Nothing Special   »   [go: up one dir, main page]

JP2001085071A - Battery temperature sensing device and method for sensing temperature - Google Patents

Battery temperature sensing device and method for sensing temperature

Info

Publication number
JP2001085071A
JP2001085071A JP25819499A JP25819499A JP2001085071A JP 2001085071 A JP2001085071 A JP 2001085071A JP 25819499 A JP25819499 A JP 25819499A JP 25819499 A JP25819499 A JP 25819499A JP 2001085071 A JP2001085071 A JP 2001085071A
Authority
JP
Japan
Prior art keywords
temperature
battery
internal resistance
detecting
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25819499A
Other languages
Japanese (ja)
Other versions
JP4383597B2 (en
Inventor
Kiwamu Inui
究 乾
Toshiaki Nakanishi
利明 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Priority to JP25819499A priority Critical patent/JP4383597B2/en
Publication of JP2001085071A publication Critical patent/JP2001085071A/en
Application granted granted Critical
Publication of JP4383597B2 publication Critical patent/JP4383597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately sense the temperature of each battery module using a simple configuration. SOLUTION: The inter-terminal voltage V1-n of each battery module 1-n and the current I in a battery 22 are measured with a block voltage and current measuring device 32 for a specified period of time, and from the measuring result, the internal resistance R1-n and residual capacity SOC of each battery module 1-n are calculated with a block internal resistance SOC arithmetic unit 34. Using a battery temperature presuming arithmetic unit 36, the internal resistance R1-n and residual capacity SOC are referenced to a characteristic map so that the temperature of each battery module 1-n is presumed. The temperature of the battery module 1 sensed by a temperature sensor 24 is compared with the presumed temperature, and if the two are not equal, the internal resistance R1-n calculated by the SOC arithmetic unit 34 is corrected on the basis of the sensed temperature, and the temperature of the battery module 1-n is re-presumed using the corrected internal resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、組電池の温度検出
装置および温度検出方法に関し、詳しくは、少なくとも
一つの電池を有する電池モジュールを複数直列または並
列に接続してなる組電池の該複数の電池モジュールの各
々の温度を検出する温度検出装置および温度検出方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature detecting device and a temperature detecting method for an assembled battery, and more particularly, to a plurality of battery modules having at least one battery connected in series or parallel. The present invention relates to a temperature detection device and a temperature detection method for detecting each temperature of a battery module.

【0002】[0002]

【従来の技術】従来、この種の組電池の温度検出装置と
しては、電池の端子間の電圧と電池に流れる電流とに基
づいて電池の温度を推定するものが提案されている(例
えば、特開平11−162526号公報など)。この装
置では、電圧と電流とから電池の内部抵抗を演算し、演
算した内部抵抗と電池の温度との関係から温度を推定し
ている。なお、この装置では、電池の内部抵抗と電池の
温度との関係は実験などにより予め求められており、演
算された電池の内部抵抗に対応する温度を導出するもの
としている。
2. Description of the Related Art Heretofore, as a temperature detecting device for a battery pack of this type, there has been proposed a device for estimating the temperature of a battery based on a voltage between terminals of the battery and a current flowing through the battery (for example, Japanese Patent Application Laid-Open Publication No. H11-163873). No. Hei 11-162526). In this device, the internal resistance of the battery is calculated from the voltage and the current, and the temperature is estimated from the relationship between the calculated internal resistance and the temperature of the battery. In this device, the relationship between the internal resistance of the battery and the temperature of the battery is determined in advance by experiments or the like, and the temperature corresponding to the calculated internal resistance of the battery is derived.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、こうし
た温度検出装置では、電池の温度が正確に検出できない
場合がある。電池は使用態様によって劣化の程度や劣化
以外の要因により電池の内部抵抗と電池の温度との関係
がズレる場合がある。このように内部抵抗と温度との関
係がズレたときには、電池の温度は内部抵抗から推定さ
れた温度と異なるものとなってしまう。
However, such a temperature detecting device may not be able to accurately detect the battery temperature. The relationship between the internal resistance of the battery and the temperature of the battery may deviate depending on the degree of deterioration and factors other than the deterioration of the battery depending on the usage mode. As described above, when the relationship between the internal resistance and the temperature shifts, the temperature of the battery differs from the temperature estimated from the internal resistance.

【0004】こうした問題に対して電池の温度を直接検
出する手法もあるが、電池を複数接続してなる組電池の
場合、電池の数だけの温度センサが必要になると共に制
御コンピュータの回路規模も大きくなり、コストの増加
を招いてしまう。
In order to solve such a problem, there is a method of directly detecting the temperature of the battery. However, in the case of an assembled battery in which a plurality of batteries are connected, temperature sensors of the same number as the batteries are required, and the circuit size of the control computer is also reduced This increases the cost and increases the cost.

【0005】本発明の組電池の温度検出装置および温度
検出方法は、各電池モジュールの温度をより正確に検出
することを目的の一つとする。また、本発明の組電池の
温度検出装置および温度検出方法は、簡易な構成で各電
池モジュールの温度を検出することを目的の一つとす
る。
An object of the present invention is to provide an apparatus and a method for detecting the temperature of each battery module, which are more accurate. Another object of the present invention is to detect the temperature of each battery module with a simple configuration.

【0006】[0006]

【課題を解決するための手段およびその作用・効果】本
発明の組電池の温度検出装置および温度検出方法は、上
述の目的の少なくとも一部を達成するために以下の手段
を採った。
Means for Solving the Problems and Their Functions and Effects The temperature detecting apparatus and method for a battery pack according to the present invention employ the following means in order to achieve at least a part of the above object.

【0007】本発明の組電池の温度検出装置は、少なく
とも一つの電池を有する電池モジュールを複数直列また
は並列に接続してなる組電池の該複数の電池モジュール
の各々の温度を検出する温度検出装置であって、前記複
数の電池モジュールの各々の端子間の電圧を検出する電
圧検出手段と、前記複数の電池モジュールの各々に流れ
る電流を検出する電流検出手段と、前記電圧検出手段に
より検出された各電圧と前記電流検出手段により検出さ
れた各電流とに基づいて前記複数の電池モジュールの各
々の温度を推定する温度推定手段と、前記複数の電池モ
ジュールの少なくとも一つの温度を検出する温度検出手
段と、該検出された温度と該温度を検出した電池モジュ
ールについて検出された電圧および電流とに基づいて前
記温度推定手段により推定された各々の温度を補正する
補正手段とを備えることを要旨とする。
A temperature detecting device for an assembled battery according to the present invention is a temperature detecting device for detecting the temperature of each of a plurality of battery modules of an assembled battery comprising a plurality of battery modules having at least one battery connected in series or parallel. Wherein voltage detection means for detecting a voltage between respective terminals of the plurality of battery modules, current detection means for detecting a current flowing through each of the plurality of battery modules, and the voltage detection means Temperature estimating means for estimating the temperature of each of the plurality of battery modules based on each voltage and each current detected by the current detecting means, and temperature detecting means for detecting at least one temperature of the plurality of battery modules The temperature estimating means based on the detected temperature and the voltage and current detected for the battery module that detected the temperature. Ri and summarized in that and a correcting means for correcting the temperature of each estimated.

【0008】この本発明の組電池の温度検出装置では、
各電池モジュールの端子間の電圧と電流とに基づいて推
定された温度を温度検出手段によって検出された温度に
基づいて補正するから、電圧や電流から推定される温度
が使用の態様などにより実際の温度と異なるものになっ
ても、より正確な温度を検出値として得ることができ
る。しかも、温度検出手段は少なくとも一つの電池モジ
ュールに設置すればよいから、制御コンピュータの回路
規模の増大を抑えることができると共にコストも低く抑
えることができる。なお、「電池モジュール」には、複
数の電池を直列または並列に接続してなるものを含むほ
か、単一の電池のみからなるものも含まれる。
In the battery pack temperature detecting device of the present invention,
Since the temperature estimated based on the voltage and the current between the terminals of each battery module is corrected based on the temperature detected by the temperature detecting means, the temperature estimated from the voltage or the current may be changed depending on the use mode. Even if the temperature differs from the temperature, a more accurate temperature can be obtained as a detection value. In addition, since the temperature detecting means only needs to be installed in at least one battery module, it is possible to suppress an increase in the circuit scale of the control computer and to reduce the cost. Note that the “battery module” includes a battery module in which a plurality of batteries are connected in series or in parallel, and a battery module including only a single battery.

【0009】こうした本発明の組電池の温度検出装置に
おいて、前記温度推定手段は、前記検出された各々の電
圧と前記検出された各々の電流とに基づいて前記複数の
電池モジュールの各々の内部抵抗を演算する第1内部抵
抗演算手段と、前記検出された各々の電圧と前記検出さ
れた各々の電流とに基づいて前記複数の電池モジュール
の各々の残存容量を演算する残存容量演算手段とを備
え、前記第1内部抵抗演算手段により演算された各々の
内部抵抗と前記残存容量演算手段により演算された各々
の残存容量とに基づいて各々の温度を推定する手段であ
るものとすることもできる。
In the temperature detecting device for an assembled battery according to the present invention, the temperature estimating means includes an internal resistance of each of the plurality of battery modules based on the detected voltage and the detected current. And a remaining capacity calculating means for calculating the remaining capacity of each of the plurality of battery modules based on each of the detected voltages and each of the detected currents. And a means for estimating each temperature based on each internal resistance calculated by the first internal resistance calculating means and each remaining capacity calculated by the remaining capacity calculating means.

【0010】この態様の本発明の組電池の温度検出装置
において、前記補正手段は、前記温度検出手段により検
出された温度に基づいて該温度を検出した電池モジュー
ルの内部抵抗を演算する第2内部抵抗演算手段と、該演
算された内部抵抗と前記第1内部抵抗演算手段により演
算された対応する電池モジュールの内部抵抗とに基づい
て補正値を設定する補正値設定手段とを備え、該設定さ
れた補正値を用いて前記第1内部抵抗演算手段により演
算された各々の内部抵抗を補正することにより前記各々
の温度を補正する手段であるものとすることもできる。
In the battery pack temperature detecting apparatus according to the aspect of the present invention, the correcting means calculates an internal resistance of the battery module which has detected the temperature based on the temperature detected by the temperature detecting means. Resistance calculating means, and correction value setting means for setting a correction value based on the calculated internal resistance and the internal resistance of the corresponding battery module calculated by the first internal resistance calculating means. It is also possible to provide a means for correcting the respective temperatures by correcting the respective internal resistances calculated by the first internal resistance calculating means using the corrected values.

【0011】本発明の組電池の温度検出方法は、少なく
とも一つの電池を有する電池モジュールを複数直列また
は並列に接続してなる組電池の該複数の電池モジュール
の各々の温度を検出する温度検出方法であって、前記複
数の電池モジュールの各々の端子間の電圧と該複数の電
池モジュールの各々に流れる電流とに基づいて該複数の
電池モジュールの各々の温度を推定し、前記複数の電池
モジュールの少なくとも一つの温度を検出し、該検出さ
れた温度と該温度を検出した電池モジュールについて検
出された電圧と電流とに基づいて前記推定された各々の
温度を補正することにより前記複数の電池モジュールの
各々の温度を検出することを要旨とする。
A temperature detecting method for a battery pack according to the present invention comprises the steps of: detecting a temperature of each of a plurality of battery modules having at least one battery connected in series or in parallel; And estimating a temperature of each of the plurality of battery modules based on a voltage between terminals of each of the plurality of battery modules and a current flowing through each of the plurality of battery modules. Detecting at least one temperature and correcting each of the estimated temperatures based on the detected temperature and the detected voltage and current for the battery module that has detected the temperature, thereby detecting the plurality of battery modules. The gist is to detect each temperature.

【0012】この本発明の組電池の温度検出方法は、各
電池モジュールの端子間の電圧と電流とに基づいて推定
された温度を検出された温度に基づいて補正するから、
電圧や電流から推定される温度が使用の態様などにより
実際の温度と異なるものになっても、より正確な温度を
検出値として得ることができる。しかも、温度を検出す
る電池モジュールは少なくとも一つあればよいから、制
御コンピュータの回路規模の増大を抑えることができる
と共にコストも低く抑えることができる。なお、「電池
モジュール」の用語については前述の本発明の組電池の
温度検出装置と同様である。
According to the battery pack temperature detecting method of the present invention, the temperature estimated based on the voltage and current between the terminals of each battery module is corrected based on the detected temperature.
Even if the temperature estimated from the voltage or the current becomes different from the actual temperature depending on the use mode, a more accurate temperature can be obtained as the detected value. In addition, since it is sufficient that at least one battery module detects the temperature, it is possible to suppress an increase in the circuit scale of the control computer and to reduce the cost. The term “battery module” is the same as the above-described battery pack temperature detecting device of the present invention.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の形態を実施
例を用いて説明する。図1は、本発明の一実施例である
組電池の温度検出装置20の構成の概略を示す構成図で
ある。実施例の組電池の温度検出装置20は、図示する
ように、複数の電池モジュール1−nを直列または並列
に接続してなる組電池22と、組電池22の各電池モジ
ュール1−nの温度を検出する電池制御ユニット30と
を備える。
Next, embodiments of the present invention will be described with reference to examples. FIG. 1 is a configuration diagram schematically showing the configuration of a battery pack temperature detecting device 20 according to one embodiment of the present invention. As shown, the battery pack temperature detecting device 20 of the embodiment includes a battery pack 22 formed by connecting a plurality of battery modules 1-n in series or in parallel, and a temperature of each battery module 1-n of the battery pack 22. And a battery control unit 30 for detecting the

【0014】組電池22を構成する複数の電池モジュー
ル1−nは、充放電可能な少なくとも一つの二次電池を
直列または並列に接続して構成されている。組電池22
の電池モジュール1には、その温度を検出する温度セン
サ24が取り付けられており、その検出値は電池制御ユ
ニット30に入力されるようになっている。
The plurality of battery modules 1-n constituting the assembled battery 22 are configured by connecting at least one chargeable / dischargeable secondary battery in series or parallel. Battery pack 22
The battery module 1 is provided with a temperature sensor 24 for detecting the temperature, and the detected value is input to the battery control unit 30.

【0015】電池制御ユニット30は、組電池22の各
電池モジュール1〜nの端子間電圧V1−nを測定する
と共に組電池22に流れる電流Iを測定する各ブロック
電圧・電流測定装置32と、この各ブロック電圧・電流
測定装置32により測定された電圧V1−nと電流Iと
により各ブロック(各電池モジュール)の内部抵抗R1
−nと残存容量SOCとを演算する各ブロック内部抵抗
SOC演算装置34と、この各ブロック内部抵抗SOC
演算装置34により演算された内部抵抗R1−nを温度
センサ24により検出された電池モジュール1の温度T
s1に基づいて必要に応じて補正すると共に補正前の内
部抵抗R1−nや補正後の内部抵抗R1−n’,残存容
量SOCに基づいて各電池モジュール1〜nの温度T1
−nを推定する電池温度推定演算装置36とを備える。
The battery control unit 30 includes a block voltage / current measuring device 32 for measuring the terminal voltage V1-n of each of the battery modules 1 to n of the battery pack 22 and the current I flowing through the battery pack 22; The internal resistance R1 of each block (each battery module) is calculated based on the voltage V1-n and the current I measured by each block voltage / current measuring device 32.
−n and the remaining capacity SOC, each block internal resistance SOC calculating device 34, and each block internal resistance SOC
The internal resistance R1-n calculated by the calculating device 34 is determined by the temperature T of the battery module 1 detected by the temperature sensor 24.
Based on the internal resistance R1-n before correction, the internal resistance R1-n 'after correction, and the remaining capacity SOC, the temperature T1 of each of the battery modules 1-n is corrected as needed based on s1.
-N for estimating -n.

【0016】各ブロック電圧・電流測定装置32は、具
体的には、組電池22を流れる電流Iを検出する電流セ
ンサと、各電池モジュール1−nの出力端子に接続され
た複数の電圧センサとから構成されている。
Each block voltage / current measuring device 32 includes, specifically, a current sensor for detecting a current I flowing through the battery pack 22, and a plurality of voltage sensors connected to the output terminals of each battery module 1-n. It is composed of

【0017】各ブロック内部抵抗SOC演算装置34と
電池温度推定演算装置36は、具体的には、ハード構成
としてはCPUを中心として構成されたマイクロコンピ
ュータにより構成されており、マイクロコンピュータが
内部に備えるROMに予め記憶された処理プログラムと
ハード構成とが一体となって機能する。
Each block internal resistance SOC calculating device 34 and the battery temperature estimating calculating device 36 are specifically constituted by a microcomputer mainly composed of a CPU as a hardware configuration, and are provided inside the microcomputer. The processing program stored in the ROM in advance and the hardware configuration function integrally.

【0018】次に、こうして構成された実施例の組電池
の温度検出装置20の動作について説明する。図2は、
各ブロック内部抵抗SOC演算装置34や電池温度推定
演算装置36として機能するマイクロコンピュータによ
り実行される温度検出処理ルーチンの一例を示すフロー
チャートである。このルーチンは、所定時間毎(例え
ば、5分毎)に繰り返し実行される。
Next, the operation of the battery pack temperature detecting device 20 of the embodiment constructed as described above will be described. FIG.
4 is a flowchart illustrating an example of a temperature detection processing routine executed by a microcomputer that functions as each block internal resistance SOC calculation device and a battery temperature estimation calculation device. This routine is repeatedly executed every predetermined time (for example, every 5 minutes).

【0019】この温度検出処理ルーチンが実行される
と、所定時間(例えば、2分)に亘って各ブロック電圧
・電流測定装置32により検出される各電池モジュール
1−nの電圧V1−nと組電池22に流れる電流Iとを
読み込む処理を実行する(ステップS100)。そし
て、読み込んだ電圧V1−nと電流Iとに基づいて各電
池モジュール1−nの内部抵抗R1−nを演算する処理
を行なう(ステップS102)。内部抵抗R1−nは、
所定時間に亘って検出した電圧V1−nと電流Iとから
電圧電流特性を直線近似し、その傾きを求めることによ
り演算することができる。所定時間に亘って検出した電
池モジュールの電圧Vと電流Iとにより電池モジュール
の内部抵抗Rを求める様子の一例を図3に示す。
When this temperature detection processing routine is executed, the voltage V1-n of each battery module 1-n detected by each block voltage / current measuring device 32 for a predetermined time (for example, two minutes) is combined with the voltage V1-n. A process of reading the current I flowing through the battery 22 is executed (step S100). Then, a process of calculating the internal resistance R1-n of each battery module 1-n based on the read voltage V1-n and the current I is performed (step S102). The internal resistance R1-n is
The voltage-current characteristics can be calculated by linearly approximating the voltage-current characteristics from the voltage V1-n and the current I detected over a predetermined time, and determining the slope thereof. FIG. 3 shows an example of obtaining the internal resistance R of the battery module based on the voltage V and the current I of the battery module detected over a predetermined time.

【0020】次に、残存容量SOCを読み込む処理を実
行する(ステップS104)。実施例では、所定時間毎
に繰り返し実行される図示しないルーチンにより、組電
池22を流れる電流Iを積算することにより残存容量S
OCを演算し、その値をマイクロコンピュータのRAM
の所定アドレスに書き込むものとしたから、RAMの所
定アドレスをアクセスすることにより残存容量SOCを
読み込む処理を行なうことができる。そして、残存容量
SOCと内部抵抗R1−nとから各電池モジュール1−
nの温度T1−nを導出する処理を実行する(ステップ
S106)。この処理は、電池モジュールの内部抵抗と
残存容量SOCと温度との関係を実験などにより求めて
特性マップとしてマイクロコンピュータが内部に備える
ROMに予め記憶しておき、残存容量SOCと内部抵抗
R1−nをこの特性マップに適用して電池モジュール1
−nの温度T1−nを導出することにより行なうことが
できる。この特性マップの一例を用いて電池温度を求め
る様子の一例を図4に示す。図4では、まず残存容量S
OCの値から適用する特性マップを決定し、決定した特
性マップに対して内部抵抗を与えることにより電池温度
を得ている。
Next, a process of reading the remaining capacity SOC is executed (step S104). In the embodiment, the remaining capacity S is calculated by integrating the current I flowing through the battery pack 22 by a routine (not shown) repeatedly executed at predetermined time intervals.
Calculate OC and store the value in RAM of microcomputer
Of the remaining capacity SOC can be read by accessing a predetermined address of the RAM. Then, based on the remaining capacity SOC and the internal resistance R1-n, each battery module 1-
A process for deriving the temperature T1-n of n is executed (step S106). In this process, the relationship between the internal resistance of the battery module, the remaining capacity SOC, and the temperature is obtained by an experiment or the like, and is stored in advance in a ROM provided inside the microcomputer as a characteristic map, and the remaining capacity SOC and the internal resistance R1-n Is applied to this characteristic map, and the battery module 1
This can be done by deriving the temperature T1-n of -n. FIG. 4 shows an example of how the battery temperature is determined using this example of the characteristic map. In FIG. 4, first, the remaining capacity S
A characteristic map to be applied is determined from the OC value, and an internal resistance is given to the determined characteristic map to obtain a battery temperature.

【0021】次に、温度センサ24により検出される電
池モジュール1の温度Ts1を読み込む処理を行ない
(ステップS108)、読み込んだ温度Ts1と導出し
た電池モジュール1の温度T1とを比較する処理を行な
う(ステップS110)。検出された温度Ts1が導出
された温度T1に等しいときには、電池は劣化していな
いと判断し、ステップS106で導出した電池モジュー
ル1−nの温度T1−nを検出値として本ルーチンを終
了する。
Next, a process of reading the temperature Ts1 of the battery module 1 detected by the temperature sensor 24 is performed (step S108), and a process of comparing the read temperature Ts1 with the derived temperature T1 of the battery module 1 is performed (step S108). Step S110). When the detected temperature Ts1 is equal to the derived temperature T1, it is determined that the battery has not deteriorated, and the routine ends with the temperature T1-n of the battery module 1-n derived in step S106 as a detection value.

【0022】一方、検出した温度Ts1と導出した温度
T1とが等しくないときには、電池に劣化が生じている
と判定し、検出した温度Ts1と残存容量SOCとを前
述の特性マップに適用して電池モジュール1の内部抵抗
R1’を導出する処理を行なう(ステップS112)。
続いて、導出した内部抵抗R1’をステップS102で
演算した内部抵抗R1で割って補正係数kを計算する処
理を行なう(ステップS114)。補正係数kを計算す
る様子を図5に例示する。こうした補正係数kを計算す
ると、計算した補正係数kをステップS102で演算し
た各内部抵抗R1−nに乗じて内部抵抗を補正する処理
を行なう(ステップS116)。そして、補正後の内部
抵抗R1−n’と残存容量SOCとを特性マップ(図4
参照)に適用して各電池モジュール1−nの温度T1−
nを導出する処理を行ない(ステップS118)、この
導出した温度T1−nを検出値として本ルーチンを終了
する。
On the other hand, when the detected temperature Ts1 and the derived temperature T1 are not equal, it is determined that the battery has deteriorated, and the detected temperature Ts1 and the remaining capacity SOC are applied to the above-described characteristic map to obtain the battery. A process for deriving the internal resistance R1 'of the module 1 is performed (Step S112).
Subsequently, a process of calculating the correction coefficient k by dividing the derived internal resistance R1 ′ by the internal resistance R1 calculated in step S102 is performed (step S114). The manner in which the correction coefficient k is calculated is illustrated in FIG. After calculating such a correction coefficient k, a process of multiplying the calculated correction coefficient k by each of the internal resistances R1-n calculated in step S102 to correct the internal resistance is performed (step S116). Then, the corrected internal resistance R1-n 'and the remaining capacity SOC are mapped into a characteristic map (FIG. 4).
) Of each battery module 1-n.
A process for deriving n is performed (step S118), and the derived temperature T1-n is set as a detection value, and this routine ends.

【0023】以上説明した実施例の組電池の温度検出装
置20によれば、検出した電圧V1−nと電流Iとに基
づいて演算される内部抵抗R1−nに基づいて各電池モ
ジュール1−nの温度T1−nを求めることができる。
しかも、電池モジュール1の温度を温度センサ24によ
り検出し、検出した温度Ts1と導出した温度T1とか
ら電池の劣化を判断し、電池が劣化しているときには、
検出した温度Ts1に基づいて劣化を補正して各電池モ
ジュール1−nの温度T1−nを求めることができる。
この結果、より正確に各電池モジュール1−nの温度T
1−nを検出することができる。
According to the battery pack temperature detecting device 20 of the embodiment described above, each battery module 1-n is calculated based on the internal resistance R1-n calculated based on the detected voltage V1-n and the current I. Can be obtained.
In addition, the temperature of the battery module 1 is detected by the temperature sensor 24, and the deterioration of the battery is determined from the detected temperature Ts1 and the derived temperature T1, and when the battery is deteriorated,
The temperature T1-n of each battery module 1-n can be obtained by correcting the deterioration based on the detected temperature Ts1.
As a result, the temperature T of each battery module 1-n can be more accurately determined.
1-n can be detected.

【0024】また、実施例の組電池の温度検出装置20
によれば、電池モジュール1にだけ温度センサ24を取
り付けるものとしたから、各電池モジュール1−nに温
度センサを取り付ける構成に比して、簡易な構成とする
ことができ、温度を検出するためのコストを抑制するこ
とができる。
The battery pack temperature detecting device 20 of the embodiment
According to the above, since the temperature sensor 24 is attached only to the battery module 1, the configuration can be simplified compared with the configuration in which the temperature sensor is attached to each battery module 1-n, and the temperature can be detected. Cost can be suppressed.

【0025】実施例の組電池の温度検出装置20では、
残存容量SOCは別のルーチンにより演算するものとし
たが、同一のルーチンにより演算するものとしてもよ
い。
In the battery pack temperature detecting device 20 of the embodiment,
The remaining capacity SOC is calculated by another routine, but may be calculated by the same routine.

【0026】以上、本発明の実施の形態について実施例
を用いて説明したが、本発明はこうした実施例に何等限
定されるものではなく、本発明の要旨を逸脱しない範囲
内において、種々なる形態で実施し得ることは勿論であ
る。
The embodiments of the present invention have been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various embodiments may be made without departing from the scope of the present invention. Of course, it can be carried out.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例である組電池の温度検出装
置20の構成の概略を示す構成図である。
FIG. 1 is a configuration diagram schematically showing a configuration of a battery pack temperature detecting device 20 according to an embodiment of the present invention.

【図2】 各ブロック内部抵抗SOC演算装置34や電
池温度推定演算装置36として機能するマイクロコンピ
ュータにより実行される温度検出処理ルーチンの一例を
示すフローチャートである。
FIG. 2 is a flowchart showing an example of a temperature detection processing routine executed by a microcomputer functioning as each block internal resistance SOC calculating device and a battery temperature estimating calculating device.

【図3】 所定時間に亘って検出した電池モジュールの
電圧Vと電流Iとにより電池モジュールの内部抵抗Rを
求める様子の一例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a state in which an internal resistance R of a battery module is obtained from a voltage V and a current I of the battery module detected over a predetermined time.

【図4】 電池モジュールの内部抵抗と残存容量SOC
と温度との関係の一例を示す特性マップを用いて温度を
導出する様子を示す説明図である。
FIG. 4 shows the internal resistance and the remaining capacity SOC of the battery module.
FIG. 9 is an explanatory diagram showing how to derive a temperature using a characteristic map showing an example of the relationship between the temperature and the temperature.

【図5】 補正係数kを計算する様子の一例を示す説明
図である。
FIG. 5 is an explanatory diagram showing an example of how a correction coefficient k is calculated.

【符号の説明】[Explanation of symbols]

20 組電池の温度検出装置、22 組電池、24 温
度センサ、30 電池制御ユニット、32 各ブロック
電圧・電流測定装置、34 各ブロック内部抵抗SOC
演算装置、36 電池温度推定演算装置。
Reference Signs List 20 temperature detector for assembled battery, 22 assembled battery, 24 temperature sensor, 30 battery control unit, 32 voltage / current measuring device for each block, 34 internal resistance SOC for each block
Calculation device, 36 Battery temperature estimation calculation device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 利明 静岡県湖西市境宿555番地 パナソニッ ク・イーブイ・エナジー株式会社内 Fターム(参考) 2G016 CB06 CB12 CB21 CB31 CC01 CC03 CC04 CC27 CC28 5G003 BA02 EA05 EA09 GC05 5H030 AA06 AS06 FF22 FF42 FF44 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Toshiaki Nakanishi 555 Sakaijuku, Kosai-shi, Shizuoka Prefecture F-term in Panasonic Eve Energy Co., Ltd. 2G016 CB06 CB12 CB21 CB31 CC01 CC03 CC04 CC27 CC28 5G003 BA02 EA05 EA09 GC05 5H030 AA06 AS06 FF22 FF42 FF44

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの電池を有する電池モジ
ュールを複数直列または並列に接続してなる組電池の該
複数の電池モジュールの各々の温度を検出する温度検出
装置であって、 前記複数の電池モジュールの各々の端子間の電圧を検出
する電圧検出手段と、 前記複数の電池モジュールの各々に流れる電流を検出す
る電流検出手段と、 前記電圧検出手段により検出された各電圧と前記電流検
出手段により検出された各電流とに基づいて前記複数の
電池モジュールの各々の温度を推定する温度推定手段
と、 前記複数の電池モジュールの少なくとも一つの温度を検
出する温度検出手段と、 該検出された温度と該温度を検出した電池モジュールに
ついて検出された電圧および電流とに基づいて前記温度
推定手段により推定された各々の温度を補正する補正手
段とを備える温度検出装置。
1. A temperature detecting device for detecting a temperature of each of a plurality of battery modules of a battery pack comprising a plurality of battery modules having at least one battery connected in series or in parallel, wherein the plurality of battery modules are provided. Voltage detecting means for detecting a voltage between respective terminals of the plurality of battery modules; current detecting means for detecting a current flowing through each of the plurality of battery modules; each voltage detected by the voltage detecting means and detected by the current detecting means Temperature estimating means for estimating the temperature of each of the plurality of battery modules based on each of the detected currents; temperature detecting means for detecting the temperature of at least one of the plurality of battery modules; The respective temperatures estimated by the temperature estimating means are supplemented based on the voltage and current detected for the battery module whose temperature has been detected. Temperature detection device and a correcting means for.
【請求項2】 前記温度推定手段は、前記検出された各
々の電圧と前記検出された各々の電流とに基づいて前記
複数の電池モジュールの各々の内部抵抗を演算する第1
内部抵抗演算手段と、前記検出された各々の電圧と前記
検出された各々の電流とに基づいて前記複数の電池モジ
ュールの各々の残存容量を演算する残存容量演算手段と
を備え、前記第1内部抵抗演算手段により演算された各
々の内部抵抗と前記残存容量演算手段により演算された
各々の残存容量とに基づいて各々の温度を推定する手段
である請求項1記載の温度検出装置。
2. The temperature estimating means calculates a first internal resistance of each of the plurality of battery modules based on each of the detected voltages and each of the detected currents.
An internal resistance calculating means, and a remaining capacity calculating means for calculating a remaining capacity of each of the plurality of battery modules based on each of the detected voltages and each of the detected currents; 2. The temperature detecting device according to claim 1, wherein each temperature is estimated based on each internal resistance calculated by the resistance calculating means and each remaining capacity calculated by the remaining capacity calculating means.
【請求項3】 前記補正手段は、前記温度検出手段によ
り検出された温度に基づいて該温度を検出した電池モジ
ュールの内部抵抗を演算する第2内部抵抗演算手段と、
該演算された内部抵抗と前記第1内部抵抗演算手段によ
り演算された対応する電池モジュールの内部抵抗とに基
づいて補正値を設定する補正値設定手段とを備え、該設
定された補正値を用いて前記第1内部抵抗演算手段によ
り演算された各々の内部抵抗を補正することにより前記
各々の温度を補正する手段である請求項2記載の温度検
出装置。
3. The second internal resistance calculating means for calculating, based on the temperature detected by the temperature detecting means, the internal resistance of the battery module detecting the temperature,
Correction value setting means for setting a correction value based on the calculated internal resistance and the internal resistance of the corresponding battery module calculated by the first internal resistance calculation means, and using the set correction value. 3. The temperature detecting device according to claim 2, wherein the temperature is corrected by correcting each of the internal resistances calculated by the first internal resistance calculating means.
【請求項4】 少なくとも一つの電池を有する電池モジ
ュールを複数直列または並列に接続してなる組電池の該
複数の電池モジュールの各々の温度を検出する温度検出
方法であって、 前記複数の電池モジュールの各々の端子間の電圧と該複
数の電池モジュールの各々に流れる電流とに基づいて該
複数の電池モジュールの各々の温度を推定し、 前記複数の電池モジュールの少なくとも一つの温度を検
出し、 該検出された温度と該温度を検出した電池モジュールに
ついて検出された電圧と電流とに基づいて前記推定され
た各々の温度を補正することにより前記複数の電池モジ
ュールの各々の温度を検出する温度検出方法。
4. A temperature detection method for detecting a temperature of each of a plurality of battery modules of an assembled battery in which a plurality of battery modules each having at least one battery are connected in series or in parallel, wherein the plurality of battery modules are provided. Estimating the temperature of each of the plurality of battery modules based on the voltage between each of the terminals and the current flowing through each of the plurality of battery modules, detecting at least one temperature of the plurality of battery modules, A temperature detection method for detecting each temperature of the plurality of battery modules by correcting each of the estimated temperatures based on the detected temperature and the voltage and current detected for the battery module that has detected the temperature. .
JP25819499A 1999-09-13 1999-09-13 Battery detection device and temperature detection method Expired - Fee Related JP4383597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25819499A JP4383597B2 (en) 1999-09-13 1999-09-13 Battery detection device and temperature detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25819499A JP4383597B2 (en) 1999-09-13 1999-09-13 Battery detection device and temperature detection method

Publications (2)

Publication Number Publication Date
JP2001085071A true JP2001085071A (en) 2001-03-30
JP4383597B2 JP4383597B2 (en) 2009-12-16

Family

ID=17316826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25819499A Expired - Fee Related JP4383597B2 (en) 1999-09-13 1999-09-13 Battery detection device and temperature detection method

Country Status (1)

Country Link
JP (1) JP4383597B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112944A (en) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd Battery temperature detector
US7085661B2 (en) 2002-04-10 2006-08-01 Hitachi, Ltd. State detecting system and device employing the same
EP1701175A2 (en) 2005-03-07 2006-09-13 Hitachi Vehicle Energy, Ltd. Power supply with status detector and initial characteristic determination means
JP2006338944A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Battery control device
JP2008235155A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Power storage device
JP2009099375A (en) * 2007-10-17 2009-05-07 Sony Corp Battery pack and temperature estimation method
JP2010108750A (en) * 2008-10-30 2010-05-13 Toyota Motor Corp Input and output control device of battery pack
JP2010135075A (en) * 2008-12-02 2010-06-17 Calsonic Kansei Corp Method and device for estimating temperature of battery pack
WO2011045853A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Battery control device and motor drive system
JP2012223061A (en) * 2011-04-14 2012-11-12 Toyota Motor Corp Power supply system and vehicle incorporating the same and power supply system control method
US8521456B2 (en) 2010-10-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha State estimation method and state estimation apparatus of electric storage element
JP2014026752A (en) * 2012-07-25 2014-02-06 Denso Corp Cell temperature calculation device
CN103869254A (en) * 2014-02-20 2014-06-18 北京九高科技有限公司 On-line diagnosis self-adaptive predictive control-based lithium battery pack SOC (state of charge) measuring method
WO2014108971A1 (en) 2013-01-11 2014-07-17 アルプス・グリーンデバイス株式会社 Method for measuring temperature of electrical storage device
JP2016065831A (en) * 2014-09-25 2016-04-28 プライムアースEvエナジー株式会社 Battery temperature estimating method and battery temperature estimating device
JP2018129302A (en) * 2017-02-10 2018-08-16 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Method and device for monitoring temperature of battery system
CN111352036A (en) * 2018-12-20 2020-06-30 大陆汽车有限责任公司 Battery sensor and method for operating a battery sensor
JP2021034320A (en) * 2019-08-29 2021-03-01 株式会社日立製作所 Temperature estimation method of secondary battery module, deterioration state estimation method, and life prediction method, temperature estimation device of secondary battery module, deterioration state estimation device, life prediction device, and charging device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406389B2 (en) 2002-04-10 2008-07-29 Hitachi, Ltd. State detecting system and device employing the same
US7085661B2 (en) 2002-04-10 2006-08-01 Hitachi, Ltd. State detecting system and device employing the same
EP2267469A1 (en) 2002-04-10 2010-12-29 Hitachi, Ltd. Apparatus and method for detecting the state of a battery
JP2006112944A (en) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd Battery temperature detector
US8054045B2 (en) 2005-03-07 2011-11-08 Hitachi Vehicle Energy, Ltd. Status detector for power supply, power supply, and initial characteristic extracting device for use with power supply
EP1701175A2 (en) 2005-03-07 2006-09-13 Hitachi Vehicle Energy, Ltd. Power supply with status detector and initial characteristic determination means
US7622894B2 (en) 2005-03-07 2009-11-24 Hitachi Vehicle Energy, Ltd. Status detector for power supply, power supply, and initial characteristic extracting device for use with power supply
JP2006338944A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Battery control device
JP2008235155A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Power storage device
JP2009099375A (en) * 2007-10-17 2009-05-07 Sony Corp Battery pack and temperature estimation method
JP2010108750A (en) * 2008-10-30 2010-05-13 Toyota Motor Corp Input and output control device of battery pack
JP2010135075A (en) * 2008-12-02 2010-06-17 Calsonic Kansei Corp Method and device for estimating temperature of battery pack
WO2011045853A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Battery control device and motor drive system
CN102576914A (en) * 2009-10-14 2012-07-11 株式会社日立制作所 Battery control device and motor drive system
US8947023B2 (en) 2009-10-14 2015-02-03 Hitachi, Ltd. Battery control device and motor drive system
JP5470404B2 (en) * 2009-10-14 2014-04-16 株式会社日立製作所 Battery control device and motor drive system
US8521456B2 (en) 2010-10-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha State estimation method and state estimation apparatus of electric storage element
JP2012223061A (en) * 2011-04-14 2012-11-12 Toyota Motor Corp Power supply system and vehicle incorporating the same and power supply system control method
JP2014026752A (en) * 2012-07-25 2014-02-06 Denso Corp Cell temperature calculation device
WO2014108971A1 (en) 2013-01-11 2014-07-17 アルプス・グリーンデバイス株式会社 Method for measuring temperature of electrical storage device
CN103869254A (en) * 2014-02-20 2014-06-18 北京九高科技有限公司 On-line diagnosis self-adaptive predictive control-based lithium battery pack SOC (state of charge) measuring method
CN103869254B (en) * 2014-02-20 2018-04-17 北京九高科技有限公司 Lithium battery group SOC assay methods based on the control of inline diagnosis adaptive prediction
JP2016065831A (en) * 2014-09-25 2016-04-28 プライムアースEvエナジー株式会社 Battery temperature estimating method and battery temperature estimating device
CN108414941A (en) * 2017-02-10 2018-08-17 保时捷股份公司 Method and apparatus for the temperature for monitoring battery system
US20180233786A1 (en) * 2017-02-10 2018-08-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and device for monitoring a temperature of a battery system
JP2018129302A (en) * 2017-02-10 2018-08-16 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Method and device for monitoring temperature of battery system
KR20180092863A (en) * 2017-02-10 2018-08-20 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Method and device for monitoring a temperature of a battery system
KR101992047B1 (en) * 2017-02-10 2019-06-21 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Method and device for monitoring a temperature of a battery system
US10700391B2 (en) 2017-02-10 2020-06-30 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Method and device for monitoring a temperature of a battery system
CN111352036A (en) * 2018-12-20 2020-06-30 大陆汽车有限责任公司 Battery sensor and method for operating a battery sensor
JP2021034320A (en) * 2019-08-29 2021-03-01 株式会社日立製作所 Temperature estimation method of secondary battery module, deterioration state estimation method, and life prediction method, temperature estimation device of secondary battery module, deterioration state estimation device, life prediction device, and charging device
WO2021039018A1 (en) * 2019-08-29 2021-03-04 株式会社日立製作所 Temperature estimation method, deterioration state estimation method, and lifespan prediction method for secondary battery module, temperature estimation device, deterioration state estimation device, and lifespan prediction device for secondary battery module, and charging device

Also Published As

Publication number Publication date
JP4383597B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP2001085071A (en) Battery temperature sensing device and method for sensing temperature
EP1906193B1 (en) Method and device for detecting charged state of battery
EP1081499B1 (en) Means for estimating charged state of battery and method for estimating degraded state of battery
US8332169B2 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
JP4092904B2 (en) Battery status judgment device
US7630842B2 (en) Secondary battery charge/discharge electricity amount estimation method and device, secondary battery polarization voltage estimation method and device and secondary battery remaining capacity estimation method and device
US10310025B2 (en) Control device and control method for electric vehicle
US10634728B2 (en) Method and apparatus for detecting state of battery
US20070299620A1 (en) Method for estimating state of charge of battery, battery management system using same, and driving method thereof
US10261136B2 (en) Battery degradation degree estimation device and battery degradation degree estimation method
JP3752888B2 (en) Battery state detection device
US10048319B2 (en) Estimating of the state of charge of a battery
KR20210050990A (en) Soc estimation method and baterry system using the same
US20230408587A1 (en) Battery capacity estimation method, and battery module and electronic product using the same
JP2002008732A (en) Voltage compensating device for battery assembly in electric vehicle
US11422196B2 (en) Device for estimating state of charge of battery
JP5412891B2 (en) Secondary battery control device
JP4802414B2 (en) Battery remaining capacity meter
JP2004014462A (en) Remaining capacity measurement device of secondary battery
JPH0933622A (en) Battery residual-capacity meter
JP7499591B2 (en) BATTERY STATE ESTIMATION DEVICE AND BATTERY STATE ESTIMATION METHOD
JPH03180784A (en) Calculator for residual capacity of battery
TWI609191B (en) Battery health status estimating device and method
JP3073041B2 (en) Backup battery life detection method and device
JP4632963B2 (en) Voltage measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees