JP2000000648A - Method and apparatus for continuously casting steel - Google Patents
Method and apparatus for continuously casting steelInfo
- Publication number
- JP2000000648A JP2000000648A JP16886298A JP16886298A JP2000000648A JP 2000000648 A JP2000000648 A JP 2000000648A JP 16886298 A JP16886298 A JP 16886298A JP 16886298 A JP16886298 A JP 16886298A JP 2000000648 A JP2000000648 A JP 2000000648A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- continuous casting
- mold
- steel
- casting method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋼の連続鋳造方法
および装置に関し、特に、磁場による溶鋼流動制御を行
う鋼の連続鋳造方法および装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for continuously casting steel, and more particularly, to a method and an apparatus for continuously casting steel in which molten steel flow is controlled by a magnetic field.
【0002】[0002]
【従来の技術】鋼の連続鋳造においては、湯面における
モールドパウダの巻き込み防止や、介在物、気泡の侵入
による製品欠陥(UT欠陥、ブリスター、ふくれ、スリ
バー)防止、介在物や気泡の凝固シェルへの付着防止、
凝固シェルの均一成長促進、不均一凝固による割れ防
止、あるいは凝固組織の改善等々のために、磁場による
溶鋼流動の制御(ブレーキや撹拌)が行われている。2. Description of the Related Art In continuous casting of steel, prevention of entrapment of mold powder in the molten metal surface, prevention of product defects (UT defects, blisters, blisters, slivers) due to inclusions and bubbles, and solidification of inclusions and bubbles. Prevention of adhesion to
In order to promote uniform growth of the solidified shell, prevent cracking due to non-uniform solidification, or improve the solidified structure, the flow of molten steel is controlled (braking or stirring) by a magnetic field.
【0003】過大な溶鋼流動を抑制するための電磁ブレ
ーキ技術として、例えば特開昭57−17356 号公報には、
スラブ連鋳機の鋳型に電磁石を設置し、浸漬ノズルから
の溶鋼吐出噴流に対してそれに垂直な方向の磁界を付与
し、もって溶鋼中に誘導される電流と磁界との相互作用
によって生ずるローレンツ力で溶鋼流動を制動し、前記
吐出噴流が溶鋼プール中に深く侵入するのを抑制し、そ
れによってモールドパウダの巻き込みを防止するととも
に溶鋼中に持ち込まれた介在物の浮上を促進するという
手法が提案されている。[0003] As an electromagnetic braking technique for suppressing excessive molten steel flow, for example, Japanese Patent Application Laid-Open No. 57-17356 discloses a technique.
An electromagnet is installed in the mold of a continuous slab caster, and a magnetic field is applied in the direction perpendicular to the molten steel discharge jet from the immersion nozzle, and the Lorentz force generated by the interaction between the current and the magnetic field induced in the molten steel A method is proposed in which the flow of the molten steel is damped with the above, and the discharge jet is suppressed from penetrating deeply into the molten steel pool, thereby preventing entrainment of the mold powder and promoting the floating of inclusions brought into the molten steel. Have been.
【0004】また、上記手法をさらに発展させ、鋳造速
度や鋳片幅、浸漬ノズルの形状、メニスカスの位置など
の操業条件を変更した場合にも有効な方法として、特開
平2−284750号公報に、鋳型全幅にわたる静磁場を浸漬
ノズルの吐出口の上部および下部に印加する方法が提案
されている。また、溶鋼流れの淀みを防止するための電
磁撹拌の例としては、パウダへの熱供給不足を解消し介
在物が初期凝固シェルに捕捉されるのを防止するため
に、メニスカス部に低周波移動磁界を作用させて溶鋼に
流れを与える方法が特開平2−37946 号公報に提案され
ている。Japanese Patent Laid-Open No. 2-284750 discloses an effective method for further developing the above method and changing the operating conditions such as casting speed, slab width, immersion nozzle shape, and meniscus position. A method has been proposed in which a static magnetic field over the entire width of a mold is applied to the upper and lower portions of a discharge port of an immersion nozzle. In addition, as an example of electromagnetic stirring to prevent stagnation of molten steel flow, low-frequency movement to the meniscus part was performed to eliminate insufficient heat supply to the powder and prevent inclusions from being trapped by the initially solidified shell. Japanese Patent Laid-Open Publication No. Hei 2-37946 proposes a method of applying a magnetic field to flow molten steel.
【0005】また、中炭素鋼の凝固シェル表面の縦割れ
防止のために、電磁撹拌装置によりメニスカス近傍領域
で凝固シェルの内周面に沿って溶鋼を40〜120cm/s の速
度で流動させる方法が特開平1−228645号公報に提案さ
れている。さらに、電磁ブレーキと電磁撹拌を組み合わ
せた例として、浸漬ノズルからの吐出流に静磁場を印加
し溶鋼吐出流速を低減して大形介在物の浮上を促進し、
その下流では電磁撹拌装置により溶鋼を水平方向に攪拌
し小形介在物が凝固シェルに捕捉されるのを防止する方
法(特開昭61−193755号公報)、鋳型内で0.1m/sから0.
4m/sの溶鋼流速が得られるように電磁撹拌を行うととも
に、メニスカスの下方1.5mから連鋳機の垂直部までの間
の場所に鋳片幅方向に均一な静磁界を作用させ、鋳片表
層、内層部への介在物の集積を抑制して清浄性の優れた
鋳片を製造する方法(特開平5−23803 号公報)、およ
びメニスカス位置にて低周波移動磁界を作用させてメニ
スカス流速を与えるとともに、浸漬ノズル吐出口の上下
に幅方向に均一な静磁場を作用させて、注入した溶鋼の
流動を抑止しながら鋳造することにより、鋳片の表面欠
陥、内部欠陥を低減する方法(特開平5−154620号公
報)が知られている。Also, in order to prevent longitudinal cracking of the surface of the solidified shell of medium carbon steel, a method of flowing molten steel at a speed of 40 to 120 cm / s along the inner peripheral surface of the solidified shell in a region near the meniscus by an electromagnetic stirrer. Has been proposed in JP-A-1-228645. Furthermore, as an example of combining the electromagnetic brake and electromagnetic stirring, a static magnetic field is applied to the discharge flow from the immersion nozzle to reduce the molten steel discharge flow rate and promote the floating of large inclusions,
Downstream, a method of stirring the molten steel in the horizontal direction by an electromagnetic stirrer to prevent small inclusions from being trapped in the solidified shell (Japanese Patent Application Laid-Open No. 193755/1986).
While performing electromagnetic stirring so that a molten steel flow velocity of 4 m / s is obtained, a uniform static magnetic field is applied in the width direction of the slab at a place between 1.5 m below the meniscus and the vertical part of the continuous casting machine, A method of producing a cast slab having excellent cleanliness by suppressing the accumulation of inclusions on the surface layer and the inner layer portion (Japanese Patent Laid-Open No. 23803/1993), and a method of applying a low-frequency moving magnetic field at a meniscus position to cause a meniscus flow rate A method of reducing surface defects and internal defects of cast slabs by applying a uniform static magnetic field in the width direction above and below the immersion nozzle discharge port to suppress the flow of the injected molten steel ( JP-A-5-154620 is known.
【0006】また、同一の鉄心に複数のコイルを巻き付
け、コイルに直流や、3相交流を切り替えて流すことに
より鋳型内に移動磁場を印加したり、静磁場を印加する
方法(特開平9−262650号公報、特開平9−262651号公
報)が知られている。Further, a method of applying a moving magnetic field or a static magnetic field in a mold by winding a plurality of coils around the same iron core, and switching between direct current and three-phase alternating current to flow through the coils (Japanese Unexamined Patent Application Publication No. 262650, JP-A-9-262651) are known.
【0007】[0007]
【発明が解決しようとする課題】連続鋳造に残されてい
る課題は、生産性向上のためにさらにスループットや鋳
造速度を大きくすることである。しかし、スループット
や鋳造速度を大きくすると、浸漬ノズルからの溶鋼の吐
出流速が大きくなり、メニスカス近傍の流速が大きくな
ってパウダの巻き込みが起こり、介在物等が連鋳機深部
へ侵入してしまう。従って吐出流からの上向き流および
下向き流ともに減衰させ、かつメニスカス部等の凝固シ
ェル前面では適度な流れを与えることにより、介在物が
凝固シェルに捕捉されるのを防止する必要がある。ま
た、連鋳機の種類によっては極端に広い幅の鋳片を低速
で鋳造せざるを得ない場合もあり、この場合には流れの
淀みを防止するために鋳型の上部側、下部側の両方とも
に適度な流れを与える必要がある。A problem that remains in continuous casting is to further increase throughput and casting speed in order to improve productivity. However, when the throughput or the casting speed is increased, the discharge speed of the molten steel from the immersion nozzle is increased, the flow speed near the meniscus is increased, and powder is entrained, and inclusions and the like enter the deep portion of the continuous casting machine. Therefore, it is necessary to attenuate both the upward flow and the downward flow from the discharge flow, and to provide an appropriate flow on the front surface of the solidified shell such as the meniscus to prevent inclusions from being caught by the solidified shell. Also, depending on the type of continuous caster, it may be necessary to cast extremely wide slabs at a low speed.In this case, in order to prevent stagnation of flow, both the upper and lower sides of the mold are required. Both need to give a moderate flow.
【0008】しかしながら、特開平2−37946 号公報に
開示の、メニスカス部に低周波移動磁界を作用させて溶
鋼に流れを与える方法では、吐出下降流を減衰させるこ
とはできず、浸漬ノズルより持ち込まれた介在物や一旦
巻き込まれたパウダの連鋳機内部への侵入を防止するこ
とは不可能である。また、極広幅鋳片の低速鋳造に適用
すると溶鋼の流れが強くなりすぎてパウダが巻き込まれ
る結果となり一旦巻き込まれたパウダが連鋳機内部へ侵
入する。However, in the method disclosed in Japanese Patent Application Laid-Open No. 2-37946, in which a low-frequency moving magnetic field is applied to the meniscus to apply a flow to the molten steel, the discharge descending flow cannot be attenuated, and is carried from the immersion nozzle. It is impossible to prevent the inclusions or powder once caught in the continuous caster from entering. In addition, when applied to low speed casting of an extremely wide cast slab, the flow of molten steel becomes too strong, resulting in powder being caught, and the once caught powder enters the continuous casting machine.
【0009】また、特開平2−284750号公報に開示の、
鋳型全幅にわたる静磁場を浸漬ノズルの吐出口の上部お
よび下部に印加する方法によっても、高速で鋳造する場
合に、介在物の侵入を防止しようとして磁場を強くする
と、メニスカス部で流れが弱くなりすぎ、淀みが発生し
て介在物が凝固シェルに捕捉される。特開昭61−193755
号公報に開示の、吐出流を包囲する位置に静磁場を、そ
の下流に移動磁場を組合せ印加する方法でも、吐出流を
制動しようとして静磁場を強くすると吐出流が反射して
上昇流が強くなり、メニスカス近傍の流速が大きくなっ
てパウダの巻き込みが起こる現象は防止できない。Further, Japanese Patent Application Laid-Open No. 2-284750 discloses
Even when applying a static magnetic field over the entire width of the mold to the upper and lower parts of the discharge port of the immersion nozzle, when casting at high speed, if the magnetic field is increased to prevent the inclusion of inclusions, the flow at the meniscus will be too weak. When stagnation occurs, inclusions are trapped in the solidified shell. JP-A-61-193755
In the method disclosed in Japanese Patent Application Publication No. JP-A-2003-115, the static magnetic field is applied to a position surrounding the discharge flow, and the moving magnetic field is applied downstream of the static magnetic field. In other words, it is impossible to prevent a phenomenon in which the flow velocity near the meniscus is increased and powder is entrained.
【0010】特開平5−23803 号公報に開示の、鋳型内
に移動磁場を、鋳型下方に幅方向に均一な静磁場を印加
する方法でも、高速で鋳造する場合にはパウダの巻き込
みを防止できず、介在物が垂直部の流れの淀み部で凝固
シェルに捕捉されることがある。特開平5−154620号公
報に開示の、メニスカス部に移動磁界を、ノズル吐出口
の上下に幅方向に均一な静磁場を組合せ印加する方法で
も、下部の静磁場を通過した介在物の凝固シェルへの付
着には効果がない。The method disclosed in Japanese Patent Application Laid-Open No. Hei 5-23803, in which a moving magnetic field is applied in a mold and a uniform static magnetic field is applied under the mold in the width direction, can prevent powder entrainment when casting at high speed. Instead, inclusions may be trapped in the solidified shell at the stagnation of the vertical flow. In the method disclosed in JP-A-5-154620, in which a moving magnetic field is applied to a meniscus portion and a uniform static magnetic field is applied in a width direction above and below a nozzle discharge port, a solidified shell of an inclusion passing through a lower static magnetic field is also used. Has no effect on adhesion to
【0011】特開平9−262650号公報および特開平9−
262651号公報に開示の、電流の種類を直流や3相交流な
どに切り替えて1対の電磁力によって鋳型内に移動磁場
を印加したり静磁場を印加する方法でも、ある場所で制
動か攪拌のいずれか一方しか実施できない。これらの溶
鋼流動制御方法の問題点は、ある場所で流れの制動もし
くは撹拌を行おうとするときに、いずれか一方しか実施
できないことにある。JP-A-9-262650 and JP-A-9-262650
In the method disclosed in Japanese Patent No. 262651 and applying a moving magnetic field or a static magnetic field in a mold by a pair of electromagnetic forces by changing the type of current to DC or three-phase AC, braking or stirring is performed at a certain place. Only one can be implemented. The problem with these molten steel flow control methods is that when attempting to brake or stir the flow at a certain location, only one of them can be performed.
【0012】特開平5−154620号公報に開示の方法でい
えば、メニスカス部に移動磁界を、ノズル吐出口の上下
に幅方向に均一な静磁場を組合せ印加することはできて
も、全く同一の場所において流れの撹拌と制動とを両方
とも達成することはできない。この方法でもある程度ま
でメニスカスでの流動を適正範囲に収めることが可能で
はあるが、本来は鋳型の幅方向、鋳造方向の位置だけで
なく、厚み方向の位置でも適正な流動範囲が存在するは
ずであるから、例えば、湯面近傍部において、初期凝固
シェル前面では適度な流動を与えて介在物の付着を防止
し、内部のモールドパウダと接している部分では流れを
制動してパウダの巻き込みを防止するといった流動制御
が理想である。In the method disclosed in Japanese Patent Application Laid-Open No. 5-154620, it is possible to apply a moving magnetic field to the meniscus portion and a uniform static magnetic field in the width direction above and below the nozzle orifice. In both locations, both agitation and braking of the flow cannot be achieved. With this method, it is possible to keep the flow at the meniscus within an appropriate range to some extent, but originally there should be an appropriate flow range not only in the width direction and casting direction of the mold but also in the thickness direction. Therefore, for example, in the vicinity of the molten metal surface, an appropriate flow is given to the front surface of the initially solidified shell to prevent the adhesion of inclusions, and the flow is braked at the part in contact with the inner mold powder to prevent the entrainment of the powder. Flow control, such as doing, is ideal.
【0013】本発明は、この理想に近い溶鋼流動制御を
実現しようとするもので、その目的は、溶鋼プール内の
いかなる場所であってもその場所に応じた適正な流動を
確保でき、もってモールドパウダの巻き込み、および介
在物・気泡の凝固シェルへの付着を有効に防止できる鋼
の連続鋳造方法および装置を提供することにある。An object of the present invention is to realize a flow control of molten steel that is close to the ideal, and an object of the present invention is to ensure a proper flow according to the location at any location in the molten steel pool, and It is an object of the present invention to provide a method and an apparatus for continuously casting steel, which can effectively prevent powder entrainment and adhesion of inclusions and bubbles to a solidified shell.
【0014】[0014]
【課題を解決するための手段】本発明は、鋼の連続鋳造
方法において、連続鋳造機ストランド内の未凝固溶鋼
に、強度および/または方向が時間により変動しかつそ
の時間平均値が0でない磁界を印加することを特徴とす
る鋼の連続鋳造方法である。前記変動の周波数は0.5Hz
〜10Hzであることが好ましい。SUMMARY OF THE INVENTION The present invention relates to a method for continuously casting steel, which comprises applying a magnetic field whose strength and / or direction fluctuates with time and whose time average value is not zero in an unsolidified molten steel in a continuous casting machine strand. And a method for continuously casting steel. The frequency of the fluctuation is 0.5Hz
Preferably, it is 10 Hz.
【0015】前記磁界の時間平均値および該平均値を中
心とする変動幅は、鋳造条件に応じてそれぞれ独立に変
更されることが好ましい。前記磁界の時間平均値および
該平均値を中心とする変動幅は、幅方向および/または
鋳込方向の位置に応じてそれぞれ独立に変更されること
が好ましい。前記磁界が印加される場所は、主として鋳
型内、もしくは主として鋳型下部、もしくは主として湯
面近傍部及び鋳型下部、またはこれらのうちの二つ以上
の組合せであることが好ましい。It is preferable that the time average value of the magnetic field and the fluctuation width around the average value are independently changed according to casting conditions. It is preferable that the time average value of the magnetic field and the fluctuation width around the average value are independently changed according to the position in the width direction and / or the casting direction. The location where the magnetic field is applied is preferably mainly in the mold, or mainly in the lower part of the mold, or mainly in the vicinity of the molten metal surface and in the lower part of the mold, or a combination of two or more of these.
【0016】前記磁界が印加される場所は、実質的に鋳
片全幅にわたることが好ましい。また、本発明は、鋼の
連続鋳造装置において、直流電流を通電する電磁ブレー
キコイルと交流電流を通電する低周波電磁撹拌コイルと
を個別に備え、これらコイルを同じ鉄心に巻き付けてな
る磁場発生装置を少なくとも1つ有することを特徴とす
る鋼の連続鋳造装置である。Preferably, the location where the magnetic field is applied extends over substantially the entire width of the slab. Further, the present invention provides a steel continuous casting apparatus, in which an electromagnetic brake coil for supplying a direct current and a low-frequency electromagnetic stirring coil for supplying an alternating current are separately provided, and a magnetic field generator is formed by winding these coils around the same iron core. A continuous casting apparatus for steel, characterized by having at least one of
【0017】前記磁場発生装置は、鋳型内および/また
は鋳型下部に装着されたものであることが好ましい。な
お、本発明において、「磁場」と「磁界」とは同義であ
り、「鋳型内」とは、メニスカス位置から該メニスカス
位置を起点として鋳込方向に沿って計られる距離(鋳込
距離と称する)1mの位置までの範囲、「鋳型下部」と
は鋳込距離1mの位置から5mの位置までの範囲、「湯
面近傍部」とは、メニスカス位置から鋳込み方向に0.2
m程度までの範囲である。It is preferable that the magnetic field generator is mounted in the mold and / or below the mold. In the present invention, “magnetic field” and “magnetic field” have the same meaning, and “in the mold” means a distance measured from the meniscus position along the casting direction from the meniscus position as a starting point (referred to as a casting distance). ) The range up to 1 m, "the lower part of the mold" is the range from the position of 1 m to 5 m in the casting distance, and "the vicinity of the molten metal surface" is 0.2 in the casting direction from the meniscus position.
m.
【0018】[0018]
【発明の実施の形態】一般に電磁力「ベクトルf(以
下、単にfと記す)」は、電流密度「ベクトルJ(以
下、単にJと記す)」および磁束密度「ベクトルB(以
下、単にBと記す)」により、次の式 f=J×B (1) で表される。ここに「×」は外積である(以下同じ)。
また、電流密度Jは、電気伝導度σ、および、電界の強
さ「ベクトルE(以下、単にEと記す)」、溶鋼流速
「ベクトルv(以下、単にvと記す)」により、次の式 J=σ(E+v×B) (2)〔Ohm の法則〕 で表される。磁場の時間変化がある場合、電界の強さE
は、時間t、電気ポテンシャルφおよびベクトルポテン
シャル「ベクトルA(以下、単にAと記す)」により、
次の式 E=−∇φ−∂A/∂t (3)〔Faraday の法則〕 で表される。ここに「∇」はナブラであり(以下同
じ)、ベクトルポテンシャルAは、次の式 B=∇×A (4) を満たす。DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, an electromagnetic force "vector f (hereinafter simply referred to as f)" has a current density "vector J (hereinafter simply referred to as J)" and a magnetic flux density "vector B (hereinafter simply referred to as B). )), The following formula is expressed as f = J × B (1). Here, "x" is a cross product (the same applies hereinafter).
The current density J is calculated by the following equation based on the electric conductivity σ, the electric field strength “vector E (hereinafter simply referred to as E)”, and the molten steel flow velocity “vector v (hereinafter simply referred to as v)”. J = σ (E + v × B) (2) [Ohm's law] When there is a time change of the magnetic field, the electric field strength E
Is given by time t, electric potential φ, and vector potential “vector A (hereinafter simply referred to as A)”.
The following equation E = −∇φ−∂A / ∂t (3) [Faraday's law]. Here, “∇” is a nabula (the same applies hereinafter), and the vector potential A satisfies the following equation: B = ∇ × A (4)
【0019】式(1) に式(2),式(3) を代入すると、電磁
力fは、次の式 f=σ〔−∇φ×B+v×B×B−(∂A/∂t)×B〕 (5) で表される。式(5) 右辺第2項が制動力を、同第3項が
撹拌力を表している。なお、同第1項は戻り電流による
力を表している。By substituting the equations (2) and (3) into the equation (1), the electromagnetic force f can be expressed by the following equation: f = σ [−Δφ × B + v × B × B− (ΔA / Δt) × B] (5) Equation (5) The second term on the right side represents the braking force, and the third term represents the stirring force. Note that the first term represents the force due to the return current.
【0020】本発明によれば、時間により強度(大き
さ、強さ)および/または方向(向き)が変化し、かつ
その時間平均値が0でない磁界を溶鋼に印加するように
したから、速い流れには磁場の直流成分(直流磁界;式
(5) 右辺第2項)がブレーキとして作用し、遅い流れに
は磁場の交流移動成分(交流移動磁界;式(5) 右辺第3
項)がスターラとして作用する。According to the present invention, a magnetic field whose strength (magnitude, strength) and / or direction (direction) changes with time and whose time average value is not zero is applied to the molten steel. The flow contains the DC component of the magnetic field (DC magnetic field; equation
(5) The second term on the right-hand side acts as a brake, and in the slow flow, the AC moving component of the magnetic field (AC moving magnetic field; Equation (5)
Term) acts as a stirrer.
【0021】また、交流移動磁界の周波数を0.5Hz 〜10
Hzとしたから、表皮効果による磁力の浸透深さを変化さ
せて、所望の場所での溶鋼流動を自在に制御することが
できる。すなわち、一つには周波数が高いほど表面近傍
に撹拌力を付与することができるが、10Hzを超えると磁
力が凝固シェルや鋳型銅板までにしか及ばず溶鋼を十分
に撹拌できないため周波数の上限を10Hzとした。また一
つには、周波数が低いほど溶鋼内部まで磁力を波及させ
ることができるが、0.5Hz 未満では実効ある撹拌力が得
られないことから周波数の下限を0.5Hz とした。この周
波数範囲はいわゆる低周波域に属する。なお、より好ま
しい周波数範囲は1Hz〜5Hzである。The frequency of the AC moving magnetic field is 0.5 Hz to 10 Hz.
Since the frequency is set to Hz, it is possible to freely control the molten steel flow at a desired place by changing the penetration depth of the magnetic force due to the skin effect. In other words, the higher the frequency, the more the stirring force can be applied to the vicinity of the surface.However, if the frequency exceeds 10 Hz, the magnetic force extends only to the solidified shell and the mold copper plate and the molten steel cannot be sufficiently stirred, so the upper limit of the frequency is set. 10 Hz. On the other hand, the lower the frequency, the more the magnetic force can spread to the inside of the molten steel. However, if the frequency is lower than 0.5 Hz, an effective stirring force cannot be obtained, so the lower limit of the frequency is set to 0.5 Hz. This frequency range belongs to the so-called low frequency range. Note that a more preferable frequency range is 1 Hz to 5 Hz.
【0022】このように交流移動磁界の作用は溶鋼表面
(凝固シェル前面)に近いところほど強く、遠いところ
(内部)ほど弱い。一方、直流磁界の方は表面、内部の
別に関わりなく作用するため、式(5) より、凝固シェル
前面では撹拌の効果を大きく、内部ではブレーキの効果
を大きくすることができる。さらに、本発明では、磁界
(変動磁界)の強さの時間平均値および該平均値回りの
変動幅を、鋳造条件(鋼種、鋳片幅、鋳造速度等)や幅
方向位置、鋳込方向位置に応じてそれぞれ独立に変更す
るようにしたから、制動力や撹拌力を各条件・各位置毎
に最適と目される値に一致させることが可能であり、各
条件・各位置で所望の溶鋼流動を付与することができ
る。As described above, the action of the AC moving magnetic field is stronger near the surface of the molten steel (the front surface of the solidified shell) and weaker as it is farther (inside). On the other hand, since the DC magnetic field acts regardless of whether it is on the surface or inside, from the equation (5), the effect of agitation can be increased in front of the solidified shell and the effect of braking can be enhanced inside. Further, in the present invention, the time average value of the strength of the magnetic field (fluctuation magnetic field) and the fluctuation width around the average value are determined by the casting conditions (steel type, slab width, casting speed, etc.), the width direction position, and the pouring direction position. The braking force and the agitation force can be made to match the values considered to be optimal for each condition and each position, and the desired molten steel can be obtained for each condition and each position. Flow can be imparted.
【0023】また、変動磁界の印加場所を、主として
鋳型内、主として鋳型下部、主として湯面近傍部お
よび鋳型下部、のいずれか又はこれらのうちの二つ以上
の組合せとしたから、では主に鋳片表層における介在
物や気泡の付着と鋳片表面割れとを防止でき、では主
に鋳片内部への介在物や気泡の侵入と鋳片内層への介在
物や気泡の付着とを防止でき、では主に湯面でのモー
ルドパウダ巻き込みと初期凝固シェルへの介在物や気泡
の付着とに加え鋳片内部への介在物や気泡の侵入と鋳片
内層への介在物や気泡の付着とを防止できるという効果
を奏し、前記〜の組合せでは個々の効果が複合され
て発現する。Also, since the application place of the fluctuating magnetic field is mainly in the mold, mainly in the lower part of the mold, mainly in the vicinity of the molten metal surface and in the lower part of the mold, or in a combination of two or more of them, It is possible to prevent inclusions and bubbles from adhering to the surface of the slab and to prevent the slab surface from cracking. In addition to the inclusion of mold powder on the molten metal surface and the inclusion of inclusions and bubbles in the initially solidified shell, the inclusion of inclusions and bubbles into the slab and the attachment of inclusions and bubbles to the inner layer of the slab are The combination of the above (1) and (2) produces a combined effect of the individual effects.
【0024】また、変動磁界の印加場所を実質的に鋳片
全幅としたから、幅方向のどの位置でも上記効果が得ら
れる。勿論、鋳片幅方向に磁界の強度分布を設け得るよ
うにしているので、幅方向の各位置でその位置に対応し
た所望の溶鋼流動が得られる。また、本発明の磁場発生
装置では、直流電流を通電する電磁ブレーキコイルと交
流電流を通電する低周波電磁撹拌コイルとをそれぞれ別
個に備え、これらコイルを共通の鉄心に巻いてあるか
ら、この共通の鉄心から時間変動する磁場を発生させ得
るようになり、同一の位置において電磁ブレーキと電磁
撹拌とを自在に運用できるようになる。Further, since the application location of the fluctuating magnetic field is substantially the entire width of the slab, the above-mentioned effect can be obtained at any position in the width direction. Of course, since the magnetic field intensity distribution can be provided in the slab width direction, a desired molten steel flow corresponding to the position can be obtained at each position in the width direction. In the magnetic field generator of the present invention, an electromagnetic brake coil for supplying a direct current and a low-frequency electromagnetic stirring coil for supplying an alternating current are separately provided, and these coils are wound around a common iron core. A magnetic field that fluctuates with time can be generated from the iron core of the electromagnetic brake, and the electromagnetic brake and the electromagnetic stirring can be freely operated at the same position.
【0025】図1は、本発明に係る磁場発生装置の一例
を示す立体図である。同図には鋳型の1長辺分に対応す
る部分を示した。図示のように、電磁ブレーキコイル1
および低周波電磁撹拌コイル2が共通の鉄心3に巻かれ
ている。鉄心3には幅方向位置毎に低周波電磁撹拌コイ
ル2を設け得るようにコイル通し用の抜き孔4が開けら
れている。なお添字「A 」は個体区別のために付した。FIG. 1 is a three-dimensional view showing an example of a magnetic field generator according to the present invention. FIG. 3 shows a portion corresponding to one long side of the mold. As shown, the electromagnetic brake coil 1
The low frequency electromagnetic stirring coil 2 is wound around a common iron core 3. The iron core 3 is provided with a through hole 4 through which a low-frequency electromagnetic stirring coil 2 can be provided at each position in the width direction. The suffix “ A ” is added for individual distinction.
【0026】図2は、図1の磁場発生装置を鋳型に装着
した状態を示す側断面図である。同図において、5は鋳
型長辺(鋳型長辺銅板)、6は浸漬ノズル、7は凝固シ
ェル(鋳片凝固シェル)、8は溶鋼、9は吐出口(ノズ
ル吐出口)、10は鋳型短辺(鋳型短辺銅板)、11はメニ
スカス(湯面)であり、図1と同一または相当部分には
同じ符号を付し説明を省略する。図示のように、この磁
場発生装置は鋳込み方向位置に関する磁界印加場所を湯
面近傍部および鋳型下部の二段とする場合(二段磁界印
加)に好適である。この状態で、電磁ブレーキコイル
1,1A の電流値を個別に変えることにより上段と下段
とで独立に磁界の強さの時間平均値を変更することがで
き、また、低周波電磁撹拌コイル2,2A の電流値を変
えることにより上段と下段とで独立に磁界の強さの時間
変動幅を変更することができる。FIG. 2 is a side sectional view showing a state where the magnetic field generator of FIG. 1 is mounted on a mold. In the figure, 5 is the long side of the mold (copper plate on the long side of the mold), 6 is the immersion nozzle, 7 is the solidified shell (solidified shell of the slab), 8 is the molten steel, 9 is the discharge port (nozzle discharge port), and 10 is the short mold. The side (short-side copper plate on the mold) 11 is a meniscus (fluid surface), and the same or corresponding parts as those in FIG. As shown in the figure, this magnetic field generating apparatus is suitable for a case where a magnetic field is applied in two steps in the vicinity of the molten metal surface and the lower part of the mold (two-step magnetic field application). In this state, by individually changing the current values of the electromagnetic brake coils 1 and 1 A , the time average value of the magnetic field strength can be changed independently in the upper stage and the lower stage. , 2 A , the time variation width of the magnetic field strength can be independently changed between the upper stage and the lower stage.
【0027】図3、図4は、それぞれ、ストランド内溶
鋼への磁界印加場所を鋳込方向に一段設ける場合に好適
な本発明磁場発生装置の一例を示す平断面図である。こ
れらの図において、図2と同一または相当部分には同じ
符号を付し説明を省略する。いずれの例でも、直流専用
の電磁ブレーキコイル1(添字「B 」〜「E 」は個体区
別のために付した)および交流専用の低周波電磁撹拌コ
イル2を共通の鉄心3に巻いてあり、この段の幅方向、
厚み方向のどの位置にある溶鋼8に対しても、直流磁界
と交流移動磁界とを重畳させ、その位置に応じた強さに
調整して印加することができる。FIGS. 3 and 4 are plan sectional views each showing an example of a magnetic field generating apparatus according to the present invention, which is suitable for a case where a magnetic field is applied to the molten steel in the strand one step in the casting direction. In these drawings, the same or corresponding parts as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted. In any of the examples, an electromagnetic brake coil 1 exclusively for DC (subscripts “ B ” to “ E ” are attached for individual distinction) and a low-frequency electromagnetic stirring coil 2 exclusively for AC are wound around a common iron core 3. The width direction of this step,
The DC magnetic field and the AC moving magnetic field can be superimposed on the molten steel 8 at any position in the thickness direction, and can be applied with the strength adjusted according to the position.
【0028】図5は、本発明法(c)と従来法(従来電
磁ブレーキ法(a),従来電磁撹拌法(b))とによる
発生磁界を比較して示す波形図である。同図の縦軸は磁
束密度のx方向成分(鋳型短辺に平行な方向の成分)B
x 、横軸は鋳型幅方向位置(鋳型長辺に平行にとった座
標軸上の位置)を表す。幅方向に均一な静磁場を印加す
る従来電磁ブレーキ法では、(a)の通りBx の同時刻
値が幅方向で一定で時間変化もない特性をもつ直流磁界
のみが発生するから、この印加場所では制動力のみが作
用し、撹拌力は発生しない。一方、従来電磁撹拌法で
は、(b)の通りBx の同時刻値が幅方向に正弦波形を
描きこの波形が時間とともに幅方向に移動する特性をも
つ交流移動磁界のみが発生するから、この印加場所では
撹拌は十分でも制動が不十分となる。これら従来法に対
し、本発明法では、(c)の通り直流磁界と交流移動磁
界とが重畳して発生するから、同じ印加場所で状況に応
じて制動と撹拌とがどちらも十分となるように自在に磁
界を調整することができる。FIG. 5 is a waveform diagram comparing the magnetic fields generated by the method (c) of the present invention and the conventional method (conventional electromagnetic braking method (a), conventional electromagnetic stirring method (b)). The vertical axis in the figure is the x direction component of the magnetic flux density (the component in the direction parallel to the short side of the mold)
x, the horizontal axis represents the position in the mold width direction (the position on the coordinate axis taken parallel to the long side of the mold). In the conventional electromagnetic braking method in which a uniform static magnetic field is applied in the width direction, as shown in (a), only a DC magnetic field having a characteristic in which the same time value of Bx is constant in the width direction and does not change with time is generated. In this case, only the braking force acts and no stirring force is generated. On the other hand, in the conventional electromagnetic stirring method, as shown in (b), the same time value of Bx draws a sinusoidal waveform in the width direction, and only an AC moving magnetic field having a characteristic that this waveform moves in the width direction with time is generated. In places, agitation is sufficient but braking is insufficient. In contrast to these conventional methods, in the method of the present invention, as shown in (c), a DC magnetic field and an AC moving magnetic field are generated by superposition, so that both braking and stirring are sufficient at the same application location according to the situation. The magnetic field can be adjusted freely.
【0029】[0029]
【実施例】垂直曲げ型の連続鋳造機により、吐出口径70
mmの逆Y型二孔浸漬ノズルを使用して鋳造速度1.8m/min
および2.5m/minにて幅1500mm、厚み220mm の低炭素アル
ミキルド鋼鋳片を鋳造する際に、図1に例示した本発明
の磁場発生装置を、図2の配置で鋳型に設置し、鋳造
中、電磁ブレーキコイル1による磁場強度(静磁場磁
力)を1000〜5000ガウスの範囲で変更し、かつ低周波電
磁撹拌コイル2により湯面近傍部の溶鋼流速(メニスカ
ス流速)を10〜80cm/sの範囲で変更して実施例とした。[Example] A vertical bending type continuous casting machine was used to discharge 70
1.8m / min casting speed using a 2mm reverse Y-type two-hole immersion nozzle
When casting a low carbon aluminum killed steel slab having a width of 1500 mm and a thickness of 220 mm at a speed of 2.5 m / min, the magnetic field generator of the present invention illustrated in FIG. 1 was installed in a mold in the arrangement of FIG. The magnetic field strength (static magnetic field force) by the electromagnetic brake coil 1 is changed in the range of 1000 to 5000 Gauss, and the flow rate of the molten steel (meniscus flow rate) in the vicinity of the molten metal surface is reduced to 10 to 80 cm / s by the low frequency electromagnetic stirring coil 2. Examples were changed within the range.
【0030】鋳造後のスラブを熱間圧延し、さらに冷間
圧延して厚み1.0mm ×幅1500mmに仕上げた冷延コイルに
ついて、内部欠陥発生率及び表面欠陥発生率を磁粉探傷
検査及び目視検査により調査した。また、図2の磁場発
生装置に代えて、図6に示すように、湯面近傍部には低
周波電磁撹拌コイル2を、鋳型下部には電磁ブレーキコ
イル1を鉄心3に巻いた静磁場発生器を独立に設置し、
鋳造中、電磁ブレーキコイル1による磁場強度(静磁場
磁力)を1000〜5000ガウスの範囲で変更し、かつ低周波
電磁撹拌コイル2によりメニスカス流速を10〜80cm/sの
範囲で変更した比較例1と、図7に示すように、湯面近
傍部に低周波電磁撹拌コイル2を設置するのみとし、低
周波電磁撹拌コイル2によりメニスカス流速を0〜80cm
/sの範囲で変更した比較例2について、実施例と同様の
調査を行った。The slab after casting is hot-rolled, and then cold-rolled to obtain a 1.0 mm thick × 1500 mm wide cold-rolled coil. The incidence of internal defects and the incidence of surface defects are determined by magnetic particle inspection and visual inspection. investigated. As shown in FIG. 6, instead of the magnetic field generator of FIG. 2, a low-frequency electromagnetic stirring coil 2 is provided in the vicinity of the molten metal surface, and an electromagnetic brake coil 1 is provided around the iron core 3 in the lower part of the mold. We install container independently,
Comparative Example 1 in which the magnetic field strength (static magnetic field force) by the electromagnetic brake coil 1 was changed in the range of 1000 to 5000 Gauss during casting, and the meniscus flow rate was changed in the range of 10 to 80 cm / s by the low frequency electromagnetic stirring coil 2. 7, only the low-frequency electromagnetic stirring coil 2 is installed in the vicinity of the molten metal surface, and the low-frequency electromagnetic stirring coil 2 reduces the meniscus flow rate from 0 to 80 cm.
For Comparative Example 2 changed in the range of / s, the same investigation as in the example was conducted.
【0031】これらの調査結果を表1に示す。なお、表
1の欠陥発生率は比較例2No.1との相対比で表示した。
表1より、湯面近傍部にて溶鋼を電磁撹拌するだけの比
較例2よりも、これに加えて鋳型下部にて溶鋼を電磁制
動した比較例1のほうが、内部、表面とも欠陥発生率が
低かった。この比較例1に比べ、湯面近傍部及び鋳型下
部の各場所にて電磁撹拌と電磁制動を重複させた実施例
では、同じメニスカス流速ではあっても、湯面(内部)
での流速が制動されてパウダの巻き込みが減少するた
め、内部欠陥、表面欠陥ともにさらに一段と低減した。Table 1 shows the results of these investigations. The defect occurrence rates in Table 1 are shown as relative ratios to Comparative Example 2 No. 1.
From Table 1, the defect generation rate in both the inside and the surface of Comparative Example 1 in which the molten steel was electromagnetically braked at the lower part of the mold was higher than Comparative Example 2 in which the molten steel was only electromagnetically stirred in the vicinity of the molten metal surface. It was low. Compared to Comparative Example 1, in the embodiment in which the electromagnetic stirring and the electromagnetic braking are overlapped in the vicinity of the molten metal surface and at the respective locations below the mold, the molten metal surface (inside) even at the same meniscus flow velocity
The internal flow rate and surface defects were further reduced because the flow velocity was reduced and powder entrainment was reduced.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【発明の効果】かくして、本発明によれば、直流電流を
通電する電磁ブレーキコイルと交流電流を通電する低周
波電磁撹拌コイルとを個別に備え、これらコイルを同じ
鉄心に巻き付けてなる磁場発生装置を用いて、時間によ
り強度および/または方向が変化し、かつその時間平均
値が0でない磁界を連続鋳造機ストランド内の未凝固溶
鋼に印加するようにしたので、所望の溶鋼流動が得ら
れ、表面欠陥、内部欠陥が両方とも効果的に低減すると
いう効果を奏し、また、従来のように電磁ブレーキ用と
電磁撹拌用に別々の装置を備える必要もなく、設備簡素
化、コスト低減の効果もある。As described above, according to the present invention, a magnetic field generator is provided which comprises an electromagnetic brake coil for supplying a direct current and a low-frequency electromagnetic stirring coil for supplying an alternating current, and these coils are wound around the same iron core. Is used to apply a magnetic field whose strength and / or direction changes with time and whose time average value is not zero to the unsolidified molten steel in the continuous caster strand, so that a desired molten steel flow can be obtained, It has the effect of effectively reducing both surface defects and internal defects.It also eliminates the need for separate devices for electromagnetic braking and electromagnetic stirring as in the past, simplifying equipment and reducing costs. is there.
【0034】また、鋳造速度が変化する鍋交換時等の鋳
片長手方向部分(品質が低下しがちな非定常部)に対し
て、印加磁場を自在に調整して定常部と同様の流動状態
に維持することができるようになるから、当該非定常部
の品質低下をも防止することが可能となる。Also, the applied magnetic field is freely adjusted for the longitudinal portion of the slab (unsteady portion where the quality tends to deteriorate) at the time of changing the ladle where the casting speed changes, and the flow state is the same as that of the steady portion. , It is possible to prevent the quality of the non-stationary part from deteriorating.
【図1】本発明に係る磁場発生装置の一例を示す立体図
である。FIG. 1 is a three-dimensional view showing an example of a magnetic field generator according to the present invention.
【図2】図1の磁場発生装置を鋳型に装着した状態を示
す側断面図である。FIG. 2 is a side sectional view showing a state where the magnetic field generator of FIG. 1 is mounted on a mold.
【図3】ストランド内溶鋼への磁界印加場所を鋳込方向
に一段設ける場合に好適な本発明磁場発生装置の一例を
示す平断面図である。FIG. 3 is a cross-sectional plan view showing an example of the magnetic field generating apparatus of the present invention suitable for providing a magnetic field applied to molten steel in a strand in one step in a casting direction.
【図4】ストランド内溶鋼への磁界印加場所を鋳込方向
に一段設ける場合に好適な本発明磁場発生装置の一例を
示す平断面図である。FIG. 4 is a cross-sectional plan view showing an example of the magnetic field generator of the present invention suitable for providing a magnetic field applied to molten steel in a strand at one stage in the casting direction.
【図5】本発明法(c)と従来法(従来電磁ブレーキ法
(a),従来電磁撹拌法(b))とによる発生磁界を比
較して示す波形図である。FIG. 5 is a waveform chart showing a comparison of magnetic fields generated by the method (c) of the present invention and the conventional method (the conventional electromagnetic braking method (a) and the conventional electromagnetic stirring method (b)).
【図6】比較例1の磁場発生装置を鋳型に装着した状態
を示す側断面図である。FIG. 6 is a side sectional view showing a state where the magnetic field generator of Comparative Example 1 is mounted on a mold.
【図7】比較例2の磁場発生装置を鋳型に装着した状態
を示す側断面図である。FIG. 7 is a side sectional view showing a state where the magnetic field generator of Comparative Example 2 is mounted on a mold.
1 電磁ブレーキコイル 2 低周波電磁撹拌コイル 3 鉄心 4 抜き孔 5 鋳型長辺(鋳型長辺銅板) 6 浸漬ノズル 7 凝固シェル(鋳片凝固シェル) 8 溶鋼 9 吐出口(ノズル吐出口) 10 鋳型短辺(鋳型短辺銅板) 11 メニスカス(湯面) DESCRIPTION OF SYMBOLS 1 Electromagnetic brake coil 2 Low frequency electromagnetic stirring coil 3 Iron core 4 Drilling hole 5 Mold long side (Mold long side copper plate) 6 Immersion nozzle 7 Solidified shell (Slab solidified shell) 8 Molten steel 9 Discharge port (Nozzle discharge port) 10 Mold short Edge (Mold short side copper plate) 11 Meniscus (Fluid surface)
Claims (10)
磁場を印加しながら連続鋳造する鋼の連続鋳造方法にお
いて、強度および/または方向が時間により変動しかつ
その時間平均値が0でない磁界を印加することを特徴と
する鋼の連続鋳造方法。In a continuous casting method for steel, wherein a magnetic field is applied to unsolidified molten steel in a continuous casting machine strand, a magnetic field whose strength and / or direction fluctuates with time and whose time average value is not 0 is determined. A continuous casting method of steel, characterized by applying a voltage.
請求項1記載の連続鋳造方法。2. The continuous casting method according to claim 1, wherein the frequency of the fluctuation is 0.5 Hz to 10 Hz.
中心とする変動幅が、鋳造条件に応じてそれぞれ独立に
変更される請求項1または2に記載の連続鋳造方法。3. The continuous casting method according to claim 1, wherein the time average value of the magnetic field and a fluctuation range around the average value are independently changed according to casting conditions.
中心とする変動幅が、幅方向および/または鋳込方向の
位置に応じてそれぞれ独立に変更される請求項1〜3の
いずれかに記載の連続鋳造方法。4. The magnetic head according to claim 1, wherein the time average value of the magnetic field and a fluctuation range around the average value are independently changed according to the position in the width direction and / or the casting direction. 3. The continuous casting method according to item 1.
鋳型内である請求項1〜4のいずれかに記載の連続鋳造
方法。5. The continuous casting method according to claim 1, wherein the place to which the magnetic field is applied is mainly in a mold.
鋳型下部である請求項1〜5のいずれかに記載の連続鋳
造方法。6. The continuous casting method according to claim 1, wherein the place where the magnetic field is applied is mainly at a lower part of the mold.
湯面近傍部及び鋳型下部である請求項1〜5のいずれか
に記載の連続鋳造方法。7. The continuous casting method according to claim 1, wherein the location to which the magnetic field is applied is mainly in the vicinity of the molten metal surface and in the lower part of the mold.
鋳片全幅にわたる請求項1〜7のいずれかに記載の連続
鋳造方法。8. The continuous casting method according to claim 1, wherein the location to which the magnetic field is applied covers substantially the entire width of the slab.
磁場を印加する磁場発生装置を備えた鋼の連続鋳造装置
において、前記磁場発生装置が、直流電流を通電する電
磁ブレーキコイルと、交流電流を通電する低周波電磁撹
拌コイルと、これらが共通に巻かれた鉄心とを有するこ
とを特徴とする鋼の連続鋳造装置。9. A continuous casting machine for steel provided with a magnetic field generator for applying a magnetic field to unsolidified molten steel in a continuous casting machine strand, the magnetic field generator comprising: an electromagnetic brake coil for supplying a direct current; A continuous casting apparatus for steel, comprising: a low-frequency electromagnetic stirring coil for energizing the steel; and a core wound in common with the low-frequency electromagnetic stirring coil.
は鋳型下部に装着された請求項9記載の連続鋳造装置。10. The continuous casting apparatus according to claim 9, wherein the magnetic field generator is mounted inside and / or below the mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16886298A JP3700396B2 (en) | 1998-06-16 | 1998-06-16 | Steel continuous casting equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16886298A JP3700396B2 (en) | 1998-06-16 | 1998-06-16 | Steel continuous casting equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000000648A true JP2000000648A (en) | 2000-01-07 |
JP3700396B2 JP3700396B2 (en) | 2005-09-28 |
Family
ID=15875945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16886298A Expired - Fee Related JP3700396B2 (en) | 1998-06-16 | 1998-06-16 | Steel continuous casting equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3700396B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002040154A1 (en) | 2000-11-15 | 2002-05-23 | Daicel Chemical Industries, Ltd. | Catalysts comprising n-substituted cyclic imides and processes for preparing organic compounds with the catalysts |
JP2003080354A (en) * | 2001-09-06 | 2003-03-18 | Kawasaki Steel Corp | Method and apparatus for continuously casting steel |
JP2003535701A (en) * | 2000-06-21 | 2003-12-02 | エービービー エービー | Equipment for continuous or semi-continuous forming of metallic materials |
JP2005508755A (en) * | 2001-09-27 | 2005-04-07 | エービービー エービー | Apparatus and method for continuous casting |
JP2006272357A (en) * | 2005-03-28 | 2006-10-12 | Jfe Steel Kk | Method and apparatus for continuously casting steel |
WO2009063712A1 (en) * | 2007-11-16 | 2009-05-22 | Sumitomo Metal Industries, Ltd. | Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake |
WO2009063711A1 (en) * | 2007-11-16 | 2009-05-22 | Sumitomo Metal Industries, Ltd. | Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake |
EP3134220B1 (en) | 2014-04-25 | 2019-09-04 | ThyssenKrupp Steel Europe AG | Method and device for thin-slab strand casting |
CN114734005A (en) * | 2022-03-22 | 2022-07-12 | 安徽工业大学 | Electromagnetic braking device and method for controlling molten steel flow in tundish |
-
1998
- 1998-06-16 JP JP16886298A patent/JP3700396B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003535701A (en) * | 2000-06-21 | 2003-12-02 | エービービー エービー | Equipment for continuous or semi-continuous forming of metallic materials |
JP4925546B2 (en) * | 2000-06-21 | 2012-04-25 | エービービー エービー | Equipment for continuous or semi-continuous forming of metal materials |
WO2002040154A1 (en) | 2000-11-15 | 2002-05-23 | Daicel Chemical Industries, Ltd. | Catalysts comprising n-substituted cyclic imides and processes for preparing organic compounds with the catalysts |
JP2003080354A (en) * | 2001-09-06 | 2003-03-18 | Kawasaki Steel Corp | Method and apparatus for continuously casting steel |
JP2005508755A (en) * | 2001-09-27 | 2005-04-07 | エービービー エービー | Apparatus and method for continuous casting |
JP2006272357A (en) * | 2005-03-28 | 2006-10-12 | Jfe Steel Kk | Method and apparatus for continuously casting steel |
WO2009063711A1 (en) * | 2007-11-16 | 2009-05-22 | Sumitomo Metal Industries, Ltd. | Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake |
JP2009119517A (en) * | 2007-11-16 | 2009-06-04 | Sumitomo Metal Ind Ltd | Electromagnetic coil device usable for both electromagnetic stirring and electromagnetic brake |
JP2009119515A (en) * | 2007-11-16 | 2009-06-04 | Sumitomo Metal Ind Ltd | Electromagnetic coil device usable for both electromagnetic stirring and electromagnetic brake |
CN101868311A (en) * | 2007-11-16 | 2010-10-20 | 住友金属工业株式会社 | Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake |
WO2009063712A1 (en) * | 2007-11-16 | 2009-05-22 | Sumitomo Metal Industries, Ltd. | Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake |
KR101207679B1 (en) | 2007-11-16 | 2012-12-03 | 수미도모 메탈 인더스트리즈, 리미티드 | Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake |
EP3134220B1 (en) | 2014-04-25 | 2019-09-04 | ThyssenKrupp Steel Europe AG | Method and device for thin-slab strand casting |
CN114734005A (en) * | 2022-03-22 | 2022-07-12 | 安徽工业大学 | Electromagnetic braking device and method for controlling molten steel flow in tundish |
CN114734005B (en) * | 2022-03-22 | 2024-01-26 | 安徽工业大学 | Electromagnetic braking device and method for controlling molten steel flow in tundish |
Also Published As
Publication number | Publication date |
---|---|
JP3700396B2 (en) | 2005-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4807462B2 (en) | Steel continuous casting method | |
JP4824502B2 (en) | Metal vertical continuous casting method using electromagnetic field and casting equipment for its implementation | |
JP4569715B1 (en) | Steel continuous casting method | |
US7628196B2 (en) | Method and apparatus for continuous casting of metals | |
JP2000000648A (en) | Method and apparatus for continuously casting steel | |
JPH10305353A (en) | Continuous molding of steel | |
JP4591156B2 (en) | Steel continuous casting method | |
JP3096879B2 (en) | Continuous casting method for slabs with excellent surface and internal quality | |
JP3937651B2 (en) | Steel continuous casting method and apparatus | |
WO2018198181A1 (en) | Continuous casting method for steel | |
JP3240927B2 (en) | Method for controlling molten steel flow in continuous casting mold | |
JPH05154623A (en) | Method for controlling fluidity of molten steel in mold | |
JP2001009559A (en) | Method and device for continuously casting steel | |
JP3096878B2 (en) | Continuous casting method for slabs with excellent surface and internal quality | |
JP2005238276A (en) | Electromagnetic-stirring casting apparatus | |
JP3671707B2 (en) | Continuous casting method of steel | |
JP4910357B2 (en) | Steel continuous casting method | |
JP2002028761A (en) | Electromagnetic stirring method in mold for continuous casting | |
JP3102967B2 (en) | Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake | |
JP3887200B2 (en) | Steel continuous casting method and apparatus | |
JP4254576B2 (en) | Steel continuous casting apparatus and continuous casting method | |
JPH10305358A (en) | Continuous molding of steel | |
JP3491099B2 (en) | Continuous casting method of steel using static magnetic field | |
JP3718481B2 (en) | Method for continuous casting of molten metal | |
JPH0390255A (en) | Method for continuously casting metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050704 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100722 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100722 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130722 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |