Nothing Special   »   [go: up one dir, main page]

JP2000166129A - Method and apparatus for reducing stand-by power of noncontact charger - Google Patents

Method and apparatus for reducing stand-by power of noncontact charger

Info

Publication number
JP2000166129A
JP2000166129A JP10335073A JP33507398A JP2000166129A JP 2000166129 A JP2000166129 A JP 2000166129A JP 10335073 A JP10335073 A JP 10335073A JP 33507398 A JP33507398 A JP 33507398A JP 2000166129 A JP2000166129 A JP 2000166129A
Authority
JP
Japan
Prior art keywords
charging
current
primary
circuit
electromagnetic transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10335073A
Other languages
Japanese (ja)
Inventor
Masaaki Kounofuji
正明 甲野藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10335073A priority Critical patent/JP2000166129A/en
Publication of JP2000166129A publication Critical patent/JP2000166129A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Telephone Function (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce stand-by time power consumption, and additionally to automatically perform non-charging time intermittent operation and charging- time continuous operation on the basis of the magnitude of a primary input current, without bothering a user, by operating a switch device intermittently when charging is not performed or when charging is finished. SOLUTION: A noncontact charger 10 performs charging by connecting a rectifier circuit 18 to a commercial power source 12, connecting a primary power feed coil 22a of an electromagnetic transformer 22 and a switch device 24 to the circuit 18 via a filter capacitor 20, and connecting a battery 36 to the secondary power receiving coil 22b of this transformer 22 through a rectifier circuit, has a current sensor 26 which detects the input current on the primary side of the electromagnetic transformer, and controls switch operation of the switch device 24 causing a control circuit 28 to oscillate intermittently or continuously, on the basis of the relation between the current detected by the sensor 26 and a preset current value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は非接触充電器の待機電
力低減方法および装置に関し、特にたとえばアシスト自
転車、あるいは携帯電話機、情報端末等の携帯用電子機
器などに搭載される電源用二次電池(以下単に「バッテ
リ」と言う)の充電を行う非接触充電器の待機電力低減
方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for reducing standby power of a contactless charger, and more particularly to a secondary battery for a power supply mounted on, for example, an assisted bicycle or a portable electronic device such as a mobile phone or an information terminal. The present invention relates to a method and an apparatus for reducing standby power of a non-contact charger for charging a battery (hereinafter simply referred to as a “battery”).

【0002】[0002]

【従来の技術】従来、非接触充電器は、接触型充電器の
ように使用時にのみ商用電源を供給するのではなく、常
に商用電源に接続された状態で使用されることが多い。
この充電器は、例えば特開平2−231845公報[H
02J 7/00]に開示されているように、充電部に
発振回路と、この発振回路からの発振信号により駆動さ
れる発振用コイルを設け、被充電部には発振用コイルと
電磁結合される電磁結合用コイルと、この電磁結合用コ
イルに誘起される電力を整流する整流回路を設け、これ
により充電用接点を用いることなく、バッテリを充電で
きるように構成されている。
2. Description of the Related Art Conventionally, non-contact chargers are not always supplied with commercial power only when used as in contact type chargers, but are often used while always connected to commercial power.
This charger is disclosed, for example, in Japanese Patent Laid-Open No.
02J 7/00], an oscillating circuit and an oscillating coil driven by an oscillating signal from the oscillating circuit are provided in the charging section, and the oscillating coil is electromagnetically coupled to the charged section. An electromagnetic coupling coil and a rectifying circuit for rectifying the electric power induced in the electromagnetic coupling coil are provided so that the battery can be charged without using a charging contact.

【0003】そのために待機時、すなわち、非充電時や
充電終了後等においても発振回路等は動作状態におか
れ、交流電源から給電され続けるため、常に電力が消費
され経済性に欠け、消費電力を一層低減することが必要
とされている。
For this reason, the oscillation circuit and the like are kept in an operating state even during standby, that is, at the time of non-charging or after the end of charging, and are continuously supplied with power from an AC power supply. Needs to be further reduced.

【0004】[0004]

【発明が解決しようとする課題】一般にこの種充電器に
おいて、待機時の消費電力を低減する有効な手段として
は、待機時に充電回路を停止させる方法である。この場
合は、機械スイッチ等で充電、非充電を切替える必要が
ある。また、使用者がこのスイッチを切り忘れた場合に
は待機電力の低減ができないという問題が生じる。
Generally, in this type of charger, an effective means for reducing the power consumption during standby is to stop the charging circuit during standby. In this case, it is necessary to switch between charging and non-charging with a mechanical switch or the like. Further, when the user forgets to turn off the switch, there is a problem that the standby power cannot be reduced.

【0005】さらに、充電時および非充電時の自動検出
は充電電流を監視して行うのが最も簡単であるが、非接
触方式を用いた充電器においては、充電電流を含めて二
次側の情報を検出することは困難である。したがって、
非充電時の充電電流の検出等は一次側で行う必要があ
る。そこでスイッチング周波数の低下、またはスイッチ
ングの間欠動作による待機時の電力低減を図る方法が考
えられる。
Further, it is easiest to perform automatic detection during charging and non-charging by monitoring the charging current. However, in a charger using the non-contact method, the secondary side including the charging current is included. It is difficult to detect information. Therefore,
It is necessary to detect the charging current during non-charging on the primary side. Therefore, a method of reducing the switching frequency or reducing the power during standby due to the intermittent operation of switching can be considered.

【0006】それゆえに、この発明の主たる目的は、非
接触充電器の一次側スイッチング電源を自動的に間欠的
に動作させることにより、煩わしい操作を必要とせず
に、非充電時における待機電力の低減を図ることができ
る、非接触充電器の待機電力低減方法および装置を提供
することである。
Accordingly, a main object of the present invention is to automatically and intermittently operate a primary switching power supply of a non-contact charger, thereby reducing standby power during non-charging without requiring troublesome operation. It is an object of the present invention to provide a method and an apparatus for reducing standby power of a non-contact charger which can achieve the following.

【0007】[0007]

【課題を解決するための手段】この発明は、商用電源に
整流回路を介して電磁トランスの一次側給電用コイルと
スイッチング手段を接続し、電磁トランスの二次側受電
用コイルに整流回路を介してバッテリを接続して充電を
行う非接触充電器において、(a)一次側入力電流が設
定値以下の時はスイッチング手段を間欠的に動作させる
とともに、(b)一次側電流が設定値以上の時は前記ス
イッチング手段を連続的に動作させるようにしたことを
特徴とする、非接触充電器の待機電力低減方法である。
According to the present invention, a primary power supply coil of an electromagnetic transformer and a switching means are connected to a commercial power supply via a rectifier circuit, and a secondary power receiving coil of the electromagnetic transformer is connected via a rectifier circuit. (A) When the primary input current is less than a set value, the switching means is operated intermittently, and (b) the primary current is more than the set value. A standby power reduction method for a non-contact charger, characterized in that the switching means is operated continuously at the time.

【0008】また、この発明は、上述の非接触充電器に
おいて、電磁トランスの一次側入力電流を検出する電流
検出手段、さらに一次側電流が設定値以下の時はスイッ
チング手段を間欠的に動作させるとともに、一次側電流
が設定値以上の時はスイッチング手段を連続的に動作さ
せる制御手段を備えることを特徴とする、非接触充電器
の待機電力低減装置である。
According to the present invention, in the above-described non-contact charger, the current detecting means for detecting the primary input current of the electromagnetic transformer, and the switching means are operated intermittently when the primary current is less than a set value. And a control unit for continuously operating the switching unit when the primary current is equal to or higher than a set value.

【0009】[0009]

【作用】電流検出手段により一次側入力電流の検出を行
い、この電流が設定値以下の時は制御手段によりスイッ
チング手段を間欠的に動作させて非充電時における充電
器側の電力消費を抑制することにより待機電力の低減が
可能となる。
The primary-side input current is detected by the current detecting means, and when the current is equal to or less than the set value, the switching means is intermittently operated by the control means to suppress power consumption on the charger side during non-charging. As a result, the standby power can be reduced.

【0010】[0010]

【発明の効果】この発明によれば、非充電時の間欠的な
動作により待機時の消費電力を低減する。また、電流検
出手段により検出される一次側入力電流に基づいてスイ
ッチング手段の間欠的動作および連続的動作は自動的に
行われるので、使用者の手を煩わすこともなく確実な動
作が期待できる。
According to the present invention, the intermittent operation during non-charging reduces power consumption during standby. In addition, since the intermittent operation and the continuous operation of the switching means are automatically performed based on the primary-side input current detected by the current detection means, a reliable operation can be expected without bothering the user.

【0011】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

【0012】[0012]

【実施例】この発明の一実施例を図1〜図5に基づいて
説明する。図1はこの発明の一実施例に基づく非接触充
電器10の概略回路構成を示すブロック図で、この充電
器10は,AC100Vの商用電源12に接続される充
電部14とこの充電部14に適宜セットされる被充電部
16を備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing a schematic circuit configuration of a non-contact charger 10 according to an embodiment of the present invention. The charger 10 includes a charging section 14 connected to a commercial power supply 12 of 100 VAC and a charging section 14 connected to the charging section 14. It has a charged part 16 that is appropriately set.

【0013】充電部14は商用電源12の交流を直流に
変換する整流回路18および平滑コンデンサ20、この
整流回路18の直流出力端に接続された電磁トランス2
2の一次側給電用コイル22aと、この給電用コイル2
2aの通電制御を行うスイッチング素子24および一次
側入力電流を検出する電流センサ26の検出電流に基づ
いてスイッチング素子24を制御する制御回路28を含
む。
The charging section 14 includes a rectifying circuit 18 for converting AC of the commercial power supply 12 to DC, a smoothing capacitor 20, and an electromagnetic transformer 2 connected to a DC output terminal of the rectifying circuit 18.
2 primary-side feeding coil 22a and this feeding coil 2a.
The control circuit 28 controls the switching element 24 based on the detection current of the current sensor 26 that detects the primary-side input current and the switching element 24 that controls the energization of 2a.

【0014】また、被充電部16は電磁トランス22の
二次側受電用コイル22bと、この受電用コイル22b
に整流ダイオード30、平滑コンデンサ32およびスイ
ッチング用トランジスタ34を介して接続されるバッテ
リ36およびトランジスタ34をON−OFF制御する
満充電検出回路38を含む。なお、電磁トランス22は
図6に示すようにL字状の一次コア23と同じくL字状
の二次コア25を含み、給電用コイル22aは一次コア
23の水平片23aに巻回され、受電用コイル22bは
その中空部に給電用コイル22aを挿入した状態となる
ように一次コア23と二次コア25が組み合わされて矩
形状の磁路を形成している。
The charged portion 16 includes a secondary side power receiving coil 22b of the electromagnetic transformer 22 and the power receiving coil 22b.
And a full-charge detection circuit 38 for controlling ON / OFF of the battery 36 and the transistor 34 connected via the rectifier diode 30, the smoothing capacitor 32 and the switching transistor 34. As shown in FIG. 6, the electromagnetic transformer 22 includes an L-shaped primary core 23 and an L-shaped secondary core 25, and the power supply coil 22a is wound around a horizontal piece 23a of the primary core 23 to receive power. The primary core 23 and the secondary core 25 are combined to form a rectangular magnetic path so that the power supply coil 22b is inserted into the hollow portion of the power supply coil 22b.

【0015】ここで上述の非接触充電器10の動作概要
を説明する。まず、バッテリ36を充電する場合は、電
流センサ26による一次側入力電流Iinは制御回路2
8の設定電流値(充電電流値)Iref以上(Iin≧
Iref)であるから、制御回路28は後述の連続発振
を行いスイッチング素子24はスイッチング動作を継続
する。
Here, an outline of the operation of the contactless charger 10 will be described. First, when charging the battery 36, the primary-side input current Iin from the current sensor 26 is controlled by the control circuit 2.
8 or higher than the set current value (charge current value) Iref (Iin ≧
Iref), the control circuit 28 performs continuous oscillation, which will be described later, and the switching element 24 continues the switching operation.

【0016】その結果、商用電源12からの交流電流は
整流回路18で直流に変換され、さらに平滑コンデンサ
20で平滑にされて電磁トランス22の一次側給電用コ
イル22aに供給される。そして給電用コイル22aか
らスイッチング素子24のスイッチング動作に同期した
磁束(磁力線)が発生し、電磁トランス22の二次側受
電コイル22bに電圧が誘起され、この電圧を整流ダイ
オード30と平滑コンデンサ32で構成される整流回路
で直流電流に変換した後、スイッチング用トランジスタ
34を介してバッテリ36に供給される。バッテリ36
の充電が進行して満充電に達すると満充電検出回路38
が作動しスイッチング用トランジスタ34がOFFして
充電が終了する。
As a result, the alternating current from the commercial power supply 12 is converted to direct current by the rectifier circuit 18, further smoothed by the smoothing capacitor 20, and supplied to the primary side feeding coil 22 a of the electromagnetic transformer 22. Then, a magnetic flux (lines of magnetic force) synchronized with the switching operation of the switching element 24 is generated from the power supply coil 22a, and a voltage is induced in the secondary side power receiving coil 22b of the electromagnetic transformer 22. The voltage is generated by the rectifier diode 30 and the smoothing capacitor 32. After being converted into a DC current by the rectifier circuit configured, the DC current is supplied to the battery 36 via the switching transistor 34. Battery 36
When the charging of the battery has progressed to the full charge, the full charge detection circuit 38
Is activated, the switching transistor 34 is turned off, and charging ends.

【0017】充電が終了すると電流センサ26で検出さ
れる一次側入力電流Iinは設定電流値Iref以下
(Iin≦Iref)となり、制御回路28は十分に低
いデューティー比、約25%程度で間欠発振を行う。そ
の結果スイッチング素子24も間欠的に動作を停止(間
欠動作)するので、電磁トランス22の給電用コイル2
2aもその間動作を停止する。従って、充電部14の消
費電力は低減すると共に発熱の低減も図れる。
When the charging is completed, the primary-side input current Iin detected by the current sensor 26 becomes equal to or less than the set current value Iref (Iin ≦ Iref), and the control circuit 28 performs the intermittent oscillation at a sufficiently low duty ratio and about 25%. Do. As a result, the switching element 24 also intermittently stops its operation (intermittent operation).
2a also stops operating during that time. Therefore, the power consumption of the charging unit 14 can be reduced and the heat generation can be reduced.

【0018】また、充電部14に被充電部16をセット
しない非充電時にも電流センサ26による一次側入力電
流Iinは設定電流値Iref以下(Iin≦Ire
f)となるので、スイッチング素子24は間欠的に動作
を停止(間欠動作)し、充電終了時と同様に充電部14
の消費電力および発熱の低減が行われる。例えば、従来
は非充電時における充電回路の消費電力4Wが、この発
明による方法を実施した場合、約1/4の1Wに低減す
ることができた。すなわち、待機時の消費電力の低減率
は75%を実現したことになる。
Further, even when the charging section 14 is not set and the charged section 16 is not set, the primary input current Iin by the current sensor 26 is equal to or less than the set current value Iref (Iin ≦ Ire
f), the switching element 24 intermittently stops operating (intermittent operation), and the charging unit 14 operates similarly to the end of charging.
Power consumption and heat generation are reduced. For example, conventionally, the power consumption of 4 W of the charging circuit during non-charging can be reduced to about 1/4 of 1 W when the method according to the present invention is implemented. That is, the reduction rate of the power consumption during standby is 75%.

【0019】次に図2に示す制御回路28の具体的な構
成とその動作について説明する。制御回路28は電流セ
ンサ26により検出される入力電流Iinに基づき間欠
発振を行う間欠発振回路40とこの発振回路40の出力
に基づきPWM制御によりスイッチング素子24にゲー
ト信号を出力するPWM制御回路42を含む。間欠発振
回路40の出力制御電圧Vcntは外付けされたコンデ
ンサCcntにより保持されている。PWM制御回路4
2はこの間欠発振回路40の出力制御電圧Vcntと基
準電圧44によるデューティー制御電圧Vrの小さい方
と三角波発生器46の電圧Vtriを電圧比較器48で
比較して、出力制御電圧Vcntが三角波の電圧Vtr
iの最小値より小さくなればPWM制御回路42はスイ
ッチング素子24に対するゲート信号の出力を停止する
(図4を参照)。
Next, the specific configuration and operation of the control circuit 28 shown in FIG. 2 will be described. The control circuit 28 includes an intermittent oscillation circuit 40 that performs intermittent oscillation based on the input current Iin detected by the current sensor 26, and a PWM control circuit 42 that outputs a gate signal to the switching element 24 by PWM control based on the output of the oscillation circuit 40. Including. The output control voltage Vcnt of the intermittent oscillation circuit 40 is held by an externally connected capacitor Ccnt. PWM control circuit 4
2 compares the smaller of the output control voltage Vcnt of the intermittent oscillation circuit 40 and the smaller of the duty control voltage Vr based on the reference voltage 44 with the voltage Vtri of the triangular wave generator 46 by the voltage comparator 48, and the output control voltage Vcnt is the voltage of the triangular wave Vtr
If it becomes smaller than the minimum value of i, the PWM control circuit 42 stops outputting the gate signal to the switching element 24 (see FIG. 4).

【0020】また、間欠発振回路40は図3に示すよう
に、電流センサ26で検出される一次側入力電流Iin
を電圧に変換する抵抗58、抵抗とコンデンサで構成さ
れる入力電流平滑回路50および充電ON/OFF制御
用トランジスタ52および54を含む。また、巻線56
は充電主回路の動作により電圧が発生し、ダイオード6
0と平滑コンデンサ62により平滑されて充電ON/O
FF制御用トランジスタ52および54のコレクタとベ
ースに供給されて各トランジスタの駆動電源となる。
As shown in FIG. 3, the intermittent oscillation circuit 40 includes a primary-side input current Iin detected by the current sensor 26.
58 to a voltage, an input current smoothing circuit 50 composed of a resistor and a capacitor, and charge ON / OFF control transistors 52 and 54. The winding 56
Is a voltage generated by the operation of the charging main circuit, and the diode 6
0 and charge ON / O after smoothing by the smoothing capacitor 62
The power is supplied to the collectors and bases of the FF control transistors 52 and 54 and serves as a drive power supply for each transistor.

【0021】次に間欠発振回路40の動作を説明する。 A)入力電流Iinが小さい時(非充電時または充電終
了時) この場合、トランジスタ52はOFFなので、トランジ
スタ54は駆動電源の電圧VsによりONして間欠発振
回路40の出力端に接続されるコンデンサCcntの電
位を下げる。この時充電主回路は動作を停止しているの
で巻線56には電圧が発生せず、駆動電源の電圧Vsの
電位は抵抗Rsにより低下しトランジスタ54はOFF
となる。そしてコンデンサCcntは定電流源Iにより
充電されて充電主回路はONし、駆動電源Vsに電圧が
発生して再度トランジスタ54はONする。以後この動
作をトランジスタ54のコレクタに接続した抵抗64と
コンデンサCcntのCR定数で決まるタイミングで繰
り返す。これによりスイッチング素子24も間欠的に動
作を停止し、充電部14も間欠動作を行う。それにより
待機時における充電回路の消費電力が低減できる。
Next, the operation of the intermittent oscillation circuit 40 will be described. A) When the input current Iin is small (at the time of non-charging or at the end of charging) In this case, since the transistor 52 is off, the transistor 54 is turned on by the voltage Vs of the driving power supply and is connected to the output terminal of the intermittent oscillation circuit 40. Lower the potential of Ccnt. At this time, since the charging main circuit has stopped operating, no voltage is generated in the winding 56, the potential of the driving power supply voltage Vs is reduced by the resistor Rs, and the transistor 54 is turned off.
Becomes Then, the capacitor Ccnt is charged by the constant current source I, the charging main circuit is turned on, a voltage is generated in the driving power supply Vs, and the transistor 54 is turned on again. Thereafter, this operation is repeated at a timing determined by the CR constant of the resistor 64 connected to the collector of the transistor 54 and the capacitor Ccnt. Accordingly, the switching element 24 also intermittently stops operating, and the charging unit 14 also performs intermittent operation. Thereby, the power consumption of the charging circuit during standby can be reduced.

【0022】B)入力電流Iinが大きい時(充電時) この場合、充電ON/OFF制御用トランジスタ52は
ONなので、トランジスタ54はOFFで、間欠発振回
路40の出力端に接続されるコンデンサCcntの電位
は安定に保持され、PWM制御回路42からはスイッチ
ング素子24に対してゲート信号を連続的に出力する。
その結果スイッチング素子24はスイッチング動作を継
続し、被充電部16においてバッテリ36の充電が可能
となる。なお、PWM制御回路42を制御ICで構成し
てもよい。
B) When the input current Iin is large (at the time of charging) In this case, since the charge ON / OFF control transistor 52 is ON, the transistor 54 is OFF and the capacitor Ccnt connected to the output terminal of the intermittent oscillation circuit 40 is turned off. The potential is stably held, and the PWM control circuit 42 continuously outputs a gate signal to the switching element 24.
As a result, the switching element 24 continues the switching operation, and the charged portion 16 can charge the battery 36. Note that the PWM control circuit 42 may be configured by a control IC.

【0023】以上のように、非接触充電器において、入
力電流Iinの大きさに基づいて制御回路を連続発振ま
たは間欠発振させることによりスイッチング素子を制御
してバッテリの充電および非充電を行うことができる。
しかも、非充電時の待機電力を大幅に低減することが可
能となる。
As described above, in the non-contact charger, the charging and non-charging of the battery can be performed by controlling the switching element by continuously or intermittently oscillating the control circuit based on the magnitude of the input current Iin. it can.
In addition, standby power during non-charging can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す非接触充電器の概略
回路構成のブロック図である。
FIG. 1 is a block diagram of a schematic circuit configuration of a contactless charger showing one embodiment of the present invention.

【図2】図1に示す制御回路のブロック図である。FIG. 2 is a block diagram of a control circuit shown in FIG.

【図3】図2に示す間欠発振回路の一実施例の回路構成
図である。
FIG. 3 is a circuit configuration diagram of an embodiment of the intermittent oscillation circuit shown in FIG. 2;

【図4】図2に示すPWM制御回路の入力波形と出力波
形のタイミングチャートである。
4 is a timing chart of an input waveform and an output waveform of the PWM control circuit shown in FIG.

【図5】この発明の一実施例における充電時と非充電時
における入力電流波形の変化を示すタイミングチャート
である。
FIG. 5 is a timing chart showing a change in an input current waveform during charging and non-charging in one embodiment of the present invention.

【図6】電磁トランスの分解状態の図解図である。FIG. 6 is an illustrative view showing a disassembled state of the electromagnetic transformer.

【符号の説明】[Explanation of symbols]

10…非接触充電器 12…商用電源 14…充電部 16…非充電部 18…整流回路 20…平滑コンデンサ 22…電磁トランス 22a…一次側給電用コイル 22b…二次側受電用コイル 24…スイッチング素子(トランジスタ) 26…電流センサ 28…制御回路 34…スイッチング用トランジスタ 36…バッテリ 38…満充電検出回路 DESCRIPTION OF SYMBOLS 10 ... Non-contact charger 12 ... Commercial power supply 14 ... Charging part 16 ... Non-charging part 18 ... Rectifier circuit 20 ... Smoothing capacitor 22 ... Electromagnetic transformer 22a ... Primary side power feeding coil 22b ... Secondary side power receiving coil 24 ... Switching element (Transistor) 26 Current sensor 28 Control circuit 34 Switching transistor 36 Battery 38 Full charge detection circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】商用電源に整流回路を介して電磁トランス
の一次側給電用コイルとスイッチング手段を接続し、前
記電磁トランスの二次側受電用コイルに整流回路を介し
てバッテリを接続して充電を行う非接触充電器におい
て、 (a)一次側入力電流が設定値以下の時は前記スイッチ
ング手段を間欠的に動作させるとともに、 (b)前記一次側電流が設定値以上の時は前記スイッチ
ング手段を連続的に動作させるようにしたことを特徴と
する、非接触充電器の待機電力低減方法。
A primary power supply coil for an electromagnetic transformer and a switching means are connected to a commercial power supply via a rectifier circuit, and a battery is connected to a secondary power receiving coil of the electromagnetic transformer via a rectifier circuit for charging. (A) when the primary side input current is less than a set value, the switching means is operated intermittently; and (b) when the primary side current is more than a set value, the switching means is A standby power reducing method for a non-contact charger, wherein the standby power is continuously operated.
【請求項2】商用電源に整流回路を介して電磁トランス
の一次側給電用コイルとスイッチング手段を接続し、前
記電磁トランスの二次側受電用コイルに整流回路を介し
てバッテリを接続して充電を行う非接触充電器におい
て、 前記電磁トランスの一次側入力電流を検出する電流検出
手段、さらに前記一次側電流が設定値以下の時は前記ス
イッチング手段を間欠的に動作させるとともに、前記一
次側電流が設定値以上の時は前記スイッチング手段を連
続的に動作させる制御手段を備えることを特徴とする、
非接触充電器の待機電力低減装置。
2. A secondary power supply coil of an electromagnetic transformer and a switching means are connected to a commercial power supply via a rectifier circuit, and a battery is connected to a secondary power receiving coil of the electromagnetic transformer via a rectifier circuit for charging. A non-contact charger for performing current detection means for detecting a primary-side input current of the electromagnetic transformer, and further, when the primary-side current is equal to or less than a set value, intermittently operating the switching means; When is greater than or equal to a set value, comprising a control means to operate the switching means continuously,
Standby power reduction device for non-contact charger.
【請求項3】前記電流検出手段は前記電磁トランスの一
次側に設けた電流検出用抵抗を含む、請求項2記載の非
接触充電器の待機電力低減装置。
3. The apparatus for reducing standby power of a contactless charger according to claim 2, wherein said current detecting means includes a current detecting resistor provided on a primary side of said electromagnetic transformer.
【請求項4】前記制御手段は間欠発振回路を含む、請求
項2または3記載の非接触充電器の待機電力低減装置。
4. The apparatus for reducing standby power of a contactless charger according to claim 2, wherein said control means includes an intermittent oscillation circuit.
【請求項5】前記スイッチング手段は前記給電用コイル
に接続されるトランジスタを含む、請求項2ないし4の
いずれかに記載の非接触充電器の待機電力低減装置。
5. The apparatus for reducing standby power of a contactless charger according to claim 2, wherein said switching means includes a transistor connected to said power supply coil.
JP10335073A 1998-11-26 1998-11-26 Method and apparatus for reducing stand-by power of noncontact charger Pending JP2000166129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10335073A JP2000166129A (en) 1998-11-26 1998-11-26 Method and apparatus for reducing stand-by power of noncontact charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10335073A JP2000166129A (en) 1998-11-26 1998-11-26 Method and apparatus for reducing stand-by power of noncontact charger

Publications (1)

Publication Number Publication Date
JP2000166129A true JP2000166129A (en) 2000-06-16

Family

ID=18284470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10335073A Pending JP2000166129A (en) 1998-11-26 1998-11-26 Method and apparatus for reducing stand-by power of noncontact charger

Country Status (1)

Country Link
JP (1) JP2000166129A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166449A (en) * 2002-11-15 2004-06-10 Riso Kagaku Corp Feeder system
JP2005210800A (en) * 2004-01-21 2005-08-04 Riso Kagaku Corp Feeder apparatus
WO2008066110A1 (en) * 2006-11-30 2008-06-05 Aska Electron Corporation Noncontact transmission device
JP2008206232A (en) * 2007-02-16 2008-09-04 Seiko Epson Corp Power transmission controller, power reception controller, non-contact point power transmission system, power transmitter, power receiver, and electronic apparatus
JP2009213351A (en) * 2003-02-04 2009-09-17 Access Business Group Internatl Llc Adaptive induction power supply having communication means
JP2010028938A (en) * 2008-07-16 2010-02-04 Seiko Epson Corp Power reception control device, power receiving device, power transmission control device, power transmitting device, and electronic apparatus
JP2010081698A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Charger
US7923870B2 (en) 2007-03-20 2011-04-12 Seiko Epson Corporation Noncontact power transmission system and power transmitting device
JP2011217605A (en) * 2009-01-08 2011-10-27 Panasonic Electric Works Co Ltd Non-contact power transmission circuit
JP2012005185A (en) * 2010-06-14 2012-01-05 Nec Tokin Corp Non-contact power transmission and communication system
US8132026B2 (en) 2006-06-02 2012-03-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device and mobile electronic device having the same
US8400278B2 (en) 2006-05-31 2013-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and IC label, IC tag, and IC card having the same
WO2013038694A1 (en) * 2011-09-14 2013-03-21 パナソニック株式会社 Non-contact power feed device and non-contact power transmission device
WO2013118368A1 (en) * 2012-02-08 2013-08-15 株式会社豊田自動織機 Charging station and relative position control method
US8587270B2 (en) 2009-10-28 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. PWM limiter circuit having comparator and switch, and semiconductor device using the same
US8692653B2 (en) 2006-03-15 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014061217A1 (en) * 2012-10-18 2014-04-24 株式会社アドバンテスト Wireless power-receiving device, impedance control circuit usable for same, and impedance control method
US8853892B2 (en) 2008-10-03 2014-10-07 Access Business Group International Llc Power system
KR101438887B1 (en) * 2012-05-25 2014-11-03 엘지이노텍 주식회사 Wireless power transmission device, power supplying device and power control method thereof
JP2015144538A (en) * 2014-01-31 2015-08-06 Necトーキン株式会社 Power transmission method and power transmission system
US9219378B2 (en) 2010-11-01 2015-12-22 Qualcomm Incorporated Wireless charging of devices
US9299493B2 (en) 1999-06-21 2016-03-29 Access Business Group International Llc Inductively coupled ballast circuit
CN105706333A (en) * 2013-10-28 2016-06-22 京瓷株式会社 Control device
JP2018128213A (en) * 2017-02-10 2018-08-16 株式会社テイエルブイ Electric circuit having explosion-proof structure
CN114123532A (en) * 2021-10-22 2022-03-01 信利半导体有限公司 Control method and control system for low-power-consumption wireless charging

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397524B2 (en) 1999-06-21 2016-07-19 Access Business Group International Llc Inductively coupled ballast circuit
US9590456B2 (en) 1999-06-21 2017-03-07 Access Business Group International Llc Inductively coupled ballast circuit
US10014722B2 (en) 1999-06-21 2018-07-03 Philips Ip Ventures B.V. Inductively coupled ballast circuit
US9299493B2 (en) 1999-06-21 2016-03-29 Access Business Group International Llc Inductively coupled ballast circuit
JP2004166449A (en) * 2002-11-15 2004-06-10 Riso Kagaku Corp Feeder system
JP2009213351A (en) * 2003-02-04 2009-09-17 Access Business Group Internatl Llc Adaptive induction power supply having communication means
JP2005210800A (en) * 2004-01-21 2005-08-04 Riso Kagaku Corp Feeder apparatus
US8692653B2 (en) 2006-03-15 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8810375B2 (en) 2006-05-31 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and IC label, IC tag, and IC card having the same
US8400278B2 (en) 2006-05-31 2013-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and IC label, IC tag, and IC card having the same
US8132026B2 (en) 2006-06-02 2012-03-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device and mobile electronic device having the same
CN101558543B (en) * 2006-11-30 2012-07-25 明日香电子株式会社 Noncontact transmission device
US8179088B2 (en) 2006-11-30 2012-05-15 Aska Electron Corporation Noncontact transmission device
WO2008066110A1 (en) * 2006-11-30 2008-06-05 Aska Electron Corporation Noncontact transmission device
JP4494426B2 (en) * 2007-02-16 2010-06-30 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
US8054036B2 (en) 2007-02-16 2011-11-08 Seiko Epson Corporation Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument
JP2008206232A (en) * 2007-02-16 2008-09-04 Seiko Epson Corp Power transmission controller, power reception controller, non-contact point power transmission system, power transmitter, power receiver, and electronic apparatus
US7923870B2 (en) 2007-03-20 2011-04-12 Seiko Epson Corporation Noncontact power transmission system and power transmitting device
JP2010028938A (en) * 2008-07-16 2010-02-04 Seiko Epson Corp Power reception control device, power receiving device, power transmission control device, power transmitting device, and electronic apparatus
JP2010081698A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Charger
US8853892B2 (en) 2008-10-03 2014-10-07 Access Business Group International Llc Power system
US9577437B2 (en) 2008-10-03 2017-02-21 Access Business Group International Llc Power system
JP2011217605A (en) * 2009-01-08 2011-10-27 Panasonic Electric Works Co Ltd Non-contact power transmission circuit
US8319376B2 (en) 2009-01-08 2012-11-27 Panasonic Corporation Contactless power transmission circuit
US8587270B2 (en) 2009-10-28 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. PWM limiter circuit having comparator and switch, and semiconductor device using the same
JP2012005185A (en) * 2010-06-14 2012-01-05 Nec Tokin Corp Non-contact power transmission and communication system
US9219378B2 (en) 2010-11-01 2015-12-22 Qualcomm Incorporated Wireless charging of devices
WO2013038694A1 (en) * 2011-09-14 2013-03-21 パナソニック株式会社 Non-contact power feed device and non-contact power transmission device
JPWO2013038694A1 (en) * 2011-09-14 2015-03-23 パナソニックIpマネジメント株式会社 Contactless power receiving device and contactless power transmission device
WO2013118368A1 (en) * 2012-02-08 2013-08-15 株式会社豊田自動織機 Charging station and relative position control method
KR101438887B1 (en) * 2012-05-25 2014-11-03 엘지이노텍 주식회사 Wireless power transmission device, power supplying device and power control method thereof
US9773609B2 (en) 2012-05-25 2017-09-26 Lg Innotek Co., Ltd. Power supply apparatus and power control method thereof
JP2014082897A (en) * 2012-10-18 2014-05-08 Advantest Corp Wireless power-receiving device, impedance control circuit available for the same, and impedance control method
US9871413B2 (en) 2012-10-18 2018-01-16 Advantest Corporation Wireless power receiving apparatus
WO2014061217A1 (en) * 2012-10-18 2014-04-24 株式会社アドバンテスト Wireless power-receiving device, impedance control circuit usable for same, and impedance control method
CN105706333A (en) * 2013-10-28 2016-06-22 京瓷株式会社 Control device
JP2015144538A (en) * 2014-01-31 2015-08-06 Necトーキン株式会社 Power transmission method and power transmission system
JP2018128213A (en) * 2017-02-10 2018-08-16 株式会社テイエルブイ Electric circuit having explosion-proof structure
CN114123532A (en) * 2021-10-22 2022-03-01 信利半导体有限公司 Control method and control system for low-power-consumption wireless charging

Similar Documents

Publication Publication Date Title
JP2000166129A (en) Method and apparatus for reducing stand-by power of noncontact charger
JP3247328B2 (en) Non-contact power transmission device
JP2803943B2 (en) Non-contact power supply
JP5301897B2 (en) Charger
US8314513B2 (en) Power transmission control device, power transmission device, power reception control device, power reception device, electronic apparatus, and contactless power transmission system
JP3306675B2 (en) Small electrical equipment
RU2440635C1 (en) Contactless power supply system
JP2008173003A (en) Charging system
JP2000295796A (en) Non-contact power supply
JP3906708B2 (en) Non-contact power transmission device
JP2007336788A (en) Contactless power supply system, power supply device, and power receiving device
JP2012139011A (en) Secondary power reception circuit of non-contact power supply facility
JP2008236968A (en) Noncontact power transmitter
CN104218684B (en) Inductive power transmission device and system
JPH0731064A (en) Non-contact type charger
JP2000197275A (en) Controller of non-contacting charger
JPH09233706A (en) Noncontact charger
JP2007336787A (en) Contactless power supply system, power supply device, and power receiving device
JPH10136573A (en) Charge system of electric vehicle
JP3518197B2 (en) Secondary side power receiving circuit of non-contact power supply equipment
JP2000184606A (en) Charging current control method and device of noncontact charger
EP0851440B1 (en) Noncontacting power transfer device
JPH05300662A (en) Charger
JP2010098875A (en) Power supply apparatus
JP3247199B2 (en) Charging device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208