JP2001002812A - Preparation of porous film - Google Patents
Preparation of porous filmInfo
- Publication number
- JP2001002812A JP2001002812A JP11175935A JP17593599A JP2001002812A JP 2001002812 A JP2001002812 A JP 2001002812A JP 11175935 A JP11175935 A JP 11175935A JP 17593599 A JP17593599 A JP 17593599A JP 2001002812 A JP2001002812 A JP 2001002812A
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- polyolefin resin
- solvent
- rolling
- porous film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Molding Of Porous Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cell Separators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、多孔質フィルムの
製造方法に関する。さらに詳しくは、電池の正極負極間
に配置されてこれらを隔離させる電池用セパレーター等
として好適に用いられる多孔質フィルムの製造方法に関
する。The present invention relates to a method for producing a porous film. More specifically, the present invention relates to a method for producing a porous film which is preferably used as a battery separator or the like which is arranged between a positive electrode and a negative electrode of a battery to isolate them.
【0002】[0002]
【従来の技術】従来、種々のタイプの電池が実用に供さ
れているが、近年、電子機器のコードレス化等に対応す
るために、軽量で、高起電力及び高エネルギーを得るこ
とができ、しかも自己放電が少ないリチウム電池が注目
を集めている。例えば、リチウム二次電池は、携帯電話
やノートブックパソコン用として多量に用いられてお
り、更に、今後、電気自動車用バッテリーとして期待さ
れている。2. Description of the Related Art Conventionally, various types of batteries have been put to practical use. In recent years, in order to cope with a cordless electronic device, a lightweight, high electromotive force and high energy can be obtained. In addition, lithium batteries with low self-discharge have attracted attention. For example, lithium secondary batteries are widely used for mobile phones and notebook personal computers, and are expected to be used as batteries for electric vehicles in the future.
【0003】このようなリチウム電池の負極材料として
は、金属リチウムを始め、リチウム合金やリチウムイオ
ンを吸蔵放出できる炭素材料のような層間化合物を挙げ
ることができる。他方、正極材料としては、コバルト、
ニッケル、マンガン、鉄等の遷移金属の酸化物やこれら
遷移金属とリチウムとの複合酸化物を挙げることができ
る。Examples of the negative electrode material of such a lithium battery include interlayer compounds such as lithium metal, a lithium alloy, and a carbon material capable of inserting and extracting lithium ions. On the other hand, as a cathode material, cobalt,
Examples thereof include oxides of transition metals such as nickel, manganese, and iron, and composite oxides of these transition metals and lithium.
【0004】一般に、このようなリチウム電池において
は、上述したような正極と負極との間に、それら電極間
の短絡を防止するためのセパレーターが設けられてい
る。このようなセパレーターとしては、通常、正極負極
間のイオンの透過性を確保するために、多数の微細孔を
有する多孔質フィルムが用いられている。Generally, in such a lithium battery, a separator for preventing a short circuit between the electrodes is provided between the positive electrode and the negative electrode as described above. As such a separator, a porous film having a large number of micropores is usually used in order to secure the permeability of ions between the positive electrode and the negative electrode.
【0005】このような電池用セパレーターとして、従
来、超高分子量ポリオレフィン樹脂を、必要に応じてそ
の他のポリオレフィン樹脂と共に、溶媒中で加熱して溶
解させ、これをゲル状のシートに成形し、このシートを
延伸処理し、この延伸の前後に脱溶媒処理を行って、シ
ート中に残存する溶媒を除去することにより、多孔質フ
ィルムを製造する方法が種々提案されている。Conventionally, as such a battery separator, an ultrahigh molecular weight polyolefin resin, together with other polyolefin resins, if necessary, is dissolved by heating in a solvent, and this is formed into a gel-like sheet. Various methods have been proposed for producing a porous film by subjecting a sheet to a stretching treatment and performing a solvent removal treatment before and after the stretching to remove a solvent remaining in the sheet.
【0006】例えば、特開平7−228718号公報に
は、重量平均分子量が1×106 以上の超高分子量ポリ
オレフィン樹脂を10重量%以上含有するポリオレフィ
ン樹脂組成物からなり、フィブリル繊維の平均径が0.
01〜0.2μm、貫通孔の平均径が0.01〜0.1
μm、空孔率が35〜95%、比表面積が20〜400
m2 /g、膜厚に対する貫通経路の比率である曲路率の
平均が膜厚の1.5〜2.5倍である多孔質フィルムが
記載されている。For example, Japanese Patent Application Laid-Open No. 7-228718 discloses a polyolefin resin composition containing 10% by weight or more of an ultrahigh molecular weight polyolefin resin having a weight average molecular weight of 1 × 10 6 or more. 0.
01 to 0.2 μm, the average diameter of the through holes is 0.01 to 0.1
μm, porosity 35-95%, specific surface area 20-400
m 2 / g, the average tortuosity is the ratio of the through path for the film thickness is described porous film is 1.5 to 2.5 times the film thickness.
【0007】しかし、超高分子量ポリオレフィン樹脂を
用いて得られる多孔質フィルムを電気自動車用バッテリ
ーのセパレーターとして実用的に用いるには、フィルム
が一層の高強度、高比表面積及び高細孔容積を有すると
共に、電解液保液性に優れ、更に、イオン透過性及び高
速充放電特性に一層優れることが強く要望されている。However, in order to use a porous film obtained by using an ultrahigh molecular weight polyolefin resin practically as a separator of a battery for an electric vehicle, the film has a higher strength, a higher specific surface area and a higher pore volume. At the same time, there is a strong demand for excellent electrolyte retention properties and further excellent ion permeability and high-speed charge / discharge characteristics.
【0008】[0008]
【発明が解決しようとする課題】本発明の目的は、厚み
が均一で、高強度、高比表面積及び高細孔容積を有し、
かつイオン透過性及び高速充放電特性にも優れる多孔質
フィルムの製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to have a uniform thickness, high strength, high specific surface area and high pore volume,
Another object of the present invention is to provide a method for producing a porous film which is excellent in ion permeability and high-speed charge / discharge characteristics.
【0009】[0009]
【課題を解決するための手段】本発明の要旨は、ポリオ
レフィン樹脂及び溶媒を含有する樹脂組成物を溶融混練
し、得られた溶融混練物をシート状に成形し、得られた
シート状成形物の圧延処理と脱溶媒処理を行う工程を有
する多孔質フィルムの製造方法において、該圧延処理を
ベルトプレス機を用いて行うことを特徴とする多孔質フ
ィルムの製造方法に関する。The gist of the present invention is to melt-knead a resin composition containing a polyolefin resin and a solvent, form the resulting melt-kneaded product into a sheet, and obtain the obtained sheet-like molded product. The present invention relates to a method for producing a porous film, comprising a step of performing a rolling treatment and a desolvation treatment of a porous film, wherein the rolling treatment is performed using a belt press.
【0010】[0010]
【発明の実施の形態】本発明に用いられるポリオレフィ
ン樹脂は、超高分子量ポリオレフィン樹脂を含有するこ
とが好ましい。超高分子量ポリオレフィン樹脂として
は、エチレン、プロピレン、1−ブテン、4−メチル−
1−ペンテン、1−ヘキセン等のオレフィンの単独重合
体、共重合体及びこれらの混合物等が挙げられ、これら
の中では、得られる多孔質フィルムの高強度化の観点か
ら、超高分子量ポリエチレン樹脂が好ましく用いられ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The polyolefin resin used in the present invention preferably contains an ultrahigh molecular weight polyolefin resin. Ultra high molecular weight polyolefin resins include ethylene, propylene, 1-butene, 4-methyl-
Examples thereof include homopolymers, copolymers, and mixtures thereof of olefins such as 1-pentene and 1-hexene. Among these, from the viewpoint of increasing the strength of the obtained porous film, an ultrahigh molecular weight polyethylene resin Is preferably used.
【0011】超高分子量ポリオレフィン樹脂の重量平均
分子量は、5×105 以上、好ましくは5×105 〜2
0×106 、より好ましくは1×106 〜15×106
が望ましい。The ultrahigh molecular weight polyolefin resin has a weight average molecular weight of 5 × 10 5 or more, preferably 5 × 10 5 to 2
0 × 10 6 , more preferably 1 × 10 6 to 15 × 10 6
Is desirable.
【0012】超高分子量ポリオレフィン樹脂の含有量
は、ポリオレフィン樹脂中に、好ましくは5〜100重
量%、より好ましくは8〜100重量%である。The content of the ultrahigh molecular weight polyolefin resin is preferably 5 to 100% by weight, more preferably 8 to 100% by weight in the polyolefin resin.
【0013】超高分子量ポリオレフィン樹脂以外にポリ
オレフィン樹脂に含有されていてもよい樹脂としては、
エチレン、プロピレン、1−ブテン、4−メチル−1−
ペンテン、1−ヘキセン等のオレフィンの単独重合体、
共重合体及びこれらの混合物等が挙げられ、これらの中
では、得られる多孔質フィルムの高強度化の観点から、
高密度ポリエチレン樹脂が好ましい。これらの樹脂の重
量平均分子量は、好ましくは1×104 以上、5×10
5 未満、より好ましくは、1×104 〜3×105 であ
る。[0013] In addition to the ultrahigh molecular weight polyolefin resin, the resin which may be contained in the polyolefin resin includes:
Ethylene, propylene, 1-butene, 4-methyl-1-
Pentene, homopolymer of olefin such as 1-hexene,
Copolymers and mixtures thereof, and the like. Among these, from the viewpoint of increasing the strength of the obtained porous film,
High density polyethylene resins are preferred. The weight average molecular weight of these resins is preferably not less than 1 × 10 4 and 5 × 10 4
It is less than 5 , more preferably 1 × 10 4 to 3 × 10 5 .
【0014】本発明に用いることのできる溶媒として
は、ポリオレフィン樹脂の溶解性に優れたものであれ
ば、特に限定されないが、凝固点が−10℃以下のもの
が好ましく用いられる。このような溶媒の好ましい具体
例としては、例えば、デカン、デカリン、流動パラフィ
ン等の脂肪族又は脂環式炭化水素、沸点がこれらに対応
する鉱油留分等が挙げられ、なかでも、流動パラフィン
等の不揮発性溶媒が好ましく、凝固点が−45〜−10
℃、40℃での動粘度が65cst以下の不揮発性溶媒
がより好ましい。The solvent that can be used in the present invention is not particularly limited as long as it is excellent in the solubility of the polyolefin resin, but those having a freezing point of -10 ° C. or lower are preferably used. Preferred specific examples of such a solvent include, for example, aliphatic or alicyclic hydrocarbons such as decane, decalin, and liquid paraffin, and mineral oil fractions whose boiling points correspond to these, among which liquid paraffin and the like. Is preferred, and has a freezing point of -45 to -10.
A non-volatile solvent having a kinematic viscosity at 65 ° C or lower at 40 ° C or lower is more preferable.
【0015】ポリオレフィン樹脂及び溶媒の混合割合
は、ポリオレフィン樹脂の種類、溶解性、混練温度等に
より異なるため、一概には決定できないが、得られるス
ラリー状の樹脂組成物を溶融混練してシート状に成形で
きる程度であれば特に限定されない。例えば、ポリオレ
フィン樹脂が樹脂組成物の5〜30重量%であることが
好ましく、8〜20重量%であることがより好ましい。
ポリオレフィン樹脂の混合割合が5重量%以上である
と、得られる多孔質フィルムの強度を向上させることが
でき、またポリオレフィン樹脂の混合割合が30重量%
以下であると、ポリオレフィン樹脂を十分に溶媒に溶解
させて、伸び切り状態近くにまで混練することができる
ため、ポリマー鎖の十分な絡み合いを得ることができ
る。The mixing ratio of the polyolefin resin and the solvent varies depending on the type, solubility, kneading temperature and the like of the polyolefin resin, and cannot be unconditionally determined. However, the resulting slurry-like resin composition is melt-kneaded into a sheet. There is no particular limitation as long as it can be molded. For example, the polyolefin resin is preferably 5 to 30% by weight of the resin composition, and more preferably 8 to 20% by weight.
When the mixing ratio of the polyolefin resin is 5% by weight or more, the strength of the obtained porous film can be improved, and the mixing ratio of the polyolefin resin is 30% by weight.
When the content is below, the polyolefin resin can be sufficiently dissolved in the solvent and kneaded to near the stretched state, so that sufficient entanglement of the polymer chains can be obtained.
【0016】なお、前記樹脂組成物には、必要に応じ
て、酸化防止剤、紫外線吸収剤、染料、造核剤、顔料、
帯電防止剤等の添加剤を、本発明の目的を損なわない範
囲で添加することができる。The resin composition may contain, if necessary, an antioxidant, an ultraviolet absorber, a dye, a nucleating agent, a pigment,
Additives such as antistatic agents can be added in a range that does not impair the purpose of the present invention.
【0017】樹脂組成物の溶融混練は、ポリオレフィン
樹脂のポリマー鎖の十分な絡み合いを得るために、樹脂
組成物に十分な剪断力を作用させて行うことが好まし
い。従って、本発明における樹脂組成物の溶融混練に
は、通常、混合物に強い剪断力を与えることができるニ
ーダや二軸混練り機が好ましく用いられる。The melt kneading of the resin composition is preferably performed by applying a sufficient shearing force to the resin composition in order to obtain sufficient entanglement of the polymer chains of the polyolefin resin. Therefore, for melt-kneading the resin composition in the present invention, usually, a kneader or a twin-screw kneader capable of giving a strong shearing force to the mixture is preferably used.
【0018】樹脂組成物を溶融混練する際の温度は、適
当な温度条件下であればよく、特に限定されないが、1
15〜185℃が好ましい。溶融混練の際の温度は、樹
脂組成物を十分に混練して、ポリオレフィン樹脂のポリ
マー鎖の十分な絡み合いを得るために、115℃以上が
好ましく、適度な粘度で、樹脂組成物に十分な剪断力を
作用させるために、185℃以下が好ましい。The temperature at which the resin composition is melted and kneaded may be any suitable temperature condition, and is not particularly limited.
15-185 ° C is preferred. In order to sufficiently knead the resin composition and obtain sufficient entanglement of the polymer chains of the polyolefin resin, the temperature at the time of melt-kneading is preferably 115 ° C. or higher, and at an appropriate viscosity, sufficient shearing for the resin composition. In order to exert a force, the temperature is preferably 185 ° C. or less.
【0019】次に、得られた溶融混練物をシート状に成
形する。溶融混練物をシート状に成形する方法は、特に
限定されず、例えば、冷却された金属板に挟み込み急冷
して急冷結晶化によりシート状成形物にしてもよく、T
ダイ等を取り付けた押出機などを用いてシート状に成形
した後、冷却して結晶化させてもよい。溶融混練物の冷
却には、従来より用いられている冷却ロール等を特に限
定することなく用いることができるが、本発明では、シ
ート状成形物の表面層のみならず、中心部までポリオレ
フィン樹脂を微細に結晶化させるために、サイジングダ
イスを用いることが好ましい。Next, the obtained melt-kneaded material is formed into a sheet. The method for forming the melt-kneaded product into a sheet is not particularly limited. For example, the molten kneaded product may be sandwiched between cooled metal plates and rapidly cooled to form a sheet-like product by rapid crystallization.
After forming into a sheet using an extruder or the like to which a die or the like is attached, it may be cooled and crystallized. For cooling the melt-kneaded material, a conventionally used cooling roll or the like can be used without any particular limitation.In the present invention, not only the surface layer of the sheet-shaped molded product, but also the polyolefin resin up to the center portion. In order to crystallize finely, it is preferable to use a sizing die.
【0020】なお、本発明では、得られるシート状成形
物の表面層のみならず、中心部までポリオレフィン樹脂
を微細に結晶化させて、細く、かつ均一なフィブリルか
らなる曲路率の大きい多孔質膜構造を有する多孔質フィ
ルムを得るためには、溶融混練物を、好ましくは−15
℃以下、より好ましくは−20℃以下に急冷して、シー
ト状に成形することが望ましい。これは、溶液状態、す
なわち溶融混練物からシート状に成形する際の冷却速度
が遅い場合は、溶融混練により引き延ばされ、絡み合っ
ているフィブリルが毛球状に戻って、太い繊維を形成す
るためである。しかしながら、通常、ゲル状のシート状
成形物は、熱伝導性が大きくないため、表面層に比べて
中心に近い部分ほど冷却されにくい。しかし、冷却され
たサイジングダイスを用いた場合には、金属による熱伝
導の効果で、溶融混練物の冷却ムラを抑えることがで
き、かつ精度の高い空間を所定の圧力で通過することと
あいまって、得られるシート状成形物の形状安定性を飛
躍的に向上させることができる。In the present invention, the polyolefin resin is finely crystallized not only to the surface layer of the obtained sheet-shaped molded product but also to the center, and is formed of fine and uniform fibrils having a large curvature ratio. In order to obtain a porous film having a membrane structure, the melt-kneaded product is preferably -15
It is desirable to rapidly cool to not more than ℃, more preferably not more than -20 ℃ to form a sheet. This is because in the solution state, that is, when the cooling rate at the time of forming the sheet from the melt-kneaded material is slow, the melt-kneading is stretched out, the entangled fibrils return to the spherical shape, and form a thick fiber. It is. However, since the gel-like sheet-shaped molded product generally does not have high thermal conductivity, the portion closer to the center than the surface layer is less likely to be cooled. However, when a cooled sizing die is used, due to the effect of heat conduction by the metal, it is possible to suppress the cooling unevenness of the melt-kneaded material, and in combination with passing through a highly accurate space at a predetermined pressure. In addition, the shape stability of the obtained sheet-like molded product can be dramatically improved.
【0021】このようにして得られるシート状成形物の
厚みは、通常、0.5〜20mmが好ましい。[0021] The thickness of the sheet-like molded product thus obtained is usually preferably 0.5 to 20 mm.
【0022】このようにして得られたシート状成形物
は、溶融混練により引き延ばされ、絡み合っているフィ
ブリル繊維が毛球状に戻って、太い繊維を形成し、シー
ト状成形物に大きな貫通孔が形成されるのを防止するた
めに、直ちに後述する圧延処理に供するか、又は用いた
溶媒の凝固点以下の温度で保存して、ポリオレフィン樹
脂の結晶構造を維持することが好ましい。The sheet-like molded product thus obtained is stretched by melt-kneading, and the entangled fibril fibers return to the shape of a hair and form a thick fiber. In order to prevent the formation of the polyolefin resin, it is preferable that the polyolefin resin be immediately subjected to a rolling treatment described below or stored at a temperature below the freezing point of the solvent used to maintain the crystal structure of the polyolefin resin.
【0023】次に、シート状成形物のベルトプレス機に
よる圧延処理を行う。ここでいうベルトプレス機とは、
ベルト間にサンプルを挟み込んで圧延する構造を有する
ものを意味する。このようなベルトプレス機は、ベルト
を駆動ドラムにより一定のスピードで移動させることが
できるため、連続した圧延処理が可能である。Next, the sheet-like molded product is subjected to a rolling treatment by a belt press. The belt press here means
It has a structure in which a sample is sandwiched between belts and rolled. In such a belt press machine, the belt can be moved at a constant speed by the driving drum, so that continuous rolling can be performed.
【0024】圧延処理に用いられるベルトプレス機は、
前記構造を有するものであれば特に限定されないが、例
えば、加圧にプレスを用いた液圧式ダブルベルトプレス
機、加圧ロールを用いた加圧ロール式ダブルベルトプレ
ス機、ベルト把持型ベルトプレス機、ロートキュアー等
が挙げられるが、これらの中ではギャップ調整の融通性
の観点から、加圧ロール式ダブルベルトプレス機が好ま
しい。The belt press used for the rolling process is as follows:
Although it is not particularly limited as long as it has the above structure, for example, a hydraulic double belt press using a press for pressurization, a pressure roll double belt press using a press roll, a belt gripping type belt press And a roto-curer, among which a pressure roll type double belt press is preferable from the viewpoint of flexibility in gap adjustment.
【0025】圧延処理は、加熱圧延と冷却圧延を連続し
て行うことが好ましい。加熱圧延と冷却圧延は、加熱ベ
ルトプレス機と冷却ベルトプレス機を分離させて2台の
ベルトプレス機を用いて行ってもよく、1台のベルトプ
レス機内でシート状成形物と接触する加圧手段の接触部
の温度を適宜調整して行ってもよいが、加熱ベルトプレ
ス機と冷却ベルトプレス機を分離させて用いた方が、各
々のベルトプレス機の温度の影響を受けなくなるので任
意に圧延速度を変えることが可能になりライン速度のア
ップが望めるため、好ましい。例えば、ロール式の場
合、所定の温度に加熱された加圧ロール(加熱ロール)
で加熱圧延し、次いで所定の温度に冷却された加圧ロー
ル(冷却ロール)で冷却圧延を行う。In the rolling treatment, it is preferable to perform heating rolling and cooling rolling continuously. The heating rolling and the cooling rolling may be performed using two belt presses by separating the heating belt press and the cooling belt press, and pressurization in contact with the sheet-like molded product in one belt press. The temperature of the contact portion of the means may be adjusted appropriately, but it is possible to use the heating belt press machine and the cooling belt press machine separately, since it is not affected by the temperature of each belt press machine. This is preferable because the rolling speed can be changed and the line speed can be increased. For example, in the case of a roll type, a pressure roll (heated roll) heated to a predetermined temperature
, And then cold-rolled by a pressure roll (cooling roll) cooled to a predetermined temperature.
【0026】さらに、2台のベルトプレス機を用いる場
合は、加熱ベルトプレス機と冷却ベルトプレス機のライ
ン速に差をつけることも可能である。加熱ベルトプレス
機ライン速と冷却ベルトプレス機ライン速に差をつける
ことにより、機械軸流れ方向(MD方向)の延伸効果が
得られるだけでなく、MD方向の圧延倍率を制御するこ
とができ、この速度差そのものがMD方向の圧延倍率と
なる。ライン速に差を設ける場合、加熱ベルトプレス機
の方を高くしてもよく、あるいは冷却ベルトプレス機の
方を高くしてもよい。また、両ベルトプレス機間でのシ
ート状成形物のネッキングを抑制させるために、加熱ベ
ルトプレス機と冷却ベルトプレス機間の距離はできるだ
け小さくとることが好ましい。Further, when two belt presses are used, it is possible to make a difference in the line speed between the heating belt press and the cooling belt press. By making a difference between the heating belt press line speed and the cooling belt press line speed, not only the stretching effect in the machine axial flow direction (MD direction) can be obtained, but also the rolling ratio in the MD direction can be controlled. This speed difference itself is the rolling ratio in the MD direction. When providing a difference in line speed, the heating belt press may be higher, or the cooling belt press may be higher. Further, in order to suppress necking of the sheet-like molded product between the two belt presses, it is preferable that the distance between the heating belt press and the cooling belt press be as small as possible.
【0027】また、加熱ベルトプレス機前に繰り出し装
置を設け、繰り出し速度と加熱ベルトプレス機ライン速
に差をつけることも可能である。加熱ベルトプレス機ラ
イン速と繰り出しスピードに差をつけることは、シート
プレス時の蛇行を抑える効果も期待でき、歩留まりを上
げることが可能となる。It is also possible to provide a feeding device in front of the heating belt press machine, and to make a difference between the feeding speed and the heating belt press machine line speed. Making the difference between the line speed of the heating belt press machine and the feeding speed can also be expected to have an effect of suppressing meandering at the time of sheet pressing, and can increase the yield.
【0028】加熱圧延の際の温度は、好ましくはポリオ
レフィン樹脂の融点−30℃以上、ポリオレフィン樹脂
の融点−10℃以下の温度、より好ましくはポリオレフ
ィン樹脂の融点−20℃以上、ポリオレフィン樹脂の融
点−15℃以下の温度である。即ち、圧延による薄膜化
を容易に行うために、ポリオレフィン樹脂の融点−30
℃以上の温度が好ましく、得られた多孔質フィルムを電
池用セパレーターとして使用する際の強度及び厚みの均
一性を確保するために、ポリオレフィン樹脂の融点−1
0℃以下の温度が好ましい。なお、本明細書において、
ポリオレフィン樹脂の融点とは、DSC測定における昇
温過程での吸熱ピーク値温度を言う。The temperature at the time of hot rolling is preferably a temperature not lower than the melting point of the polyolefin resin −30 ° C. and not higher than the melting point of the polyolefin resin −10 ° C., more preferably a temperature not lower than the melting point of the polyolefin resin −20 ° C. It is a temperature of 15 ° C. or less. That is, in order to easily perform thinning by rolling, the melting point of the polyolefin resin is −30.
° C or higher is preferred, and the melting point of the polyolefin resin is -1 in order to ensure uniformity of strength and thickness when the obtained porous film is used as a battery separator.
Temperatures below 0 ° C. are preferred. In this specification,
The melting point of the polyolefin resin refers to an endothermic peak value temperature in a heating process in DSC measurement.
【0029】冷却圧延の際の温度は、好ましくは40℃
以下、より好ましくは10〜20℃である。即ち、圧延
状態を保持して、加熱圧延後のシート状成形物の弾性回
復を防止して、シートの厚みを均一にするために、40
℃以下が好ましい。The temperature during the cold rolling is preferably 40 ° C.
Hereinafter, the temperature is more preferably 10 to 20 ° C. That is, in order to maintain the rolling state, prevent the elastic recovery of the sheet-like molded product after the hot rolling, and make the sheet thickness uniform,
C. or less is preferred.
【0030】なお、圧延処理の際の圧延倍率を大きくす
る方法として、加圧ロールのギャップを調整する方法が
挙げられるが、急激に圧延倍率が大きくなるように設定
すると、シート状成形物がベルト間で滑ってしまい、噛
み込みが不十分となり圧延されなくなる。As a method of increasing the rolling ratio in the rolling process, there is a method of adjusting the gap between the pressure rolls. It slips between them and the biting becomes insufficient and rolling is not possible.
【0031】加圧ロール組み数は、特に限定されない
が、通常、10〜30個程度であることが好ましい。ま
た、加圧ロールの噛み込み角度は、特に限定されない
が、0〜1°が好ましく、0〜0.5°がより好まし
い。なお、ここで言う噛み込み角度とは、シート状成形
物の進行水平方向に対するベルト面の角度を意味し、該
ベルト面とは、シート状成形物が噛み込み圧延される領
域を示す。The number of pressure rolls is not particularly limited, but is usually preferably about 10 to 30. The biting angle of the pressure roll is not particularly limited, but is preferably 0 to 1 °, more preferably 0 to 0.5 °. Here, the biting angle means an angle of a belt surface with respect to a horizontal direction of the sheet-like molded product, and the belt surface indicates an area where the sheet-shaped product is bitten and rolled.
【0032】加熱圧延の際は、シート状成形物の潤滑な
噛み込みを考慮して、噛み込み角度を持ったベルト間で
加熱圧延し、冷却圧延では目標とされる圧延倍率となる
ように噛み込み角度を0°にしてギャップを一定にする
ことが好ましい。At the time of hot rolling, heat rolling is performed between belts having a biting angle in consideration of lubricating biting of the sheet-like molded product. It is preferable that the gap angle is 0 ° and the gap is constant.
【0033】また、ベルト面とシート状成形物の摩擦係
数を高くして噛み込みを良好にするために、ベルト面の
表面粗度を制御したり、紙などの吸油性のあるシートで
シート状成形物を挟んでサンドイッチ状にして圧延する
方法をとることも可能である。Further, in order to increase the friction coefficient between the belt surface and the sheet-like molded product and improve the biting, the surface roughness of the belt surface is controlled, or the sheet-like material such as paper is used to absorb oil. It is also possible to adopt a method in which the molded product is sandwiched and rolled.
【0034】なお、プレスによる圧延は一種の固相加工
であり、樹脂組成物を高粘度状態で加工するため、樹脂
内部に分子摩擦が生ずる剪断流動は脆性破壊の原因にな
り、均一な圧延が困難になる。理想的な二軸伸長を達成
するために、流動抵抗を極力小さくし、均一な栓流(プ
ラグフロー)で流動させることが必要である。そのため
に、樹脂組成物とベルト界面に潤滑剤を介在させてもよ
いが、本発明にあるようにポリオレフィン樹脂と溶媒か
らなる樹脂組成物であれば、圧延処理時に溶媒が組成物
とベルト面間に染みだしてきて潤滑剤の役目をする。そ
の挙動を期待する意味でも、ポリオレフィン樹脂と溶媒
との樹脂組成物において、溶媒が70重量%以上である
のが好ましい。Rolling by pressing is a kind of solid-phase processing. Since the resin composition is processed in a high-viscosity state, shear flow that causes molecular friction inside the resin causes brittle fracture, and uniform rolling is performed. It becomes difficult. In order to achieve ideal biaxial elongation, it is necessary to minimize the flow resistance and flow with a uniform plug flow. For this purpose, a lubricant may be interposed between the resin composition and the belt interface. However, if the resin composition is composed of a polyolefin resin and a solvent as in the present invention, the solvent is applied between the composition and the belt surface during rolling. It exudes and acts as a lubricant. From the viewpoint of expecting the behavior, the solvent is preferably 70% by weight or more in the resin composition of the polyolefin resin and the solvent.
【0035】次に、圧延処理後のシート状成形物の脱溶
媒処理を行う。Next, the sheet-like molded product after the rolling treatment is subjected to a desolvation treatment.
【0036】脱溶媒処理は、シート状成形物から溶媒を
除去して多孔質構造を形成させる工程であり、例えば、
シート状成形物を溶剤で洗浄して残留する溶媒を除去す
ることにより行うことができる。溶剤は、樹脂組成物の
調製に用いた溶媒に応じて適宜選択することができる
が、具体的には、ペンタン、ヘキサン、ヘプタン、デカ
ン等の炭化水素、塩化メチレン、四塩化炭素等の塩素化
炭化水素、ジエチルエーテル、ジオキサン等のエーテル
類、アルコール類等の易揮発性溶剤が挙げられ、これら
は単独で又は二種以上を混合して用いることができる。
かかる溶剤を用いた脱溶媒処理の方法は、特に限定され
ず、例えば、シート状成形物を溶剤中に浸漬して溶媒を
抽出する方法、溶剤をシート状成形物にシャワーする方
法等が挙げられる。脱溶媒処理は圧延前に行ってもよ
い。例えば、シート状組成物を脱溶媒処理してから圧延
処理に供してもよく、あるいは圧延処理前に脱溶媒処理
を行い、圧延処理後に再度脱溶媒処理を行ってもよい。The desolvation treatment is a step of forming a porous structure by removing a solvent from a sheet-like molded product.
It can be carried out by washing the sheet-like molded product with a solvent to remove the residual solvent. The solvent can be appropriately selected according to the solvent used in the preparation of the resin composition.Specifically, pentane, hexane, heptane, hydrocarbons such as decane, methylene chloride, chlorination of carbon tetrachloride, etc. Examples include volatile solvents such as hydrocarbons, ethers such as diethyl ether and dioxane, and alcohols, and these can be used alone or in combination of two or more.
The method of desolvation treatment using such a solvent is not particularly limited, and examples thereof include a method of immersing a sheet-like molded product in a solvent to extract the solvent, a method of showering the solvent to the sheet-like molded product, and the like. . The desolvation treatment may be performed before rolling. For example, the sheet-like composition may be subjected to a desolvation treatment and then subjected to a rolling treatment, or a desolvation treatment may be performed before the rolling treatment and the desolvation treatment may be performed again after the rolling treatment.
【0037】なお、本発明では、圧延及び脱溶媒処理の
前後に、さらに延伸処理を行ってもよい。例えば、前記
シート状成形物を圧延処理と脱溶媒処理(圧延と脱溶媒
の順序はいずれが先でもよい)を行ってから延伸処理に
供してもよく、またシート状成形物をそのまま延伸処理
してから圧延処理と脱溶媒処理(圧延と脱溶媒の順序は
いずれが先でもよい)を行ってもよい。あるいは、圧延
処理と脱溶媒処理の間に延伸処理を行ってもよく、例え
ば、延伸処理前に脱溶媒処理を行い、延伸処理後に再度
圧延処理と脱溶媒処理(圧延と脱溶媒の順序はいずれが
先でもよい)を行って残存溶媒を除去する態様であって
もよい。In the present invention, a stretching treatment may be further performed before and after the rolling and the desolvation treatment. For example, the sheet-shaped molded product may be subjected to a rolling treatment and a desolvation treatment (the order of rolling and desolvation may be performed first) and then subjected to a stretching treatment, or the sheet-shaped molded product may be subjected to a stretching treatment as it is. After that, the rolling treatment and the desolvation treatment (the order of the rolling and the desolvation may be any order). Alternatively, a stretching treatment may be performed between the rolling treatment and the desolvation treatment. For example, a desolvation treatment is performed before the stretching treatment, and a rolling treatment and a desolvation treatment are performed again after the stretching treatment (the order of the rolling and the desolvation treatment may be any. May be performed first) to remove the residual solvent.
【0038】延伸処理の方式は特に限定されるものでは
なく、通常のテンター法、ロール法、インフレーション
法またはこれらの方法の組み合わせであってもよい。ま
た、一軸延伸、二軸延伸等いずれの方式をも適用するこ
とができ、二軸延伸の場合は、縦横同時延伸又は逐次延
伸のいずれでもよいが、縦横同時延伸が好ましい。The stretching method is not particularly limited, and may be a usual tenter method, roll method, inflation method or a combination of these methods. In addition, any method such as uniaxial stretching and biaxial stretching can be applied. In the case of biaxial stretching, either vertical or horizontal simultaneous stretching or sequential stretching may be used, but vertical and horizontal simultaneous stretching is preferred.
【0039】延伸処理時の温度は、ポリオレフィン樹脂
の融点+5℃以下の温度が好ましい。その他の延伸処理
条件は、通常用いられる公知の条件を採用することがで
きる。The temperature during the stretching treatment is preferably a temperature not higher than the melting point of the polyolefin resin + 5 ° C. As other stretching treatment conditions, commonly used known conditions can be adopted.
【0040】本発明では、このようにして得られた多孔
質フィルムに、必要に応じてさらにフィルムの熱収縮を
防止するためのヒートセット処理等を施して、形状固定
してもよい。In the present invention, the shape of the porous film thus obtained may be further fixed, if necessary, by subjecting it to a heat setting treatment or the like to prevent the film from being thermally contracted.
【0041】このようにして得られる多孔質フィルムの
厚さは1〜60μm、好ましくは5〜45μmであるこ
とが望ましく、BET比表面積は150m2 /g以上、
細孔容積は0.5cm3 /g以上、貫通孔の平均孔径は
0.03μm以下、最大孔径は0.1μm以下であるこ
とが、それぞれ好ましい。なお、細孔容積及び孔径はB
JH法により測定することができる。The thickness of the porous film thus obtained is preferably 1 to 60 μm, more preferably 5 to 45 μm, and the BET specific surface area is 150 m 2 / g or more.
It is preferable that the pore volume is 0.5 cm 3 / g or more, the average pore diameter of the through holes is 0.03 μm or less, and the maximum pore diameter is 0.1 μm or less. Note that the pore volume and pore size are B
It can be measured by the JH method.
【0042】また、多孔質フィルムの空孔率は35〜7
5%、通気度は100〜800秒/100cc、針貫通
強度は400gf/25μm以上であることが、それぞ
れ望ましい。The porosity of the porous film is 35 to 7
It is preferable that the air permeability is 5%, the air permeability is 100 to 800 seconds / 100 cc, and the needle penetration strength is 400 gf / 25 μm or more.
【0043】本発明により得られる多孔質フィルムは、
高強度、高比表面積及び高細孔容積を有し、更に、膜を
貫通する孔の経路、即ち貫通経路が長いにもかかわら
ず、イオン透過性に優れ、高速充放電特性にも優れる。The porous film obtained according to the present invention comprises:
It has high strength, high specific surface area and high pore volume, and is excellent in ion permeability and high-speed charge / discharge characteristics despite the long path of pores penetrating the membrane, that is, long penetration path.
【0044】また、グローブボックス中でガラスの中に
正極にコバルト酸リチウム電極、負極にカーボン電極を
用い、その間に電解液を含浸させた前記多孔質フィルム
をクッション材となる不織布(電解液含浸品)と共に挟
み込み、充放電特性を調べたところ、高電流密度で高放
電効率を示し、短時間での大出力が可能である。A nonwoven fabric (electrolyte-impregnated product) in which a porous film in which a lithium cobaltate electrode is used as a positive electrode and a carbon electrode is used as a negative electrode in a glass in a glove box and an electrolyte is impregnated therebetween is used as a cushioning material. ), The charge and discharge characteristics were examined. As a result, a high discharge efficiency was exhibited at a high current density, and a large output was possible in a short time.
【0045】更に、本発明により得られた多孔質フィル
ムは、通気性は良好なものの、比表面積が高く、細いフ
ィブリルが高密度に配置して、平均孔径も小さいことか
ら、過充電試験におけるデンドライトによる短絡も生じ
難い。従って、種々の電池、特に電気自動車用バッテリ
ーにおいて、安定性と耐久性に優れる高性能セパレータ
ーとして好適に用いることができる。Further, although the porous film obtained by the present invention has good air permeability, it has a high specific surface area, fine fibrils are arranged at a high density, and the average pore size is small. Short-circuiting is unlikely to occur. Therefore, it can be suitably used as a high-performance separator having excellent stability and durability in various batteries, particularly batteries for electric vehicles.
【0046】[0046]
【実施例】以下、実施例及び比較例を挙げてさらに詳細
に説明するが、本発明はこれら実施例により何ら限定さ
れるものではない。なお、各種特性については下記要領
にて測定を行う。The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, various characteristics are measured in the following manner.
【0047】(融点)セイコー電子工業社製の示差走査
熱量計「DSC−200」を使用し、室温から200℃
まで10℃/minの割合で昇温させ、この昇温過程で
の吸熱ピーク値を融点とする。(Melting point) Using a differential scanning calorimeter “DSC-200” manufactured by Seiko Denshi Kogyo KK, the temperature was changed from room temperature to 200 ° C.
The temperature is raised at a rate of 10 ° C./min up to this point, and the endothermic peak value during this temperature raising process is defined as the melting point.
【0048】(重量平均分子量)ウォーターズ社製のゲ
ル浸透クロマトグラフ「GPC−150C」を用い、溶
媒にo−ジクロロベンゼンを、また、カラムとして昭和
電工(株)製の「Shodex−80M」を用いて13
5℃で測定する。データ処理は、TRC社製データ処理
システムを用いて行う。分子量はポリスチレンを基準と
して算出する。(Weight average molecular weight) A gel permeation chromatograph "GPC-150C" manufactured by Waters was used, o-dichlorobenzene was used as a solvent, and "Shodex-80M" manufactured by Showa Denko KK was used as a column. 13
Measure at 5 ° C. Data processing is performed using a data processing system manufactured by TRC. The molecular weight is calculated based on polystyrene.
【0049】(フィルムの厚み)1/10000シック
ネスゲージ及び多孔質フィルムの断面の1万倍走査電子
顕微鏡写真から測定する。(Film thickness) Measured from a 1 / 10,000 thickness gauge and a 10,000 × scanning electron micrograph of the cross section of the porous film.
【0050】(空孔率)水銀ポロシメータ(オートスキ
ャン33、ユアサアイオニクス)を使用し、細孔容積
(ml/g)を求め、ポリオレフィン樹脂の密度を0.
95(g/ml)とし、以下の式に基づき算出する。(Porosity) Using a mercury porosimeter (Autoscan 33, Yuasa Ionics), the pore volume (ml / g) was determined, and the density of the polyolefin resin was determined to be 0.1%.
95 (g / ml) is calculated based on the following equation.
【0051】[0051]
【数1】 (Equation 1)
【0052】(BET比表面積)(株)島津製作所製の
窒素の脱吸着方式による比表面積・細孔分布測定器「A
SAP2010」を用いてBET比表面積を測定する。(BET Specific Surface Area) A specific surface area / pore distribution measuring device “A” manufactured by Shimadzu Corporation using a nitrogen desorption method.
The BET specific surface area is measured using “SAP2010”.
【0053】(通気度)JIS P8117に準拠して
測定する。(Air permeability) Measured according to JIS P8117.
【0054】(貫通孔の平均孔径及び最大孔径)(株)
島津製作所製の窒素の脱吸着方式による比表面積・細孔
分布測定器「ASAP2010」を用いて、BJH法に
て孔径の分布を測定し、これより平均孔径と最大孔径を
求める。(Average and maximum pore diameters of through holes)
The pore size distribution is measured by the BJH method using a specific surface area / pore distribution measuring device “ASAP2010” manufactured by Shimadzu Corporation using a nitrogen desorption method, and the average pore size and the maximum pore size are determined from this.
【0055】(針貫通強度)カトーテック(株)製のハ
ンディー圧縮試験機「KES−G5」を用いて行う。針
は直径1.0mm、先端形状0.5mmのものを使用
し、ホルダー径11.3mm、押し込み速度2mm/秒
にて測定し、フィルムが破れるまでの最大荷重を針貫通
強度とする。値は全て25μmに換算する。(Needle penetration strength) A handy compression tester “KES-G5” manufactured by Kato Tech Co., Ltd. is used. A needle having a diameter of 1.0 mm and a tip shape of 0.5 mm is measured at a holder diameter of 11.3 mm and a pushing speed of 2 mm / sec. The maximum load until the film breaks is defined as the needle penetration strength. All values are converted to 25 μm.
【0056】(厚みばらつき)1/10000シックネ
スゲージを用いて、多孔質フィルムの厚みを端部から中
心部の範囲で任意に10点測定し、最大値と最小値の厚
みの差を厚みばらつきとする。(Thickness Variation) Using a 1/10000 thickness gauge, the thickness of the porous film was arbitrarily measured at 10 points from the edge to the center, and the difference between the maximum value and the minimum value was determined as the thickness variation. I do.
【0057】実施例1 重量平均分子量2×106 の超高分子量ポリエチレン樹
脂(融点:134℃)15重量部と流動パラフィン(凝
固点:−15℃、40℃における動粘度:59cst)
85重量部とをスラリー状に均一に混合し、得られた混
合物を二軸押し出し機(シリンダー径:40mm、L/
D=42)に20kg/hrの処理量で供給し、160
℃に加熱し、溶融混練して、超高分子量ポリエチレン樹
脂と溶媒との溶融混練物を得た。次いで、二軸押し出し
機の先端に取り付けられたTダイを用い、160℃で溶
融混練物をシート状に押出した直後、−15℃に冷却さ
れたサイジングダイスを通し、急冷結晶化させた。Example 1 15 parts by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2 × 10 6 (melting point: 134 ° C.) and liquid paraffin (freezing point: −15 ° C., kinematic viscosity at 40 ° C .: 59 cst)
85 parts by weight in a slurry state, and the resulting mixture is subjected to a twin-screw extruder (cylinder diameter: 40 mm, L / L
D = 42) at a processing rate of 20 kg / hr,
C. and melt-kneaded to obtain a melt-kneaded product of an ultrahigh molecular weight polyethylene resin and a solvent. Then, immediately after extruding the melt-kneaded material at 160 ° C. into a sheet using a T-die attached to the tip of a twin-screw extruder, the material was rapidly cooled and crystallized through a sizing die cooled to −15 ° C.
【0058】次いで、このシート状成形物(厚み:10
mm)を、噛み込み角度が1°に設定された加熱加圧ロ
ール式ダブルベルトプレス機を用い、約120℃で加熱
圧延し、シート状成形物を厚さ100μmまで圧延した
後、冷却加圧ロール式ダブルベルトプレス機を用い、3
0℃で冷却圧延を行った(圧延倍率:100倍)。次い
で、ヘプタンに浸漬して脱溶媒し、このようにして得ら
れた多孔質フィルムを更に130℃で10秒間ヒートセ
ットして、厚み25μm、空孔率45%の多孔質フィル
ムを得た。Next, this sheet-like molded product (thickness: 10
mm) is heated and rolled at about 120 ° C. using a heating-pressing roll-type double belt press having a bite angle of 1 °, and the sheet-shaped product is rolled to a thickness of 100 μm, and then cooled and pressed. Using a roll type double belt press machine, 3
Cold rolling was performed at 0 ° C. (rolling magnification: 100 times). Next, it was immersed in heptane to remove the solvent, and the porous film thus obtained was further heat-set at 130 ° C. for 10 seconds to obtain a porous film having a thickness of 25 μm and a porosity of 45%.
【0059】実施例2 重量平均分子量2×106 の超高分子量ポリエチレン樹
脂(融点:134℃)15重量部と流動パラフィン(凝
固点:−15℃、40℃における動粘度:59cst)
85重量部とをスラリー状に均一に混合し、得られた混
合物を二軸押し出し機(シリンダー径:40mm、L/
D=42)に20kg/hrの処理量で供給し、160
℃に加熱し、溶融混練して、超高分子量ポリエチレン樹
脂と溶媒との溶融混練物を得た。次いで、二軸押し出し
機の先端に取り付けられたTダイを用い、160℃で溶
融混練物をシート状に押出した直後、−15℃に冷却さ
れたサイジングダイスを通し、急冷結晶化させた。Example 2 15 parts by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2 × 10 6 (melting point: 134 ° C.) and liquid paraffin (freezing point: −15 ° C., kinematic viscosity at 40 ° C .: 59 cst)
85 parts by weight in a slurry state, and the resulting mixture is subjected to a twin-screw extruder (cylinder diameter: 40 mm, L / L
D = 42) at a processing rate of 20 kg / hr,
C. and melt-kneaded to obtain a melt-kneaded product of an ultrahigh molecular weight polyethylene resin and a solvent. Then, immediately after extruding the melt-kneaded material at 160 ° C. into a sheet using a T-die attached to the tip of a twin-screw extruder, the material was rapidly cooled and crystallized through a sizing die cooled to −15 ° C.
【0060】次いで、このシート状成形物(厚み:20
mm)を、噛み込み角度が1°に設定された加熱加圧ロ
ール式ダブルベルトプレス機を用い、約120℃で加熱
圧延し、シート状成形物を厚さ1.1mmまで圧延した
後、冷却加圧ロール式ダブルベルトプレス機を用い、3
0℃で冷却圧延を行った(圧延倍率:18倍)。更に、
120℃で縦横各々4.1倍に同時二軸延伸し、厚み6
6μm(延伸倍率:16.7倍、総延伸倍率:300.
6倍)としたのち、ヘプタンに浸漬して脱溶媒した。こ
のようにして得られた多孔質フィルムを更に130℃で
10秒間ヒートセットして、厚み17μm、空孔率50
%の多孔質フィルムを得た。Next, this sheet-like molded product (thickness: 20
mm) was heated and rolled at about 120 ° C. using a heating and pressing roll-type double belt press having a bite angle of 1 °, and the sheet was rolled to a thickness of 1.1 mm and then cooled. Using a pressure roll type double belt press machine, 3
Cold rolling was performed at 0 ° C. (rolling magnification: 18 times). Furthermore,
Simultaneously biaxially stretched 4.1 times vertically and horizontally at 120 ° C, thickness 6
6 μm (stretch ratio: 16.7 times, total stretch ratio: 300.
6 times), and then immersed in heptane to remove the solvent. The porous film thus obtained was further heat-set at 130 ° C. for 10 seconds to have a thickness of 17 μm and a porosity of 50 μm.
% Of a porous film was obtained.
【0061】実施例3 重量平均分子量2×106 の超高分子量ポリエチレン樹
脂(融点:134℃)15重量部と流動パラフィン(凝
固点:−15℃、40℃における動粘度:59cst)
85重量部とをスラリー状に均一に混合し、得られた混
合物を二軸押し出し機(シリンダー径:40mm、L/
D=42)に20kg/hrの処理量で供給し、160
℃に加熱し、溶融混練して、超高分子量ポリエチレン樹
脂と溶媒との溶融混練物を得た。次いで、二軸押し出し
機の先端に取り付けられたTダイを用い、160℃で溶
融混練物をシート状に押出した直後、0℃に冷却された
冷却ロール(ロール径:400mm)を通し、急冷結晶
化させた。Example 3 15 parts by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2 × 10 6 (melting point: 134 ° C.) and liquid paraffin (freezing point: −15 ° C., kinematic viscosity at 40 ° C .: 59 cst)
85 parts by weight in a slurry state, and the resulting mixture is subjected to a twin-screw extruder (cylinder diameter: 40 mm, L / L
D = 42) at a processing rate of 20 kg / hr,
C. and melt-kneaded to obtain a melt-kneaded product of an ultrahigh molecular weight polyethylene resin and a solvent. Then, immediately after extruding the melt-kneaded product into a sheet at 160 ° C. using a T-die attached to the tip of a twin-screw extruder, the crystal was rapidly cooled by passing through a cooling roll (roll diameter: 400 mm) cooled to 0 ° C. It was made.
【0062】次いで、このシート状成形物(厚み:10
mm)を噛み込み角度1°に設定された加圧ロール式ダ
ブルベルトプレス機で約120℃で加熱圧延した後、3
0℃で冷却圧延を行い、厚さ100μmまで圧延した
(圧延倍率:100倍)。次いで、ヘプタンに浸漬して
脱溶媒し、このようにして得られた多孔質フィルムを更
に130℃で10秒間ヒートセットして、厚み25μ
m、空孔率45%の多孔質フィルムを得た。Next, this sheet-like molded product (thickness: 10
mm) was heated and rolled at about 120 ° C. with a pressure roll type double belt press set at a bite angle of 1 °, and then 3
Cold rolling was performed at 0 ° C., and rolling was performed to a thickness of 100 μm (rolling magnification: 100 times). Subsequently, the porous film thus obtained was immersed in heptane to remove the solvent, and the porous film thus obtained was further heat-set at 130 ° C. for 10 seconds to obtain a film having a thickness of 25 μm.
m, a porous film having a porosity of 45% was obtained.
【0063】比較例1 重量平均分子量2×106 の超高分子量ポリエチレン樹
脂(融点:134℃)15重量部と流動パラフィン(凝
固点:−15℃、40℃における動粘度:59cst)
85重量部とをスラリー状に均一に混合し、得られた混
合物を二軸押し出し機(シリンダー径:40mm、L/
D=42)に20kg/hrの処理量で供給し、160
℃に加熱し、溶融混練して、超高分子量ポリエチレン樹
脂と溶媒との溶融混練物を得た。次いで、二軸押し出し
機の先端に取り付けられたTダイを用い、160℃で溶
融混練物をシート状に押出した直後、−15℃に冷却さ
れたサイジングダイスを通し、急冷結晶化させた。Comparative Example 1 15 parts by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2 × 10 6 (melting point: 134 ° C.) and liquid paraffin (freezing point: −15 ° C., kinematic viscosity at 40 ° C .: 59 cst)
85 parts by weight in a slurry state, and the resulting mixture is subjected to a twin-screw extruder (cylinder diameter: 40 mm, L / L
D = 42) at a processing rate of 20 kg / hr,
C. and melt-kneaded to obtain a melt-kneaded product of an ultrahigh molecular weight polyethylene resin and a solvent. Then, immediately after extruding the melt-kneaded material at 160 ° C. into a sheet using a T-die attached to the tip of a twin-screw extruder, the material was rapidly cooled and crystallized through a sizing die cooled to −15 ° C.
【0064】更に、このシート状成形物(厚み:10m
m)を120℃で縦横各々10倍に同時二軸延伸し、厚
み100μm(延伸倍率:100倍)としたのち、ヘプ
タンに浸漬して脱溶媒した。このようにして得られた多
孔質フィルムを更に130℃で10秒間ヒートセットし
て、厚み25μm、空孔率45%の多孔質フィルムを得
た。Further, the sheet-like molded product (thickness: 10 m
m) was simultaneously biaxially stretched 10 times vertically and horizontally at 120 ° C. to obtain a thickness of 100 μm (stretching ratio: 100 times), and then immersed in heptane to remove the solvent. The porous film thus obtained was further heat-set at 130 ° C. for 10 seconds to obtain a porous film having a thickness of 25 μm and a porosity of 45%.
【0065】実施例及び比較例において得られた多孔質
フィルムのBET比表面積、平均孔径、最大孔径、通気
度、針貫通強度及び厚みのばらつきを表1に示す。Table 1 shows the BET specific surface area, the average pore size, the maximum pore size, the air permeability, the needle penetration strength, and the variation in the thickness of the porous films obtained in the examples and comparative examples.
【0066】[0066]
【表1】 [Table 1]
【0067】以上の結果より、ベルトプレス機を用いず
に製造した比較例1の多孔質フィルムは、針貫通強度に
劣り、厚みのばらつきも大きいのに対し、実施例1〜3
の多孔質フィルムは、いずれの特性にも優れた値が得ら
れていることが分かる。From the above results, it can be seen that the porous film of Comparative Example 1 manufactured without using a belt press had inferior needle penetration strength and a large variation in thickness.
It can be seen that the porous film has excellent values in any of the properties.
【0068】[0068]
【発明の効果】本発明により、厚みが均一で、高強度、
高比表面積及び高細孔容積を有し、かつイオン透過性及
び高速充放電特性にも優れる多孔質フィルムの製造方法
を提供することが可能となった。According to the present invention, uniform thickness, high strength,
It has become possible to provide a method for producing a porous film having a high specific surface area and a high pore volume, and also having excellent ion permeability and high-speed charge / discharge characteristics.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:04 Fターム(参考) 4F074 AA16 AA17 AD01 CB34 CC03X CC04X CC22X CC29Y CC32X DA08 DA13 DA24 DA49 4J002 BB001 BB021 BB031 BB111 BB161 EA016 EA026 FD206 GD00 GQ00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B29K 105: 04 F term (Reference) 4F074 AA16 AA17 AD01 CB34 CC03X CC04X CC22X CC29Y CC32X DA08 DA13 DA24 DA49 4J002 BB001 BB021 BB031 BB111 BB161 EA016 EA026 FD206 GD00 GQ00
Claims (2)
樹脂組成物を溶融混練し、得られた溶融混練物をシート
状に成形し、得られたシート状成形物の圧延処理と脱溶
媒処理を行う工程を有する多孔質フィルムの製造方法に
おいて、該圧延処理をベルトプレス機を用いて行うこと
を特徴とする多孔質フィルムの製造方法。1. A process in which a resin composition containing a polyolefin resin and a solvent is melt-kneaded, the obtained melt-kneaded product is formed into a sheet, and the obtained sheet-like formed product is subjected to a rolling treatment and a desolvation treatment. A method for producing a porous film, comprising: performing the rolling treatment using a belt press.
−30℃以上、融点−10℃以下の温度で行い、次いで
40℃以下で行う請求項1記載の製造方法。2. The method according to claim 1, wherein the rolling treatment is carried out at a temperature of not less than -30 ° C. and not more than -10 ° C. of the polyolefin resin, and then at not more than 40 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17593599A JP4312302B2 (en) | 1999-06-22 | 1999-06-22 | Method for producing porous film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17593599A JP4312302B2 (en) | 1999-06-22 | 1999-06-22 | Method for producing porous film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001002812A true JP2001002812A (en) | 2001-01-09 |
JP4312302B2 JP4312302B2 (en) | 2009-08-12 |
Family
ID=16004836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17593599A Expired - Fee Related JP4312302B2 (en) | 1999-06-22 | 1999-06-22 | Method for producing porous film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4312302B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002307548A (en) * | 2001-04-16 | 2002-10-23 | Sumitomo Chem Co Ltd | Method for producing stretched film |
JP2008099551A (en) * | 2007-11-30 | 2008-04-24 | National Institute Of Advanced Industrial & Technology | Solid macromolecular complex responsive to magnetic field and actuator element |
WO2011043160A1 (en) | 2009-10-07 | 2011-04-14 | 東レ株式会社 | Porous polypropylene film roll |
CN101747549B (en) * | 2008-12-18 | 2013-06-19 | 比亚迪股份有限公司 | Polyolefin micro porous polyolefin membrane and method for preparing same |
US10573867B2 (en) | 2015-11-30 | 2020-02-25 | Sumitomo Chemical Company, Limited | Method for producing nonaqueous electrolyte secondary battery separator |
WO2021015268A1 (en) * | 2019-07-25 | 2021-01-28 | 東レ株式会社 | Microporous polyolefin membrane, multilayer body, and nonaqueous electrolyte secondary battery using same |
WO2022202095A1 (en) * | 2021-03-23 | 2022-09-29 | 東レ株式会社 | Microporous polyolefin film, separator for battery, and secondary battery |
-
1999
- 1999-06-22 JP JP17593599A patent/JP4312302B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002307548A (en) * | 2001-04-16 | 2002-10-23 | Sumitomo Chem Co Ltd | Method for producing stretched film |
JP2008099551A (en) * | 2007-11-30 | 2008-04-24 | National Institute Of Advanced Industrial & Technology | Solid macromolecular complex responsive to magnetic field and actuator element |
CN101747549B (en) * | 2008-12-18 | 2013-06-19 | 比亚迪股份有限公司 | Polyolefin micro porous polyolefin membrane and method for preparing same |
WO2011043160A1 (en) | 2009-10-07 | 2011-04-14 | 東レ株式会社 | Porous polypropylene film roll |
KR20120093160A (en) | 2009-10-07 | 2012-08-22 | 도레이 카부시키가이샤 | Porous polypropylene film roll |
US10573867B2 (en) | 2015-11-30 | 2020-02-25 | Sumitomo Chemical Company, Limited | Method for producing nonaqueous electrolyte secondary battery separator |
WO2021015268A1 (en) * | 2019-07-25 | 2021-01-28 | 東レ株式会社 | Microporous polyolefin membrane, multilayer body, and nonaqueous electrolyte secondary battery using same |
WO2022202095A1 (en) * | 2021-03-23 | 2022-09-29 | 東レ株式会社 | Microporous polyolefin film, separator for battery, and secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4312302B2 (en) | 2009-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101143106B1 (en) | Microporous polymer membrane | |
JP3886124B2 (en) | Method for producing porous film | |
JP4312302B2 (en) | Method for producing porous film | |
JPH1044348A (en) | Polyolefin porous membrane, manufacture thereof, separator for electric cell using membrane | |
JP2000204188A (en) | Finely porous membrane of polyethylene | |
JP4577857B2 (en) | Method for producing porous film | |
JP4092029B2 (en) | Method for producing porous film | |
JP2002047372A (en) | Porous film and method of preparing the same and battery using the same | |
JP3982943B2 (en) | Method for producing porous film | |
JP2002060532A (en) | Method for producing porous film | |
JP4017307B2 (en) | Method for producing porous film | |
JP2002088189A (en) | Method for producing porous film | |
JP4998967B2 (en) | Porous film | |
JP2000109586A (en) | Production of porous film | |
JP2001001410A (en) | Manufacture of porous film | |
JP4641206B2 (en) | Method for producing porous film | |
JP4181677B2 (en) | Porous film and method for producing the same | |
JP2001011223A (en) | Preparation of porous film | |
JP2004307711A (en) | Preparation process of highly porous film | |
JP3856268B2 (en) | Method for producing porous film | |
JP2001260217A (en) | Producing method for porous film | |
JP4101962B2 (en) | Method for producing porous film | |
JP4118439B2 (en) | Method for producing porous film | |
JP2003026848A (en) | Method of producing porous film | |
JP2000272019A (en) | Production of porous film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070620 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090427 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090513 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4312302 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150522 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |