Nothing Special   »   [go: up one dir, main page]

JP2000052119A - Machining drill for deep hole - Google Patents

Machining drill for deep hole

Info

Publication number
JP2000052119A
JP2000052119A JP10228010A JP22801098A JP2000052119A JP 2000052119 A JP2000052119 A JP 2000052119A JP 10228010 A JP10228010 A JP 10228010A JP 22801098 A JP22801098 A JP 22801098A JP 2000052119 A JP2000052119 A JP 2000052119A
Authority
JP
Japan
Prior art keywords
drill
groove
deep hole
coating
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10228010A
Other languages
Japanese (ja)
Inventor
Seiji Ohashi
誠司 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP10228010A priority Critical patent/JP2000052119A/en
Publication of JP2000052119A publication Critical patent/JP2000052119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothen discharge work for chips and allow drilling without step feed, by coating high fusion point hard material such as TiC, TiN, TiCN, TiAlN on a cutting edge and a groove portion of a drill by means of separate deposition, and then by removing micro projections on the groove surface. SOLUTION: In a coating drill for machining a deep hole, drill surface from a cutting edge 6 to a part of a groove portion 2 and a shank portion 1 is coated with high fusion point hard material such as TiC, TiN, TiCN, TiAlN by means of physical vapor deposition(PVD). In this case, by spraying onto the groove portion 2 WA(white alundum) abrasive grains finer than WA abrasive grains 600 as shot particles with pressurized gas, micro projections on the groove surface 2 is removed. This removal can be also performed with grinding by an abrasive cloth or a buff. The removal of the micro projections is performed in the extent that a three-dimension non-contact micro surface measuring machine with about 500 of magnification does not recognize the micro projections.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は加工穴深さがドリル
直径の3倍を越えるような深穴の加工用ドリルに関し、
特に切りくず排出作用を円滑にすることにより、ステッ
プ送りを用いることなく加工することができるコーティ
ングした深穴加工用ドリルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drill for machining a deep hole in which the depth of the machined hole exceeds three times the drill diameter.
In particular, the present invention relates to a coated deep hole drill that can be processed without using a step feed by facilitating a chip discharging action.

【0002】[0002]

【従来の技術】ドリル表面にTiC,TiN,TiCN,TiAlN等の高
融点硬質物質を物理蒸着(PVD)によりコーティング
したいわゆるコーティングドリルは、コーティングしな
いドリルに比べ、切削条件の高速化や長寿命化において
飛躍的な性能向上をもたらしたが、加工穴深さがドリル
直径の3倍を越えるような深穴の加工用ドリルとして
は、コーティングしないドリルに比べ切りくずつまりに
よる回転切削トルクの過大な上昇が発生し易い。そこ
で、折損・刃欠け・チッピングなどのトラブルを避ける
ため、頻繁なステップ送りが必要であった。ステップ送
りの多用は加工時間の増大を招き、コーティング化によ
る切削条件の高速化の効果を減じるため、かかる深穴加
工ではコーティングしないドリルとの置き換えが遅れて
いた。
2. Description of the Related Art A so-called coating drill, in which a drilling surface is coated with a high melting point hard material such as TiC, TiN, TiCN, and TiAlN by physical vapor deposition (PVD), has faster cutting conditions and longer tool life than an uncoated drill. , But the drilling for deep hole machining where the drilling depth exceeds 3 times the drill diameter is excessively increased in rotary cutting torque due to chipping compared to uncoated drills. Is easy to occur. Therefore, frequent step feed was required to avoid troubles such as breakage, chipping, and chipping. Excessive use of step feed causes an increase in machining time and reduces the effect of increasing the cutting conditions by coating, so that in such deep hole machining, replacement with a drill without coating is delayed.

【0003】[0003]

【発明が解決しようとする課題】かかる加工穴深さがド
リル直径の3倍を越えるような深穴の加工用ドリルの切
りくず排除の課題を解決するため、ドリルの切りくず排
出能力を向上させるように、溝断面形でみた曲率、心厚
・溝幅比、ねじれ角などの形状の最適化、又は切れ刃シ
ンニングのすくい角・長短刃の比率を変えて排出し易い
切りくず形状をコントロールすることが提案された。し
かしながらこれらは被削材、加工条件が一定範囲に限定
されているときは有効であるものもあるが、多様な被削
材、加工条件に共通する最適パラメターを設定すること
は困難である。その他の方法として、コーティングを施
す範囲を切れ刃付近及び外周部に限定してコーティング
化による副作用を極力減らすことも考えられたが、再研
磨回数が制限されることと、コーティング層が切れ刃の
一部にしか存在しないときは性能向上の効果が弱いとい
う課題が残った。
SUMMARY OF THE INVENTION In order to solve the problem of removing chips from a drill for machining a deep hole in which the depth of the drilled hole exceeds three times the diameter of the drill, the chip discharging ability of the drill is improved. Optimizing the shape of the groove cross section, such as curvature, core thickness / groove width ratio, and torsion angle, or changing the ratio of the rake angle / long / short blade of the cutting edge thinning to control the chip shape that is easy to discharge That was suggested. However, some of these are effective when the work material and processing conditions are limited to a certain range, but it is difficult to set the optimal parameters common to various work materials and processing conditions. As another method, it was conceived to limit the side effect of coating by limiting the range of coating to the vicinity of the cutting edge and the outer peripheral portion as much as possible. When there is only one part, the problem that the effect of performance improvement is weak remains.

【0004】本発明の課題は加工穴深さがドリル直径の
3倍を越えるような深穴加工用ドリルにおいて、切りく
ず排出作用を円滑にできステップ送りを用いることなく
加工することができるコーティングした深穴加工用ドリ
ルを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a drill for drilling a deep hole in which the depth of the drilled hole exceeds three times the drill diameter, so that the chip can be smoothly removed and the coated hole can be machined without using step feed. An object of the present invention is to provide a drill for deep hole drilling.

【0005】[0005]

【課題を解決するための手段】このため本発明は、ドリ
ルの切れ刃及び溝部にTiC,TiN,TiCN,TiAlN等の高融点硬
質物質を物理蒸着(PVD)によりコーティングした
後、前記溝部表面の微細突起部を除去したことを特徴と
する深穴加工用ドリルを提供することによって上述した
従来技術の課題を解決した。かかる構成によると、ドリ
ルの溝部表面の微細突起部を除去したので、切りくず排
出作用を円滑にできることにより、ステップ送りを用い
ることなく加工することができるコーティングした深穴
加工用ドリルを提供するものとなった。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for coating a cutting edge and a groove of a drill with a high melting point hard material such as TiC, TiN, TiCN, and TiAlN by physical vapor deposition (PVD). The problem of the prior art described above has been solved by providing a drill for deep hole drilling characterized by removing the fine projections. According to such a configuration, since the fine projections on the surface of the groove of the drill are removed, a chip discharging operation can be smoothly performed, and thereby a coated deep hole drill that can be processed without using step feed is provided. It became.

【0006】[0006]

【発明の実施の形態】以下添付した図1及び図2に基づ
きこの発明を詳細に説明する。図1(a) は本発明の実施
の形態である溝部表面の微細突起部の除去をWA砥粒を
ショット粒子として加圧気体で吹きつけて行ったコーテ
ィングした深穴加工用ドリルの側面図、図1(b) は図1
(a) のA矢視方向から見た拡大平面図を示す。本発明の
実施の形態である深穴加工用コーティングドリルは、そ
の先端切れ刃6から溝部2及びシャンク部1の一部にわ
たり、ドリル表面にTiC,TiN,TiCN,TiAlN等の高融点硬質
物質が物理蒸着(PVD)によりコーティングされてい
る。そして、溝部2はWA砥粒(ホワイトアランダム砥
粒)600 番より細かいWA砥粒をショット粒子として加
圧気体で吹きつけて、溝部2表面の微細突起部の除去を
行った。表面の微細突起部の除去は溝内3を重点的に行
うのが望ましいが、本実施の形態ではマスキングを行っ
ていないので、マージン4及び2番取り面5及びシャン
ク部1の一部にも及んでいる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to FIGS. FIG. 1 (a) is a side view of a coated deep hole drill according to an embodiment of the present invention, in which fine projections on a groove surface are removed by spraying WA abrasive grains as shot particles with a pressurized gas. FIG. 1 (b)
(a) is an enlarged plan view as seen from the direction of arrow A. The coating drill for deep hole machining according to the embodiment of the present invention has a high melting point hard material such as TiC, TiN, TiCN, TiAlN on the drill surface from the cutting edge 6 to a part of the groove 2 and the shank 1. Coated by physical vapor deposition (PVD). Then, the groove 2 was sprayed with pressurized gas as WA abrasive grains (white arandom abrasive grains), # 600 fine particles, to remove fine projections on the surface of the groove 2. It is desirable to remove the fine protrusions on the surface mainly in the groove 3. However, in this embodiment, since the masking is not performed, the margin 4 and the second chamfered surface 5 and a part of the shank 1 are also used. Has been reached.

【0007】本実施の形態では溝部2表面の微細突起部
の除去はWA砥粒をショット粒子として加圧気体で吹き
つけて行ったが、WA砥粒をショット粒子として液状の
流体流で吹きつけて行ってもよく、又、代替的に研磨布
又はバフで研磨してもよい。溝部2表面の微細突起部の
除去は約500倍に拡大した3次元非接触微小表面測定
機で見て、溝部2表面の微細突起部が認められない程度
が望ましい。又好ましくは、溝部2表面の微細突起部の
除去は少なくとも前記溝部の長さの半分以上を行えばよ
いが、本実施の形態のように、ドリル先端切り刃6から
溝部2及びシャンク部1の一部にわたるものであっても
よい。本実施の形態では、約800倍に拡大した3次元
非接触微小表面測定機で見て、ドリル先端切れ刃6エッ
ジのだれやコーティング面の剥離は見られなかった。
In this embodiment, the fine projections on the surface of the groove 2 are removed by blowing WA abrasive grains as shot particles with a pressurized gas. However, the WA abrasive grains are blown as shot particles with a liquid fluid flow. Alternatively, polishing may be performed with a polishing cloth or buff. The removal of the fine protrusions on the surface of the groove 2 is desirably such that the fine protrusions on the surface of the groove 2 are not recognized when viewed with a three-dimensional non-contact fine surface measuring instrument magnified about 500 times. Preferably, the fine projections on the surface of the groove 2 are removed by at least half or more of the length of the groove. However, as in the present embodiment, the cutting of the groove 2 and the shank 1 from the drill tip cutting edge 6 is performed. It may be a partial one. In this embodiment, no dripping of the cutting edge of the cutting edge of the drill 6 or peeling of the coating surface was observed with a three-dimensional non-contact micro surface measuring device enlarged about 800 times.

【0008】図2及び図3はコーティングしたドリルの
溝部表面の微細突起部の除去処理前と除去処理後の深穴
加工用コーティングドリルの切削試験の実験結果を示
す。グラフの横軸は穴明け時間を示すが、送り量が下記
の通り一定であるから、穴深さとしても読むことがで
き、縦軸は切削回転トルクを示す。切削試験の条件は以
下の通りであった。 ドリル :高速度鋼ドリル表面にTiCN層をPVDにより
コーティングしたドリル 直径3.85mm×全長85mm×軸方
向溝長さ50mm 被削材 : S50C 186HB 穴深さ : 43 mm 止まり穴 切削速度: 13 m/min 送り量 : 0.05 mm/ rev 切削油剤:水溶性 外部よりノズルで給油 使用機械:横型マシニングセンタ
FIGS. 2 and 3 show experimental results of a cutting test of a coating drill for deep hole drilling before and after the removal of the fine projections on the groove surface of the coated drill. The horizontal axis of the graph shows the drilling time, but since the feed amount is constant as described below, it can also be read as the hole depth, and the vertical axis shows the cutting rotational torque. The cutting test conditions were as follows. Drill: High speed steel drill with TiCN layer coated on PVD surface by PVD Diameter 3.85mm x Overall length 85mm x Axial groove length 50mm Work material: S50C 186HB Hole depth: 43mm Blind hole Cutting speed: 13m / min Feed amount: 0.05 mm / rev Cutting fluid: water-soluble Lubricating with a nozzle from outside Machine used: horizontal machining center

【0009】図2は溝部表面の微細突起部の除去処理が
されていないコーティングドリルの穴明け時間・送り量
である加工穴深さ─切削回転トルクの関係を示すチャー
トである。穴明け開始直後の浅穴状態では切りくず排出
はスムーズであるため切削トルクのレベルは低く一定の
定常状態を保つが、加工穴深さが約17mmを越えるころか
ら切りくず排出が次第に悪くなり切削トルクが上昇し始
める。深さが約26mmを越えるころ切りくずつまりが生じ
て切削トルクの上昇が急激になり、深さが約32mmで切削
トルクは定常状態の定常値の約9倍となり、異常に大き
な切削音が生じたのでドリル折損の危険を感じ切削を打
ち切った。このとき、切りくずには微細片が多く含まれ
ており、深穴域での切りくず排出不良により、切りくず
が押し合い互いにつぶしあった状況が認められた。図3
は溝部表面の微細突起部の除去処理をしたコーティング
ドリルの穴明け時間・送り量である加工穴深さ─切削回
転トルクの関係を示すチャートで、図示のように、切削
トルクの大きな上昇はなく、加工穴深さが43mmの深穴を
支障なく穴明けできた。このとき、切りくずは1〜2巻
で切りくず形状をとどめており、排出性は良好と認めら
れた。なお実験的に、コーティング前に、溝部表面にW
A砥粒をショット粒子として加圧気体で吹きつけて微細
突起部を除去し、そしてコーティングをドリル先端切り
刃から溝部にわたり施し、その後では溝部表面の微細突
起部を除去しなかったドリルの切削試験を図2と同様の
条件で行ったところ、図2とほぼ同様の結果を示した。
このことは、コーティング後の溝部表面の微細突起部を
除去することが、深穴加工において切削トルクの上昇の
抑制に効果があることを裏付けた。
FIG. 2 is a chart showing the relationship between the machining hole depth, which is the drilling time and the feed amount, of the coating drill in which the fine projections on the groove surface are not removed, and the cutting rotational torque. In the shallow hole state immediately after the start of drilling, the chip discharge is smooth, so the cutting torque level is low and a constant steady state is maintained, but the chip discharge gradually worsens when the drilled hole depth exceeds about 17 mm, and the cutting The torque starts to rise. Roller chips with a depth of more than about 26 mm are generated, and the cutting torque rises sharply. At a depth of about 32 mm, the cutting torque becomes about nine times the steady state steady state value, and abnormally large cutting noise is generated. I felt the risk of breakage of the drill and cut off. At this time, a large amount of fine chips were contained in the chips, and due to poor chip discharge in the deep hole area, a situation was observed in which the chips were pressed together and crushed. FIG.
Is a chart showing the relationship between drilling time and feed amount, which is the drilling time and feed amount of the coating drill that has been processed to remove the fine protrusions on the groove surface, and the cutting rotational torque. A 43mm deep hole was successfully drilled. At this time, the chip was kept in a chip shape in one to two turns, and the dischargeability was recognized as good. Note that experimentally, before coating, W
A cutting test of a drill that sprays A abrasive grains as shot particles with a pressurized gas to remove fine protrusions, and applies coating from the cutting edge of the drill to the groove, and then does not remove the fine protrusions on the groove surface Was performed under the same conditions as in FIG. 2, and the results were almost the same as those in FIG.
This proved that removing the fine projections on the surface of the groove after coating was effective in suppressing an increase in cutting torque in deep hole drilling.

【0010】図4は、図2の切削試験で使用した溝部表
面の微細突起部を除去しなかった深穴加工用コーティン
グドリルの溝部表面を3次元非接触微小表面測定機で、
測定範囲 113.2 μm×151.2 μm、高さ10μm、を設
定して約800倍に拡大して測定したときに撮影した顕
微鏡写真をトレースした図面である。特徴的にこの測定
範囲内に、約10個の高さ 2〜4.5 μmの微細突起部が
認められた。これに対して図5は図3の切削試験で使用
した溝部表面の微細突起部を除去した深穴加工用コーテ
ィングドリルの溝部表面を図4と同様の条件で設定して
測定したときに撮影した顕微鏡写真をトレースした図面
である。測定範囲 113.2 μm×151.2μm、高さ10μ
m、の中には溝部表面の微細突起部が認められず、溝部
表面がスムーズである。3次元非接触微小表面測定機
で、約500倍に拡大して測定して溝部表面の微細突起
部が認められなければ、図5に示すように、溝部表面の
微細突起部がないと認められる。
FIG. 4 shows a three-dimensional non-contact micro surface measuring machine for the surface of a groove of a coating drill for deep hole processing in which fine projections on the surface of the groove used in the cutting test of FIG.
It is the drawing which traced the micrograph which was taken when measuring by enlarging about 800 times by setting the measurement range of 113.2 μm × 151.2 μm and the height of 10 μm. Characteristically, about 10 fine protrusions having a height of 2 to 4.5 μm were observed within this measurement range. On the other hand, FIG. 5 is a photograph taken when the groove surface of the deep hole drilling coating drill used in the cutting test of FIG. 3 from which the fine projections were removed was measured under the same conditions as in FIG. It is the drawing which traced the micrograph. Measurement range 113.2 μm × 151.2 μm, height 10μ
In m, no fine protrusions on the surface of the groove were observed, and the surface of the groove was smooth. If no fine protrusions on the surface of the groove are found by measuring with a three-dimensional non-contact micro surface measuring device at about 500 times magnification, it is recognized that there is no fine protrusion on the surface of the groove as shown in FIG. .

【0011】以上図2乃至図5の結果から、コーティン
グドリルの溝部表面の微細突起部の存在が切りくず排出
の流れを妨げて、切りくずのつまりを引き起こすことが
認められる。そしてコーティングドリルの溝部表面の微
細突起部を除去することにより、深穴加工において切削
トルクの上昇を抑制し、切りくずのつまりをなくするこ
とは明らかであろう。なお図4及び図5においては、3
次元非接触微小表面測定機で、約800倍に拡大して測
定したが、通常の触針を1ケ所で掃引する粗さ計では、
微細突起部をつぶしてしまい、微細突起部の有無を捕ら
えられないことがある。従って、通常の触針を1ケ所で
掃引しない測定が必要である。
From the results shown in FIGS. 2 to 5, it is recognized that the presence of the fine projections on the surface of the groove portion of the coating drill hinders the flow of chip discharge and causes chipping. It will be apparent that the removal of the fine projections on the groove surface of the coating drill suppresses an increase in cutting torque in deep hole drilling and eliminates clogging of chips. 4 and 5, 3
It was measured about 800 times with a non-contact non-contact micro surface measuring instrument, but with a roughness meter that sweeps a normal stylus in one place,
In some cases, the fine projections may be crushed and the presence or absence of the fine projections may not be detected. Therefore, it is necessary to perform measurement without sweeping the ordinary stylus in one place.

【0012】[0012]

【発明の効果】以上説明したように本発明では、ドリル
の切れ刃及び溝部にTiC,TiN,TiCN,TiAlN等の高融点硬質
物質を物理蒸着(PVD)によりコーティングした後、
溝部表面の微細突起部を除去したので、加工穴深さがド
リル直径の3倍を越えるような深穴の加工用ドリルにお
いても、切りくずのつまりをなくし、切削回転トルクの
上昇が少なく、加工穴深さがドリル直径の11倍以上の
深さの深穴をステップ送りなしで穴明けできるものとな
った。そして加工穴深さ 100mm直径 6mmの深穴明けの実
験で、従来の溝部表面の微細突起部を除去しないコーテ
ィングドリルでは9mm毎のステップ送りが必要で1個の
深穴明けで44秒かかったが、本発明のドリルは、ステッ
プ送りなしで28秒で深穴明けができ、加工サイクルを36
%短縮できた。さらに、従来の微細突起部を除去しない
コーティングドリルでは、切りくずの通路である溝を切
りくずつまりを避けるため設計上拡げていたため、その
分ランドが狭くなり、ドリルの剛性低下が生じて刃欠け
が生じ易かったが、本発明のドリルは切りくずの排出性
が改善されたので溝を従来より小さくできるので、ドリ
ルの剛性低下で刃欠けが生じることはなく、形状設計の
自由度が増し剛性をより高くした設計にでき、切削トル
クのレベルが低いので長寿命を得ることができる。
As described above, according to the present invention, a high melting point hard material such as TiC, TiN, TiCN, TiAlN is coated on a cutting edge and a groove of a drill by physical vapor deposition (PVD).
Since the fine protrusions on the groove surface have been removed, even in a drill for deep hole processing where the depth of the processing hole exceeds three times the drill diameter, chips are not clogged, and there is little increase in cutting rotational torque, and processing A deep hole having a depth of 11 times or more the drill diameter can be drilled without step feed. In an experiment of drilling a 100 mm deep hole with a diameter of 6 mm and a diameter of 6 mm, a conventional coating drill that does not remove fine protrusions on the groove surface required a step feed of every 9 mm, and it took 44 seconds to drill one deep hole. With the drill of the present invention, a deep hole can be drilled in 28 seconds without step feed, and the machining cycle is 36
%. Furthermore, in conventional coating drills that do not remove microprojections, the grooves that are the chip passages were expanded by design to avoid chipping, so the land became narrower and the rigidity of the drill decreased, resulting in chipping. However, the drill of the present invention has improved chip evacuation, so that the groove can be made smaller than before, so that chipping does not occur due to reduced rigidity of the drill, increasing the degree of freedom in shape design and increasing rigidity. Can be designed to be higher, and a long life can be obtained because the cutting torque level is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a) は本発明の実施の形態である溝部表面の微
細突起部の除去をWA砥粒をショット粒子として加圧気
体で吹きつけて行ったコーティングした深穴加工用ドリ
ルの側面図、(b) は(a) のA矢視方向から見た拡大平面
図を示す。
FIG. 1 (a) is a side view of a coated deep hole drill according to an embodiment of the present invention, in which fine projections on a groove surface are removed by spraying WA abrasive grains as shot particles with a pressurized gas. FIG. 3B is an enlarged plan view of FIG.

【図2】溝部表面の微細突起部の除去処理をしていない
コーティングドリルの穴明け時間/送り量である加工穴
深さ─切削回転トルクの関係を示すチャート。
FIG. 2 is a chart showing a relationship between a drilling time / a feed amount, ie, a processing hole depth / a cutting rotational torque, of a coating drill in which a fine protrusion on a groove surface is not removed.

【図3】本発明の溝部表面の微細突起部の除去処理がさ
れたコーティングドリルの穴明け時間/送り量である加
工穴深さ─切削回転トルクの関係を示すチャート。
FIG. 3 is a chart showing the relationship between the drilling time / feeding amount, ie, machining hole depth / cutting rotation torque, of a coating drill which has been subjected to a process of removing fine projections on a groove surface according to the present invention.

【図4】図2の切削試験で使用した溝部表面の微細突起
部を除去しない深穴加工用コーティングドリルの溝部表
面を3次元非接触微小表面測定機で、測定範囲 113.2
μm×151.2 μm、高さ10μm、を設定して約800倍
に拡大して測定したときに撮影した顕微鏡写真をトレー
スした図面である。
FIG. 4 shows a measurement range of a groove surface of a coating drill for deep hole machining used in the cutting test in FIG.
It is the drawing which traced the micrograph photographed when it set and set about μm × 151.2 μm and the height of 10 μm and measured about 800 times.

【図5】図3の切削試験で使用した溝部表面の微細突起
部を除去した深穴加工用コーティングドリルの溝部表面
を図4と同様の条件で測定範囲を設定して測定したとき
に撮影した顕微鏡写真をトレースした図面である。
5 is a photograph of the groove surface of the deep hole drilling coating drill used in the cutting test of FIG. 3 from which fine projections have been removed, when the measurement range is set under the same conditions as in FIG. It is the drawing which traced the micrograph.

【符号の説明】[Explanation of symbols]

1...シャンク部 2...溝部 6...先端切り刃 1. . . 1. Shank part . . Groove 6. . . Tip cutting blade

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ドリルの切れ刃及び溝部にTiC,TiN,TiC
N,TiAlN等の高融点硬質物質を物理蒸着(PVD)によ
りコーティングした後、前記溝部表面の微細突起部を除
去したことを特徴とする深穴加工用ドリル。
1. TiC, TiN, TiC on the cutting edge and groove of the drill
A drill for deep hole drilling, comprising coating a high melting point hard substance such as N, TiAlN or the like by physical vapor deposition (PVD), and then removing fine projections on the surface of the groove.
【請求項2】 前記溝部表面の微細突起部の除去を研磨
布又はバフで研磨、又はショット粒子を含んだ加圧気体
又は流体流を吹きつけて行ったことを特徴とする請求項
1記載の深穴加工用ドリル。
2. The method according to claim 1, wherein the fine protrusions on the surface of the groove are removed by polishing with a polishing cloth or a buff, or by blowing a pressurized gas or fluid containing shot particles. Drill for deep hole drilling.
【請求項3】 前記溝部表面の微細突起部の除去は約5
00倍に拡大した3次元非接触微小表面測定機で見て、
前記溝部表面の微細突起部が認められないことを特徴と
する請求項1又は請求項2記載の深穴加工用ドリル。
3. The removal of the fine projections on the surface of the groove is about 5 minutes.
Looking at a three-dimensional non-contact micro surface measuring instrument magnified 00 times,
The drill for deep hole drilling according to claim 1 or 2, wherein a fine projection on the surface of the groove is not recognized.
【請求項4】 前記溝部表面の微細突起部の除去は少な
くとも前記溝部の長さの半分以上を行ったことを特徴と
する請求項1又は請求項2記載の深穴加工用ドリル。
4. The drill for deep hole drilling according to claim 1, wherein the removal of the fine projections on the surface of the groove is at least half the length of the groove.
JP10228010A 1998-08-12 1998-08-12 Machining drill for deep hole Pending JP2000052119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10228010A JP2000052119A (en) 1998-08-12 1998-08-12 Machining drill for deep hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10228010A JP2000052119A (en) 1998-08-12 1998-08-12 Machining drill for deep hole

Publications (1)

Publication Number Publication Date
JP2000052119A true JP2000052119A (en) 2000-02-22

Family

ID=16869773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10228010A Pending JP2000052119A (en) 1998-08-12 1998-08-12 Machining drill for deep hole

Country Status (1)

Country Link
JP (1) JP2000052119A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313569A (en) * 2006-05-23 2007-12-06 Hitachi Tool Engineering Ltd Coated drill with very small diameter
US7306411B2 (en) 2002-09-03 2007-12-11 Mitsubishi Materials Corporation Drill with groove width variation along the drill and double margin with a thinning section at the tip
JP2009233851A (en) * 2009-07-21 2009-10-15 Mitsubishi Materials Corp Grooved tool
US7740426B2 (en) 2002-10-02 2010-06-22 Osg Corporation Deep-hole drill having back-tapered web
US7922428B2 (en) * 2003-08-28 2011-04-12 Dormer Tools Limited Coated bore cutting tools
JP2012166294A (en) * 2011-02-14 2012-09-06 Mitsubishi Materials Corp Surface coated drill excellent in wear resistance, and chip discharging characteristics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306411B2 (en) 2002-09-03 2007-12-11 Mitsubishi Materials Corporation Drill with groove width variation along the drill and double margin with a thinning section at the tip
US7740426B2 (en) 2002-10-02 2010-06-22 Osg Corporation Deep-hole drill having back-tapered web
US7922428B2 (en) * 2003-08-28 2011-04-12 Dormer Tools Limited Coated bore cutting tools
JP2007313569A (en) * 2006-05-23 2007-12-06 Hitachi Tool Engineering Ltd Coated drill with very small diameter
JP2009233851A (en) * 2009-07-21 2009-10-15 Mitsubishi Materials Corp Grooved tool
JP2012166294A (en) * 2011-02-14 2012-09-06 Mitsubishi Materials Corp Surface coated drill excellent in wear resistance, and chip discharging characteristics

Similar Documents

Publication Publication Date Title
KR100853978B1 (en) Deep-hole drill having back-tapered web and a method of drilling the hole
US20100196114A1 (en) End mill
JP2005001088A (en) Member coated with hard coating film and its manufacturing method
EP1008411B1 (en) Reamer
JP2011073129A (en) Boring drill
JPS62188616A (en) Rotary cutting tool
JP2000052119A (en) Machining drill for deep hole
JPH1133812A (en) End mill
JP2005319544A (en) Hole machining tool, and method of grinding outer periphery of the tool
JP4370966B2 (en) Grooved tool
JP5534509B2 (en) Cutting method
JPH05269669A (en) Grinding tool
JP2004160581A (en) Manufacturing method for diamond coated tool, and diamond coated tool
JP3792947B2 (en) Finishing ball end mill
JPH0615512A (en) Drill and formation of cutting blade of drill
JP4844654B2 (en) Grooved tool
KR100919002B1 (en) End mill
JP4929536B2 (en) Semi-dry processing tool
JP3328142B2 (en) Diamond cutting whetstone
JP2004283951A (en) End mill
JPS63278711A (en) Brazed reamer
JP2003025128A (en) Drilling tool for brittle material
JP2001328072A (en) Tool for working slot
JP2002137108A (en) Drilling method for brittle material and drilling tool used therefor
JPH0639675A (en) Cutting tool

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316