tube 19 is supplied to the wind box 7 of the regenerative air heater 3. Even if the excess rate of the combustion air is reduced to about 5 to 10% as in a normal boiler, the excess heat generated at that time will increase the temperature of the heat-resistant flame-holding member 17 and the heat transfer tube 19. Recovered in the form of steam generation, with a heat exchange efficiency of 85%
Temperature, and the temperature of the heat storage body 2 of the heat storage type air heater 3 is also 1200 to 1300 [° C.].
The time required in the state shown in FIG. 2 (for example,
After a lapse of about 30 [sec], the three-way switching valve 4, the three-way switching valve 8, and the four-way switching valve 11 are respectively switched from the position shown in FIG. 2 to the position shown in FIG. Through the four-way switching valve 11 and the other introduction / discharge line 14, the heat is circulated to the other heated heat storage body 2, whereby about 1000
High-temperature air of about [° C.] is generated and supplied to a gasifier (not shown) from the communication path 15 through the outlet path 16. Thereafter, the same operation as described above is repeated, and the high-temperature air is continuously produced. Feeding takes place.

【0027】仮に、耐熱保炎部材17がバーナ1の直下
流位置に配設されておらず、バーナ1の下流位置に、ボ
イラ18を形成する伝熱管19しか配設されていないと
すると、非燃焼側の蓄熱式空気加熱器3のバーナ1から
再度燃料を噴射させて燃焼させようとした場合に、前記
伝熱管19による熱の吸収によりバーナ1周辺の温度が
低下し、燃焼が不安定となる可能性があるが、バーナ1
の直下流位置には熱容量の大きいアルミナチューブ等の
セラミックス系耐熱材で形成した耐熱保炎部材17を配
設してあるため、該耐熱保炎部材17によって非燃焼側
の蓄熱式空気加熱器3のバーナ1周辺の温度低下が抑え
られ、燃焼を安定化させることが可能となる。
If the heat-resistant flame-holding member 17 is not disposed immediately downstream of the burner 1 and only the heat transfer tube 19 forming the boiler 18 is disposed downstream of the burner 1, When it is attempted to inject fuel again from the burner 1 of the regenerative air heater 3 on the combustion side to burn the fuel, the temperature around the burner 1 decreases due to the heat absorption by the heat transfer tube 19, and the combustion becomes unstable. Burner 1
A heat-resistant flame-holding member 17 made of a ceramic heat-resistant material such as an alumina tube having a large heat capacity is disposed immediately downstream of the heat-storage air-heater 3 on the non-combustion side. Of the burner 1 is suppressed, and the combustion can be stabilized.

【0028】一方、前記伝熱管19で発生した蒸気は、
ボイラ18の蒸気ドラム20から蒸気ライン21を経て
空気導入ライン12へ導かれ、蓄熱体2に流通させる空
気に混入され、高温空気における蒸気の含有率が高めら
れるが、このようにすると、特に高温空気がガス化装置
へ供給される場合に、ガス化装置におけるガス化効率の
アップにつながることとなる。
On the other hand, the steam generated in the heat transfer tube 19 is
The steam is guided from the steam drum 20 of the boiler 18 to the air introduction line 12 via the steam line 21 and mixed with the air circulated through the heat storage unit 2 to increase the steam content in the high-temperature air. When air is supplied to the gasifier, it leads to an increase in gasification efficiency in the gasifier.

【0029】こうして、燃焼用空気過剰率を抑え得ると
共に、従来において顕熱として捨てられていた熱を回収
し得、熱交換効率の向上を図り得る一方、熱回収により
発生した蒸気を、ガス化装置へ供給される高温空気に混
入するようにしたことにより、ガス化装置におけるガス
化効率向上をも図り得る。
In this way, the excess air for combustion can be suppressed, and the heat previously discarded as sensible heat can be recovered and the heat exchange efficiency can be improved. By mixing with high-temperature air supplied to the apparatus, gasification efficiency in the gasification apparatus can be improved.

【0030】尚、本発明の高温空気発生装置は、上述の
図示例にのみ限定されるものではなく、伝熱管で発生し
た蒸気を蓄熱体に流通させる空気に混入する代りに、他
の用途に使用してもよいこと等、その他、本発明の要旨
を逸脱しない範囲内において種々変更を加え得ることは
勿論である。
The high-temperature air generator of the present invention is not limited to the above-described example, but may be used for other purposes instead of mixing the steam generated in the heat transfer tube into the air flowing through the heat storage body. It goes without saying that various changes may be made without departing from the gist of the present invention, such as that the present invention may be used.

【0031】[0031]

【発明の効果】以上、説明したように本発明の高温空気
発生装置によれば、燃焼用空気過剰率を抑え得ると共
に、従来において顕熱として捨てられていた熱を回収し
得、熱交換効率の向上を図り得るという優れた効果を奏
し得、又、熱回収により発生した蒸気を高温空気に混入
させてガス化装置へ供給するようにすれば、ガス化装置
におけるガス化効率向上をも図り得るという優れた効果
を奏し得る。
As described above, according to the high-temperature air generator of the present invention, the excess air ratio for combustion can be suppressed, and the heat previously discarded as sensible heat can be recovered, and the heat exchange efficiency can be improved. If the steam generated by heat recovery is mixed with high-temperature air and supplied to the gasifier, the gasification efficiency of the gasifier can be improved. An excellent effect of obtaining can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例の全体概要構成図
であって、一方のバーナを燃焼させた状態を表わす図で
ある。
FIG. 1 is an overall schematic configuration diagram of an example of an embodiment of the present invention, showing a state in which one burner is burned.

【図2】本発明を実施する形態の一例の全体概要構成図
であって、他方のバーナを燃焼させた状態を表わす図で
ある。
FIG. 2 is an overall schematic configuration diagram of an example of an embodiment of the present invention, showing a state where the other burner is burned.

【図3】図1のIII−III矢視図である。FIG. 3 is a view taken in the direction of arrows III-III in FIG. 1;

【図4】耐熱保炎部材の断面図であって、図3のIV−
IV断面相当図である。
FIG. 4 is a cross-sectional view of the heat-resistant flame holding member,
It is an IV section equivalent view.

【図5】耐熱保炎部材の変形例を表わす断面図である。FIG. 5 is a cross-sectional view illustrating a modification of the heat-resistant flame holding member.

【図6】従来例の全体概要構成図であって、一方のバー
ナを燃焼させた状態を表わす図である。
FIG. 6 is an overall schematic configuration diagram of a conventional example, showing a state in which one burner is burned.

【図7】従来例の全体概要構成図であって、他方のバー
ナを燃焼させた状態を表わす図である。
FIG. 7 is an overall schematic configuration diagram of a conventional example, showing a state in which the other burner is burned.

【符号の説明】[Explanation of symbols]

1 バーナ 2 蓄熱体 3 蓄熱式空気加熱器 17 耐熱保炎部材 18 ボイラ 19 伝熱管 DESCRIPTION OF SYMBOLS 1 Burner 2 Heat storage body 3 Heat storage air heater 17 Heat-resistant flame holding member 18 Boiler 19 Heat transfer tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バーナから噴射される燃料と燃焼用空気
とを混合させて燃焼させ、高温の燃焼ガスを蓄熱体に流
通させることにより、蓄熱体を加熱した後、該蓄熱体に
空気を流通させることにより、高温空気を発生させる蓄
熱式空気加熱器を並設し、一方の蓄熱式空気加熱器にお
ける蓄熱体の加熱行程中に他方の蓄熱式空気加熱器にお
ける高温空気の発生行程が行われ、且つ一方の蓄熱式空
気加熱器における高温空気の発生行程中に他方の蓄熱式
空気加熱器における蓄熱体の加熱行程が行われるよう、
蓄熱式空気加熱器の運転をそれぞれ交互に切り換えて連
続的に高温空気を発生させるよう構成した高温空気発生
装置において、 バーナの直下流位置に、熱容量の大きい耐熱保炎部材を
配設すると共に、該耐熱保炎部材の下流位置に、ボイラ
を形成する伝熱管を配設したことを特徴とする高温空気
発生装置。
The fuel injected from a burner and combustion air are mixed and burned, and high-temperature combustion gas is passed through the heat accumulator to heat the heat accumulator and then distribute air to the heat accumulator. By doing so, a regenerative air heater that generates high-temperature air is provided in parallel, and during the heating process of the regenerator in one regenerative air heater, the process of generating high-temperature air in the other regenerative air heater is performed. And, during the process of generating high-temperature air in one regenerative air heater, the heating process of the heat storage body in the other regenerative air heater is performed,
In a high-temperature air generator configured to generate high-temperature air continuously by alternately switching the operation of the regenerative air heaters, a heat-resistant flame holding member having a large heat capacity is disposed immediately downstream of the burner, A high-temperature air generator, wherein a heat transfer tube forming a boiler is disposed downstream of the heat-resistant flame-holding member.
【請求項2】 伝熱管で発生した蒸気を蓄熱体に流通さ
せる空気に混入するよう構成した請求項1記載の高温空
気発生装置。
2. The high-temperature air generator according to claim 1, wherein the steam generated in the heat transfer tube is mixed with air flowing through the heat storage body.
【請求項3】 耐熱保炎部材をセラミックス系耐熱材で
形成した請求項1又は2記載の高温空気発生装置。
3. The high-temperature air generator according to claim 1, wherein the heat-resistant flame holding member is formed of a ceramic heat-resistant material.
JP35018099A 1999-12-09 1999-12-09 High temperature air generating device Pending JP2001165507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35018099A JP2001165507A (en) 1999-12-09 1999-12-09 High temperature air generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35018099A JP2001165507A (en) 1999-12-09 1999-12-09 High temperature air generating device

Publications (1)

Publication Number Publication Date
JP2001165507A true JP2001165507A (en) 2001-06-22

Family

ID=18408767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35018099A Pending JP2001165507A (en) 1999-12-09 1999-12-09 High temperature air generating device

Country Status (1)

Country Link
JP (1) JP2001165507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106594729A (en) * 2017-01-11 2017-04-26 山东建筑大学 Combustion device of energy saving type gas cooker and using method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106594729A (en) * 2017-01-11 2017-04-26 山东建筑大学 Combustion device of energy saving type gas cooker and using method thereof

Similar Documents

Publication Publication Date Title
CN101338894A (en) Low-calorie fuel dual prewarming and thermal storage type energy-saving boiler
CN204438099U (en) Heat storage type porous medium burner assembly
US6887607B1 (en) Fuel cell system for generating electric energy and heat
JP2001165507A (en) High temperature air generating device
JPH0676849A (en) Solid electrolyte fuel cell power generating device
CN101338906A (en) Low-grade fuel dual prewarming and thermal storage type condensation energy-saving boiler
JP3668546B2 (en) Air circulation type tube heating equipment
JP2002139217A (en) Premixing heat storage alternating combustion apparatus
JP2007123107A (en) Fuel cell power generation system and fuel treatment device
CN207247162U (en) Water cooling premixes steam generator
JP3305506B2 (en) Thermal storage combustion device
JP2003132921A (en) Solid electrolyte fuel cell system
JP2001254940A (en) High-temperature air generator
JPS59167621A (en) Catalyst burner
JP3774288B2 (en) Supply air preheating device and supply air preheating method
JP4148492B2 (en) Boiler with heat storage
JPH02130204A (en) High temperature steam turbine device
KR100519747B1 (en) Sequential catalytic combustion system and its method
CN106439867A (en) Heat accumulation type catalytic combusting device
CN101338907A (en) Low-grade fuel single prewarming and thermal storage type energy-saving boiler
JPH1193691A (en) Gas turbine
JPH09257217A (en) Surface combustion burner and combustion furnace employing the same
KR101806537B1 (en) fluidized bed-type boiler using liquid metal and method of operation the same
JP3722857B2 (en) Combustion control method for combustion heating device
KR100519746B1 (en) Radiant catalytic combustion preheater and it's preheating method