Nothing Special   »   [go: up one dir, main page]

JP2000145434A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2000145434A
JP2000145434A JP10323708A JP32370898A JP2000145434A JP 2000145434 A JP2000145434 A JP 2000145434A JP 10323708 A JP10323708 A JP 10323708A JP 32370898 A JP32370898 A JP 32370898A JP 2000145434 A JP2000145434 A JP 2000145434A
Authority
JP
Japan
Prior art keywords
reducing agent
absorbent
exhaust
injection nozzle
agent injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10323708A
Other languages
Japanese (ja)
Inventor
Atsushi Tawara
淳 田原
Toshihisa Sugiyama
敏久 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10323708A priority Critical patent/JP2000145434A/en
Publication of JP2000145434A publication Critical patent/JP2000145434A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply an exhaust emission catalyst with a uniform volume of a reducing agent in its radial direction. SOLUTION: An NOx absorbent 17, which absorbs NOx when the air-fuel ratio of an inflowing exhaust gas is lean and discharges the absorbed NOx when the oxygen concentration of the inflowing exhaust decreases, is installed in an exhaust path of an engine. An oxidation catalyst 16 is installed in the exhaust path upstream of the NOx absorbent 17. To discharge and reduce NOx contained in the NOx absorbent 17, a reducing agent injection nozzle 21 that supplies the NOx absorbent 17 with a reducing agent is located in the exhaust path upstream from the oxidation catalyst 16. A microporous body 24 is mounted at the tip of the reducing agent injection nozzle 21. The reducing agent injected from the reducing agent injection nozzle 21 seeps through an entire peripheral surface of the microporous body 24, being supplied evenly in a radial direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気浄化
装置に関する。
The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine.

【0002】[0002]

【従来の技術】機関排気通路内に排気浄化触媒を配置す
ると共に、排気浄化触媒上流の機関排気通路内に還元剤
噴射ノズルを配置し、還元剤噴射ノズルから排気浄化触
媒に還元剤を供給するようにした内燃機関の排気浄化装
置が公知である(実開平5−1818号公報参照)。こ
の排気浄化装置では還元剤噴射ノズルの噴口に衝突板を
対面させて還元剤噴射ノズルから噴射された還元剤を衝
突板に衝突せしめ、それにより還元剤が半径方向に一様
に拡散するようにしている。
2. Description of the Related Art An exhaust purification catalyst is disposed in an engine exhaust passage, and a reducing agent injection nozzle is disposed in an engine exhaust passage upstream of the exhaust purification catalyst, and a reducing agent is supplied from the reducing agent injection nozzle to the exhaust purification catalyst. An exhaust gas purifying apparatus for an internal combustion engine as described above is known (see Japanese Utility Model Laid-Open No. 5-1818). In this exhaust gas purification device, the impingement plate faces the injection port of the reducing agent injection nozzle to cause the reducing agent injected from the reducing agent injection nozzle to collide with the impingement plate, so that the reducing agent is uniformly diffused in the radial direction. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、例えば
衝突板の裏側には還元剤が進行しにくく、したがって還
元剤を充分に半径方向に一様に拡散させることができな
いという問題点がある。
However, there is a problem that, for example, the reducing agent does not easily travel on the back side of the collision plate, and thus the reducing agent cannot be sufficiently diffused uniformly in the radial direction.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に1番目の発明によれば、機関排気通路内に排気浄化触
媒を配置すると共に、排気浄化触媒上流の機関排気通路
内に還元剤噴射ノズルを配置し、還元剤噴射ノズルから
排気浄化触媒に還元剤を供給するようにした内燃機関の
排気浄化装置において、還元剤噴射ノズルと排気浄化触
媒間に細孔体を配置している。すなわち1番目の発明で
は、還元剤噴射ノズルから噴射された還元剤が細孔体の
細孔内に流入し、次いで細孔体周面全体から流出するの
で、還元剤が半径方向に一様に供給される。
According to a first aspect of the present invention, an exhaust purification catalyst is disposed in an engine exhaust passage, and a reducing agent is injected into an engine exhaust passage upstream of the exhaust purification catalyst. In an exhaust gas purifying apparatus for an internal combustion engine in which a nozzle is arranged and a reducing agent is supplied from a reducing agent injection nozzle to an exhaust gas purification catalyst, a porous body is arranged between the reducing agent injection nozzle and the exhaust gas purification catalyst. That is, in the first invention, the reducing agent injected from the reducing agent injection nozzle flows into the pores of the porous body and then flows out from the entire peripheral surface of the porous body, so that the reducing agent is uniformly distributed in the radial direction. Supplied.

【0005】また、2番目の発明によれば1番目の発明
において、細孔体の一側を還元剤噴射ノズルの噴口に隣
接配置すると共に、細孔体の他側を排気浄化触媒の排気
上流端面に隣接配置し、機関減速運転時に還元剤噴射ノ
ズルから還元剤を噴射して細孔体内に還元剤を一時的に
蓄えるようにしている。すなわち、機関加速運転時には
機関から例えば多量のNOX が放出される。一方、機関
加速運転が行われると細孔体内に蓄えられている還元剤
が細孔体から流出する。そこで2番目の発明では、機関
減速運転時に細孔体内に還元剤を一時的に蓄えておき、
次いで機関加速運転が行われたときに排気が良好に浄化
されるようにしている。
According to a second aspect of the present invention, in the first aspect, one side of the pore body is disposed adjacent to the injection port of the reducing agent injection nozzle, and the other side of the pore body is located upstream of the exhaust gas purifying catalyst. It is disposed adjacent to the end face, and the reducing agent is injected from the reducing agent injection nozzle during the engine deceleration operation so that the reducing agent is temporarily stored in the pores. That is, during the engine acceleration operation, for example, a large amount of NO X is released from the engine. On the other hand, when the engine is accelerated, the reducing agent stored in the pores flows out of the pores. Therefore, in the second invention, the reducing agent is temporarily stored in the pores during the engine deceleration operation,
Next, when the engine acceleration operation is performed, the exhaust gas is favorably purified.

【0006】また、上記課題を解決するために3番目の
発明によれば、機関排気通路内に排気浄化触媒を配置す
ると共に、排気浄化触媒上流の機関排気通路内に還元剤
噴射ノズルを配置し、還元剤噴射ノズルから排気浄化触
媒に還元剤を供給するようにした内燃機関の排気浄化装
置において、還元剤噴射ノズルの還元剤噴射方向が排気
流れ方向に対向するように還元剤噴射ノズルを配置して
いる。すなわち3番目の発明では、還元剤が排気流れに
対し対向して噴射せしめられるので還元剤の半径方向へ
の拡散が促進される。
According to a third aspect of the present invention, an exhaust purifying catalyst is disposed in an engine exhaust passage, and a reducing agent injection nozzle is disposed in an engine exhaust passage upstream of the exhaust purifying catalyst. In an exhaust gas purifying apparatus for an internal combustion engine in which a reducing agent is supplied from a reducing agent injection nozzle to an exhaust purification catalyst, a reducing agent injection nozzle is arranged such that a reducing agent injection direction of the reducing agent injection nozzle is opposed to an exhaust flow direction. are doing. That is, in the third aspect, since the reducing agent is injected opposite to the exhaust flow, the diffusion of the reducing agent in the radial direction is promoted.

【0007】[0007]

【発明の実施の形態】図1は本発明をディーゼル機関に
適用した場合を示している。しかしながら本発明を火花
点火式機関に適用することもできる。図1を参照する
と、1は機関本体、2は燃焼室、3は吸気ポート、4は
吸気弁、5は排気ポート、6は排気弁、7は燃焼室2内
に燃料を直接噴射する燃料噴射ノズルをそれぞれ示す。
各気筒の吸気ポート3はそれぞれ対応する吸気枝管8を
介して共通のサージタンク9に接続され、サージタンク
9は吸気ダクト10を介してエアクリーナ11に接続さ
れる。吸気ダクト10内にはアクチュエータ12により
駆動される吸気制御弁13が配置される。一方、各気筒
の排気ポート5は共通の排気マニホルド14および排気
管15を介して酸化触媒16およびNOX吸収剤17を
収容したケーシング18に接続され、ケーシング17は
排気管19に接続される。なお、酸化触媒16およびN
X 吸収剤17を共通の担体上に配置することができ
る。
FIG. 1 shows a case where the present invention is applied to a diesel engine. However, the present invention can be applied to a spark ignition type engine. Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber, 3 is an intake port, 4 is an intake valve, 5 is an exhaust port, 6 is an exhaust valve, and 7 is fuel injection for directly injecting fuel into the combustion chamber 2. Each nozzle is shown.
The intake port 3 of each cylinder is connected to a common surge tank 9 via a corresponding intake branch pipe 8, and the surge tank 9 is connected to an air cleaner 11 via an intake duct 10. An intake control valve 13 driven by an actuator 12 is arranged in the intake duct 10. On the other hand, the exhaust port 5 of each cylinder is connected to a casing 18 which accommodates an oxidation catalyst 16 and the NO X absorbent 17 via a common exhaust manifold 14 and exhaust pipe 15, the casing 17 is connected to the exhaust pipe 19. The oxidation catalyst 16 and N
The O X absorbent 17 can be arranged on a common carrier.

【0008】酸化触媒16上流のケーシング18内には
還元剤を供給するための還元剤供給装置20が設けられ
る。還元剤供給装置20は排気流れ方向を横断する方向
に並べて配置された複数、例えば三つの還元剤噴射ノズ
ル21を具備する。これら還元剤噴射ノズル21は共通
の電磁弁22を介して還元剤ポンプ23の吐出側に接続
され、還元剤ポンプ23の吸入側は図示しない還元剤タ
ンクに接続される。なお、アクチュエータ12、電磁弁
22、および還元剤ポンプ23は電子制御ユニット30
からの出力信号に基づいてそれぞれ制御される。
A reducing agent supply device 20 for supplying a reducing agent is provided in a casing 18 upstream of the oxidation catalyst 16. The reducing agent supply device 20 includes a plurality of, for example, three reducing agent injection nozzles 21 arranged in a direction transverse to the exhaust gas flow direction. These reducing agent injection nozzles 21 are connected to the discharge side of a reducing agent pump 23 via a common electromagnetic valve 22, and the suction side of the reducing agent pump 23 is connected to a reducing agent tank (not shown). The actuator 12, the solenoid valve 22, and the reducing agent pump 23 are connected to the electronic control unit 30.
Are controlled based on output signals from

【0009】図2は還元剤噴射ノズル21の先端周りの
拡大図を示している。図2を参照すると、還元剤噴射ノ
ズル21と酸化触媒16間には細孔体24が設けられ
る。本実施態様では、細孔体24の一側面には還元剤噴
射ノズル21の噴口21aがホルダ25により取り付け
られ、細孔体24の他側面には酸化触媒16の上流側端
面が当接せしめられる。この細孔体24は例えばセラミ
ック、発泡プラスチックのような多孔質材、織布、不織
布のような布帛から形成され、多数の連続する細孔を有
している。なお、細孔体24と還元剤噴射ノズル21
間、または細孔体24と酸化触媒16間に間隙が形成さ
れていてもよい。
FIG. 2 is an enlarged view around the leading end of the reducing agent injection nozzle 21. Referring to FIG. 2, a pore body 24 is provided between the reducing agent injection nozzle 21 and the oxidation catalyst 16. In the present embodiment, the injection port 21a of the reducing agent injection nozzle 21 is attached to one side surface of the porous body 24 by the holder 25, and the upstream end surface of the oxidation catalyst 16 is brought into contact with the other side surface of the porous body 24. . The porous body 24 is formed of, for example, a porous material such as ceramic or foamed plastic, or a fabric such as a woven fabric or a nonwoven fabric, and has a large number of continuous pores. The pores 24 and the reducing agent injection nozzle 21
A gap may be formed between the pores 24 or between the porous body 24 and the oxidation catalyst 16.

【0010】還元剤は炭化水素、水素、およびアルコー
ルから選択することができ、気体でも液体でもよい。本
実施態様では還元剤として機関の燃料(軽油)が用いら
れる。したがって還元剤タンクは燃料タンクから形成さ
れ、追加の還元剤タンクを必要としない。電子制御ユニ
ット(ECU)30はデジタルコンピュータからなり、
双方向性バス31を介して相互に接続されたROM(リ
ードオンリメモリ)32、RAM(ランダムアクセスメ
モリ)33、CPU(マイクロプロセッサ)34、常時
電源に接続されているB−RAM(バックアップRA
M)35、入力ポート36、および出力ポート37を具
備する。サージタンク9にはサージタンク9内の絶対圧
PMに比例した出力電圧を発生する圧力センサ38が取
り付けられ、排気管19内にはNOX 吸収剤17から流
出した排気の温度に比例した出力電圧を発生する温度セ
ンサ39が取り付けられる。この排気の温度はNOX
収剤温度TNAを表している。また、踏み込み量センサ
40はアクセルペダルの踏み込み量DEPに比例した出
力電圧を発生する。これらセンサ38,39,40の出
力電圧はそれぞれ対応するAD変換器41を介して入力
ポート36に入力される。また、入力ポート36には機
関回転数Nを表す出力パルスを発生する回転数センサ4
2が接続される。一方、出力ポート37はそれぞれ対応
する駆動回路43を介してアクチュエータ12、電磁弁
22、および還元剤ポンプ23にそれぞれ接続される。
[0010] The reducing agent can be selected from hydrocarbons, hydrogen and alcohols and can be gaseous or liquid. In this embodiment, engine fuel (light oil) is used as the reducing agent. Thus, the reductant tank is formed from a fuel tank and does not require an additional reductant tank. The electronic control unit (ECU) 30 comprises a digital computer,
A ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, a B-RAM (backup RA) connected to a power source at all times via a bidirectional bus 31
M) 35, an input port 36, and an output port 37. A pressure sensor 38 for generating an output voltage proportional to the absolute pressure PM in the surge tank 9 is attached to the surge tank 9, and an output voltage proportional to the temperature of exhaust gas flowing out of the NO X absorbent 17 is provided in the exhaust pipe 19. Is mounted. Temperature of the exhaust represents the NO X absorbent temperature TNA. Further, the depression amount sensor 40 generates an output voltage proportional to the depression amount DEP of the accelerator pedal. The output voltages of these sensors 38, 39, 40 are input to the input port 36 via the corresponding AD converters 41, respectively. The input port 36 has a rotation speed sensor 4 for generating an output pulse representing the engine rotation speed N.
2 are connected. On the other hand, the output port 37 is connected to the actuator 12, the electromagnetic valve 22, and the reducing agent pump 23 via the corresponding drive circuits 43, respectively.

【0011】ケーシング17内に収容されている酸化触
媒16は例えばアルミナを担体とし、白金Pt、パラジ
ウムPd、ロジウムRh、イリジウムIrのような貴金
属が担持されている。一方、酸化触媒16下流のケーシ
ング18内に収容されているNOX 吸収剤17は例えば
アルミナを担体とし、この担体上に例えばカリウムK,
ナトリウムNa,リチウムLi,セシウムCsのような
アルカリ金属、バリウムBa,カルシウムCaのような
アルカリ土類、ランタンLa,イットリウムYのような
希土類から選ばれた少なくとも一つと、白金Pt、パラ
ジウムPd、ロジウムRh、イリジウムIrのような貴
金属とが担持されている。排気通路内の或る位置よりも
上流の排気通路内、燃焼室内、および吸気通路内に供給
された全燃料量および全還元剤量に対する全空気量の比
をその位置を流通する排気の空燃比と称すると、このN
X 吸収剤17は流入する排気の空燃比がリーンのとき
にはNOX を吸収し、流入する排気中の酸素濃度が低下
すると吸収したNOX を放出するNOX の吸放出作用を
行う。なお、NOX 吸収剤17上流の排気通路内に燃料
或いは空気が供給されない場合にはNOX 吸収剤17に
流入する排気の空燃比は機関に供給された燃料量に対す
る空気量の比に一致する。
The oxidation catalyst 16 accommodated in the casing 17 uses, for example, alumina as a carrier and carries a noble metal such as platinum Pt, palladium Pd, rhodium Rh, and iridium Ir. On the other hand, the NO X absorbent 17 contained in the casing 18 downstream of the oxidation catalyst 16 uses, for example, alumina as a carrier, and, for example, potassium K,
At least one selected from the group consisting of alkali metals such as sodium Na, lithium Li and cesium Cs; alkaline earths such as barium Ba and calcium Ca; and rare earths such as lanthanum La and yttrium Y, and platinum Pt, palladium Pd and rhodium. Rh and a noble metal such as iridium Ir are supported. The ratio of the total air amount to the total fuel amount and the total reducing agent amount supplied into the exhaust passage, the combustion chamber, and the intake passage upstream of a certain position in the exhaust passage is determined by the air-fuel ratio of the exhaust flowing through the position. This N
O X absorbent 17 absorbs NO X when the air-fuel ratio of the exhaust gas flowing is lean, perform absorption and release action of the NO X that releases NO X to the oxygen concentration in the exhaust gas absorbed and reduced flowing. Note that matches the ratio of the air quantity for the air-fuel ratio is the amount of fuel supplied to the engine of the exhaust gas flowing to the NO X absorbent 17 when the fuel or air to the NO X absorbent 17 in the exhaust passage upstream of is not supplied .

【0012】上述のNOX 吸収剤17を機関排気通路内
に配置すればこのNOX 吸収剤17は実際にNOX の吸
放出作用を行うがこの吸放出作用の詳細なメカニズムに
ついては明らかでない部分もある。しかしながらこの吸
放出作用は図3(A)および図3(B)に示すようなメ
カニズムで行われているものと考えられる。次にこのメ
カニズムについて担体上に白金PtおよびバリウムBa
を担持させた場合を例にとって説明するが他の貴金属、
アルカリ金属、アルカリ土類、希土類を用いても同様な
メカニズムとなる。
If the above-mentioned NO X absorbent 17 is disposed in the engine exhaust passage, the NO X absorbent 17 actually performs the NO X absorption / release operation, but the detailed mechanism of this absorption / release operation is not clear. There is also. However, it is considered that this absorption / release action is performed by a mechanism as shown in FIGS. 3 (A) and 3 (B). Next, regarding this mechanism, platinum Pt and barium Ba are deposited on the carrier.
Will be described as an example in the case of carrying other precious metals,
The same mechanism is obtained by using an alkali metal, an alkaline earth, or a rare earth.

【0013】すなわち、流入する排気がかなりリーンに
なると流入する排気中の酸素濃度が大巾に増大し、図3
(A)に示されるようにこれら酸素O2 がO2 - または
2-の形で白金Ptの表面に付着する。一方、流入する
排気中のNOは白金Ptの表面上でO2 - またはO2-
反応し、NO2 となる(2NO+O2 →2NO2 )。次
いで生成されたNO2 の一部は白金Pt上でさらにに酸
化されつつ吸収剤内に吸収されて酸化バリウムBaOと
結合しながら、図3(A)に示されるように硝酸イオン
NO3 - の形で吸収剤内に拡散する。このようにしてN
X がNOX 吸収剤17内に吸収される。
That is, when the inflowing exhaust gas becomes considerably lean, the oxygen concentration in the inflowing exhaust gas greatly increases.
As shown in (A), these oxygens O 2 adhere to the surface of platinum Pt in the form of O 2 or O 2− . On the other hand, NO in the exhaust gas that flows in reacts with O 2 or O 2− on the surface of platinum Pt to become NO 2 (2NO + O 2 → 2NO 2 ). Then part of the produced NO 2 while bonding with the barium oxide BaO is absorbed into the absorbent while being further oxidized on the platinum Pt, 3 nitric acid as shown in (A) ions NO 3 - in It diffuses into the absorbent in form. Thus N
O X is absorbed in the NO X absorbent 17.

【0014】流入する排気中の酸素濃度が高い限り白金
Ptの表面でNO2 が生成され、吸収剤のNOX 吸収能
力が飽和しない限りNO2 が吸収剤内に吸収されて硝酸
イオンNO3 - が生成される。これに対して流入する排
気中の酸素濃度が低下してNO2 の生成量が低下すると
反応が逆方向(NO3 - →NO2 )に進み、斯くして吸
収剤内の硝酸イオンNO3 - がNO2 の形で吸収剤から
放出される。すなわち、流入する排気中の酸素濃度が低
下すると図3(B)に示されるようにNOX 吸収剤17
からNOX が放出されることになる。流入する排気のリ
ーンの度合が低くなれば流入する排気中の酸素濃度が低
下し、したがって流入する排気のリーンの度合を低くす
ればNOX 吸収剤17からNOX が放出されることにな
る。
[0014] NO 2 is produced on the surface of the oxygen concentration is as high as platinum Pt in the inflowing exhaust gas, as long as NO 2 to NO X absorbing capacity of the absorbent is not saturated is absorbed in the absorbent and nitrate ions NO 3 - Is generated. On the other hand, when the oxygen concentration in the exhaust gas that flows in decreases and the amount of generated NO 2 decreases, the reaction proceeds in the reverse direction (NO 3 → NO 2 ), and thus the nitrate ions NO 3 There are released from the absorbent in the form of NO 2. That is, when the oxygen concentration in the inflowing exhaust gas decreases the NO X absorbent as shown in FIG. 3 (B) 17
NO X is to be released from the. The oxygen concentration in the exhaust gas lean degree of the exhaust gas flowing to flow the lower the lowered, thus NO X from the NO X absorbent 17 when lowering the lean degree of the exhaust gas flowing is to be released.

【0015】一方、このときNOX 吸収剤17に還元剤
(HC)を供給するとこの還元剤および排気中の未燃H
C,COは白金Pt上の酸素O2 - またはO2-と反応し
て酸化せしめられる。また、NOX 吸収剤17にある程
度の量の還元剤を供給するとNOX 吸収剤17に流入す
る排気の空燃比がリーンであっても、白金Pt周りの酸
素濃度が局所的に低下するために吸収剤からNO2 が放
出され、このNO2 は図3(B)に示されるように還元
剤および未燃HC,COと反応して還元せしめられる。
このようにして白金Ptの表面上にNO2 が存在しなく
なると吸収剤から次から次へとNO2 が放出される。し
たがって、NOX 吸収剤17にある程度の量の還元剤を
供給すればNOX 吸収剤17に流入する排気の空燃比が
リーンであってもNOX 吸収剤17からNOX が放出さ
れ、放出されたNOX が還元されることになる。
Meanwhile, when supplying a reducing agent (HC) in this case the NO X absorbent 17 unburned H in the reducing agent and the exhaust
C and CO react with oxygen O 2 - or O 2- on platinum Pt to be oxidized. Also, the air-fuel ratio of the exhaust gas flowing to the NO X absorbent 17 is supplied a certain amount of reducing agent to the NO X absorbent 17 is a lean, because the oxygen concentration around the platinum Pt is lowered locally NO 2 is released from the absorbent, and this NO 2 is reduced by reacting with the reducing agent and unburned HC and CO as shown in FIG. 3 (B).
In this way, when NO 2 is no longer present on the surface of platinum Pt, NO 2 is released from the absorbent one after another. Accordingly, the air-fuel ratio of the exhaust gas flowing to the NO X absorbent 17 be supplied a certain amount of reducing agent to the NO X absorbent 17 is NO X is released from the NO X absorbent 17 even lean, is released and NO X is to be reduced.

【0016】図1に示されるようなディーゼル機関では
通常、機関から排出されるスモークや微粒子を低減する
ために、燃焼室2内で燃焼される混合気の平均空燃比は
理論空燃比よりもリーンに維持されている。したがって
通常運転時にNOX 吸収剤17に流入する排気の空燃比
はリーンとなるのでこのとき機関から排出されたNO X
はNOX 吸収剤17に吸収される。
In a diesel engine as shown in FIG.
Usually reduces smoke and particulates emitted from engines
Therefore, the average air-fuel ratio of the air-fuel mixture burned in the combustion chamber 2 is
It is maintained leaner than the stoichiometric air-fuel ratio. Therefore
NO during normal operationXAir-fuel ratio of exhaust gas flowing into absorbent 17
Is lean, so the NO discharged from the engine at this time X
Is NOXAbsorbed by the absorbent 17.

【0017】ところが、NOX 吸収剤17のNOX 吸収
能力には限界があるのでNOX 吸収剤17のNOX 吸収
能力が飽和する前にNOX 吸収剤17からNOX を放出
させる必要がある。NOX 吸収剤17からNOX を放出
させるべくNOX 吸収剤17に還元剤が供給されたとき
のNOX 吸収剤17のNOX 放出速度、およびNOX
元反応速度はNOX 吸収剤温度TNAに依存し、したが
ってNOX 吸収剤17のNOX 浄化率Rは図4に示され
るようにNOX 吸収剤温度TNAに依存する。図4から
わかるように、NOX 吸収剤温度TNAがNOX 吸収剤
17の種類に応じて定まるしきい温度T1よりも高くな
るとNOX 浄化率Rが許容最低浄化率R1よりも高くな
る。また、NOX 吸収剤温度TNAがしきい温度T1よ
りも低いときにはNO X を良好に放出、還元できないば
かりでなく、NOX 吸収剤17に供給された還元剤が酸
化されることなくNOX 吸収剤17から流出する。
However, NOXNO of absorbent 17Xabsorption
NO because the ability is limitedXNO of absorbent 17Xabsorption
NO before capacity saturatesXNO from absorbent 17XRelease
Need to be done. NOXNO from absorbent 17XRelease
NO to letXWhen the reducing agent is supplied to the absorbent 17
NOXNO of absorbent 17XRelease rate, and NOXReturn
Original reaction rate is NOXDepends on the absorbent temperature TNA, but
NOXNO of absorbent 17XThe purification rate R is shown in FIG.
So noXDepends on the absorbent temperature TNA. From FIG.
As you can see, NOXAbsorbent temperature TNA is NOXAbsorbent
It should be higher than the threshold temperature T1 determined according to the type of 17
NOXPurification rate R is higher than allowable minimum purification rate R1
You. NOXAbsorbent temperature TNA is equal to threshold temperature T1
NO when low XIf it cannot be released and reduced
NOXThe reducing agent supplied to the absorbent 17 is an acid
NO without being convertedXIt flows out of the absorbent 17.

【0018】そこで本実施態様では、NOX 吸収剤温度
TNAがしきい温度T1よりも低いときに還元剤供給装
置20の還元剤供給作用を停止し、NOX 吸収剤温度T
NAがしきい温度T1よりも高くなったときに還元剤供
給装置20の還元剤供給作用を予め定められた設定時間
だけ行ってNOX 吸収剤17内のNOX を放出、還元す
るようにしている。なお、しきい値温度T1は150〜
230℃程度である。
[0018] Therefore, in the present embodiment, NO X absorbent temperature TNA stops the reducing agent supply operation of the reducing agent supply device 20 when lower than the threshold temperature T1, NO X absorbent temperature T
NA is a reducing agent supply operation of the reducing agent supply device 20 by a predetermined set time when it becomes higher than the threshold temperature T1 performed by releasing NO X in the NO X absorbent 17, so as to reduce I have. The threshold temperature T1 is 150 to
About 230 ° C.

【0019】この場合、NOX 吸収剤17に流入する排
気の空燃比が理論空燃比またはリッチとなるように還元
剤を供給すればNOX 吸収剤17内のNOX を速やかに
放出、還元することができる。しかしながら、図1に示
すようなディーゼル機関においてNOX 吸収剤17に流
入する排気の空燃比を理論空燃比またはリッチにするた
めには多量の還元剤を必要とし、一方、上述したように
NOX 吸収剤17に流入する排気の空燃比がリーンであ
ってもNOX 吸収剤17内のNOX が放出、還元されう
る。そこで本実施態様では、NOX 吸収剤17内のNO
X を放出、還元すべく還元剤供給作用を行っているとき
にはNOX 吸収剤17に流入する排気の空燃比がリーン
に維持されるようにしている。
[0019] In this case, the NO X absorbent rapidly released air-fuel ratio of the exhaust gas flowing into the NO X in the NO X absorbent 17 needs to supply the reducing agent so that the stoichiometric air-fuel ratio or rich to 17, reduced be able to. However, in order to make the air-fuel ratio of the exhaust gas flowing to the NO X absorbent 17 in the diesel engine shown in FIG. 1 to the stoichiometric air-fuel ratio or rich requires a large amount of reducing agent, whereas, as described above NO X air-fuel ratio of the exhaust gas flowing into the absorbent 17 is a lean NO X in even the NO X absorbent 17 is released can be reduced. In this embodiment, NO in the NO X absorbent 17
When the reducing agent supply operation is performed to release and reduce X , the air-fuel ratio of the exhaust gas flowing into the NO X absorbent 17 is kept lean.

【0020】還元剤供給装置20から供給された還元剤
はまず酸化触媒16に到り、ここで還元剤が部分酸化さ
れ、次いでNOX 吸収剤17に流入する。その結果、N
X吸収剤17に流入する排気の温度が上昇せしめら
れ、NOX 吸収剤17のNOX放出率および還元率が高
く維持される。また、還元剤が部分酸化されることによ
りNOX 吸収剤17に流入する排気中の酸素濃度が低下
せしめられ、さらに還元剤がNOX とより反応しやすい
状態にせしめられ、これらによってもNOX 吸収剤17
のNOX 放出率および還元率が高く維持される。
The reducing agent supplied from the reducing agent supply device 20 first reaches the oxidation catalyst 16, where the reducing agent is partially oxidized, and then flows into the NO x absorbent 17. As a result, N
Temperature of the exhaust gas flowing into the O X absorbent 17 is raised, NO X emission rate and the reduction rate of the NO X absorbent 17 is kept high. Further, the oxygen concentration in the exhaust gas flowing to the NO X absorbent 17 is made to decrease by the reducing agent is partially oxidized and further a reducing agent is made to more easily reacts with state NO X, also NO X by these Absorbent 17
NO X emission rate and the reduction ratio of can be maintained high.

【0021】NOX 吸収剤17内のNOX を放出、還元
すべきときには還元剤供給装置20から単位時間当たり
qNだけ還元剤が供給される。このqNは還元剤消費率
を小さく維持しつつNOX 吸収剤17内のNOX を良好
に放出、還元させるのに最適な還元剤量であり、予め実
験により求められている。qNはサージタンク9内の絶
対圧PMおよび機関回転数Nの関数として図5に示すマ
ップの形で予めROM32内に記憶されている。
[0021] the NO X absorbent release the NO X in the 17, only qN per unit time from the reducing agent supply device 20 reducing agent is supplied to the time to reduction. This qN is favorably emits NO X in the NO X absorbent 17 while maintaining a small reducing agent consumption ratio is optimal amount of reducing agent to be reduced, are obtained by experiments in advance. qN is stored in the ROM 32 in advance in the form of a map shown in FIG. 5 as a function of the absolute pressure PM in the surge tank 9 and the engine speed N.

【0022】ところで、本実施態様では上述したよう
に、NOX 吸収剤17内のNOX を放出、還元すべきと
きにNOX 吸収剤17に流入する排気の空燃比はリーン
であり、NOX 吸収剤17の表面の酸素濃度が局所的に
低下することによりNOX 吸収剤17からNOX が放出
され、還元される。このようなNOX の放出、還元作用
を効果的に行うためには充分に気化した還元剤をNOX
吸収剤17に供給するよりもむしろ粒径の大きな液滴、
または連続的な流れの形で還元剤を供給したほうが好ま
しいことが確認されている。また、NOX 吸収剤17に
流入する還元剤が小径であるとこの還元剤は排気流れの
影響を受けやすいために酸化されることなくNOX 吸収
剤17を通過する恐れがある。
[0022] As described above, in this embodiment, releasing the NO X in the NO X absorbent 17, the air-fuel ratio of the exhaust gas flowing to the NO X absorbent 17 when to be reduced is a lean, NO X oxygen concentration in the surface of the absorbent 17 is NO X is released from the NO X absorbent 17 by reducing locally, it is reduced. Release of such NO X, the reducing agent sufficiently vaporized in order to perform a reducing action effectively NO X
Droplets having a large particle size rather than being supplied to the absorbent 17,
Alternatively, it has been found that it is preferable to supply the reducing agent in the form of a continuous stream. Further, the reducing agent when the reducing agent flowing into the NO X absorbent 17 is a small diameter is likely to pass through the NO X absorbent 17 without being oxidized to susceptible to exhaust gas flow.

【0023】そこで本実施態様では、還元剤噴射ノズル
21の先端に細孔体24を取り付け、細孔体24を介し
て酸化触媒16およびNOX 吸収剤17に還元剤を供給
するようにしている。すなわち、還元剤噴射ノズル21
から噴射された比較的小径の還元剤粒子は互いに凝集し
つつ細孔体24の細孔内を進行し、その結果粒径の大き
な液滴または連続的な流れの形で細孔体24から流出す
る。この還元剤は酸化触媒16において部分酸化される
が、粒径の大きな液滴または連続的な流れの形を維持し
つつNOX 吸収剤17に流入する。したがって、NOX
吸収剤17内のNOX を効果的に放出、還元することが
できる。また、還元剤は粒径の大きな液滴または連続的
な流れの形でNOX 吸収剤17に供給されるので、還元
剤が酸化されることなくNOX 吸収剤17から流出する
のが阻止される。
[0023] Therefore, in the present embodiment, fitted with a pore 24 at the tip of the reducing agent injection nozzle 21, so as to supply the reducing agent to the oxidation catalyst 16 and the NO X absorbent 17 via the Hosoanatai 24 . That is, the reducing agent injection nozzle 21
The relatively small diameter reducing agent particles ejected from the fine particles travel inside the fine pores of the fine pores 24 while aggregating with each other, and as a result, flow out of the fine pores 24 in the form of droplets having a large particle diameter or a continuous flow. I do. This reducing agent is partially oxidized in the oxidation catalyst 16, flows into the NO X absorbent 17 while maintaining the shape of large droplets or continuous stream of particle size. Therefore, NO X
NO X in the absorbent 17 can be released and reduced effectively. The reducing agent is so fed to the NO X absorbent 17 in the form of large droplets or continuous flow of grain size, is prevented from flowing out of the NO X absorbent 17 without reducing agent is oxidized You.

【0024】さらにこの場合、細孔体24の一側面から
流入した還元剤は図6に矢印でもって示すように、細孔
体24の残りの周面全体から染み出てくる。したがっ
て、還元剤を半径方向に一様に供給することができ、N
X 吸収剤17内のNOX を一様に放出、還元すること
ができる。ところで、機関加速運転が行われると機関か
ら排出されるNOX 量が大幅に増大し、このときNOX
吸収剤17に流入する排気の空燃比がリーンであっても
NOX が吸収されることなくNOX 吸収剤17から流出
する恐れがある。
Further, in this case, the reducing agent that has flowed in from one side surface of the porous body 24 oozes out from the entire remaining peripheral surface of the porous body 24, as indicated by arrows in FIG. Therefore, the reducing agent can be uniformly supplied in the radial direction, and N
NO X in the O X absorbent 17 can be uniformly released and reduced. However, increasing the amount of NO X is much the engine acceleration operation is discharged from the when the engine performed, this time NO X
Air-fuel ratio of the exhaust gas flowing into the absorbent 17 is likely to flow out from the NO X absorbent 17 without NO X even lean is absorbed.

【0025】そこで本実施態様では、機関減速運転時に
還元剤噴射ノズル21から少量のの還元剤を噴射してこ
の還元剤を細孔体24内に染み込ませておき、次いで機
関加速運転が行われたときに細孔体24内に蓄えられて
いる還元剤でもって多量のNOX を還元するようにして
いる。すなわち、機関加速運転が行われると機関から排
出される排気の温度および圧力が高くなるので細孔体2
4から蓄えられている還元剤が放出される。この還元剤
は次いでNOX 吸収剤17に流入して排気中のNOX
一部を還元し、斯くしてNOX 吸収剤17から多量のN
X が流出するのが阻止される。このようにすると、機
関から排出されるNOX 量が増大したときに遅滞なく還
元剤を供給することができる。
Therefore, in the present embodiment, a small amount of reducing agent is injected from the reducing agent injection nozzle 21 during the engine deceleration operation to allow the reducing agent to soak into the micropores 24, and then the engine acceleration operation is performed. so that the reduction of large amounts of the NO X with a reducing agent that is stored in the pores body 24 when the. That is, when the engine acceleration operation is performed, the temperature and pressure of the exhaust gas discharged from the engine increase, so that the pores 2
4 releases the stored reducing agent. This reducing agent then flows into the NO x absorbent 17 to reduce a part of the NO x in the exhaust gas, and thus a large amount of N x
O X is prevented from flowing out. With this configuration, the reducing agent can be supplied without delay when the amount of NO X discharged from the engine increases.

【0026】なお、機関加速運転が行われたか否かを検
出し、機関加速運転が行われたときに還元剤噴射ノズル
21から還元剤を噴射して細孔体24内に蓄えられてい
る還元剤を細孔体24外に押し出し、それによって還元
剤を供給するようにすることもできる。図7は単位時間
当たりに還元剤噴射ノズル21から噴射される還元剤噴
射量qを算出するためのルーチンを示している。このル
ーチンは予め定められた設定時間毎の割り込みによって
実行される。
It is to be noted that it is detected whether or not the engine acceleration operation has been performed, and when the engine acceleration operation has been performed, the reducing agent is injected from the reducing agent injection nozzle 21 to reduce the reduction stored in the pores 24. The agent may be extruded out of the pores 24, thereby providing a reducing agent. FIG. 7 shows a routine for calculating the reducing agent injection amount q injected from the reducing agent injection nozzle 21 per unit time. This routine is executed by interruption every predetermined set time.

【0027】図7を参照すると、まずステップ50では
フラグがセットされているか否かが判別される。このフ
ラグは還元剤供給装置20から還元剤を供給すべきとき
にセットされ、還元剤の供給を停止すべきときにリセッ
トされる。フラグがリセットされているときには次いで
ステップ51に進み、NOX 吸収剤温度TNAがしきい
温度T1よりも高いか否かが判別される。TNA>T1
のときには次いでステップ52に進み、前回の処理サイ
クルにおいてNOX 吸収剤温度TNAがT1以下であっ
たか否かが判別される。前回の処理サイクルにおいてT
NA>T1のときには次いでステップ53に進み、アク
セルペダルの踏み込み量DEPの変化率ΔDEPが一定
値D1よりも小さいか否か、すなわち機関減速運転が行
われているか否かが判別される。ΔDEP≧D1のと
き、すなわち機関減速運転が行われていないときには次
いでステップ62に進み、還元剤噴射量qが零とされ
る。すなわち還元剤供給作用が停止される。これに対し
ΔDEP<D1のとき、すなわち機関減速運転が行われ
ているときには次いでステップ54に進み、還元剤噴射
量qが例えば一定値qSとされる。このqSは細孔体2
4内に染み込ませておく還元剤量を最適にするのに必要
な還元剤量であり、したがって細孔体24内に還元剤を
蓄えるための還元剤供給作用が行われる。一方、ステッ
プ52において前回の処理サイクルにおいてTNA≦T
1のとき、すなわちNOX 吸収剤温度TNAがしきい温
度T1を越えて上昇したときには次いでステップ55に
進み、フラグがセットされる。
Referring to FIG. 7, first, at step 50, it is determined whether or not a flag is set. This flag is set when the reducing agent is to be supplied from the reducing agent supply device 20, and is reset when the supply of the reducing agent is to be stopped. Flag routine goes to step 51 when it is reset, NO X absorbent temperature TNA whether higher than the threshold temperature T1 is determined. TNA> T1
The routine goes to step 52, whether the NO X absorbent temperature TNA was a T1 or less in the last processing cycle is determined at the time of. T in the previous processing cycle
If NA> T1, then the routine proceeds to step 53, where it is determined whether or not the rate of change ΔDEP of the accelerator pedal depression amount DEP is smaller than a fixed value D1, that is, whether or not the engine is being decelerated. When ΔDEP ≧ D1, that is, when the engine deceleration operation is not being performed, the routine proceeds to step 62, where the reducing agent injection amount q is set to zero. That is, the reducing agent supply operation is stopped. On the other hand, when ΔDEP <D1, that is, when the engine is being decelerated, the routine proceeds to step 54, where the reducing agent injection amount q is set to, for example, a constant value qS. This qS is the pore 2
4 is an amount of the reducing agent necessary to optimize the amount of the reducing agent to be impregnated into the inside of the porous body 4, and therefore, a reducing agent supply operation for storing the reducing agent in the pores 24 is performed. On the other hand, in step 52, TNA ≦ T
When 1, i.e. the NO X absorbent temperature TNA proceeds to then step 55 when rises above the threshold temperature T1, the flag is set.

【0028】フラグがセットされたときにはステップ5
0からステップ56に進み、図5のマップからqNが算
出される。続くステップ57では還元剤噴射量qがqN
とされる。したがって、NOX 吸収剤17内のNOX
放出、還元させるための還元剤供給作用が行われる。続
くステップ58では、フラグがセットされている時間を
表すカウンタ値Cが1だけインクリメントされる。続く
ステップ59ではカウント値Cが設定値C1よりも大き
いか否かが判別される。C≦C1のときには処理サイク
ルを終了する。C>C1のときには還元剤供給作用が一
定時間行われたと判断してステップ60に進みフラグが
リセットされる。続くステップ61ではカウンタ値Cが
クリアされ、続くステップ62では還元剤噴射量qがq
Nとされる。すなわち還元剤供給作用が停止される。
Step 5 when the flag is set
From 0, the process proceeds to step 56, where qN is calculated from the map of FIG. In the following step 57, the reducing agent injection amount q becomes qN
It is said. Therefore, a reducing agent supply action for releasing and reducing NO X in the NO X absorbent 17 is performed. In the following step 58, the counter value C representing the time during which the flag is set is incremented by one. In a succeeding step 59, it is determined whether or not the count value C is larger than the set value C1. When C ≦ C1, the processing cycle ends. When C> C1, it is determined that the reducing agent supply operation has been performed for a certain period of time, and the routine proceeds to step 60, where the flag is reset. In the following step 61, the counter value C is cleared, and in the following step 62, the reducing agent injection amount q becomes q
N. That is, the reducing agent supply operation is stopped.

【0029】図8に還元剤噴射ノズル21の別の実施態
様を示す。本実施態様では、還元剤噴射ノズル21の還
元剤噴射方向が排気通路軸線に対し平行をなしかつ排気
流れに対し対向するように還元剤噴射ノズル21が配置
されている。その結果、還元剤噴射ノズル21から噴射
された還元剤が排気に衝突して拡散が促進せしめられ、
斯くして半径方向に一様に還元剤を供給することができ
る。
FIG. 8 shows another embodiment of the reducing agent injection nozzle 21. In the present embodiment, the reducing agent injection nozzle 21 is arranged such that the reducing agent injection direction of the reducing agent injection nozzle 21 is parallel to the axis of the exhaust passage and faces the exhaust flow. As a result, the reducing agent injected from the reducing agent injection nozzle 21 collides with the exhaust gas to promote diffusion, and
Thus, the reducing agent can be uniformly supplied in the radial direction.

【0030】さらに、還元剤噴射期間の初期に噴射され
た還元剤と末期に噴射された還元剤とが一緒に排気通路
内を流通しうるので、還元剤濃度がかなり高い排気部分
を形成することができる。言い換えると、パルス状の還
元剤濃度分布を形成することができる。このような還元
剤濃度が高い排気部分がNOX 吸収剤17に流入すると
NOX 吸収剤17内のNOX を効果的に放出、還元する
ことができる。なお、還元剤噴射ノズル21の還元剤噴
射方向は必ずしも排気通路軸線に対し平行でなくてもよ
い。
Furthermore, since the reducing agent injected at the beginning of the reducing agent injection period and the reducing agent injected at the end of the reducing agent injection period can flow together in the exhaust passage, an exhaust portion having a considerably high reducing agent concentration is formed. Can be. In other words, a pulse-like concentration distribution of the reducing agent can be formed. Such reducing agent concentration is high exhaust portion effectively releases NO X in the NO X absorbent 17 when flowing into the NO X absorbent 17 can be reduced. Note that the reducing agent injection direction of the reducing agent injection nozzle 21 is not necessarily parallel to the exhaust passage axis.

【0031】図9に還元剤噴射ノズル21のさらに別の
実施態様を示す。本実施態様において還元剤噴射ノズル
21は環状の噴口ホルダ26を具備する。この噴口ホル
ダ26には環状に整列せしめられた複数の噴口21aが
形成され、これら噴口21aは排気通路の半径方向内向
きに指向せしめられる。本実施態様でも、還元剤噴射ノ
ズル21の還元剤噴射方向が排気流れと交差しているの
で還元剤の拡散が促進せしめられ、斯くして半径方向に
一様に還元剤を供給することができる。また、還元剤噴
射方向が排気通路の半径方向内向きに指向せしめられる
ので排気通路内壁面に付着する還元剤量が低減せしめら
れる。
FIG. 9 shows still another embodiment of the reducing agent injection nozzle 21. In the present embodiment, the reducing agent injection nozzle 21 includes an annular injection hole holder 26. The nozzle holder 26 is formed with a plurality of nozzles 21a arranged annularly, and these nozzles 21a are directed inward in the radial direction of the exhaust passage. Also in this embodiment, since the reducing agent injection direction of the reducing agent injection nozzle 21 intersects with the exhaust flow, the diffusion of the reducing agent is promoted, and thus the reducing agent can be uniformly supplied in the radial direction. . Further, since the reducing agent injection direction is directed inward in the radial direction of the exhaust passage, the amount of the reducing agent adhering to the inner wall surface of the exhaust passage is reduced.

【0032】これまで述べてきた実施態様では、排気浄
化触媒を酸化触媒16およびNOX吸収剤17から形成
し、NOX 吸収剤17内のNOX を放出、還元するため
に還元剤供給装置20から還元剤を供給する場合に本発
明を適用している。しかしながら、還元剤を含む酸素雰
囲気において流入する排気中のNOX を還元することが
できる選択還元型触媒を含むように排気浄化触媒を形成
し、選択還元型触媒でNOX を還元するために還元剤供
給装置20から還元剤を供給する場合にも本発明を適用
することもできる。或いは、イオウ分やSOF(有機可
溶成分)により被毒した排気浄化触媒を再生するために
還元剤供給装置20から還元剤を供給する場合にも本発
明を適用することもできる。
[0032] In the embodiment described so far, the exhaust gas purifying catalyst formed from the oxidation catalyst 16 and the NO X absorbent 17 release the NO X in the NO X absorbent 17, the reducing agent supply device for reducing 20 The present invention is applied to the case where the reducing agent is supplied from the apparatus. However, reduction to an exhaust gas purifying catalyst was formed to include a selective reduction catalyst capable of reducing the NO X in the inflowing exhaust gas, to reduce NO X in the selective reduction catalyst in an oxygen atmosphere containing a reducing agent The present invention can also be applied to a case where a reducing agent is supplied from the agent supply device 20. Alternatively, the present invention can also be applied to a case where a reducing agent is supplied from the reducing agent supply device 20 in order to regenerate an exhaust purification catalyst poisoned by a sulfur component or SOF (organic soluble component).

【0033】[0033]

【発明の効果】排気浄化触媒の半径方向に関し一様に還
元剤を供給することができる。
As described above, the reducing agent can be supplied uniformly in the radial direction of the exhaust purification catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】還元剤噴射ノズルの先端を示す部分拡大図であ
る。
FIG. 2 is a partially enlarged view showing a tip of a reducing agent injection nozzle.

【図3】NOX 吸収剤のNOX 吸放出作用を説明するた
めの図である。
FIG. 3 is a diagram for explaining the NO X absorbing / releasing action of a NO X absorbent.

【図4】NOX 吸収剤のNOX 浄化率Rを示す図であ
る。
FIG. 4 is a view showing a NO X purification rate R of a NO X absorbent.

【図5】還元剤供給量qNを示す線図である。FIG. 5 is a diagram showing a reducing agent supply amount qN.

【図6】還元剤の流れを示す図2と同様な部分拡大図で
ある。
FIG. 6 is a partially enlarged view similar to FIG. 2, showing a flow of a reducing agent.

【図7】還元剤噴射量qを算出するためのフローチャー
トである。
FIG. 7 is a flowchart for calculating a reducing agent injection amount q.

【図8】還元剤噴射ノズルの別の実施態様を示す図であ
る。
FIG. 8 is a view showing another embodiment of the reducing agent injection nozzle.

【図9】還元剤噴射ノズルのさらに別の実施態様を示す
図である。
FIG. 9 is a view showing still another embodiment of the reducing agent injection nozzle.

【符号の説明】[Explanation of symbols]

1…機関本体 15…排気管 16…酸化触媒 17…NOX 吸収剤 21…還元剤噴射ノズル 24…細孔体1 ... engine body 15 ... exhaust pipe 16 ... oxidizing catalyst 17 ... NO X absorbent 21 ... reducing agent injection nozzle 24 ... Hosoanatai

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/28 301E 3/28 301 B01D 53/36 102A Fターム(参考) 3G091 AA02 AA17 AA18 AB02 AB05 AB06 BA01 BA03 BA11 BA14 BA15 BA19 CA16 CA18 CA19 CB08 DB06 DB10 EA06 EA07 EA17 EA18 EA30 FA02 FA04 FA17 FA19 FB02 FB10 FC07 GB01W GB01X GB02W GB03W GB04W GB05W GB06W GB06X GB07W GB10X HA08 HA10 HA37 HA47 4D048 AA06 AB02 BA02X BA03X BA14X BA15X BA18X BA30X BA31X BA33X BA41X CC31 EA08 4G069 AA01 AA03 AA15 BA01B BC02B BC03B BC04B BC06B BC09B BC13B BC40B BC42B BC71B BC72B BC74B BC75B CA08 CA13 DA05 ED04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) F01N 3/24 F01N 3/28 301E 3/28 301 B01D 53/36 102A F-term (reference) 3G091 AA02 AA17 AA18 AB02 AB05 AB06 BA01 BA03 BA11 BA14 BA15 BA19 CA16 CA18 CA19 CB08 DB06 DB10 EA06 EA07 EA17 EA18 EA30 FA02 FA04 FA17 FA19 FB02 FB10 FC07 GB01W GB01X GB02W GB03W GB04W GB05W GB06W GB06X GB07W GB10X HA08 BA10 ABAX HA08 HA10 BA03 BA31X BA33X BA41X CC31 EA08 4G069 AA01 AA03 AA15 BA01B BC02B BC03B BC04B BC06B BC09B BC13B BC40B BC42B BC71B BC72B BC74B BC75B CA08 CA13 DA05 ED04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 機関排気通路内に排気浄化触媒を配置す
ると共に、該排気浄化触媒上流の機関排気通路内に還元
剤噴射ノズルを配置し、該還元剤噴射ノズルから排気浄
化触媒に還元剤を供給するようにした内燃機関の排気浄
化装置において、還元剤噴射ノズルと排気浄化触媒間に
細孔体を配置した内燃機関の排気浄化装置。
An exhaust purification catalyst is disposed in an engine exhaust passage, and a reducing agent injection nozzle is disposed in an engine exhaust passage upstream of the exhaust purification catalyst, and a reducing agent is supplied from the reducing agent injection nozzle to the exhaust purification catalyst. An exhaust purification device for an internal combustion engine, wherein a pore body is arranged between a reducing agent injection nozzle and an exhaust purification catalyst.
【請求項2】 細孔体の一側を還元剤噴射ノズルの噴口
に隣接配置すると共に、細孔体の他側を排気浄化触媒の
排気上流端面に隣接配置し、機関減速運転時に還元剤噴
射ノズルから還元剤を噴射して細孔体内に還元剤を一時
的に蓄えるようにした請求項1に記載の内燃機関の排気
浄化装置。
2. One side of the porous body is arranged adjacent to the injection port of the reducing agent injection nozzle, and the other side of the porous body is arranged adjacent to the exhaust upstream end face of the exhaust purification catalyst, and the reducing agent injection is performed during engine deceleration operation. 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the reducing agent is injected from a nozzle to temporarily store the reducing agent in the pores.
【請求項3】 機関排気通路内に排気浄化触媒を配置す
ると共に、該排気浄化触媒上流の機関排気通路内に還元
剤噴射ノズルを配置し、該還元剤噴射ノズルから排気浄
化触媒に還元剤を供給するようにした内燃機関の排気浄
化装置において、還元剤噴射ノズルの還元剤噴射方向が
排気流れ方向に対向するように還元剤噴射ノズルを配置
した内燃機関の排気浄化装置。
3. An exhaust purification catalyst is disposed in an engine exhaust passage, a reducing agent injection nozzle is disposed in an engine exhaust passage upstream of the exhaust purification catalyst, and a reducing agent is supplied from the reducing agent injection nozzle to the exhaust purification catalyst. An exhaust purification device for an internal combustion engine, wherein the reducing agent injection nozzle is arranged such that a reducing agent injection direction of the reducing agent injection nozzle is opposed to an exhaust flow direction.
JP10323708A 1998-11-13 1998-11-13 Exhaust emission control device for internal combustion engine Pending JP2000145434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10323708A JP2000145434A (en) 1998-11-13 1998-11-13 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10323708A JP2000145434A (en) 1998-11-13 1998-11-13 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2000145434A true JP2000145434A (en) 2000-05-26

Family

ID=18157724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10323708A Pending JP2000145434A (en) 1998-11-13 1998-11-13 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2000145434A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118401A (en) * 2004-10-20 2006-05-11 Toyota Motor Corp Exhaust emission control device and exhaust emission control method for internal combustion engine
WO2006123511A1 (en) * 2005-05-17 2006-11-23 Isuzu Motors Limited Exhaust gas purification method and system
WO2007077919A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Method of denitration of exhaust gas and apparatus therefor
EP1812696B1 (en) * 2004-10-11 2008-08-27 Volvo Lastvagnar Ab System and method for reduction of nitrogen oxides from exhaust gases generated by a lean-burn internal combustion engine
US8011176B2 (en) * 2004-02-02 2011-09-06 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for internal combustion engine
WO2011118044A1 (en) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 Exhaust purification device for an internal combustion engine
JP2012512358A (en) * 2008-12-17 2012-05-31 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for adding a liquid reducing agent in droplets to an exhaust gas line
US8707681B2 (en) 2011-01-17 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8707680B2 (en) 2011-08-01 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
KR101591202B1 (en) 2014-12-12 2016-02-04 두산엔진주식회사 Reducing agent supplying apparatus
US9291081B2 (en) 2013-05-07 2016-03-22 Tenneco Automotive Operating Company Inc. Axial flow atomization module
US9289724B2 (en) 2013-05-07 2016-03-22 Tenneco Automotive Operating Company Inc. Flow reversing exhaust gas mixer
US9314750B2 (en) 2013-05-07 2016-04-19 Tenneco Automotive Operating Company Inc. Axial flow atomization module
US9334781B2 (en) 2013-05-07 2016-05-10 Tenneco Automotive Operating Company Inc. Vertical ultrasonic decomposition pipe
US9352276B2 (en) 2013-05-07 2016-05-31 Tenneco Automotive Operating Company Inc. Exhaust mixing device
US9364790B2 (en) 2013-05-07 2016-06-14 Tenneco Automotive Operating Company Inc. Exhaust mixing assembly
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011176B2 (en) * 2004-02-02 2011-09-06 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for internal combustion engine
US8578703B2 (en) 2004-02-02 2013-11-12 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for internal combustion engine
EP1812696B1 (en) * 2004-10-11 2008-08-27 Volvo Lastvagnar Ab System and method for reduction of nitrogen oxides from exhaust gases generated by a lean-burn internal combustion engine
US7448207B2 (en) 2004-10-11 2008-11-11 Volvo Lastvagnar Ab System and method for reduction of nitrogen oxides from exhaust gases generated by a lean-burn combustion engine
JP2006118401A (en) * 2004-10-20 2006-05-11 Toyota Motor Corp Exhaust emission control device and exhaust emission control method for internal combustion engine
WO2006123511A1 (en) * 2005-05-17 2006-11-23 Isuzu Motors Limited Exhaust gas purification method and system
US8091341B2 (en) 2005-05-17 2012-01-10 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
WO2007077919A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Method of denitration of exhaust gas and apparatus therefor
JP2012512358A (en) * 2008-12-17 2012-05-31 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for adding a liquid reducing agent in droplets to an exhaust gas line
JP5182429B2 (en) * 2010-03-23 2013-04-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN102834597A (en) * 2010-03-23 2012-12-19 丰田自动车株式会社 Exhaust purification device for an internal combustion engine
WO2011118044A1 (en) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 Exhaust purification device for an internal combustion engine
US8763370B2 (en) 2010-03-23 2014-07-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8707681B2 (en) 2011-01-17 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8707680B2 (en) 2011-08-01 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9291081B2 (en) 2013-05-07 2016-03-22 Tenneco Automotive Operating Company Inc. Axial flow atomization module
US9289724B2 (en) 2013-05-07 2016-03-22 Tenneco Automotive Operating Company Inc. Flow reversing exhaust gas mixer
US9314750B2 (en) 2013-05-07 2016-04-19 Tenneco Automotive Operating Company Inc. Axial flow atomization module
US9334781B2 (en) 2013-05-07 2016-05-10 Tenneco Automotive Operating Company Inc. Vertical ultrasonic decomposition pipe
US9352276B2 (en) 2013-05-07 2016-05-31 Tenneco Automotive Operating Company Inc. Exhaust mixing device
US9364790B2 (en) 2013-05-07 2016-06-14 Tenneco Automotive Operating Company Inc. Exhaust mixing assembly
KR101591202B1 (en) 2014-12-12 2016-02-04 두산엔진주식회사 Reducing agent supplying apparatus
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system

Similar Documents

Publication Publication Date Title
JP2000145434A (en) Exhaust emission control device for internal combustion engine
JP3969450B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP3228006B2 (en) Exhaust purification element deterioration detection device for internal combustion engine
JP4034375B2 (en) Exhaust gas purification device for internal combustion engine
WO1993025805A1 (en) Exhaust emission control system for internal combustion engine
US8104272B2 (en) Exhaust purifying system for internal combustion engine
JP4062231B2 (en) Exhaust gas purification device for internal combustion engine
JP2001207836A (en) Exhaust emission control device for internal combustion engine
JP4888380B2 (en) Exhaust gas purification device for internal combustion engine
EP1176298A2 (en) Emission control system and method for internal combustion engine
EP2960455A1 (en) Exhaust gas purification device for internal combustion engine
JP2000145433A (en) Exhaust gas purifier for internal combustion engines
JP2001303937A (en) Exhaust emission control device for internal combustion engine
US20100275586A1 (en) Device for cleaning exhaust gas of internal combustion engine
JP3826265B2 (en) Exhaust purification device
JP2010043583A (en) Exhaust emission purifier of internal combustion engine
JPH1113456A (en) Catalyst poisoning regenerator for internal combustion engine
JP3855777B2 (en) Particulate filter for internal combustion engine
JP2001271634A (en) Exhaust emission control method and exhaust emission control device
JP2001336414A (en) Method for purifying exhaust gas and its apparatus
JP2000080913A (en) Exhaust emission control device for internal combustion engine
JP2004036405A (en) Exhaust emission control device
JP3414323B2 (en) Exhaust gas purification device for internal combustion engine
JP2003049631A (en) Exhaust emission control device
JP2004308549A (en) Emission control device for internal combustion engine