JP2000037082A - Power factor control system for plant power supply employing inverter driver - Google Patents
Power factor control system for plant power supply employing inverter driverInfo
- Publication number
- JP2000037082A JP2000037082A JP10218498A JP21849898A JP2000037082A JP 2000037082 A JP2000037082 A JP 2000037082A JP 10218498 A JP10218498 A JP 10218498A JP 21849898 A JP21849898 A JP 21849898A JP 2000037082 A JP2000037082 A JP 2000037082A
- Authority
- JP
- Japan
- Prior art keywords
- power
- current
- inverter
- inverter drive
- reactive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Control By Computers (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、IGBT、GTD
等自己消弧素子を用いた半導体PWM順変換器・逆変換
器からなるインバータドライブ装置に係り、特に、PW
M順変換器の余力変換機能を用いてプラント電源全体の
カ率を制御するインバータドライブ装置によるプラント
電源カ率制御方式に関する。TECHNICAL FIELD The present invention relates to an IGBT, GTD
The present invention relates to an inverter drive device comprising a semiconductor PWM forward converter / inverter using an equal self-extinguishing element.
The present invention relates to a plant power supply rate control method using an inverter drive device that controls the power rate of the entire plant power supply using a residual conversion function of an M forward converter.
【0002】[0002]
【従来の技術】PWMコンバータ・インバータを用いた
インバータドライブ装置は、「日立評論 1993年3
月号 pp37〜40」に記載のように、ドライブ装置
として、電源カ率を1.0に制御している。従来のイン
バータドライブ装置の構成図を図6に示す。図6におい
て、インバータドライブ装置6は、誘導電動機7の回転
速度を直接制御するIGBTインバータ30と、IGB
Tインバータ30の入力直流電圧を電源トランス5から
供給される三相交流より直流に変換し、制御するIGB
Tコンバータ40より構成される。IGBTインバータ
30は、IGBTコンバータ40より供給される直流電
源をもとに誘導電動機7の要求される回転速度に対応す
る交流電圧、周波数及び位相の三相交流に変換するPW
Mインバータ主回路31と、この主回路31を介して速
度制御を行なう速度制御装置32とより構成される。速
度制御装置32は、誘導電動機7に直結されたパルスエ
ンコーダ33で検出される回転速度検出値Wrと速度制
御指令Wr*とより、誘導電動機7の磁束を制御するた
めの励磁電流(d軸成分電流)Id*成分と発生トルク
を制御するためのトルク電流(q軸成分電流)Iq*成
分とのベクトル演算により、誘導電動機7の磁束制御を
含む速度制御演算を行ない、この演算結果のd軸、q軸
電流指令Id*、Iq*に基づき、d軸、q軸電流制御を
行なうとともに、すべり周波数fを演算し、すべり周波
数演算結果と回転速度検出値ωrより一次周波数指令値
ω1*を演算する。一方、d軸、q軸電流指令Id*、I
q*及び一次周波数指令値ω1*に基づき、ベクトル演算
により三相交流電流制御を行ない、その演算結果である
3相出力電圧指令に基づき、多重PWM制御により演算
されるPWMパルスによりインバータ主回路31を制御
し、誘導電動機7の速度制御を行なう。IGBTコンバ
ータ40は、電源カ率を1.0に制御すると共に、IG
BTインバータ30の入力電源となる直流電圧を一定に
制御する交流−直流変換のIGBTコンバータ主回路2
1とこの主回路21を介して電源カ率1.0制御及び直
流電圧を一定に制御するコンバータ制御部42とより構
成される。コンバータ制御部42では、直流電圧指令E
d*にコンバータ21の出力電圧Edが一致するように
直流電圧制御部25で有効電流指令であるq軸電流指令
Iq*を演算する。このq軸電流指令Iq*とカ率1.0
とするためのd軸電流指令Id*44を指令値として、
q軸及びd軸電流制御を電流制御部43で演算するとと
もに、電流制御部43では電源電圧、位相の検出器27
の信号を基準として、d軸、q軸のベクトル演算を行な
い、三相交流電流制御を行ない、IGBTコンバータ2
1のPWMパルスの基準となる三相交流電圧指令を演算
する。この三相交流電圧指令に基づき、PWM制御部で
PWMパルスを演算出力し、IGBTコンバータ21に
よって電流カ率を1.0、直流電圧Edを一定にする制
御を行なう。このようにインバータドライブ装置6は、
単体として、電流カ率を1.0に制御し、誘導電動機7
の速度制御を行なえる理想的なドライブ装置である。し
かし、図5に示すように、従来のプラント構成は、電源
トランス1、遅れカ率負荷設備3−1〜3−n用のトラ
ンス2−1〜2−n、インバータドライブ装置6−1〜
6−N用のトランス5−1〜5−N、電動機7−1〜7
−N、プラント全体の無効電力を補償する無効電力補償
設備4から構成され、インバータドライブ装置6−1〜
6−Nとして図6のインバータドライブ装置6が使用さ
れるが、一般に無効電力補償設備4は、進相コンデンサ
を数バンクの容量に分割して入切するため、遅れカ率負
荷設備3の負荷変動により、プラント全体のカ率を常に
一定に制御することが出来ず、プラント全体の電源カ率
が変動し、電圧変動が発生する。これらの対策として、
無効電力補償設備4として、無効電力を連続制御できる
設備「負荷追従形無効電力補償装置」(SVC)がある
が、設備コストが高くなるという問題があるため、導入
されてない。2. Description of the Related Art An inverter drive device using a PWM converter / inverter is described in Hitachi Review, March 1993.
As described in “Monthly pp. 37-40”, the power supply rate of the drive device is controlled to 1.0. FIG. 6 shows a configuration diagram of a conventional inverter drive device. In FIG. 6, an inverter drive device 6 includes an IGBT inverter 30 that directly controls the rotation speed of the induction motor 7, and an IGB
IGB for converting input DC voltage of T inverter 30 from three-phase AC supplied from power transformer 5 to DC and controlling
It comprises a T converter 40. The IGBT inverter 30 converts a PW into a three-phase AC having an AC voltage, a frequency, and a phase corresponding to the required rotation speed of the induction motor 7 based on the DC power supplied from the IGBT converter 40.
It comprises an M inverter main circuit 31 and a speed control device 32 for controlling speed via the main circuit 31. The speed control device 32 generates an exciting current (d-axis component) for controlling the magnetic flux of the induction motor 7 based on the rotation speed detection value Wr detected by the pulse encoder 33 directly connected to the induction motor 7 and the speed control command Wr *. The vector control of the current) Id * component and the torque current (q-axis component current) Iq * component for controlling the generated torque is performed to perform speed control calculation including magnetic flux control of the induction motor 7. Based on the q-axis current commands Id * and Iq *, the d-axis and q-axis current controls are performed, and the slip frequency f is calculated. The primary frequency command value ω 1 * is calculated from the slip frequency calculation result and the rotational speed detection value ωr. Calculate. On the other hand, d-axis and q-axis current commands Id *, I
Based on q * and the primary frequency command value ω 1 *, three-phase AC current control is performed by vector calculation, and the inverter main circuit is controlled by PWM pulses calculated by multiplex PWM control based on the calculation result of the three-phase output voltage command. 31 to control the speed of the induction motor 7. The IGBT converter 40 controls the power factor to 1.0,
AC-DC conversion IGBT converter main circuit 2 for controlling a DC voltage serving as an input power supply of BT inverter 30 to be constant
1 and a converter control unit 42 for controlling the power supply rate 1.0 and controlling the DC voltage to be constant through the main circuit 21. In converter control unit 42, DC voltage command E
The DC voltage controller 25 calculates a q-axis current command Iq *, which is an effective current command, so that the output voltage Ed of the converter 21 matches d *. This q-axis current command Iq * and power factor 1.0
D-axis current command Id * 44 for
The current control unit 43 calculates the q-axis and d-axis current control, and the current control unit 43 detects the power supply voltage and the phase detector 27.
, The d-axis and q-axis vector calculations are performed, the three-phase AC current control is performed, and the IGBT converter 2
A three-phase AC voltage command serving as a reference for one PWM pulse is calculated. Based on the three-phase AC voltage command, the PWM control section calculates and outputs a PWM pulse, and controls the IGBT converter 21 so that the current rate is 1.0 and the DC voltage Ed is constant. Thus, the inverter drive device 6
As a single unit, the current power rate is controlled to 1.0, and the induction motor 7
It is an ideal drive device that can perform speed control. However, as shown in FIG. 5, the conventional plant configuration includes a power supply transformer 1, transformers 2-1 to 2-n for load factor load equipment 3-1 to 3-n, and inverter drive devices 6-1 to 6-1.
Transformers 5-1 to 5-N for 6-N, motors 7-1 to 7
-N, a reactive power compensating facility 4 for compensating the reactive power of the whole plant,
6 is used as 6-N. In general, the reactive power compensating equipment 4 divides the phase-advancing capacitor into several banks of capacity and turns them on and off. Due to the fluctuation, the power rate of the entire plant cannot be constantly controlled, and the power rate of the entire plant fluctuates, causing a voltage fluctuation. As these measures,
As the reactive power compensating equipment 4, there is a equipment "load-following reactive power compensator" (SVC) which can continuously control the reactive power, but it has not been introduced because there is a problem that the equipment cost increases.
【0003】[0003]
【発明が解決しようとする課題】従来においては、単体
として、電流カ率を1.0に制御し、誘導電動機7の速
度制御を行なえる理想的なインバータドライブ装置6を
使用しても、プラント全体の電源カ率を連続制御するに
は、設備コストの高いSVC装置が必要となるという問
題があり、また、進相コンデンサバンクの段階的投入で
は、負荷の変動に連続で追従できないため、プラント全
体の電源カ率変動、電圧変動を発生するという問題があ
った。また、電力コストの点からも、カ率変動分だけ余
分なコストがかかっていた。Conventionally, even if an ideal inverter drive device 6 capable of controlling the current power factor to 1.0 and controlling the speed of the induction motor 7 is used as a single unit, In order to continuously control the entire power supply rate, there is a problem that an SVC device having a high equipment cost is required. In addition, when the phase-advanced capacitor bank is gradually turned on, it is not possible to continuously follow the fluctuation of the load. There is a problem that power supply rate fluctuation and voltage fluctuation occur as a whole. In addition, in terms of power costs, extra costs are required for power fluctuations.
【0004】本発明の課題は、プラントの中で大きな電
力比率をもつPWMコンバータの無効電流供給余力機能
を最大限に活用し、プラント全体の電源カ率を最適に制
御するインバータドライブ装置によるプラント電源カ率
制御方式を提供することにある。[0004] It is an object of the present invention to provide a plant power supply using an inverter drive device that optimally controls the power supply rate of the entire plant by making the most of the reactive current supply remaining capacity function of a PWM converter having a large power ratio in the plant. A power control method is provided.
【0005】[0005]
【課題を解決するための手段】上記課題は、PWMコン
バータので流せる最大定格電流とプラントで使用される
PWMインバータを介して電動機に流れる有効電流に基
づいて各インバータドライブ装置の前記コンバータの余
力無効電流供給可能量を演算し、前記コンバータの最大
定格までの範囲でカ率補償用無効電流を流し、プラント
全体のカ率を連続制御することによって、解決される。An object of the present invention is to provide an inverter drive device having a residual reactive current based on a maximum rated current that can be passed by a PWM converter and an active current that flows through a motor through a PWM inverter used in a plant. This problem can be solved by calculating the suppliable amount, flowing a reactive current for power compensation within the range up to the maximum rating of the converter, and continuously controlling the power of the entire plant.
【0006】本発明は、プラントの中で大きな電力比率
をもつ、インバータドライブ装置群のPWMコンバータ
の無効電流制御機能を用いて、また、これらPWMコン
バータは常時最大負荷では運転されてないことを利用し
て、インバータドライブ装置のPWMコンバータの余力
無効電流供給機能を最大限に活用し、連続カ率制御可能
なSVC装置の機能と同じように、プラント全体の電源
カ率を負荷に追従して最適に制御することができる。ま
た、独立したSVC装置を設置する必要がなくなるた
め、設備スペースを小さく、かつ、設備コストを低減す
ることができる。The present invention uses a reactive current control function of a PWM converter of a group of inverter drive devices having a large power ratio in a plant, and utilizes that these PWM converters are not always operated at a maximum load. By making the best use of the residual reactive current supply function of the PWM converter of the inverter drive device, the power supply ratio of the entire plant is optimized to follow the load, just like the function of the SVC device capable of continuous power control. Can be controlled. Further, since there is no need to install an independent SVC device, the equipment space can be reduced and the equipment cost can be reduced.
【0007】[0007]
【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の一実施形態による全
体構成を示す。1は電源トランス、2−1〜2−nはト
ランス、3−1〜3−nは遅れカ率負荷設備、5−1〜
5−Nはトランス、7−1〜7−Nは電動機、8−1〜
8−NはIGBTPWMコンバータ余力無効電流制御付
インバータドライブ装置、9は全体カ率制御部、10は
無効電力検出器、11は電圧検出器、12は電流検出器
を表わす。電源の電圧検出器11と電流検出器12の信
号より無効電力検出器10により無効電力Qを検出し、
全体カ率制御部9がその検出値によりプラント全体のカ
率を最適とする無効電流指令IQ*を演算し、インバー
タドライブ装置8−1〜8−Nに指令する。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration according to an embodiment of the present invention. 1 is a power transformer, 2-1 to 2-n are transformers, 3-1 to 3-n are delay rate load facilities, and 5-1 to 5-1.
5-N is a transformer, 7-1 to 7-N are electric motors, 8-1 to
8-N is an inverter drive unit with IGBTP PWM converter residual power reactive current control, 9 is an overall power control unit, 10 is a reactive power detector, 11 is a voltage detector, and 12 is a current detector. Reactive power Q is detected by the reactive power detector 10 from the signals of the voltage detector 11 and the current detector 12 of the power supply,
The overall power control unit 9 calculates a reactive current command IQ * that optimizes the power of the entire plant based on the detected value, and instructs the inverter drives 8-1 to 8-N.
【0008】インバータドライブ装置8の詳細を図2に
示す。20はPWMコンバータ、21はPWMコンバー
タ変換部、22はPWMコンバータ制御部、23は有効
電流無効電流を独立制御するd、q軸電流制御部、24
はPWMコンバータの余力無効電流指令の最大値を制限
制御するid*最大値制限制御部、25は直流電圧制御
部、26は図1の全体カ率制御部9からの無効電流指令
IQ*、27はd、q軸電流制御部23の基準位相検出
のための電圧検出器、28は電流検出器、30はIGB
TPWMインバータ、31はPWMインバータ変換部、
32はPWMインバータのドライブ制御部である。FIG. 2 shows details of the inverter drive device 8. Reference numeral 20 denotes a PWM converter, reference numeral 21 denotes a PWM converter conversion unit, reference numeral 22 denotes a PWM converter control unit, reference numeral 23 denotes a d and q-axis current control unit which independently controls an active current and reactive current.
Is an id * maximum value limit control unit for limiting and controlling the maximum value of the residual reactive current command of the PWM converter; 25 is a DC voltage control unit; 26 is a reactive current command IQ * from the overall power ratio control unit 9 in FIG. Is a voltage detector for detecting the reference phase of the d and q-axis current controllers 23, 28 is a current detector, and 30 is an IGB
TPWM inverter, 31 is a PWM inverter converter,
Reference numeral 32 denotes a drive control unit of the PWM inverter.
【0009】id*最大値制限制御部24の詳細を図3
に示す。51はPWMコンバータ20のd、q軸電流i
d、iqのベクトル加算電流である一次電流I1の最大
定格値I1max(PWMコンバータ20が流せる最大
定格値)、52は電動機負荷で決まるq軸電流iq(有
効電流)、53はコンバータ定格で決まるI1maxと
電動機負荷で決まるiqとより、PWMコンバータの余
力無効電流分idmax=√(I1max)2−(iq)
2を演算する演算部、54は無効電流指令IQ*に対して
idmaxを最大値に制限する制御部である。FIG. 3 shows details of the id * maximum value limit control unit 24.
Shown in 51 is a d- and q-axis current i of the PWM converter 20
The maximum rated value I 1 max of the primary current I 1 , which is the vector addition current of d and iq (the maximum rated value that the PWM converter 20 can flow), 52 is a q-axis current iq (active current) determined by the motor load, and 53 is the converter rating. From I 1 max determined by the equation ( 1 ) and iq determined by the motor load, a reactive power current idmax of the PWM converter = √ (I 1 max) 2 − (iq)
A calculation unit 54 for calculating 2 is a control unit that limits idmax to a maximum value with respect to the reactive current command IQ *.
【0010】図4に全体カ率制御部9の構成図を示す。
101はプラント全体で要求される無効電力指令Q*で
あり、プラント全体の電源カ率を1.0に制御する場合
は“0”となる。102は減算器であり、無効電力指令
Q*と無効電力検出器10より検出される検出値Qとの
偏差を演算する。103は無効電力制御部であり、減算
器102の演算結果を入力し、減算器102の偏差がな
くなるように、すなわち、無効電力指令値Q*にプラン
ト全体の無効電力を補正するための無効電流指令IQ*
を演算し、その演算結果はインバータドライブ装置8−
1〜8−Nに指令する。FIG. 4 is a block diagram of the overall power rate control unit 9.
Reference numeral 101 denotes a reactive power command Q * required for the entire plant, which becomes "0" when the power factor of the entire plant is controlled to 1.0. A subtractor 102 calculates a deviation between the reactive power command Q * and a detection value Q detected by the reactive power detector 10. Reference numeral 103 denotes a reactive power control unit which receives a calculation result of the subtractor 102 and eliminates a deviation of the subtractor 102, that is, a reactive current for correcting the reactive power of the entire plant to the reactive power command value Q *. Command IQ *
Is calculated, and the calculation result is calculated by the inverter drive device 8−
1 to 8-N.
【0011】次に、本実施形態の動作を説明する。PW
Mインバータのドライブ制御部32の動作は従来例と同
じであるので、省略し、PWMコンバータ制御部22に
ついて説明する。PWMコンバータ制御部22では、直
流電圧指令Ed*にコンバータ21の出力電圧Edが一
致するように直流電圧制御部25で有効電流指令である
q軸電流指令Iq*を演算する。一方、全体カ率制御部
9においてプラント全体の電源カ率を最適とするために
演算された無効電流指令IQ*は、各インバータドライ
ブ装置8−1〜8−NのPWMコンバータ制御部22の
図3に示すid*最大値制限制御部24に入力され、こ
の制御部24では、余力無効電流分演算部53において
PWMコンバータ20の一次電流I1の最大定格値I1m
ax51と電動機負荷で決まるq軸電流iq52に基づ
いて各々のPWMコンバータの余力無効電流分idma
xを演算し、この余力無効電流idmaxの制限範囲内
で無効電流指令id*をd、q軸電流制御部23に出力
する。ここで、無効電力制御部103の演算結果の無効
電流指令値IQ*は、N台のインバータドライブ装置で
全体を補正するため、N台の各々の余力無効電流分Id
maxの最大値以下の値となる。例えば、各インバータ
ドライブ装置の余力無効電流分Idmaxが8−1が
0.5PU、8−2が0.4PU、8−3が0.3P
U、8−4〜8−Nが0PUで、全体の必要無効電流が
1.0PUの運転状態の場合、IQ*は0.4PUとな
り、全体の必要無効電流が1.0PUのうち、8−3は
余力無効電流分の0.3PUを分担、8−2も余力無効
電流分の0.4PUを分担し、8−1は余力無効電流分
0.5PUのうち0.4PUを分担するように制御され
る。これは、図3のidmax最大値制限制御部54に
より、余力無効電流分の少ないインバータドライブ装置
から余力無効電流分を分担する作用があるためである。
また、無効電流指令id*は、各々のPWMコンバータ
の余力無効電流idmaxの制限範囲内の値であり、こ
の余力無効電流idmaxの制限範囲内で全体カ率補償
用無効電流を各々のPWMコンバータより供給すること
になる。d、q軸電流制御部23では、q軸電流指令I
q*とd軸電流指令Id*を指令値とし、電源電圧、位相
の検出器27の信号を基準として、d軸、q軸のベクト
ル演算を行ない、IGBTコンバータ21の一次電流指
令I1*を出力する。この一次電流指令I1*と電流検出器
28の信号に基づいて三相交流電流制御を行ない、IG
BTコンバータ21のPWMパルスの基準となる三相交
流電圧指令を演算し、この三相交流電圧指令に基づき、
PWM制御部でPWMパルスを演算出力し、IGBTコ
ンバータ21によってプラント全体の電源カ率を負荷に
追従して最適に制御する。本実施形態では、各々のPW
Mコンバータの余力無効電流idmaxの制限範囲内で
全体カ率補償用無効電流を各々のPWMコンバータより
供給することにより、プラント全体の電力のうち大きな
比率をもつインバータドライブ装置群のPWMコンバー
タの余力無効電流供給能力を負荷追従形無効電力補償装
置(SVC)の代わりに活用することにより、別に設備
を設置することなく、プラント全体の電源カ率を負荷に
追従して最適に制御することができる。Next, the operation of this embodiment will be described. PW
The operation of the drive control unit 32 of the M inverter is the same as that of the conventional example, so that the description is omitted, and the PWM converter control unit 22 will be described. In the PWM converter controller 22, the DC voltage controller 25 calculates a q-axis current command Iq *, which is an effective current command, such that the output voltage Ed of the converter 21 matches the DC voltage command Ed *. On the other hand, the reactive current command IQ * calculated by the overall power rate control unit 9 to optimize the power rate of the entire plant is stored in the PWM converter control unit 22 of each of the inverter drive devices 8-1 to 8-N. The maximum value I 1 m of the primary current I 1 of the PWM converter 20 is input to the id * maximum value limit control unit 24 shown in FIG.
ax51 and the residual reactive current component idma of each PWM converter based on the q-axis current iq52 determined by the motor load.
x is calculated, and the reactive current command id * is output to the d- and q-axis current control units 23 within the limited range of the residual reactive current idmax. Here, the reactive current command value IQ * resulting from the operation of the reactive power control unit 103 is corrected by the N inverter drive devices so that the N reactive drive current components Id
The value is equal to or less than the maximum value of max. For example, the remaining reactive current Idmax of each inverter drive device is 0.5 PU for 8-1, 0.5 PU for 8-2, and 0.3 P for 8-3.
When U and 8-4 to 8-N are 0 PU and the entire required reactive current is in the operating state of 1.0 PU, IQ * is 0.4 PU, and the total required reactive current is 8 PU out of 1.0 PU. 3 is to share 0.3 PU of remaining reactive current, 8-2 is also to share 0.4 PU of remaining reactive current, and 8-1 is to share 0.4 PU of 0.5 PU of remaining reactive current. Controlled. This is because the idmax maximum value limit control unit 54 of FIG. 3 has an effect of sharing the remaining reactive current from the inverter drive device having a small residual reactive current.
Further, the reactive current command id * is a value within the limit range of the remaining reactive current idmax of each PWM converter, and within the limited range of the remaining reactive current idmax, the reactive current for compensating the total power is supplied from each PWM converter. Will be supplied. The d- and q-axis current control units 23 execute the q-axis current command I
q * and the d-axis current command Id * are used as command values, and the d-axis and q-axis vector calculations are performed with reference to the signals of the power supply voltage and phase detector 27 to obtain the primary current command I 1 * of the IGBT converter 21. Output. Three-phase AC current control is performed based on the primary current command I 1 * and a signal from the current detector 28, and IG
A three-phase AC voltage command serving as a reference of the PWM pulse of the BT converter 21 is calculated, and based on the three-phase AC voltage command,
The PWM controller calculates and outputs a PWM pulse, and the IGBT converter 21 optimally controls the power factor of the entire plant by following the load. In the present embodiment, each PW
The reactive power for compensating the total power is supplied from each PWM converter within the limit range of the residual reactive current idmax of the M converter, so that the residual power of the PWM converters of the inverter drive device group having a large ratio in the power of the whole plant is supplied. By utilizing the current supply capacity in place of the load-following reactive power compensator (SVC), the power factor of the entire plant can be optimally controlled by following the load without installing a separate facility.
【0012】なお、本発明は、各インバータドライブ装
置の負荷状態をドライブ装置の上位制御装置により監視
し、各インバータドライブ装置の余力無効電流供給能力
を上位制御装置で演算し、各インバータドライブ装置に
無効電流指令を分配するようにしても実施可能である。
また、図2の実施形態ではIGBTPWMインバータを
用いたが、本発明は、GTQ、IGCT等他の自己消弧
素子を用いたPWM変換器でも同じ効果が得られる。ま
た、本発明は、プラント全体の構成より、インバータド
ライブ装置のPWMコンバータの容量をインバータ部に
比べて大きく設定する等により最適化を図れるという機
能も付加することができる。According to the present invention, the load state of each inverter drive device is monitored by a higher-order control device of the drive device, the remaining reactive current supply capability of each inverter drive device is calculated by the higher-order control device, and each inverter drive device is subjected to the operation. The present invention can also be implemented by distributing the reactive current command.
Further, although the embodiment of FIG. 2 uses the IGBT PWM inverter, the present invention can obtain the same effect with a PWM converter using other self-extinguishing elements such as GTQ and IGCT. Further, the present invention can add a function of optimizing by setting the capacity of the PWM converter of the inverter drive device to be larger than that of the inverter unit from the configuration of the whole plant.
【0013】[0013]
【発明の効果】以上説明したように、本発明によれば、
インバータドライブ装置として、もともと持つているP
WMコンバータの余力無効電流供給能力を最大限に活用
するので、負荷追従形無効電力補償(SVC)装置の機
能と同じように、プラント全体の電源カ率を負荷に追従
して最適に制御することができる。また、独立したSV
C装置を設置する必要がなくなるため、設備スペースを
小さく、かつ、設備コストを低減することができる。As described above, according to the present invention,
P originally possessed as an inverter drive device
Since the remaining reactive power supply capacity of the WM converter is fully utilized, the power supply rate of the entire plant is optimally controlled by following the load, similarly to the function of the load-following reactive power compensation (SVC) device. Can be. In addition, independent SV
Since there is no need to install the C device, the equipment space can be reduced and the equipment cost can be reduced.
【図1】本発明の一実施形態による全体構成図FIG. 1 is an overall configuration diagram according to an embodiment of the present invention.
【図2】本発明のインバータドライブ装置の詳細図FIG. 2 is a detailed view of the inverter drive device of the present invention.
【図3】本発明のId*最大値制限制御部の詳細図FIG. 3 is a detailed view of an Id * maximum value control unit according to the present invention.
【図4】本発明の全体カ率制御部の構成図FIG. 4 is a configuration diagram of an overall power rate control unit of the present invention.
【図5】従来例の全体構成図FIG. 5 is an overall configuration diagram of a conventional example.
【図6】従来例のインバータドライブ装置FIG. 6 shows a conventional inverter drive device.
1…電源トランス、2−1〜2−n…トランス、3−1
〜3−n…遅れカ率負荷設備、5−1〜5−N…トラン
ス、7−1〜7−N…電動機、8−1〜8−N…IGB
TPWMコンバータ余力無効電流制御付インバータドラ
イブ装置、9…全体カ率制御部、10…無効電力検出
器、11…電圧検出器、12…電流検出器、20…PW
Mコンバータ、21…PWMコンバータ変換部、22…
PWMコンバータ制御部、23…d、q軸電流制御部、
24…id*最大値制限制御部、25…直流電圧制御
部、26…無効電流指令IQ*、27…電圧検出器、2
8…電流検出器、30…IGBTPWMインバータ、3
1…PWMインバータ変換部、32…PWMインバータ
のドライブ制御部、53…PWMコンバータの余力無効
電流分idmaxを演算する演算部、54…idmax
を最大値に制限する制御部1: Power transformer, 2-1 to 2-n: Transformer, 3-1
-3-N: delay load equipment, 5-1 to 5-N: transformer, 7-1 to 7-N: electric motor, 8-1 to 8-N: IGB
Inverter drive device with TPWM converter residual power reactive current control, 9 ... Overall power control unit, 10 ... Reactive power detector, 11 ... Voltage detector, 12 ... Current detector, 20 ... PW
M converter, 21 ... PWM converter converter, 22 ...
PWM converter control unit, 23... D, q-axis current control unit,
Reference numeral 24: id * maximum value limit control unit, 25: DC voltage control unit, 26: reactive current command IQ *, 27: voltage detector, 2
8 ... current detector, 30 ... IGBT PWM inverter, 3
DESCRIPTION OF SYMBOLS 1 ... PWM inverter conversion part, 32 ... Drive control part of PWM inverter, 53 ... Calculation part which calculates residual reactive current idmax of a PWM converter, 54 ... idmax
Control unit that limits the maximum to
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 行弘 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 Fターム(参考) 5G066 FA01 FA02 FA03 FB13 FB15 FC04 FC12 5H007 AA02 BB06 CA01 CB05 CC04 CC06 CC12 CC14 DA04 DA05 DB02 DB03 DC02 DC05 EA13 5H215 AA01 AA19 BB20 CC03 CX01 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yukihiro Kono 5-2-1 Omikacho, Hitachi City, Ibaraki Prefecture F-term in the Omika Plant of Hitachi, Ltd. F-term (reference) 5G066 FA01 FA02 FA03 FB13 FB15 FC04 FC12 5H007 AA02 BB06 CA01 CB05 CC04 CC06 CC12 CC14 DA04 DA05 DB02 DB03 DC02 DC05 EA13 5H215 AA01 AA19 BB20 CC03 CX01
Claims (4)
半導体PWM順変換器と、該順変換器の直流出力に接続
され、その出力を電源として、電動機の速度制御を行な
う半導体PWM逆変換器とから構成される複数のインバ
ータドライブ装置と、プラント電源の無効電力を検出す
る検出器と、全体のカ率を最適とするために前記インバ
ータドライブ装置にカ率補償用無効電流指令を指令する
全体カ率制御部とからなり、前記順変換器で流せる最大
定格電流とプラントで使用される前記逆変換器を介して
電動機に流れる有効電流に基づいて前記各インバータド
ライブ装置の前記順変換器の余力無効電流供給可能量を
演算し、前記順変換器の最大定格までの範囲でカ率補償
用無効電流を流し、プラント全体のカ率を連続制御する
ことを特徴とするインバータドライブ装置によるプラン
ト電源カ率制御方式。1. A semiconductor PWM forward converter capable of independently controlling an active current and a reactive current, and a semiconductor PWM inverter connected to a DC output of the forward converter and using the output as a power source to control the speed of a motor. A plurality of inverter drive devices, a detector for detecting reactive power of a plant power supply, and a whole for instructing the inverter drive device with a power factor compensation reactive current command to optimize the overall power factor. Power control unit, based on the maximum rated current that can flow in the forward converter and the effective current that flows through the motor through the inverter used in the plant, the remaining capacity of the forward converter of each inverter drive device. Calculating a reactive current supply amount, supplying a reactive current for power compensation within a range up to the maximum rating of the forward converter, and continuously controlling the power of the entire plant. Plant power rate control method using inverter drive device.
ブ装置は、それぞれの電動機制御に用いられている負荷
状態に従った前記順変換器で流せる最大無効電流以内に
制限する機能を有することを特徴とするインバータドラ
イブ装置によるプラント電源カ率制御方式。2. The inverter drive device according to claim 1, wherein each of the inverter drive devices has a function of limiting the current to within a maximum reactive current that can flow in the forward converter in accordance with a load state used for each motor control. Power supply rate control method using an inverter drive device
る最大無効電流は、q軸電流指令と前記順変換器の最大
定格電流指令値に基づいて演算することを特徴とするイ
ンバータドライブ装置によるプラント電源カ率制御方
式。3. The inverter drive device according to claim 2, wherein the maximum reactive current that can flow through the forward converter is calculated based on a q-axis current command and a maximum rated current command value of the forward converter. Plant power rate control method.
半導体PWM順変換器と、該順変換器の直流出力に接続
され、その出力を電源として、電動機の速度制御を行な
う半導体PWM逆変換器とから構成される複数のインバ
ータドライブ装置と、各インバータドライブ装置に運転
パターンを指令する上位制御装置からなり、前記上位制
御装置によって、各インバータドライブ装置の負荷状態
を検出し、前記順変換器で流せる最大定格電流とプラン
トで使用される前記逆変換器を介して電動機に流れる有
効電流に基づいて前記各インバータドライブ装置の前記
順変換器の余力無効電流供給可能量を演算し、前記順変
換器の最大定格までの範囲でカ率補償用無効電流を流
し、プラント全体のカ率を連続制御することを特徴とす
るインバータドライブ装置によるプラント電源カ率制御
方式。4. A semiconductor PWM forward converter capable of independently controlling an active current and a reactive current, and a semiconductor PWM inverter connected to a DC output of the forward converter and using the output as a power source to control the speed of a motor. And a higher-level control device that commands an operation pattern to each inverter drive device, and the higher-level control device detects a load state of each inverter drive device, and the forward converter Calculate the available reactive current supply amount of the forward converter of each of the inverter drive devices based on the maximum rated current that can flow and the active current that flows through the motor through the inverter that is used in the plant. Inverter drive that continuously controls the power of the whole plant by supplying reactive current for power compensation up to the maximum rating of the inverter Plant power rate control method using equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21849898A JP3682544B2 (en) | 1998-07-16 | 1998-07-16 | Plant power rate control system using inverter drive device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21849898A JP3682544B2 (en) | 1998-07-16 | 1998-07-16 | Plant power rate control system using inverter drive device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000037082A true JP2000037082A (en) | 2000-02-02 |
JP3682544B2 JP3682544B2 (en) | 2005-08-10 |
Family
ID=16720883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21849898A Expired - Lifetime JP3682544B2 (en) | 1998-07-16 | 1998-07-16 | Plant power rate control system using inverter drive device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3682544B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005002038A1 (en) * | 2003-06-26 | 2005-01-06 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Motor drive system |
WO2005002039A1 (en) * | 2003-06-26 | 2005-01-06 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Electric motor drive system |
JP2008519582A (en) * | 2004-11-04 | 2008-06-05 | ユーティーシー パワー コーポレイション | High quality power from induction generators feeding variable speed motors |
CN105119297A (en) * | 2015-08-06 | 2015-12-02 | 广东明阳龙源电力电子有限公司 | Method used for adaptive reactive power compensation of photovoltaic inverter |
CN110768267A (en) * | 2018-07-26 | 2020-02-07 | 株式会社日立制作所 | Factory power control system and control method thereof |
CN112290567A (en) * | 2020-12-23 | 2021-01-29 | 西南交通大学 | Three-phase power quality compensation device and method based on half-bridge converter |
-
1998
- 1998-07-16 JP JP21849898A patent/JP3682544B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005002038A1 (en) * | 2003-06-26 | 2005-01-06 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Motor drive system |
WO2005002039A1 (en) * | 2003-06-26 | 2005-01-06 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Electric motor drive system |
EP1641098A1 (en) * | 2003-06-26 | 2006-03-29 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Motor drive system |
EP1641098A4 (en) * | 2003-06-26 | 2011-07-06 | Toshiba Mitsubishi Elec Inc | Motor drive system |
JP2008519582A (en) * | 2004-11-04 | 2008-06-05 | ユーティーシー パワー コーポレイション | High quality power from induction generators feeding variable speed motors |
JP4691561B2 (en) * | 2004-11-04 | 2011-06-01 | ユーティーシー パワー コーポレイション | High quality power from induction generators feeding variable speed motors |
CN105119297A (en) * | 2015-08-06 | 2015-12-02 | 广东明阳龙源电力电子有限公司 | Method used for adaptive reactive power compensation of photovoltaic inverter |
CN110768267A (en) * | 2018-07-26 | 2020-02-07 | 株式会社日立制作所 | Factory power control system and control method thereof |
CN110768267B (en) * | 2018-07-26 | 2023-06-09 | 株式会社日立制作所 | Factory power control system and control method thereof |
CN112290567A (en) * | 2020-12-23 | 2021-01-29 | 西南交通大学 | Three-phase power quality compensation device and method based on half-bridge converter |
Also Published As
Publication number | Publication date |
---|---|
JP3682544B2 (en) | 2005-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1953907B1 (en) | Systems and methods for improved motor drive power factor control | |
AU2008227057B2 (en) | Motor drive using flux adjustment to control power factor | |
JP5191051B2 (en) | Power converter | |
US6262555B1 (en) | Apparatus and method to generate braking torque in an AC drive | |
US4767976A (en) | Control system for PWM inverter | |
US8350397B2 (en) | Current source converter-based wind energy system | |
KR101474016B1 (en) | Power converters | |
US8513911B2 (en) | Power converters | |
JP2007181400A (en) | Electric vehicle controller | |
EP3681029B1 (en) | Power conversion device | |
US7091690B1 (en) | Power conversion device | |
US4721861A (en) | Turbine helper drive apparatus | |
KR890004592B1 (en) | Apparatus for operating cycloconverters in parallel fashion | |
JP2020124034A (en) | Power conversion controller | |
JP2000037082A (en) | Power factor control system for plant power supply employing inverter driver | |
JP3770370B2 (en) | Winding induction motor controller | |
JP2003134833A (en) | Power converter | |
JPH0937559A (en) | Control of power converter | |
WO2024057633A1 (en) | Power regeneration converter | |
JP3770286B2 (en) | Vector control method for induction motor | |
JP3751827B2 (en) | Power converter | |
JP2003264907A (en) | Linear induction motor controller for driving railway vehicle | |
JP2005269818A (en) | Control unit of polyphase ac current | |
CA1287877C (en) | Turbine helper drive apparatus | |
JPH0731192A (en) | Controller and control method for variable speed drive system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050502 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130603 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |