Nothing Special   »   [go: up one dir, main page]

JP2000314667A - Method and device for evaluating sitting posture compatibility - Google Patents

Method and device for evaluating sitting posture compatibility

Info

Publication number
JP2000314667A
JP2000314667A JP11158438A JP15843899A JP2000314667A JP 2000314667 A JP2000314667 A JP 2000314667A JP 11158438 A JP11158438 A JP 11158438A JP 15843899 A JP15843899 A JP 15843899A JP 2000314667 A JP2000314667 A JP 2000314667A
Authority
JP
Japan
Prior art keywords
evaluation
suitability
sitting
sitting posture
sensory evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11158438A
Other languages
Japanese (ja)
Inventor
Akinari Hirao
章成 平尾
Shunsuke Hijikata
俊介 土方
Shinko Egami
真弘 江上
Yoichi Kishi
陽一 貴志
Toshimichi Hanai
利通 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11158438A priority Critical patent/JP2000314667A/en
Publication of JP2000314667A publication Critical patent/JP2000314667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Seats For Vehicles (AREA)
  • Passenger Equipment (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate the compatibility of sitting person with an sitting object after long time work with high reliability and in a short time by evaluating compatibility based on the back shape of the sitting person on the object and body pressure distribution on the sitting object during sitting. SOLUTION: A back shape-measuring device 11 consists of a measuring part where many linear potentiometers are arranged in vertical direction to a sensor frame with specific intervals and measures the back shape of the sitting person. On the other hand, a body pressure sensor mat 13 is composed of a measuring part where load cells are arranged with specific intervals on the sitting mat of sitting plane of a chair and back of the chair and measures the body pressure distribution during sitting. Then, a scanner 15 scans in turn the measuring part of the back shape-measuring device 11 and the body sensor mat 13 by the control of a scanner controller 17 and takes in data from the sensors corresponding to each part of the person. A personal computer 19 evaluates compatibility of the chair with the sitting person based on the taken-in back shape data and body pressure sensor data and indicates on the screen of a monitor 19a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、椅子等の着座対象
への座り心地等を評価する座位姿勢適合性評価方法、座
位姿勢適合性評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sitting posture suitability evaluation method and a sitting posture suitability evaluation apparatus for evaluating the comfort of sitting on a chair or the like.

【従来の技術】人間が椅子に着座してオフィスワークや
運転等の作業をした場合、その椅子に対して「心地良
い」「疲れ易い」等といった感覚を生じる。これは椅子
と身体との適合性により決定される身体感覚を判断して
認識しているためである。この椅子と身体との適合度の
高い椅子を設計及び選択することは人間に対して的確な
作業空間を提供することにもつながる。従来の評価方法
及び評価装置としては、例えば特開平10−27457
7号公報に記載された図21に示されるものがある。こ
の評価方法及び評価装置では、椅子1の椅子座面3上に
圧力センサアレイ5を備え、該圧力センサアレイ5はド
ライバ7を介してコンピュータ9の入出力ソートに接続
されている。圧力センサアレイ5の各圧力センサから出
力された接触圧を表す信号は、ドライバ7によってデジ
タルデータに変換され、コンピュータ9に出力されるよ
うになっている。従って、椅子座面3上の接触圧に基づ
いて所定の評価を行なうことができる。
2. Description of the Related Art When a person sits on a chair and performs work such as office work or driving, a feeling such as "comfortable" and "easy to get tired" is generated. This is because the body sensation determined by the compatibility between the chair and the body is determined and recognized. Designing and selecting a chair with a high degree of compatibility between the chair and the body also provides an accurate work space for humans. As a conventional evaluation method and evaluation apparatus, for example, Japanese Patent Application Laid-Open No. 10-27457
There is one shown in FIG. In this evaluation method and evaluation apparatus, a pressure sensor array 5 is provided on a chair seat surface 3 of a chair 1, and the pressure sensor array 5 is connected to an input / output sort of a computer 9 via a driver 7. A signal representing the contact pressure output from each pressure sensor of the pressure sensor array 5 is converted into digital data by the driver 7 and output to the computer 9. Therefore, a predetermined evaluation can be performed based on the contact pressure on the chair seat surface 3.

【発明が解決しようとする課題】ところで、人間には背
面形状等、個体差があり、人間側の形態的特徴が座位姿
勢適合性に大きな影響を与えると考えられる。しかし、
従来の評価方法及び評価装置では、単に椅子座面3の接
触圧に基づいているのみであるため、人間の形態的特徴
を考慮することができず、その評価の信頼性に一定の限
界があった。又、対象となる椅子と身体の適合性は主観
評価を用いて評価することが出来るが、特に作業椅子等
の場合、長時間の評価が必要となる。しかし、被験者に
その都度長時間作業椅子に座らせデータを取ることは困
難であり、またその評価作業が煩雑なものとなる。本発
明は、より信頼性の高い評価を行なうことができ、又長
時間作業後の適合性評価を短時間で行なうことのできる
座位姿勢適合性評価方法及び座位姿勢適合性評価装置の
提供を課題とする。
By the way, humans have individual differences such as the back shape, and it is considered that the morphological characteristics of the human side have a great influence on the suitability of the sitting posture. But,
In the conventional evaluation method and evaluation apparatus, since the evaluation is based solely on the contact pressure of the chair seat surface 3, the morphological characteristics of a human cannot be taken into consideration, and there is a certain limit in the reliability of the evaluation. Was. In addition, the compatibility between the target chair and the body can be evaluated by using a subjective evaluation. Particularly, in the case of a work chair or the like, a long-term evaluation is required. However, it is difficult for a subject to sit in a work chair for a long time each time and take data, and the evaluation work is complicated. An object of the present invention is to provide a sitting posture suitability evaluation method and a sitting posture suitability evaluation device capable of performing more reliable evaluation and performing suitability evaluation after a long working time in a short time. And

【課題を解決するための手段】請求項1の発明は、着座
対象への着座者の背中形状及び着座時の着座対象に対す
る少なくとも体圧分布を計測し、前記背中形状及び少な
くとも体圧分布に基づいて前記着座対象と着座者との適
合性を評価することを特徴とする。請求項2の発明は、
請求項1記載の座位姿勢適合性評価方法であって、前記
評価は、前記着座者の身体各部の疲労感官能評価に前記
身体各部の座り心地に対する重要度合いを示す重み係数
を乗した官能評価指標を用いることを特徴とする。請求
項3の発明は、請求項2記載の座位姿勢適合性評価方法
であって、前記評価は、前記体圧分布に基づく身体の骨
格特徴点位置の荷重支持割合と前記官能評価指標との関
係において行なうことを特徴とする。請求項4の発明
は、請求項1〜3の何れかに記載の座位姿勢適合性評価
方法であって、前記評価は、前記背中形状を少なくとも
3分類して各類毎に行なうことを特徴とする。請求項5
の発明は、請求項3記載の座位姿勢適合性評価方法であ
って、前記評価は、前記疲労感官能評価の長時間のデー
タに基づく官能評価指標と前記骨格特徴点位置の荷重支
持割合との関係を予め解析作成し、該関係に対し着座対
象への少なくとも着座初期に計測した体圧分布を用いて
着座長時間後の官能評価指標を予測することを特徴とす
る。請求項6の発明は、請求項5記載の座位姿勢適合性
評価方法であって、前記予測される官能評価指標は、身
体各部の部位別のものであることを特徴とする。請求項
7の発明は、請求項5記載の座位姿勢適合性評価方法で
あって、前記予測される官能評価指標は、身体各部の部
位別のものを総合したものであることを特徴とする。請
求項8の発明は、着座対象への着座者の背中形状を計測
する背中形状計測手段と、前記着座対象への着座時の体
圧分布を計測する体圧分布計測手段と、前記計測した背
中形状及び体圧分布に基づいて前記着座対象と着座者と
の適合性を評価する評価手段と、該評価手段の評価を出
力する評価出力手段とよりなることを特徴とする。請求
項9の発明は、請求項8記載の座位姿勢適合性評価装置
であって、前記評価手段は、前記着座者の身体各部に疲
労感官能評価に前記身体各部の座り心地に対する重要度
合いを示す重み係数を乗した官能評価指標を用いること
を特徴とする。請求項10の発明は、請求項9記載の座
位姿勢適合性評価装置であって、前記評価手段は、前記
体圧分布に基づく身体の骨格特徴点位置の荷重支持割合
と前記官能評価指標との関係において評価を行なうこと
を特徴とする。請求項11の発明は、請求項8〜10の
何れかに記載の座位姿勢適合性評価装置であって、前記
評価手段は、前記背中形状を少なくとも3分類して各類
毎に評価を行なうことを特徴とする。請求項12の発明
は、請求項10記載の座位姿勢適合性評価装置であっ
て、前記評価手段は、前記疲労感官能評価の長時間のデ
ータに基づく官能評価指標と前記骨格特徴点位置の荷重
支持割合との関係を予め解析作成し、該関係に対し着座
対象への少なくとも着座初期に計測した体圧分布を用い
て着座長時間後の官能評価指標を予測することを特徴と
する。請求項13の発明は、請求項12記載の座位姿勢
適合性評価装置であって、前記予測される官能評価指標
は、身体各部の部位別のものであることを特徴とする。
請求項14の発明は、請求項12記載の座位姿勢適合性
評価装置であって、前記予測される官能評価指標は、身
体各部の部位別のものを統合したものであることを特徴
とする。請求項15の発明は、請求項8〜14の何れか
に記載の座位姿勢適合性評価装置であって、前記背中形
状計測手段は、上下に所定間隔で配置した直線式ポテン
ショメータ群を計測部とすることを特徴とする。請求項
16の発明は、請求項8〜15の何れかに記載の座位姿
勢適合性評価装置であって、前記体圧分布計測手段は、
前記着座対象の着座面に所定間隔で配したロードセル群
を計測部とすることを特徴とする。請求項17の発明
は、請求項8〜16の何れかに記載の座位姿勢適合性評
価装置であって、前記評価出力手段は、前記評価を画面
表示することを特徴とする。請求項18の発明は、請求
項17記載の座位姿勢適合性評価装置であって、前記評
価出力手段は、前記評価を体圧分布の等圧線、背中の形
状、疲労を示す官能評価指標として同時に画面表示する
ことを特徴とする。
According to a first aspect of the present invention, a shape of a back of a seated person on a seated object and at least a body pressure distribution on the seated object at the time of sitting are measured, and based on the back shape and at least the body pressure distribution. The suitability between the seated object and the seated person is evaluated. The invention of claim 2 is
The sitting posture suitability evaluation method according to claim 1, wherein the evaluation is a sensory evaluation index obtained by multiplying a fatigue sensory evaluation of each part of the body of the seated person by a weight coefficient indicating a degree of importance of each part of the body for sitting comfort. Is used. The invention of claim 3 is the sitting posture suitability evaluation method according to claim 2, wherein the evaluation is a relationship between a load supporting ratio of a skeleton feature point position of a body based on the body pressure distribution and the sensory evaluation index. It is characterized by performing in. The invention according to claim 4 is the sitting posture suitability evaluation method according to any one of claims 1 to 3, wherein the evaluation is performed for each class by classifying the back shape into at least three classes. I do. Claim 5
The present invention is the sitting posture suitability evaluation method according to claim 3, wherein the evaluation is based on a sensory evaluation index based on long-term data of the fatigue sensory evaluation and a load supporting ratio of the skeleton feature point position. The relationship is preliminarily analyzed and prepared, and the sensory evaluation index after a long sitting time is predicted using the body pressure distribution measured at least in the early stage of sitting on the seating target for the relationship. According to a sixth aspect of the present invention, there is provided the sitting posture suitability evaluation method according to the fifth aspect, wherein the predicted sensory evaluation index is different for each part of each body part. The invention according to claim 7 is the sitting posture suitability evaluation method according to claim 5, wherein the predicted sensory evaluation index is obtained by summing up the index for each body part. The invention according to claim 8 is a back shape measuring means for measuring a back shape of a seated person on a seated object, a body pressure distribution measuring means for measuring a body pressure distribution at the time of sitting on the seated object, and the measured back It is characterized by comprising evaluation means for evaluating the suitability between the seated object and the occupant based on the shape and body pressure distribution, and evaluation output means for outputting the evaluation of the evaluation means. According to a ninth aspect of the present invention, in the sitting posture suitability evaluation apparatus according to the eighth aspect, the evaluation means indicates a degree of importance of each part of the body with respect to sitting comfort in a sensory evaluation of each part of the body of the seated person. It is characterized by using a sensory evaluation index multiplied by a weight coefficient. According to a tenth aspect of the present invention, in the sitting posture suitability evaluating apparatus according to the ninth aspect, the evaluation unit is configured to determine a load support ratio of a body skeleton feature point position based on the body pressure distribution and the sensory evaluation index. It is characterized in that evaluation is performed in relations. The invention of claim 11 is the sitting posture suitability evaluation apparatus according to any one of claims 8 to 10, wherein the evaluation means performs at least three classifications of the back shape and performs evaluation for each class. It is characterized by. A twelfth aspect of the present invention is the sitting posture suitability evaluation apparatus according to the tenth aspect, wherein the evaluation means includes a sensory evaluation index based on long-term data of the fatigue sensory evaluation and a load at the skeleton feature point position. It is characterized in that the relationship with the support ratio is analyzed and created in advance, and the sensory evaluation index after a long sitting time is predicted using the body pressure distribution measured at least in the early stage of sitting on the seating object. According to a thirteenth aspect of the present invention, there is provided the sitting posture suitability evaluating apparatus according to the twelfth aspect, wherein the predicted sensory evaluation index is for each part of each body part.
A fourteenth aspect of the present invention is the sitting posture suitability evaluation apparatus according to the twelfth aspect, wherein the predicted sensory evaluation index is obtained by integrating the sensory evaluation index for each body part. The invention according to claim 15 is the sitting posture suitability evaluation apparatus according to any one of claims 8 to 14, wherein the back shape measuring means includes a linear potentiometer group arranged vertically at predetermined intervals as a measuring unit. It is characterized by doing. The invention according to claim 16 is the sitting posture suitability evaluation apparatus according to any one of claims 8 to 15, wherein the body pressure distribution measuring means includes:
A load cell group arranged at predetermined intervals on a seating surface of the seating target is used as a measuring unit. The invention of claim 17 is the sitting posture suitability evaluation apparatus according to any one of claims 8 to 16, wherein the evaluation output means displays the evaluation on a screen. The invention according to claim 18 is the sitting posture suitability evaluation apparatus according to claim 17, wherein the evaluation output means simultaneously outputs the evaluation as a sensory evaluation index indicating a contour line of body pressure distribution, a back shape, and fatigue. It is characterized by displaying.

【発明の効果】請求項1の発明では、着座者の背中形状
及び着座時の着座対象に対する体圧分布を計測し、背中
形状及び体圧分布に基づいて着座対象と着座者との適合
性を評価することができ、体圧分布のみならず背中形状
をも考慮することによって、より信頼性の高い評価を行
なうことができる。請求項2の発明では、請求項1の発
明の効果に加え、身体各部の疲労感官能評価に重み係数
を乗した官能評価指標を用いることにより、座り心地に
対する重要度合いの高い部分の官能評価指標を用いるこ
とができ、より信頼性の高い評価を行なうことができ
る。請求項3の発明では、骨格特徴点位置の荷重支持割
合と官能評価指標との関係において評価を行なうことに
より、身体疲労度と関連すると思われる領域の支持圧バ
ランスと集中度合いとを考慮することができ、より信頼
性の高い評価を行なうことができる。請求項4の発明で
は、請求項1〜3の何れかの発明の効果に加え、背中形
状を少なくとも3分類して各分類毎に評価することによ
り、人間の形態的特徴を的確に考慮し、より信頼性の高
い評価を行なうことができる。請求項5の発明では、請
求項3の発明の効果に加え、予め解析作成した官能評価
指標と荷重支持割合との関係を用いることにより、着座
長時間後の官能評価指標を短時間で予測し、迅速な評価
を行なうことができる。請求項6の発明では、請求項5
の発明の効果に加え、身体各部の部位別に評価を得るこ
とができる。請求項7の発明では、請求項5の発明の効
果に加え、身体全体の適合性評価を簡易に得ることがで
きる。請求項8の発明では、着座者の背中形状及び着座
時の着座対象に対する体圧分布を計測し、背中形状及び
体圧分布に基づいて着座対象と着座者との適合性を評価
することができ、体圧分布のみならず背中形状をも考慮
することによって、より信頼性の高い評価を行なうこと
ができる。請求項9の発明では、請求項8の発明の効果
に加え、身体各部の疲労感官能評価に重み係数を乗した
官能評価指標を用いることにより、座り心地に対する重
要度合いの高い部分の官能評価指標を用いて、より信頼
性の高い評価を行なうことができる。請求項10の発明
では、請求項9の発明の効果に加え、骨格特徴点位置の
荷重支持割合と官能評価指標との関係において評価を行
なうことにより、身体疲労度と関連すると思われる領域
の支持圧バランスと集中度合いとを考慮することがで
き、より信頼性の高い評価を行なうことができる。請求
項11の発明では、請求項8〜10の何れかの発明の効
果に加え、背中形状を少なくとも3分類して各分類毎に
評価することにより、人間の形態的特徴を的確に考慮
し、より信頼性の高い評価を行なうことができる。請求
項12の発明では、請求項10の発明の効果に加え、予
め解析作成した官能評価指標と荷重支持割合との関係を
用いることにより、着座長時間後の官能評価指標を短時
間で予測し、迅速な評価を行なうことができる。請求項
13の発明では、請求項12の発明の効果に加え、身体
各部の部位別に評価を得ることができる。請求項14の
発明では、請求項12の発明の効果に加え、身体全体の
適合性評価を簡易に得ることができる。請求項15の発
明では、請求項8〜14の何れかの発明の効果に加え、
被験者の背中形状を測定する場合に、計測部の直線式ポ
テンショメータ群に背中を押し付けるだけで背中形状を
測定することができる。従って、レーザ変位計等に比較
した場合、計測毎に被験者を裸にする必要がなく、着衣
の上から計測すること等ができ、迅速な適合性評価を行
なうことができる。請求項16の発明では、請求項8〜
15の何れかの発明の効果に加え、ロードセル群で体圧
分布を計測することにより、低い圧力であっても計測感
度を保つことができ、疲労感との相関が高い腰椎部の圧
力割合等の定量的評価指標の計測を確実に行ない、より
正確な適合性評価を行なうことができる。請求項17の
発明では、請求項8〜16の何れかの発明の効果に加
え、評価を画面表示で見ることができ、評価を確実かつ
容易に認識することができる。請求項18の発明では、
請求項17の発明の効果に加え、評価として体圧分布の
等圧線、背中の形状、疲労を示す官能評価指標を同時に
認識することができ、より容易かつ確実に適合性評価を
認識することができる。
According to the first aspect of the present invention, the shape of the back of the seated person and the body pressure distribution on the seated object at the time of sitting are measured, and the suitability between the seated object and the seated person is determined based on the back shape and the body pressure distribution. Evaluation can be performed, and more reliable evaluation can be performed by considering not only the body pressure distribution but also the back shape. According to the second aspect of the present invention, in addition to the effects of the first aspect of the present invention, by using a sensory evaluation index obtained by multiplying the fatigue sensory evaluation of each part of the body by a weighting coefficient, a sensory evaluation index of a portion having a high degree of importance for sitting comfort is obtained. Can be used, and a more reliable evaluation can be performed. According to the third aspect of the present invention, the evaluation is performed based on the relationship between the load supporting ratio at the skeleton feature point position and the sensory evaluation index, so that the support pressure balance and the degree of concentration in the region considered to be related to the degree of physical fatigue are considered. And a more reliable evaluation can be performed. In the invention of claim 4, in addition to the effect of any of the inventions of claims 1 to 3, at least three types of the back shape are classified and evaluated for each classification, so that the morphological characteristics of the human are accurately considered, A more reliable evaluation can be performed. In the invention of claim 5, in addition to the effect of the invention of claim 3, the sensory evaluation index after a long sitting time is predicted in a short time by using the relationship between the sensory evaluation index and the load support ratio which are preliminarily analyzed and created. , Quick evaluation can be performed. According to the invention of claim 6, claim 5
In addition to the effects of the invention, evaluation can be obtained for each part of the body. According to the invention of claim 7, in addition to the effect of the invention of claim 5, it is possible to easily obtain the fitness evaluation of the whole body. According to the invention of claim 8, the back shape of the seated person and the body pressure distribution with respect to the seated object at the time of sitting can be measured, and the suitability between the seated object and the seated person can be evaluated based on the back shape and the body pressure distribution. By considering not only the body pressure distribution but also the shape of the back, a more reliable evaluation can be performed. According to the ninth aspect of the present invention, in addition to the effects of the eighth aspect of the present invention, by using a sensory evaluation index obtained by multiplying a weighting coefficient by a fatigue sensory evaluation of each part of the body, a sensory evaluation index of a portion having a high degree of importance for sitting comfort is obtained. , A more reliable evaluation can be performed. According to the tenth aspect of the present invention, in addition to the effect of the ninth aspect of the present invention, the evaluation of the relationship between the load supporting ratio at the skeleton feature point position and the sensory evaluation index is performed to support a region considered to be related to the degree of physical fatigue. The pressure balance and the degree of concentration can be considered, and a more reliable evaluation can be performed. According to the invention of claim 11, in addition to the effects of any of the inventions of claims 8 to 10, at least three types of the back shape are classified and evaluated for each classification, so that the morphological characteristics of the human are accurately considered, A more reliable evaluation can be performed. According to the twelfth aspect of the invention, in addition to the effects of the tenth aspect, the sensory evaluation index after a long sitting time is predicted in a short time by using the relationship between the sensory evaluation index and the load support ratio that are preliminarily analyzed and created. , Quick evaluation can be performed. According to the thirteenth aspect, in addition to the effects of the twelfth aspect, an evaluation can be obtained for each part of the body. According to the fourteenth aspect, in addition to the effects of the twelfth aspect, it is possible to easily obtain the fitness evaluation of the entire body. According to the invention of claim 15, in addition to the effects of the invention of any of claims 8 to 14,
When measuring the back shape of the subject, the back shape can be measured simply by pressing the back against the linear potentiometer group of the measuring unit. Therefore, when compared with a laser displacement meter or the like, the subject does not need to be naked for each measurement, the measurement can be performed from the top of clothing, and a quick suitability evaluation can be performed. According to the sixteenth aspect, claims 8 to
In addition to the effects of the invention of any one of the fifteenth aspects, by measuring the body pressure distribution with the load cell group, the measurement sensitivity can be maintained even at a low pressure, and the pressure ratio of the lumbar spine having a high correlation with the feeling of fatigue, etc. The measurement of the quantitative evaluation index can be reliably performed, and more accurate suitability evaluation can be performed. According to the seventeenth aspect, in addition to the effects of any one of the eighth to sixteenth aspects, the evaluation can be viewed on a screen display, and the evaluation can be reliably and easily recognized. In the invention of claim 18,
In addition to the effects of the seventeenth aspect, it is possible to simultaneously recognize the isobar of the body pressure distribution, the shape of the back, and the sensory evaluation index indicating fatigue as an evaluation, and more easily and reliably recognize the suitability evaluation. .

【発明の実施の形態】図1は本発明の一実施形態に係る
座位姿勢適合性評価装置のブロック図である。この装置
は背中形状計測手段としての背中形状計測装置11と体
圧分布計測手段としての体圧センサマット13とスキャ
ナ15とスキャナコントローラ17とパーソナルコンピ
ュータ19とからなっている。前記背中形状計測装置1
1は、着座者の背中形状を計測する。前記体圧センサマ
ット13は、着座時の体圧分布を計測する。スキャナ1
5は、背中形状計測装置11及び体圧センサマット13
において、人間の各部に対応したセンサからデータを取
り込むように計測部を順次スキャンする。前記スキャナ
コントローラ17は、前記スキャナ15をコントロール
してデータを取り込む。前記パーソナルコンピュータ1
9は、取り込んだ背中形状のデータと体圧センサのデー
タとに基づいて椅子と着座者との適合性を評価し出力す
る。そしてかかる出力は、パーソナルコンピュータ19
に備えられたモニタ19aによって画面表示される。従
って、パーソナルコンピュータ19は、計測した背中形
状及び体圧分布に基づいて着座対象と着座者との適合性
を評価する評価手段を構成し、モニタ19aは、評価手
段の評価を出力する評価出力手段を構成している。前記
背中形状計測装置11の具体構造は、図2のようになっ
ている。即ち、背中形状計測装置11は、計測部21が
基台23に取り付けられている。計測部21は、センサ
フレーム25に対し直線式ポテンショメータ27を上下
方向に所定間隔で多数配置し、直線式ポテンショメータ
群で構成したものである。直線式ポテンショメータ27
の有効ストローク範囲内で図2の背中形状29のように
測定することができる。そして、前記スキャナ15はこ
れら各直線式ポテンショメータ27群をそれぞれスキャ
ンするものである。又、計測部21は上下左右方向にモ
ータにより駆動可能となっており、上下方向については
身長の差や、座位、立位いずれの場合でも計測可能であ
る。左右方向については背中の中央のみ計測し解析する
こともできるが、横方向に移動させて数回押し込み計測
を行ない、背中全体の3次元形状計測も行なうことがで
きる。かかる直線式ポテンショメータ27を用いた背中
形状計測装置11とすることによって、レーザ変位計等
による場合に比較して、着衣、頭髪等の影響を受けにく
く、また被験者を着衣の上からセンサを押し込むことに
より計測することができ、計測を簡易に行なうことがで
きる。前記体圧センサマット13は図3のように配置さ
れている。即ち、椅子31の椅子座面33に取り付けら
れる座部マット35と椅子背もたれ面37に取り付けら
れる背もたれ部マット39とからなっている。前記体圧
センサマット13は、図4(a)のような断面形状の要
部を備えている。すなわち、薄型のロードセル41が基
板43上に固着され、該基板43及びロードセル41上
にセンサキャップ45が取り付けられている。センサ基
板43とセンサキャップ45とは、嵌合部43a,45
aによって離脱しないように噛み合わされている。セン
サキャップ45上は、ストッキング材47で覆われ、全
体が下部表皮49と上部表皮51とで覆われている。5
3はリード線である。かかるロードセル41を備えた要
部が座部マット35では(b)のように、ピッチPで配
置されると共に、各ピッチの中央にダミーセンサが配置
されて密な配置となっている。又、背もたれ部マット3
9では(c)のように、ピッチPで配置されている。従
って、かかる配置によって、座部マット35、背もたれ
部マット39にロードセル群が所定間隔で配され、計測
部55,57が形成されている。従って、本実施形態に
おいて、図3のように体圧センサマット13を配するこ
とにより、体圧分布計測手段は着座対象の着座面に所定
間隔で配したロードセル群を計測部55,57としてい
る。従って、体圧センサマット13を取り付けた椅子3
1に被験者が着座すると、上部表皮からセンサキャップ
に荷重が入力され、該荷重がロードセル41によって検
出され、リード線53を介しデータが出力される。そし
て前記スキャナ15はこれら各ロードセル41群をそれ
ぞれスキャンするものである。前記体圧センサマット1
3による検出結果は、例えば図5のようになっており、
(a)は背もたれ部37での体圧分布を示し、(b)は
座部33での体圧分布を示している。(a)では図中左
側が背もたれ部37の上方であり、同右側が同下方であ
る。(b)では図中左側が座部33の後方であり、同右
側が同前方である。図6〜図8は本発明の一実施形態に
係るフローチャートを示し、図6は背中形状計測のフロ
ーチャート、図7は体圧分布計測のフローチャート、図
8は座位姿勢適合性評価のフローチャートである。ま
ず、背中形状計測では、図6のようにステップS61に
おいて被験者の座高の高さに応じて座高計高さを設定す
る。ステップS62では、被験者に座高計上で正座位を
とらせる。ステップS63では正座位をとっている被験
者に背中形状計測装置11の計測部21を押し当てる。
この押し当てによって直線式ポテンショメータ27は図
2のように押し込まれ、各直線式ポテンショメータ27
からの検出値が出力される。ステップS64では形状が
きちんと取れているか確認後、被験者を解放する。ステ
ップS65では前記直線式ポテンショメータ27からの
計測データをパーソナルコンピュータ19において背中
形状として取り込み、前記座高計の出力値と共にファイ
ルに記録する。体圧分布計測では、図7のように、ステ
ップS71において着座対象である椅子に体圧センサマ
ット13を図3のように設定する。ステップS72では
被験者に背もたれ部37を使った作業姿勢をとらせる。
この時の座部マット35及び背もたれ部マット39の各
ロードセル41からの出力が体圧分布として前記パーソ
ナルコンピュータ19に取り込まれ、ファイルに記録さ
れる。座位姿勢適合性評価では、図8のようにステップ
S81において被験者特性が記入される。この記入は、
例えば被験者の身長をパーソナルコンピュータ19に入
力することによって行なわれる。ステップS82では前
記図6のフローで得られた背中形状計測のデータが読み
込まれる。ステップS83では背中形状の分類が記入さ
れる。この記入は、前記背中形状計測のデータに基づい
て背中形状の分類が判別され、記憶されるものである。
背中形状の分類については後述する。ステップS84で
は、前記図7のフローで記憶された体圧分布計測のデー
タが読み込まれる。ステップS85では被験者の座高よ
り体圧センサマット13上の脊柱特徴点位置の推定が行
なわれる。脊柱特徴点及びその位置推定については後述
する。ステップS86においては、脊柱特徴点位置に応
じた体圧分布の特徴量が計算される。体圧分布特徴量に
ついては後述する。ステップS87においては、背中形
状別に部位別の官能評価指標の推定式が選択される。該
推定式については後述する。ステップS88においては
身長及び体圧分布特徴量から射体各部の部位別の官能評
価指標が計算される。該計算については後述する。ステ
ップS89においては、部位別の官能評価指標を総合、
即ちプラスした総合官能評価指標の計算が行なわれる。
ステップS810では、体圧分布、背中形状、総合官能
評価指標が前記パーソナルコンピュータ19のモニタ1
9aによって画面表示される。図9は、前記モニタ19
aによる画面表示の一例を示している。本実施形態にお
いて、モニタ19aは座位姿勢適合性の評価として、背
もたれ部体圧分布の等圧線59、座部体圧分布の等圧線
61、背中形状63、疲労を示す官能評価指標65を同
時に画面表示している。従って、評価者は、かかるモニ
タ19aを見ることによって、座位姿勢適合性評価を確
実かつ容易に認識することができる。図10は、図8の
ステップS83による背中形状分類記入の一例を示した
もので、本実施形態においては、少なくとも3分類して
記入している。分類としては、S字型、猫背型、直線型
があり、(a),(c),(e)は自然立位におけるS
字型、猫背型、直線型の背中形状を示し、(b),
(d),(f)は正規座位におけるS字型、猫背型、直
線型の背中形状を示している。分類の基準として、S字
型では胸郭部の後湾、腰椎部の前湾ともに有しているこ
と、猫背型では腰椎部の前湾があまり見られず、胸郭か
ら頸部にかけて前方に曲がっていること、直線型では胸
郭部、腰椎部ともに湾曲が小さく肩から尻にかけて平坦
であることとしている。このように背中形状を少なくと
も3分類して各類毎に評価を行なう。これは各種椅子、
各種被験者による予備実験により着座者の脊柱姿勢支持
条件の違いが、背中、腰の痛みに影響してくること、被
験者の脊柱形状のタイプが姿勢支持の評価に影響するこ
とが確認できたからである。前記ステップS85の脊柱
特徴点位置は、図11のように第10胸椎67、第12
胸椎69、第3腰椎71、第5腰椎73及び図示はしな
いが第1仙椎を座高前記官能評価指標は、それぞれ小さ
いほど疲労が少ないこと、即ち適合性が高いことを意味
する。また、部位別に評価することも可能であるが、簡
易な指標として部位別のものを総合した総合官能評価指
標を用いることもできる。ここで、推定式の導出につい
て説明する。官能評価は図12のような官能評価用紙を
用いた。作業実験は成人男性被験者10名について、評
価条件として背もたれ部の支持の異なる椅子4脚及び座
部の支持の異なる椅子2脚の合計6脚を用い、約2.5
時間のタスクを行なわせた。実験では、特定の時刻毎に
支持感及び疲労感に関する官能評価、体圧分布の計測を
時系列で収録した。計測時刻は0,5,15,30,4
5,60,90,120,150分である。又、体圧分
布データを身体位置と対応付けて解析するために、作業
時に椅子の設定を記録し、別途再現した作業姿勢を再現
することで作業姿勢時の脊柱上の特徴点位置を計測し
た。データの解析は部位別の疲労について背中形状の特
徴別に検討し、目的変数を官能評価指標、説明変数を部
位別体圧特徴量もしくは身体寸法として一次回帰式を作
成した。尚、官能評価指標は、長時間疲労を主観評価の
安定する90〜150分の平均とした。又、背中形状に
ついては定性的にS字型、直線型、猫背型の3分類と
し、部位毎の湾曲度合いにより表1のように分類し、湾
曲特徴別に推定式を作成した。
FIG. 1 is a block diagram of a sitting posture suitability evaluation apparatus according to an embodiment of the present invention. This apparatus comprises a back shape measuring device 11 as a back shape measuring means, a body pressure sensor mat 13 as a body pressure distribution measuring means, a scanner 15, a scanner controller 17, and a personal computer 19. The back shape measuring device 1
1 measures the back shape of the seated person. The body pressure sensor mat 13 measures the body pressure distribution at the time of sitting. Scanner 1
5 is a back shape measuring device 11 and a body pressure sensor mat 13
In, the measuring unit is sequentially scanned so as to take in data from sensors corresponding to various parts of the human. The scanner controller 17 controls the scanner 15 and takes in data. The personal computer 1
Reference numeral 9 evaluates and outputs the suitability between the chair and the occupant based on the data on the back shape and the data from the body pressure sensor. The output is output from the personal computer 19.
Is displayed on the screen by the monitor 19a provided in the monitor. Therefore, the personal computer 19 constitutes an evaluation means for evaluating the suitability between the seated object and the occupant based on the measured back shape and body pressure distribution, and the monitor 19a outputs an evaluation output means for outputting the evaluation of the evaluation means. Is composed. The specific structure of the back shape measuring device 11 is as shown in FIG. That is, in the back shape measurement device 11, the measurement unit 21 is attached to the base 23. The measuring section 21 is configured by arranging a large number of linear potentiometers 27 at predetermined intervals in the vertical direction with respect to the sensor frame 25, and is constituted by a group of linear potentiometers. Linear potentiometer 27
Can be measured as shown in the back shape 29 in FIG. The scanner 15 scans each of the linear potentiometers 27. The measurement unit 21 can be driven by a motor in the up, down, left, and right directions, and can measure a height difference, a sitting position, and a standing position in the up and down direction. In the left-right direction, it is possible to measure and analyze only the center of the back, but it is also possible to perform the push-in measurement several times while moving in the lateral direction, and also perform the three-dimensional shape measurement of the entire back. By using the back shape measuring device 11 using the linear potentiometer 27, compared with the case of using a laser displacement meter or the like, it is less susceptible to clothes, hair, etc., and the subject can be pushed into the sensor from above the clothes. And the measurement can be easily performed. The body pressure sensor mat 13 is arranged as shown in FIG. That is, the seat 31 includes a seat mat 35 attached to the chair seating surface 33 of the chair 31 and a backrest mat 39 attached to the chair backrest surface 37. The body pressure sensor mat 13 includes a main part having a cross-sectional shape as shown in FIG. That is, the thin load cell 41 is fixed on the substrate 43, and the sensor cap 45 is mounted on the substrate 43 and the load cell 41. The sensor substrate 43 and the sensor cap 45 are
They are engaged so as not to be separated by a. The upper portion of the sensor cap 45 is covered with a stocking material 47 and entirely covered with a lower skin 49 and an upper skin 51. 5
3 is a lead wire. In the seat mat 35, the main parts including the load cells 41 are arranged at a pitch P as shown in FIG. 2B, and a dummy sensor is arranged at the center of each pitch to form a dense arrangement. Also, the backrest mat 3
In FIG. 9, they are arranged at a pitch P as shown in FIG. Therefore, with such an arrangement, the load cell groups are arranged at predetermined intervals on the seat mat 35 and the backrest mat 39, and the measuring units 55 and 57 are formed. Therefore, in the present embodiment, by arranging the body pressure sensor mat 13 as shown in FIG. 3, the body pressure distribution measuring means uses the load cell groups arranged at predetermined intervals on the seating surface of the seating target as the measuring units 55 and 57. . Therefore, the chair 3 to which the body pressure sensor mat 13 is attached
When the subject is seated at 1, a load is input to the sensor cap from the upper skin, the load is detected by the load cell 41, and data is output via the lead wire 53. The scanner 15 scans each of the load cell 41 groups. The body pressure sensor mat 1
3, the detection result is, for example, as shown in FIG.
(A) shows the body pressure distribution at the backrest 37, and (b) shows the body pressure distribution at the seat 33. In (a), the left side in the figure is above the backrest 37 and the right side is below. In (b), the left side in the figure is the rear of the seat 33, and the right side is the front. 6 to 8 show flowcharts according to an embodiment of the present invention. FIG. 6 is a flowchart of back shape measurement, FIG. 7 is a flowchart of body pressure distribution measurement, and FIG. 8 is a flowchart of sitting posture suitability evaluation. First, in the back shape measurement, as shown in FIG. 6, in step S61, the height of the sitting height is set according to the sitting height of the subject. In step S62, the subject is allowed to take a sitting position by calculating the sitting height. In step S63, the measurement unit 21 of the back shape measurement device 11 is pressed against the subject in a sitting position.
By this pressing, the linear potentiometers 27 are pushed in as shown in FIG.
Is output. In step S64, after confirming that the shape is properly removed, the subject is released. In step S65, the measurement data from the linear potentiometer 27 is captured as a back shape in the personal computer 19, and recorded in a file together with the output value of the sitting height meter. In the body pressure distribution measurement, as shown in FIG. 7, in step S71, the body pressure sensor mat 13 is set on the chair to be seated as shown in FIG. In step S72, the subject is caused to take a working posture using the backrest 37.
The output from each load cell 41 of the seat mat 35 and the backrest mat 39 at this time is taken into the personal computer 19 as a body pressure distribution and recorded in a file. In the sitting posture suitability evaluation, subject characteristics are entered in step S81 as shown in FIG. This entry is
For example, this is performed by inputting the height of the subject into the personal computer 19. In step S82, the data of the back shape measurement obtained in the flow of FIG. 6 is read. In step S83, the classification of the back shape is entered. In this entry, the classification of the back shape is determined and stored based on the data of the back shape measurement.
The classification of the back shape will be described later. In step S84, the body pressure distribution measurement data stored in the flow of FIG. 7 is read. In step S85, the position of the spine feature point on the body pressure sensor mat 13 is estimated from the sitting height of the subject. The spine feature points and their position estimation will be described later. In step S86, the feature amount of the body pressure distribution according to the position of the spine feature point is calculated. The body pressure distribution feature amount will be described later. In step S87, a formula for estimating a sensory evaluation index for each site is selected for each back shape. The estimation formula will be described later. In step S88, a sensory evaluation index for each part of each part of the projectile is calculated from the height and the body pressure distribution feature amount. The calculation will be described later. In step S89, the sensory evaluation indices for each part are integrated,
That is, calculation of the added general sensory evaluation index is performed.
In step S810, the body pressure distribution, the back shape, and the comprehensive sensory evaluation index are displayed on the monitor 1 of the personal computer 19.
9a is displayed on the screen. FIG.
5 shows an example of a screen display by a. In the present embodiment, the monitor 19a simultaneously displays on the screen the isobar 59 of the backrest body pressure distribution, the isobar 61 of the seat body pressure distribution, the back shape 63, and the sensory evaluation index 65 indicating fatigue as an evaluation of the sitting posture suitability. ing. Therefore, the evaluator can reliably and easily recognize the sitting posture suitability evaluation by looking at the monitor 19a. FIG. 10 shows an example of the back shape classification entry in step S83 of FIG. 8, and in this embodiment, at least three classifications are entered. There are S-shaped, cat-backed, and linear types, and (a), (c), and (e) show S in the natural standing position.
It shows the shape of a letter, a cat, and a straight back, (b),
(D) and (f) show the S-shaped, cat-back, and linear back shapes in the normal sitting position. As a criterion for classification, the sigmoid type has both the kyphosis of the thorax and the lordosis of the lumbar vertebrae. In the straight type, both the thorax and the lumbar spine have a small curvature and are flat from shoulder to hip. In this way, the back shape is classified into at least three categories, and each class is evaluated. This is various chairs,
Preliminary experiments by various subjects confirmed that the difference in the support condition of the occupant's spine posture affected the back and lower back pain, and that the type of spine shape of the subject affected the evaluation of posture support. . As shown in FIG. 11, the vertebral column feature point positions in step S85 are
The thoracic vertebra 69, the third lumbar vertebra 71, the fifth lumbar vertebra 73, and the height of the first sacral vertebra (not shown) indicate that the smaller the sensory evaluation index is, the less fatigue, that is, the higher the fitness. In addition, although evaluation can be performed for each site, a comprehensive sensory evaluation index obtained by integrating the results for each site can be used as a simple index. Here, the derivation of the estimation formula will be described. The sensory evaluation was performed using a sensory evaluation sheet as shown in FIG. The work experiment was performed on 10 adult male subjects, using a total of 6 legs including 4 chairs with different support of the backrest and 2 chairs with different support of the seat as evaluation conditions.
Time tasks were performed. In the experiment, sensory evaluation on support and fatigue and measurement of body pressure distribution were recorded in a time series at each specific time. Measurement time is 0, 5, 15, 30, 4
5, 60, 90, 120 and 150 minutes. In addition, in order to analyze the body pressure distribution data in association with the body position, the setting of the chair was recorded at the time of work, and the characteristic point positions on the spine during the work posture were measured by reproducing the work posture separately reproduced. . In the data analysis, the fatigue of each part was examined for each feature of the back shape, and a primary regression equation was created using the objective variables as sensory evaluation indices and the explanatory variables as body pressure features or body dimensions for each part. In addition, the sensory evaluation index was an average of 90 to 150 minutes at which the subjective evaluation of long-term fatigue was stabilized. Further, the back shape was qualitatively classified into three classifications of S-shape, straight type, and cat-back type, classified according to the degree of curvature for each part as shown in Table 1, and an estimation formula was created for each curvature feature.

【表1】★〔首部官能評価指標〕胸部湾曲型の被験者に
ついて図13(a)に示すように、危険率1%以下の相
関(R=0.525)が見られた。また危険率10%以
下で有意ではないが、胸部平坦型の被験者については図
13(b)のように反対の傾向(R=−0.52)が見
られた。従って、推定式は以下のようになる。 首部官能評価指標=2.622×(胸椎支持割合)−
0.063…胸部湾曲型 首部官能評価指標=−1.952×(胸椎支持割合)+
0.957…胸部平坦型 〔肩部官能評価指標〕胸部湾曲型の被験者については図
14(a)に示すように、胸椎支持割合と危険率5%以
下の相関(R=0.428)が認められた。一方、胸部
平坦型の被験者では図14(b)のように危険率5%以
下の反対の傾向(R=−0.436)が見られた。従っ
て、推定式は以下のようになる。 肩部官能評価指標=1.851×(胸椎支持割合)+
0.099…胸部湾曲型 肩部官能評価指標=−4.216×(胸椎支持割合)+
0.871…胸部平坦型 〔背中部官能評価指標〕背中の官能評価指標については
被験者の形態特徴別に独自の傾向は見られず、共通の傾
向として胸椎支持割合、腰椎支持割合と相関が認められ
た。そこで、胸椎支持割合と腰椎支持割合とを説明変数
として重回帰分析を行なったところ、図15に示すよう
に、危険率0.1%以下の強い相関を持つ指標式(R=
0.459)を得た。 背中部官能評価指標=1.466×(胸椎支持割合)+
3.179×(腰椎支持割合)−0.299 〔胸部官能評価指標〕胸部湾曲型の被験者については、
図16(a)に示すように、胸椎支持割合と危険率1%
以下の強い相関(R=0.641)が認められた。又、
危険率10%以下で有意ではないが、胸部平坦型の被験
者については図16(b)のように反対の傾向(R=−
0.102)が見られた。従って、推定式は以下のよう
になる。 胸部官能評価指標=1.947×(胸椎支持割合)−
0.1058…胸部湾曲型 胸部官能評価指標=−0.415×(胸椎支持割合)+
0.210…胸部平坦型 〔腰部官能評価指標〕腰部湾曲型の被験者については、
図17(a)に示すように腰椎支持割合と危険率5%以
下の負の傾向(R=−0.551)が認められた。一
方、腰椎平坦型の被験者では、図17(b)のように危
険率1%以下の正の相関(R=0.478)が見られ
た。従って、推定式は以下のようになる。 腰部官能評価指標=−5.581×(腰椎支持割合)+
1.518…腰部湾曲型 腰部官能評価指標=6.692×(腰椎支持割合)−
0.094…腰部平坦型 以下に示す下肢に関係する部位についての疲労は、背中
形状とは無関係と思われるため、特に被験者を分類せ
ず、データ全体で検討した。 〔臀部官能評価指標〕臀部官能評価指標については図1
8に示すように座骨部支持割合と危険率0.1%以下の
高い相関(R=0.491)が認められた。これより以
下の推定式を得た。 臀部官能評価指標=4.700×(座骨部支持割合)−
1.983 〔大腿部官能評価指標〕大腿部官能評価指標については
図19に示すように、大腿部支持割合と危険率10%以
下の弱い相関(R=0.009)が見られた。従って、
推定式は以下のようになる。 大腿部官能評価指標=0.265×(大腿部支持割合)
+0.131 〔下腿部官能評価指標〕下腿部の疲労については椅子と
基本的に接触していないため、体圧分布とは無関係であ
るが、下肢長により足を置く位置との相対関係が変わっ
てくる。そのため図20のように、下肢長と相関の高い
身長により推定式を作成した。 下腿部官能評価指標=−0.013×(身長)+2.3
55 上記図13〜図20では、縦軸を官能評価実験による官
能評価結果に一定の重み付けをした部位別の官能評価指
標とし、横軸はその時に検出した体圧分布に基づく特徴
点位置の支持割合としている。実験値が点でプロットし
てあり、この点から回帰分析により推定式を表わす直線
を求めた。また図13では、横軸に胸椎支持割合のみ示
されているが、実験では首部官能評価指標と他の体圧分
布特徴量との関係もデータをとっており、体圧分布特徴
量をいろいろな形で算出し、その中で関係が示され、し
かも合理的なものを選択し、変数の数をなるべく少なく
でき、因果関係が検討できるものに絞った結果として、
胸椎支持割合を選択したものである。この関係は図14
〜図20の他の全てのものについても同様である。前記
ステップS88にこいては、上記のようにして得られた
一次回帰式において前記体圧分布特徴量あるいは身長を
適合させることにより、身体各部の部位別官能評価指標
を得ることができる。即ち、図13〜図20の直線によ
って表される推定式では、横軸の支持割合に体圧分布特
徴量を当てはめ、縦軸の官能評価指標が求められるもの
である。この部位別の官能評価指標によって、身体各部
の疲労状態を知ることができ、着座対象である椅子と着
座者との適合性を的確に評価することができる。しか
も、背中形状を少なくとも3分類して各類毎に評価を行
なっているため、人間の形態的個体差を考慮したより信
頼性の高い正確な適合性評価を行なうことができる。ま
たステップS89のように、総合官能評価指標を計算す
ることにより、身体全体の疲労を簡易に認識し、簡易な
座位姿勢適合性評価を行なうことができる。また前記し
たように、出力はモニタ19aによって図9のように行
なわれるため、座位姿勢の適合性評価を迅速かつ的確に
認識することができる。このように疲労感官能評価の長
時間のデータに基づく官能評価指標と骨格特徴点位置の
荷重支持割合との関係を予め解析作成し、該関係に対し
着座対象である椅子への着座初期に計測した体圧分布を
用いて、荷重支持割合を求め、該荷重支持割合を前記予
め求めた関係に適合させることにより、着座長時間後の
官能評価指標を短時間で予測することができ、極めて簡
便な座位姿勢適合性評価方法及び座位姿勢適合性評価装
置を得ることができる。尚、前記実施形態では、背中形
状を3分類としたが、更に多くの分類をすることによ
り、各分類毎に細かく評価を行ない、より的確な座位姿
勢適合性評価を行なうことも可能である。
[Table 1] [Neck sensory evaluation index] As shown in FIG. 13 (a), a correlation (R = 0.525) with a risk factor of 1% or less was observed for subjects with a curved chest. Although not significant at a risk factor of 10% or less, the opposite tendency (R = −0.52) was observed for subjects with a flat chest as shown in FIG. 13 (b). Therefore, the estimation formula is as follows. Neck sensory evaluation index = 2.622 x (thoracic spine support ratio)-
0.063: Chest curve type neck sensory evaluation index = -1.952 x (thoracic spine support ratio) +
0.957 ... Chest flat type [Shoulder sensory evaluation index] As shown in FIG. 14 (a), the correlation between the thoracic vertebra support rate and the risk factor of 5% or less (R = 0.428) was obtained for subjects with a curved chest type. Admitted. On the other hand, in a subject with a flat chest type, the opposite tendency (R = −0.436) with a risk factor of 5% or less was observed as shown in FIG. Therefore, the estimation formula is as follows. Shoulder sensory evaluation index = 1.851 x (ratio of thoracic spine support) +
0.099: Chest curve type shoulder sensory evaluation index = -4.216 x (thoracic spine support ratio) +
0.871 ... Chest flat type [Back sensory evaluation index] The sensory evaluation index of the back does not show any unique tendency for each morphological characteristic of the subject, and a correlation is found between the thoracic spine support ratio and the lumbar spine support ratio as common trends. Was. Therefore, a multiple regression analysis was performed using the thoracic spine support ratio and the lumbar spine support ratio as explanatory variables, and as shown in FIG. 15, an index formula (R =
0.459). Back sensory evaluation index = 1.466 x (thoracic spine support ratio) +
3.179 × (lumbar spine support ratio) −0.299 [Chest sensory evaluation index] For subjects with a curved chest,
As shown in FIG. 16 (a), the thoracic spine support ratio and the risk factor 1%
The following strong correlation (R = 0.641) was observed. or,
Although the significance level is not significant at 10% or less, the opposite tendency (R = −
0.102) was found. Therefore, the estimation formula is as follows. Chest sensory evaluation index = 1.947 x (thoracic spine support ratio)-
0.1058 ... Chest curve type Chest sensory evaluation index = -0.415 x (Thoracovertebra support ratio) +
0.210 ... Chest flat type [lumbar sensory evaluation index] For subjects with a curved waist,
As shown in FIG. 17A, a lumbar support ratio and a negative tendency (R = −0.551) of 5% or less were recognized. On the other hand, in the lumbar spine flat type subjects, a positive correlation (R = 0.478) with a risk factor of 1% or less was observed as shown in FIG. 17 (b). Therefore, the estimation formula is as follows. Lumbar sensory evaluation index = -5.581 x (lumbar spine support ratio) +
1.518 ... waist curve type waist sensory evaluation index = 6.692 x (lumbar spine support ratio)-
0.094 ... waist flat type Fatigue of the parts related to the lower limbs shown below is considered to be unrelated to the shape of the back. Therefore, the subjects were not particularly classified and the whole data was examined. [But buttocks sensory evaluation index]
As shown in Fig. 8, a high correlation (R = 0.491) with the ischial support rate and the risk factor of 0.1% or less was observed. From this, the following estimation formula was obtained. Buttocks sensory evaluation index = 4.700 x (sciatic support rate)-
1.983 [Thigh sensory evaluation index] As shown in Fig. 19, the thigh sensory evaluation index has a weak correlation (R = 0.009) with a thigh support ratio and a risk factor of 10% or less. Was. Therefore,
The estimation formula is as follows. Thigh sensory evaluation index = 0.265 x (thigh support ratio)
+0.131 [Thigh sensory evaluation index] Regarding the fatigue of the lower leg, it is not related to the body pressure distribution because it is not basically in contact with the chair, but it is relative to the position where the foot is placed depending on the leg length. Will change. Therefore, as shown in FIG. 20, an estimation formula was created based on the height having a high correlation with the leg length. Lower leg sensory evaluation index = -0.013 x (height) + 2.3
55. In FIGS. 13 to 20, the vertical axis is a sensory evaluation index for each part in which the sensory evaluation result of the sensory evaluation experiment is weighted to a certain degree, and the horizontal axis is the support of the feature point position based on the body pressure distribution detected at that time. It is a percentage. The experimental values are plotted at points, and from this point a straight line representing the estimation formula was obtained by regression analysis. In FIG. 13, only the thoracic spine support ratio is shown on the horizontal axis. However, in the experiment, the relationship between the neck sensory evaluation index and other body pressure distribution features is also taken as data. As a result of narrowing down the number of variables as much as possible and examining the causal relationship as a result,
Thorax support ratio is selected. This relationship is shown in FIG.
The same applies to all other items in FIG. In step S88, by adapting the body pressure distribution feature amount or height in the linear regression equation obtained as described above, a sensory evaluation index for each part of the body can be obtained. That is, in the estimation formulas represented by the straight lines in FIGS. 13 to 20, the body pressure distribution feature amount is applied to the support ratio on the horizontal axis, and the sensory evaluation index on the vertical axis is obtained. With the sensory evaluation index for each part, the fatigue state of each part of the body can be known, and the suitability between the chair to be seated and the seated person can be accurately evaluated. In addition, since the back shape is classified into at least three categories and the evaluation is performed for each class, a more reliable and accurate evaluation of the suitability can be performed in consideration of the morphological individual difference of the human. Further, by calculating the comprehensive sensory evaluation index as in step S89, fatigue of the entire body can be easily recognized, and simple sitting posture suitability evaluation can be performed. Further, as described above, since the output is performed by the monitor 19a as shown in FIG. 9, it is possible to quickly and accurately recognize the suitability evaluation of the sitting posture. In this way, the relationship between the sensory evaluation index based on long-term data of the fatigue sensory evaluation and the load bearing ratio of the skeleton feature point position is analyzed and created in advance, and the relationship is measured in the early stage of sitting on the chair to be seated. By using the obtained body pressure distribution, the load supporting ratio is determined, and by adapting the load supporting ratio to the previously determined relationship, the sensory evaluation index after a long sitting time can be predicted in a short time, which is extremely simple. It is possible to obtain a simple sitting posture suitability evaluation method and a sitting posture suitability evaluation device. In the above-described embodiment, the back shape is classified into three classes. However, by performing more classes, it is possible to perform a fine evaluation for each class and to perform a more accurate sitting posture suitability evaluation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る座位姿勢適合性評価
装置の全体ブロック図である。
FIG. 1 is an overall block diagram of a sitting posture suitability evaluation apparatus according to an embodiment of the present invention.

【図2】一実施形態に係り、背中形状計測装置を示す斜
視図である。
FIG. 2 is a perspective view showing a back shape measuring device according to one embodiment.

【図3】同体圧センサマットと椅子との関係を示す斜視
図である。
FIG. 3 is a perspective view showing a relationship between a body pressure sensor mat and a chair.

【図4】同体圧センサマットの要部を示し、(a)は要
部断面図、(b)は座部マットの上部表皮を一部開いた
平面図、(c)は背もたれ部マットの上部表皮を一部開
いた平面図である。
4A and 4B show a main part of the same body pressure sensor mat, wherein FIG. 4A is a cross-sectional view of the main part, FIG. 4B is a plan view showing a part of an upper skin of the seat mat, and FIG. It is the top view which opened the skin partly.

【図5】同体圧分布に係り、(a)は背もたれ部、
(b)は座部の説明図である
FIG. 5 is a diagram showing a backrest portion,
(B) is an explanatory view of a seat.

【図6】同背中形状計測のフローチャートである。FIG. 6 is a flowchart of the back shape measurement.

【図7】同体圧分布計測のフローチャートである。FIG. 7 is a flowchart of a body pressure distribution measurement.

【図8】同座位姿勢適合性評価のフローチャートであ
る。
FIG. 8 is a flowchart of a sitting posture suitability evaluation.

【図9】モニタによる画面表示の説明図である。FIG. 9 is an explanatory diagram of a screen display on a monitor.

【図10】背中形状の分類を示し、(a)はS字型自然
立位、(b)は同正規座位、(c)は猫背型自然立位、
(d)は同正規座位、(e)は直線型自然立位、(f)
は同正規座位の説明図である。
FIG. 10 shows the classification of the back shape, (a) is an S-shaped natural standing position, (b) is a normal sitting position, (c) is a cat standing natural standing position,
(D) is a normal sitting position, (e) is a linear natural standing position, (f)
Is an explanatory diagram of the normal sitting position.

【図11】身体特徴点位置を示す説明図である。FIG. 11 is an explanatory diagram showing positions of body feature points.

【図12】同官能評価用紙を示す説明図である。FIG. 12 is an explanatory diagram showing the same sensory evaluation sheet.

【図13】推定式に係り、(a)は胸部湾曲型の首部官
能評価指標と胸椎支持割合との関係を示すグラフ、
(b)は胸部平坦型の首部官能評価指標と胸椎支持割合
との関係を示すグラフである。
FIG. 13 is a graph showing a relationship between a neck curvature sensory evaluation index of a curved chest type and a thoracic spine support ratio,
(B) is a graph showing a relationship between a flat chest type neck sensory evaluation index and a thoracic spine support ratio.

【図14】推定式に係り、(a)は胸部湾曲型の肩部官
能評価指標と胸椎支持割合との関係のグラフ、(b)は
胸部平坦型の肩部官能評価指標と胸椎支持割合との関係
のグラフである。
14A and 14B are graphs showing a relationship between a chest flexion-type shoulder sensory evaluation index and a thoracic spine support ratio, and FIG. 14B is a graph showing a relationship between a flat chest type shoulder sensory evaluation index and a thoracic vertebra support ratio. It is a graph of the relationship of.

【図15】推定式に係り、背中部官能評価指標と体圧支
持割合との関係のグラフである。
FIG. 15 is a graph showing a relationship between a back sensory evaluation index and a body pressure support ratio in the estimation formula.

【図16】推定式に係り、(a)は胸部湾曲型の腕部官
能評価指標と胸椎支持割合との関係のグラフ、(b)は
胸部平坦型の腕部官能評価指標と胸椎支持割合との関係
のグラフである。
16A and 16B are graphs showing a relationship between a chest curved arm sensory evaluation index and a thoracic spine support ratio, and FIG. 16B is a graph showing a relationship between a chest flat type arm sensory evaluation index and a thoracic vertebra support ratio. It is a graph of the relationship of.

【図17】推定式に係り、(a)は腰部湾曲型の腰部官
能評価指標と腰椎支持割合との関係のグラフ、(b)は
腰部平坦型の腰部官能評価指標と腰椎支持割合との関係
のグラフである。
17A and 17B are graphs showing a relationship between a waist curve type lumbar sensory evaluation index and a lumbar support ratio, and FIG. 17B is a graph showing a relationship between a lumbar flat type lumbar sensory evaluation index and a lumbar support ratio. It is a graph of.

【図18】推定式に係り、臀部官能評価指標と座骨部支
持割合との関係のグラフである。
FIG. 18 is a graph showing the relationship between the buttocks sensory evaluation index and the ischial support rate in the estimation formula.

【図19】推定式に係り、大腿部官能評価指標と大腿部
支持割合との関係のグラフである。
FIG. 19 is a graph showing a relationship between a thigh sensory evaluation index and a thigh support ratio according to the estimation formula.

【図20】推定式に係り、下腿部官能評価指標と身長と
の関係を示すグラフである。
FIG. 20 is a graph showing the relationship between the lower leg sensory evaluation index and the height in the estimation formula.

【図21】従来例に係る装置の全体ブロック図である。FIG. 21 is an overall block diagram of a device according to a conventional example.

【符号の説明】[Explanation of symbols]

計測より推定し、体圧センサマット13上の対応位置を
推定したものである。又、座部マット35による体圧分
布計測値のピーク値を座骨位置75としてその特徴点位
置を推定している。そして、前記ステップS86の体圧
分布特徴量の計算は、各身体特徴点付近の体圧分布計測
値の総和をとり、背もたれ部37もしくは座部33の計
測値総和との比率を支持割合として定義したもので、 胸椎支持割合=第10胸椎から第12胸椎までの体圧計
測値総和/背もたれ部体圧総和 腰椎支持割合=第3腰椎を中心に上下35mmの範囲の
体圧計測値総和/背もたれ部体圧総和 骨盤支持割合=第5腰椎からマット最下端までの体圧計
測値総和/背もたれ部体圧総和 座骨部支持割合=座骨位置中心35mm範囲の体圧計測
値総和/座部計測値総和 大腿支持割合=座骨位置からマット最前端までの体圧計
測値総和/座部計測値総和 となる。即ち、座圧分布に関しては、人体骨格負荷と関
連する領域の支持圧バランスと集中が座位姿勢適合性と
相関が高いと考えられ、説明変数としたものである。前
記ステップS87の推定式は、 (首部官能評価指標)=2.622×(胸椎支持割合)−0.063 …胸部湾曲型 =−1.952×(胸椎支持割合)+0.957 …胸部平坦型 (肩部官能評価指標)=1.861×(胸椎支持割合)+0.099 …胸部湾曲型 =−4.216×(胸椎支持割合)+0.871 …胸部平坦型 (背中部官能評価指標)=1.466×(胸椎支持割合)+3.179 ×(胸椎支持割合)−0.299 (腕部官能評価指標)=1.947×(胸椎支持割合)−0.108 …胸部湾曲型 =−0.415×(胸椎支持割合)+0.210 …胸部平坦型 (腰部官能評価指標)=−5.581×(腰椎支持割合)+1.518 …腰部湾曲型 =6.692×(腰椎支持割合)−0.094 …腰部平坦型 (臀部官能評価指標)=4.700×(座骨部支持割合)−1.983 (大腿部官能評価指標)=0.265×(大腿部支持割合)+0.131 (下腿部官能評価指標)=−0.013×(身長)+2.355 (総合)=Σ(部位別官能評価指標) で表わされる。即ち、対象となる椅子と身体の適合性は
主観評価を用いて評価することが出来るが、特に作業椅
子等の場合、長時間の評価が必要となる。そこで、椅子
の適合性を「適合性の高い椅子とは長時間疲れない椅子
である」との定義の下に、長時間作業後の部位別官能主
観評価に一定の重み係数を乗じた部位別官能評価指標を
評価指標とした。この部位別官能評価指標に対し、椅子
と身体との適合性の状態量として、着座時の身体部位別
の体圧分布特徴量を用いた推定式(指標式)を用い、本
推定式により初期の着座状態量から長時間作業後の官能
評価指標を予測することができるのである。なお、重み
係数はアンケート調査による重要度によって決定された
もので、身体各部の座り心地に対する重要度合いを示し
ている。かかる重み係数を用いることにより、より的確
な官能評価指標を得ることができる。 11 背中形状計測装置(背中形状計測手段) 13 体圧センサマット(体圧分布計測手段) 19 パーソナルコンピュータ(評価手段) 19a モニタ(評価出力手段)
It is estimated from the measurement, and the corresponding position on the body pressure sensor mat 13 is estimated. Further, the peak value of the body pressure distribution measurement value by the seat mat 35 is set as the ischium position 75, and the characteristic point position is estimated. The calculation of the body pressure distribution feature amount in step S86 is performed by taking the sum of the body pressure distribution measurement values in the vicinity of each body feature point and defining the ratio with the sum of the measurement values of the backrest 37 or the seat 33 as a support ratio. Thoracic vertebra support ratio = sum of body pressure measurement values from the 10th thoracic vertebra to twelfth thoracic vertebra / total body pressure of the backrest Lumbar vertebra support ratio = sum of body pressure measurement values in the range of 35 mm above and below the third lumbar vertebra / backrest Total body pressure Pelvic support ratio = Total measured body pressure from the 5th lumbar vertebra to the lowermost end of the mat / Total body pressure of the backrest Sciatic support ratio = Total measured body pressure in the 35 mm center of the ischial position / Total measured seat value Thigh support ratio = Sum of measured body pressure from the position of the ischial bone to the front end of the mat / Summed value of the seat part. That is, regarding the seat pressure distribution, the support pressure balance and concentration in the region related to the human skeleton load are considered to have a high correlation with the sitting posture suitability, and are used as explanatory variables. The estimation formula in step S87 is as follows: (neck sensory evaluation index) = 2.622 × (thoracic vertebra support ratio) −0.063… chest curved type = −1.952 × (thoracic vertebra support ratio) +0.957… chest flat type (Shoulder sensory evaluation index) = 1.861 x (thoracic vertebra support ratio) + 0.099 ... Chest curved type = -4.216 x (thoracic vertebra support ratio) + 0.871 ... Chest flat type (back sensory evaluation index) = 1.466 x (thoracic vertebra support ratio) + 3.179 x (thoracic vertebra support ratio)-0.299 (arm sensory evaluation index) = 1.947 x (thoracic vertebra support ratio)-0.108 ... Chest curved type = -0 .415 x (ratio of thoracic spine support) + 0.210 ... flat chest type (lumbar sensory evaluation index) = -5.581 x (ratio of lumbar support) + 1.518 ... waist curve type = 6.692 x (lumbar support ratio)- 0.094 ... waist flat type ) = 4.700 x (sciatic support rate)-1.983 (femoral support index) = 0.265 x (femoral support rate) + 0.131 (femoral support index) = -0 0.013 × (height) +2.355 (overall) = Σ (sensory evaluation index for each site). That is, the compatibility between the chair and the subject can be evaluated by using a subjective evaluation. In particular, in the case of a work chair or the like, a long-term evaluation is required. Therefore, based on the definition of the suitability of the chair as "a chair with high suitability is a chair that does not tire for a long time", the site-specific subjective evaluation by the site after a long working time is multiplied by a certain weighting factor. The sensory evaluation index was used as an evaluation index. For this sensory evaluation index for each part, an estimation formula (index formula) using body pressure distribution features for each body part at the time of sitting is used as the state quantity of compatibility between the chair and the body, It is possible to predict the sensory evaluation index after a long working time from the sitting state quantity of the user. The weighting factors are determined based on the importance of the questionnaire survey, and indicate the importance of each part of the body with respect to sitting comfort. By using such a weight coefficient, a more accurate sensory evaluation index can be obtained. 11 back shape measuring device (back shape measuring means) 13 body pressure sensor mat (body pressure distribution measuring means) 19 personal computer (evaluation means) 19a monitor (evaluation output means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 貴志 陽一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 花井 利通 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 2F051 AA01 AB06 AC09 BA07 BA08 2F063 AA50 BA29 CA13 DA02 DA05 DA21 DD06 DD08 FA01 KA02 MA05 ZA01 ZA02 3B087 DE08 DE10 3B088 QA06 4C038 VA03 VB29 VC11 VC20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoichi Kishi Nissan Motor Co., Ltd. (2) Nissan Motor Co., Ltd. (2) Inventor Toshimichi Hanai 2 Takaracho, Kanagawa Ward, Yokohama City, Kanagawa Prefecture F Terms (reference) 2F051 AA01 AB06 AC09 BA07 BA08 2F063 AA50 BA29 CA13 DA02 DA05 DA21 DD06 DD08 FA01 KA02 MA05 ZA01 ZA02 3B087 DE08 DE10 3B088 QA06 4C038 VA03 VB29 VC11 VC20

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 着座対象への着座者の背中形状及び着座
時の着座対象に対する少なくとも体圧分布を計測し、 前記背中形状及び少なくとも体圧分布に基づいて前記着
座対象と着座者との適合性を評価する座位姿勢適合性評
価方法。
1. A back shape of a seated person on a seated object and at least a body pressure distribution on the seated object at the time of sitting are measured, and the suitability between the seated object and the seated person based on the back shape and at least the body pressure distribution. A sitting posture suitability evaluation method for evaluating the posture.
【請求項2】 請求項1記載の座位姿勢適合性評価方法
であって、 前記評価は、前記着座者の身体各部の疲労感官能評価に
前記身体各部の適合性に対する重要度合いを示す重み係
数を乗した疲労を表す官能評価指標を用いることを特徴
とする座位姿勢適合性評価方法。
2. The sitting posture suitability evaluation method according to claim 1, wherein the evaluation includes a weighting factor indicating a degree of importance to the suitability of each body part in the sensory evaluation of fatigue of each body part of the seated person. A sitting posture suitability evaluation method characterized by using a sensory evaluation index representing fatigue on riding.
【請求項3】 請求項2記載の座位姿勢適合性評価方法
であって、 前記評価は、前記体圧分布に基づく身体の骨格特徴点位
置の荷重支持割合と前記官能評価指標との関係において
行なうことを特徴とする座位姿勢適合性評価方法。
3. The sitting posture suitability evaluation method according to claim 2, wherein the evaluation is performed based on a relationship between a load supporting ratio of a body skeleton feature point position based on the body pressure distribution and the sensory evaluation index. A sitting posture suitability evaluation method characterized by the following.
【請求項4】 請求項1〜3の何れかに記載の座位姿勢
適合性評価方法であって、 前記評価は、前記背中形状を少なくとも3分類して各類
毎に行なうことを特徴とする座位姿勢適合性評価方法。
4. The sitting posture suitability evaluation method according to claim 1, wherein the evaluation is performed for each class by classifying the back shape into at least three categories. Posture suitability evaluation method.
【請求項5】 請求項3記載の座位姿勢適合性評価方法
であって、 前記評価は、前記疲労感官能評価の長時間のデータに基
づく官能評価指標と前記骨格特徴点位置の荷重支持割合
との関係を予め解析作成し、該関係に対し着座対象への
少なくとも着座初期に計測した体圧分布を用いて着座長
時間後の官能評価指標を予測することを特徴とする座位
姿勢適合性評価方法。
5. The sitting posture suitability evaluation method according to claim 3, wherein the evaluation includes a sensory evaluation index based on long-term data of the fatigue sensory evaluation and a load supporting ratio of the skeleton feature point position. A relationship between the body posture and the body posture distribution measured at least in the early stage of sitting on the object, and predicting a sensory evaluation index after a long sitting time. .
【請求項6】 請求項5記載の座位姿勢適合性評価方法
であって、 前記予測される官能評価指標は、身体各部の部位別のも
のであることを特徴とする座位姿勢適合性評価方法。
6. The sitting posture suitability evaluation method according to claim 5, wherein the predicted sensory evaluation index is for each body part.
【請求項7】 請求項5記載の座位姿勢適合性評価方法
であって、 前記予測される官能評価指標は、身体各部の部位別のも
のを総合したものであることを特徴とする座位姿勢適合
性評価方法。
7. The sitting posture suitability evaluation method according to claim 5, wherein the predicted sensory evaluation index is obtained by summing up the values for each part of each body part. Sex evaluation method.
【請求項8】 着座対象への着座者の背中形状を計測す
る背中形状計測手段と、 前記着座対象への着座時の体圧分布を計測する体圧分布
計測手段と、 前記計測した背中形状及び体圧分布に基づいて前記着座
対象と着座者との適合性を評価する評価手段と、 該評価手段の評価を出力する評価出力手段とよりなるこ
とを特徴とする座位姿勢適合性評価装置。
8. A back shape measuring means for measuring a back shape of a seated person on the seated object; a body pressure distribution measuring means for measuring a body pressure distribution when the seated object is seated; A seating posture suitability evaluation device, comprising: evaluation means for evaluating suitability between the seated object and the seated person based on body pressure distribution; and evaluation output means for outputting the evaluation of the evaluation means.
【請求項9】 請求項8記載の座位姿勢適合性評価装置
であって、 前記評価手段は、前記着座者の身体各部に疲労感官能評
価に前記身体各部の座り心地に対する重要度合いを示す
重み係数を乗した官能評価指標を用いることを特徴とす
る座位姿勢適合性評価装置。
9. The sitting posture suitability evaluation apparatus according to claim 8, wherein the evaluation means includes a weighting coefficient indicating a degree of importance of each part of the body with respect to sitting comfort in a sensory evaluation of fatigue of each part of the body of the seated person. A sitting posture suitability evaluation device characterized by using a sensory evaluation index raised to a power.
【請求項10】 請求項9記載の座位姿勢適合性評価装
置であって、 前記評価手段は、前記体圧分布に基づく身体の骨格特徴
点位置の荷重支持割合と前記官能評価指標との関係にお
いて評価を行なうことを特徴とする座位姿勢適合性評価
装置。
10. The sitting posture suitability evaluation apparatus according to claim 9, wherein the evaluation means is configured to determine a relationship between a load support ratio of a body skeleton feature point position based on the body pressure distribution and the sensory evaluation index. A sitting posture suitability evaluation device characterized by performing an evaluation.
【請求項11】 請求項8〜10の何れかに記載の座位
姿勢適合性評価装置であって、 前記評価手段は、前記背中形状を少なくとも3分類して
各類毎に評価を行なうことを特徴とする座位姿勢適合性
評価装置。
11. The sitting posture suitability evaluation device according to claim 8, wherein the evaluation unit performs at least three classifications of the back shape and performs evaluation for each class. Sitting posture suitability evaluation device.
【請求項12】 請求項10記載の座位姿勢適合性評価
装置であって、 前記評価手段は、前記疲労感官能評価の長時間のデータ
に基づく官能評価指標と前記骨格特徴点位置の荷重支持
割合との関係を予め解析作成し、該関係に対し着座対象
への少なくとも着座初期に計測した体圧分布を用いて着
座長時間後の官能評価指標を予測することを特徴とする
座位姿勢適合性評価装置。
12. The sitting posture suitability evaluation apparatus according to claim 10, wherein the evaluation means includes a sensory evaluation index based on long-term data of the fatigue sensory evaluation and a load supporting ratio of the skeleton feature point position. And a sensory evaluation index after a long sitting time is predicted by using a body pressure distribution measured at least in the initial stage of sitting on the seating object for the relationship. apparatus.
【請求項13】 請求項12記載の座位姿勢適合性評価
装置であって、 前記予測される官能評価指標は、身体各部の部位別のも
のであることを特徴とする座位姿勢適合性評価装置。
13. The sitting posture suitability evaluation apparatus according to claim 12, wherein the predicted sensory evaluation index is for each part of each body part.
【請求項14】 請求項12記載の座位姿勢適合性評価
装置であって、 前記予測される官能評価指標は、身体各部の部位別のも
のを統合したものであることを特徴とする座位姿勢適合
性評価装置。
14. The sitting posture suitability evaluation apparatus according to claim 12, wherein the predicted sensory evaluation index is obtained by integrating values for each part of each body part. Sex evaluation device.
【請求項15】 請求項8〜14の何れかに記載の座位
姿勢適合性評価装置であって、 前記背中形状計測手段は、上下に所定間隔で配置した直
線式ポテンショメータ群を計測部とすることを特徴とす
る座位姿勢適合性評価装置。
15. The sitting posture suitability evaluation device according to claim 8, wherein the back shape measuring means is a group of linear potentiometers arranged vertically at predetermined intervals. A sitting posture suitability evaluation device characterized by the following.
【請求項16】 請求項8〜15の何れかに記載の座位
姿勢適合性評価装置であって、 前記体圧分布計測手段は、前記着座対象の着座面に所定
間隔で配したロードセル群を計測部とすることを特徴と
する座位姿勢適合性評価装置。
16. The sitting posture suitability evaluation apparatus according to claim 8, wherein the body pressure distribution measuring unit measures a group of load cells arranged at predetermined intervals on a seating surface of the seating target. A sitting posture suitability evaluation apparatus characterized by comprising a section.
【請求項17】 請求項8〜16の何れかに記載の座位
姿勢適合性評価装置であって、 前記評価出力手段は、前記評価を画面表示することを特
徴とする座位姿勢適合性評価装置。
17. The sitting posture suitability evaluation device according to claim 8, wherein the evaluation output means displays the evaluation on a screen.
【請求項18】 請求項17記載の座位姿勢適合性評価
装置であって、 前記評価出力手段は、前記評価を体圧分布の等圧線、背
中の形状、疲労を示す官能評価指標として同時に画面表
示することを特徴とする座位姿勢適合性評価装置。
18. The sitting posture suitability evaluation device according to claim 17, wherein the evaluation output means simultaneously displays the evaluation as a sensory evaluation index indicating a contour line of body pressure distribution, a back shape, and fatigue. A sitting posture suitability evaluation device characterized by the above-mentioned.
JP11158438A 1999-04-28 1999-04-28 Method and device for evaluating sitting posture compatibility Pending JP2000314667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11158438A JP2000314667A (en) 1999-04-28 1999-04-28 Method and device for evaluating sitting posture compatibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11158438A JP2000314667A (en) 1999-04-28 1999-04-28 Method and device for evaluating sitting posture compatibility

Publications (1)

Publication Number Publication Date
JP2000314667A true JP2000314667A (en) 2000-11-14

Family

ID=15671781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11158438A Pending JP2000314667A (en) 1999-04-28 1999-04-28 Method and device for evaluating sitting posture compatibility

Country Status (1)

Country Link
JP (1) JP2000314667A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195900A (en) * 2000-12-22 2002-07-10 Bridgestone Corp Evaluation method for comfortableness of seat
JP2008151622A (en) * 2006-12-18 2008-07-03 Dainippon Printing Co Ltd Posture inspection system and posture inspection chair
JP2008178606A (en) * 2007-01-25 2008-08-07 Matsushita Electric Works Ltd Function database generation method and function database generation device
KR101093555B1 (en) 2010-04-22 2011-12-13 주식회사 자세과학 Device for posture correction
KR101351395B1 (en) 2012-05-22 2014-01-24 포항공과대학교 산학협력단 Body Pressure Distribution Analysis System And Method Thereof
WO2019235462A1 (en) * 2018-06-07 2019-12-12 テイ・エス テック株式会社 Seat experience system
CN112617815A (en) * 2020-12-17 2021-04-09 深圳数联天下智能科技有限公司 Sitting posture assessment method and device, computer equipment and storage medium
CN115399597A (en) * 2022-09-09 2022-11-29 永艺家具股份有限公司 Self-adaptive sitting posture identification method of intelligent seat

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347206A (en) * 1989-07-14 1991-02-28 Nissan Motor Co Ltd Seat
JPH0672221A (en) * 1992-08-31 1994-03-15 Ikeda Bussan Co Ltd Seat device
JPH06227297A (en) * 1993-02-09 1994-08-16 Araco Corp Car seat adjusting device
JPH0910067A (en) * 1995-06-28 1997-01-14 Nissan Motor Co Ltd Vehicular seat device
JPH0998851A (en) * 1995-10-06 1997-04-15 Nissan Motor Co Ltd Vehicular seat device
JPH10274577A (en) * 1997-03-31 1998-10-13 Toyota Central Res & Dev Lab Inc Contact sensation evaluation method
JPH1164131A (en) * 1997-08-12 1999-03-05 Nissan Motor Co Ltd Seating monitoring device for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347206A (en) * 1989-07-14 1991-02-28 Nissan Motor Co Ltd Seat
JPH0672221A (en) * 1992-08-31 1994-03-15 Ikeda Bussan Co Ltd Seat device
JPH06227297A (en) * 1993-02-09 1994-08-16 Araco Corp Car seat adjusting device
JPH0910067A (en) * 1995-06-28 1997-01-14 Nissan Motor Co Ltd Vehicular seat device
JPH0998851A (en) * 1995-10-06 1997-04-15 Nissan Motor Co Ltd Vehicular seat device
JPH10274577A (en) * 1997-03-31 1998-10-13 Toyota Central Res & Dev Lab Inc Contact sensation evaluation method
JPH1164131A (en) * 1997-08-12 1999-03-05 Nissan Motor Co Ltd Seating monitoring device for vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195900A (en) * 2000-12-22 2002-07-10 Bridgestone Corp Evaluation method for comfortableness of seat
JP2008151622A (en) * 2006-12-18 2008-07-03 Dainippon Printing Co Ltd Posture inspection system and posture inspection chair
JP2008178606A (en) * 2007-01-25 2008-08-07 Matsushita Electric Works Ltd Function database generation method and function database generation device
KR101093555B1 (en) 2010-04-22 2011-12-13 주식회사 자세과학 Device for posture correction
KR101351395B1 (en) 2012-05-22 2014-01-24 포항공과대학교 산학협력단 Body Pressure Distribution Analysis System And Method Thereof
WO2019235462A1 (en) * 2018-06-07 2019-12-12 テイ・エス テック株式会社 Seat experience system
CN112262059A (en) * 2018-06-07 2021-01-22 提爱思科技股份有限公司 Seat experience system
JP2022145887A (en) * 2018-06-07 2022-10-04 テイ・エス テック株式会社 seat experience system
JP7393686B2 (en) 2018-06-07 2023-12-07 テイ・エス テック株式会社 Seat experience system
US12059976B2 (en) 2018-06-07 2024-08-13 Ts Tech Co., Ltd. In-seat experience system
CN112617815A (en) * 2020-12-17 2021-04-09 深圳数联天下智能科技有限公司 Sitting posture assessment method and device, computer equipment and storage medium
CN115399597A (en) * 2022-09-09 2022-11-29 永艺家具股份有限公司 Self-adaptive sitting posture identification method of intelligent seat

Similar Documents

Publication Publication Date Title
Na et al. Evaluation of driver's discomfort and postural change using dynamic body pressure distribution
Gyi et al. Interface pressure and the prediction of car seat discomfort
Vergara et al. Relationship between comfort and back posture and mobility in sitting-posture
Gross et al. The biomechanical assessment and prediction of seat comfort
JP3903206B2 (en) System for measuring and analyzing basic characteristics of body pressure distribution
Jianghong et al. An evaluation of comfort of a bus seat
US20170020438A1 (en) System and method for monitoring user posture
CN110441048A (en) A kind of seat comfort evaluation method based on the distribution of objective pressure
JP2000314667A (en) Method and device for evaluating sitting posture compatibility
JPH1156818A (en) Input device
Gust et al. Intelligent seating system with haptic feedback for active health support
Hinz et al. The significance of using anthropometric parameters and postures of European drivers as a database for finite-element models when calculating spinal forces during whole-body vibration exposure
KR101351395B1 (en) Body Pressure Distribution Analysis System And Method Thereof
Wang et al. Biomechanical human models for seating discomfort assessment
Yang et al. Evaluating sitting comfort with questionnaire and body pressure distribution: overview and design
Fujimaki et al. Sitting comfort of office chair design
JP3538623B2 (en) Contact sensation evaluation method
JP2005261508A (en) Feeling condition evaluation apparatus
Khamis et al. Development of a statistical model for predicting seat pressure felt level in simulated condition based on direct and anthropometric measurement
Liu et al. Comfort evaluation of a subject-specific seating interface formed by vibrating grains
Tessendorf et al. Unsupervised monitoring of sitting behavior
Marjanen et al. Relative contribution of translational and rotational vibration to discomfort
Pereira et al. System for Posture Evaluation and Correction-Development of a second Prototype for an Intelligent Chair
Roh et al. Estimation of various sitting postures using a load-cell-driven monitoring system
Lyu et al. Influence of body mass index on comfort and parametric optimization design of seat