JP2000051665A - Desalination method - Google Patents
Desalination methodInfo
- Publication number
- JP2000051665A JP2000051665A JP10221476A JP22147698A JP2000051665A JP 2000051665 A JP2000051665 A JP 2000051665A JP 10221476 A JP10221476 A JP 10221476A JP 22147698 A JP22147698 A JP 22147698A JP 2000051665 A JP2000051665 A JP 2000051665A
- Authority
- JP
- Japan
- Prior art keywords
- water
- treatment
- electric regeneration
- treated
- regeneration type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、原水を逆浸透膜処
理して電気再生型脱塩装置で処理して脱塩する方法に係
り、特に、長期的に安定した水質を保持することができ
る脱塩方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for desalinating raw water by subjecting it to reverse osmosis membrane treatment and treating it with an electric regeneration type desalination apparatus, and in particular, can maintain stable water quality for a long time. It relates to a desalination method.
【0002】[0002]
【従来の技術】従来、工水、市水、井水等の原水より、
半導体、レンズ、液晶等の洗浄用水、医薬用水等に用い
られる脱塩水を得る装置としては、電気再生型脱塩装置
が用いられている。この電気再生型脱塩装置は、複数の
アニオン交換膜及びカチオン交換膜を交互に配列して濃
縮水室と処理水室とを交互に形成し、処理水室にアニオ
ン交換樹脂及びカチオン交換樹脂を混合して充填した構
成であって、脱塩装置として知られるイオン交換純水装
置のように、定期的にイオン交換樹脂に再生剤を通液す
る再生工程を必要とすることなく、連続的に脱塩水を得
ることができるため、近年多用されてきている。2. Description of the Related Art Conventionally, raw water such as industrial water, city water, well water, etc.
As a device for obtaining demineralized water used for washing water for pharmaceuticals, semiconductors, lenses, liquid crystals, etc., an electric regeneration type desalination device is used. In this electric regeneration type desalination apparatus, a plurality of anion exchange membranes and cation exchange membranes are alternately arranged to form a concentrated water chamber and a treated water chamber alternately, and an anion exchange resin and a cation exchange resin are provided in the treated water chamber. It is a configuration that is mixed and filled, and does not require a regeneration step of periodically passing a regenerant through an ion-exchange resin, as in an ion-exchange pure water apparatus known as a desalination apparatus, and continuously. Since demineralized water can be obtained, it has been frequently used in recent years.
【0003】この電気再生型脱塩装置の処理水室に被処
理水を導入すると、被処理水中のイオンは、イオン交換
樹脂中を移動し、処理水室では減少し、濃縮水室では濃
縮される。このため、処理水室から脱塩水が回収され
る。When water to be treated is introduced into the treated water chamber of this electric regeneration type desalination apparatus, ions in the treated water move through the ion exchange resin, decrease in the treated water chamber, and concentrate in the concentrated water chamber. You. For this reason, desalinated water is recovered from the treated water chamber.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、この電
気再生型脱塩装置は脱塩率が必ずしも十分とは言えず、
特に、電気再生型脱塩装置に導入する被処理水中に、シ
リカ(SiO2 )や炭酸(CO2 )が多いと処理水質が
低下する。処理水質を向上させるには、電気再生型脱塩
装置への供給電流量を多くすることが考えられるが、電
流量の増大は水の分解も生起させることになるので、エ
ネルギーの浪費を招く。さらには、給水水質が変動し、
電気再生型脱塩装置の入口の電気伝導率が変化すると、
一定電圧(電流)下では処理水質が変化するという問題
もあった。したがって、定電流(電圧)では、処理水質
の向上には限度があった。However, the desalination rate of this electric regeneration type desalination apparatus is not always sufficient.
In particular, if silica (SiO 2 ) or carbonic acid (CO 2 ) is large in the water to be treated introduced into the electric regeneration type desalination apparatus, the quality of the treated water is reduced. In order to improve the quality of treated water, it is conceivable to increase the amount of current supplied to the electric regeneration type desalination apparatus. However, an increase in the amount of current also causes water to be decomposed, resulting in waste of energy. Furthermore, the water supply quality fluctuates,
When the electrical conductivity at the entrance of the electric regeneration type desalination equipment changes,
There is also a problem that the treated water quality changes under a constant voltage (current). Therefore, with a constant current (voltage), there is a limit to the improvement of the quality of treated water.
【0005】ところで、シリカ(SiO2 )はアルカリ
性下ではイオン化し易くなることが知られている。この
ため、電気再生型脱塩装置によるシリカ除去率の向上が
期待できるが、アルカリ性下での電気再生型脱塩装置の
長期運転では、処理水質が必ずしも安定しないことを見
出した。その不安定な原因について検討したところ、電
気再生型脱塩装置に導入する被処理水がアルカリ性であ
り、且つ溶存酸素(DO)が存在すると、長期間、電気
再生型脱塩装置を運転した場合に、電気再生型脱塩装置
を構成するイオン交換膜、イオン交換樹脂(イオン交換
繊維)が劣化して溶出物が生成し、比抵抗の値が徐々に
低下するなど、処理水質に影響を与えているものと推定
された。本発明はこのような知見を基になされたもので
あり、長期間安定した水質を得ることができ、また、高
純度の水質を得ることができる脱塩方法を提供すること
を目的とするものである。It is known that silica (SiO 2 ) is easily ionized under alkaline conditions. For this reason, the improvement of the silica removal rate by the electric regeneration type desalination apparatus can be expected, but it has been found that the treated water quality is not always stable in the long-term operation of the electric regeneration type desalination apparatus under alkaline conditions. When the cause of the instability was examined, when the water to be treated introduced into the electric regeneration type desalination apparatus was alkaline and dissolved oxygen (DO) was present, when the electric regeneration type desalination apparatus was operated for a long time, In addition, the ion-exchange membrane and ion-exchange resin (ion-exchange fiber) that make up the electric regeneration type desalination equipment deteriorate and produce eluted substances, and the value of the specific resistance gradually decreases, affecting the quality of treated water. It was estimated that. The present invention has been made based on such findings, and it is an object of the present invention to provide a desalination method capable of obtaining stable water quality for a long period of time and obtaining high-purity water quality. It is.
【0006】[0006]
【課題を解決するための手段】本発明の脱塩方法は、被
処理水を脱気して溶存酸素を除去すると共に逆浸透膜
(RO)処理して脱塩し、pH9以上にpH調整した
後、電気再生型脱塩装置に通水することを特徴とする。According to the desalting method of the present invention, the water to be treated is degassed to remove dissolved oxygen, and is treated with a reverse osmosis membrane (RO) to desalinate and adjusted to pH 9 or more. Thereafter, the water is passed through an electric regeneration type desalination apparatus.
【0007】まず、脱気処理について説明する。この脱
気処理は、脱気装置で被処理水から溶存酸素(DO)を
除去するものであり、DOが後述する電気再生型脱塩装
置に流入すると、イオン交換材料が酸化劣化するので、
予め除去しておく。脱気装置としては、N2 脱気装置、
真空脱気装置、膜脱気装置など通常の脱気装置を用いる
ことができ、この脱気処理でDO1mg/l以下にする
ことが望ましい。First, the deaeration process will be described. This deaeration treatment is to remove dissolved oxygen (DO) from the water to be treated by a deaeration device. When DO flows into an electric regeneration type desalination device described later, the ion exchange material is oxidized and deteriorated.
Remove in advance. As the deaerator, N 2 deaerator,
An ordinary deaerator such as a vacuum deaerator or a membrane deaerator can be used, and it is desirable that the DO deaeration is reduced to 1 mg / l or less.
【0008】また、炭酸イオンは、pH4〜5.5であ
ると、炭酸(CO2 :炭酸ガス)として水に溶解してい
る状態になるので、脱気装置に導入する被処理水のpH
をこの範囲にしておくと、DOとともに炭酸も除去され
る。一方、炭酸は、pHが上記範囲より高くなるとイオ
ン化し、炭酸イオン(重炭酸イオン)として水に溶解し
ている状態になる。炭酸イオンが電気再生型脱塩装置に
流入すると電気再生型脱塩装置の負荷となり、また、ア
ニオン、カチオンの量的バランスが崩れ、電気再生型脱
塩装置で多い方のイオンが除去できず、残留することに
なり処理水質が良くなり難くなる。したがって、炭酸イ
オンは電気再生型脱塩装置の前段階で予め除去しておく
ことが望ましく、この脱気処理にて除去しておくことが
望ましい。前記pH調整については、酸(塩酸、硫酸な
ど)の添加により任意に調整しても良いし、酸添加の代
わりにH型カチオン交換樹脂と接触させても良い。尚、
炭酸イオンは、後述する逆浸透膜(RO)処理にても除
去できるので、除去率は高くない(除去率60〜90
%)もののRO処理にて除去するようにしても良い。If the pH of the carbonate ions is in the range of 4 to 5.5, the carbonate ions are dissolved in water as carbon dioxide (CO 2 : carbon dioxide gas).
Is kept in this range, carbonic acid is removed together with DO. On the other hand, carbonic acid is ionized when the pH is higher than the above range, and is dissolved in water as carbonate ions (bicarbonate ions). When carbonate ions flow into the electric regeneration type desalination device, it becomes a load on the electric regeneration type desalination device, and the quantitative balance of anions and cations is disrupted, so that more ions cannot be removed by the electric regeneration type desalination device. It remains and it becomes difficult to improve the quality of the treated water. Therefore, it is desirable that the carbonate ions be removed before the electric regeneration type desalination apparatus, and it is desirable that the carbonate ions be removed by this deaeration treatment. The pH may be adjusted arbitrarily by adding an acid (such as hydrochloric acid or sulfuric acid), or may be brought into contact with an H-type cation exchange resin instead of adding the acid. still,
Since the carbonate ions can be removed by a reverse osmosis membrane (RO) treatment described later, the removal rate is not high (removal rate of 60 to 90).
%) May be removed by RO processing.
【0009】次に、逆浸透膜(RO)処理について説明
する。このRO処理は、塩類、イオン性物質を逆浸透膜
作用で分離、除去するものである。後述する電気再生型
脱塩装置においても脱塩(脱イオン)するが、脱塩率に
限界があり、予めRO処理により脱塩して電気再生型脱
塩装置への負荷を低減しておく。このようなRO処理に
用いられる逆浸透膜としては、NaCl除去率98%以
上を有する膜であれば特に限定するものではなく、例え
ばポリアミド膜、酢酸セルロース膜、アラミド系膜等の
市販膜を用いることができる。水の回収率、運転圧等に
ついては何等限定するものではない。Next, the reverse osmosis membrane (RO) treatment will be described. This RO treatment separates and removes salts and ionic substances by the action of a reverse osmosis membrane. Desalination (deionization) is also performed in an electric regeneration type desalination apparatus described later, but the desalination rate is limited, and the load on the electric regeneration type desalination apparatus is reduced by performing RO treatment in advance. The reverse osmosis membrane used for such RO treatment is not particularly limited as long as it has a NaCl removal rate of 98% or more. For example, a commercially available membrane such as a polyamide membrane, a cellulose acetate membrane, or an aramid-based membrane is used. be able to. The water recovery rate, operating pressure, and the like are not limited at all.
【0010】また、このRO処理は、水中の微粒子、有
機物も分離するので、それらの流入による電気再生型脱
塩装置の汚染を防止でき、電流効率よく、安定して電気
再生型脱塩装置を運転することができる。さらに、前述
のように脱気処理によって炭酸イオンが除去されない場
合でも、このRO処理により炭酸イオンを除去すること
ができる。また、RO処理は、シリカの一部も除去で
き、電気再生型脱塩装置へのシリカ流入を軽減でき、電
気再生型脱塩装置のシリカ負荷が小さくなり、電気再生
型脱塩装置の処理水質が安定する。[0010] In addition, since the RO treatment also separates fine particles and organic matter in the water, it is possible to prevent contamination of the electric regeneration type desalination apparatus due to the inflow thereof, and to provide a current efficient and stable electric regeneration type desalination apparatus. Can drive. Further, even when carbonate ions are not removed by the deaeration treatment as described above, carbonate ions can be removed by this RO treatment. Further, the RO treatment can also remove a part of the silica, reduce the flow of silica into the electric regeneration type desalination apparatus, reduce the silica load of the electric regeneration type desalination apparatus, and treat the treated water quality of the electric regeneration type desalination apparatus. Becomes stable.
【0011】特に、RO処理を多段(2段、3段)に行
う、即ちRO装置を多段に設けることにより、塩類濃
度、シリカ濃度を一層低減でき、電気再生型脱塩装置へ
の負荷が低減されて、高純度の処理水が得られる。In particular, by performing the RO treatment in multiple stages (two or three stages), that is, by providing multiple RO units, the salt concentration and the silica concentration can be further reduced, and the load on the electric regeneration type desalination device is reduced. As a result, high-purity treated water is obtained.
【0012】上述の脱気処理とRO処理とによる被処理
水の処理は、被処理水を脱気処理、RO処理の順に処理
しても良く、RO処理、脱気処理の順に処理しても良
い。なお、これらの処理に際しては、酸(HClやH2
SO4等)を添加したり、H型(Na型が混在しても良
い)の弱或いは強カチオン交換樹脂塔(バイエル社「C
NP−80」,「SP112」など)に通水してpH調
整する。脱気処理、RO処理の順に処理する場合にはp
H4〜5.5に調整することが望ましい。RO処理、脱
気処理の順に処理する場合にはpH6〜7.5に調整す
ることが望ましい。このpHでは炭酸の大部分は(重)
炭酸イオンになっているのでRO処理にて(重)炭酸イ
オンの大部分は除去できる。その後の脱気処理では主に
DOを除去するが、このpHで解離せずに残存している
炭酸(CO2 )も除去される。In the treatment of the water to be treated by the degassing treatment and the RO treatment, the water to be treated may be treated in the order of degassing treatment and RO treatment, or may be treated in the order of RO treatment and degassing treatment. good. In these treatments, an acid (HCl or H 2
SO 4 or the like, or an H type (Na type may be mixed) weak or strong cation exchange resin tower (Bayer “C
NP-80 "," SP112 "etc.) to adjust the pH. When processing in the order of degassing processing and RO processing, p
It is desirable to adjust to H4 to 5.5. When the RO treatment and the deaeration treatment are performed in this order, it is desirable to adjust the pH to 6 to 7.5. At this pH most of the carbonic acid is (heavy)
Most of (bi) carbonate ions can be removed by RO treatment because they are carbonate ions. In the subsequent degassing treatment, DO is mainly removed, but carbonic acid (CO 2 ) remaining without being dissociated at this pH is also removed.
【0013】続いてpH調整について説明する。このp
H調整では、電気再生型脱塩装置に導入する水のpHを
9以上に調整する。pH9以上にすることにより、アル
カリ剤の量が支配的になるので、給水水質が変動しても
電気再生型脱塩装置入口の電気伝導率をほぼ一定にする
ことができる。しかも水中のシリカはイオン化し易くな
り、電気再生型脱塩装置の処理水室から濃縮水室へ移動
し易い状態(除去されやすい状態)となる。Next, the pH adjustment will be described. This p
In the H adjustment, the pH of the water introduced into the electric regeneration type desalination apparatus is adjusted to 9 or more. By adjusting the pH to 9 or more, the amount of the alkaline agent becomes dominant, so that the electric conductivity at the inlet of the electric regeneration type desalination apparatus can be made substantially constant even when the quality of the feedwater fluctuates. In addition, the silica in the water is easily ionized, so that the silica is easily moved from the treated water chamber to the concentrated water chamber of the electric regeneration type desalination apparatus (the state is easily removed).
【0014】好ましくはpHを9〜10とする。pHが
8以下では、電気再生型脱塩装置によるシリカ除去率は
70〜80%程度であるが、pH9以上にすることによ
りシリカ除去率を90%以上にすることができ、pH
9.5以上ではシリカ除去率を95%以上に向上でき
る。pHを高くすることによりシリカ除去率はさらに向
上するが、pH10を越えると電気再生型脱塩装置のイ
オン交換材料の劣化が起こり易くなる。Preferably, the pH is 9-10. When the pH is 8 or less, the silica removal rate by the electric regeneration type desalination apparatus is about 70 to 80%. However, when the pH is 9 or more, the silica removal rate can be 90% or more.
If it is 9.5 or more, the silica removal rate can be improved to 95% or more. The silica removal rate is further improved by increasing the pH, but when the pH exceeds 10, the ion exchange material of the electric regeneration type desalination apparatus is likely to deteriorate.
【0015】上述の処理のほか、任意の処理工程を付加
することができる。例えば次のような処理を電気再生型
脱塩装置への通水以前に行うようにしても良い。In addition to the above-described processing, an arbitrary processing step can be added. For example, the following treatment may be performed before water is passed through the electric regeneration type desalination apparatus.
【0016】除濁 被処理水をまず除濁工程(装置)に通し、SS(懸濁物
質)、不溶化可能な溶存物質を除去する。この除濁工程
に用いる除濁装置としては、凝集沈殿、濾過、除濁用膜
分離(例えば精密濾過(MF)膜や限外濾過(UF)
膜)などが使用できる。この除濁工程を行うことで後段
の電気再生型脱塩装置の負荷を軽減し、処理水質を向上
させることができる。The water to be treated is first passed through a turbidity step (apparatus) to remove SS (suspended substances) and dissolved substances that can be insolubilized. The turbidity removal apparatus used in this clarification step includes coagulation sedimentation, filtration, and membrane separation for clarification (for example, microfiltration (MF) membrane and ultrafiltration (UF)
Membrane) can be used. By performing this turbidity removal step, the load on the subsequent electric regeneration type desalination apparatus can be reduced, and the quality of treated water can be improved.
【0017】硬度(Ca,Mg)成分の除去(軟化) カチオン交換樹脂と接触させて、硬度成分を吸着除去す
る。このカチオン交換樹脂は、弱酸性でも強酸性でも良
く、また、H型で、またはNa型で使用しても良い。C
aイオン、Mgイオンは、前述のRO処理で大部分は除
去されるものの、残存してアルカリ性の電気再生型脱塩
装置に流入すると、スケールの原因となり得るので、予
め除去しておくことが望ましい。Removal (softening) of hardness (Ca, Mg) components The hardness components are adsorbed and removed by contact with a cation exchange resin. The cation exchange resin may be weakly acidic or strongly acidic, and may be used in H type or Na type. C
Most of the a ions and Mg ions are removed by the above-mentioned RO treatment, but if they remain and flow into an alkaline electric regeneration type desalination apparatus, they may cause scale, so it is desirable to remove them in advance. .
【0018】TOC除去 185nmの波長を有する紫外線酸化装置に通水し、紫
外線を照射することにより、水中の有機物を分解する。
TOCは、CO2 まで分解されて除去されたり、低分子
有機物となって後段のRO装置などにより除去され、処
理水質が向上する。紫外線照射は、アルカリ剤添加後で
も添加前でも良いが、アルカリ性で照射することが好ま
しい。TOC removal Water is passed through an ultraviolet oxidizer having a wavelength of 185 nm and irradiated with ultraviolet rays to decompose organic substances in the water.
TOC is decomposed to CO 2 and removed, or is converted into a low molecular organic substance and removed by a RO device or the like at a later stage, so that the quality of treated water is improved. The ultraviolet irradiation may be performed after or before the addition of the alkali agent, but is preferably performed under alkaline conditions.
【0019】その後、電気再生型脱塩装置に通水するの
であるが、この電気再生型脱塩装置としては、図2に示
す如く、アニオン交換膜21とカチオン交換膜22によ
り濃縮水室23及び処理水室24と陽極室27及び陰極
室28とが隔成され、処理水室24に、或いは、処理水
室24と濃縮水室23とにカチオン交換樹脂とアニオン
交換樹脂との混床が充填された、一般的な市販の電気再
生型脱塩装置を用いることができる。アニオン交換樹
脂、カチオン交換樹脂の代わりにアニオン交換繊維、カ
チオン交換繊維を使用することもできる。この電気再生
型脱塩装置では、処理水室24に導入した被処理水中の
イオンが親和力、濃度及び移動度に基づいて陽極25と
陰極26の電位の傾きの方向に樹脂20中を移動し、更
に、処理水室24と濃縮水室23とを仕切るカチオン交
換膜22又はアニオン交換膜21を横切って移動し、す
べての室において電荷の中和が保たれるようになる。そ
して、イオン交換膜21,22の半浸透特性及び電位の
傾きの方向性により、供給水中のイオンは処理水室24
では減少し、隣りの濃縮水室23では濃縮されることに
なる。このため、処理水室24から純水(脱イオン水)
が回収される。なお、27は陽極室、28は陰極室であ
る。このような電気再生型脱塩装置では、その前段まで
の処理で、DOが除去されると共にシリカの一部が除去
され、しかもアルカリ性にpH調整されている水を導入
する。したがって、電気再生型脱塩装置にかかる負荷が
少なく、一定電圧(電流)下でも処理水質が変化するこ
とがなく、長期的に安定した水質(比抵抗、シリカ等)
を維持することができる。Thereafter, water is passed through an electric regeneration type desalination apparatus. As shown in FIG. 2, the electric regeneration type desalination apparatus includes a concentrated water chamber 23 and a cation exchange membrane 22 which are formed by an anion exchange membrane 21 and a cation exchange membrane 22. The treated water chamber 24 is separated from the anode chamber 27 and the cathode chamber 28, and the treated water chamber 24 or the treated water chamber 24 and the concentrated water chamber 23 are filled with a mixed bed of a cation exchange resin and an anion exchange resin. A commonly used commercially available electric regeneration type desalination apparatus can be used. An anion exchange fiber or a cation exchange fiber can be used instead of the anion exchange resin or the cation exchange resin. In this electric regeneration type desalination apparatus, ions in the water to be treated introduced into the treatment water chamber 24 move in the resin 20 in the direction of the gradient of the potential of the anode 25 and the cathode 26 based on affinity, concentration and mobility, Furthermore, it moves across the cation exchange membrane 22 or the anion exchange membrane 21 that separates the treated water chamber 24 and the concentrated water chamber 23, so that charge neutralization is maintained in all chambers. Then, the ions in the supply water are removed from the treated water chamber 24 by the semi-osmotic characteristics of the ion exchange membranes 21 and 22 and the directionality of the potential gradient.
, And is concentrated in the adjacent concentrated water chamber 23. Therefore, pure water (deionized water) is supplied from the treated water chamber 24.
Is collected. In addition, 27 is an anode room and 28 is a cathode room. In such an electric regeneration type desalination apparatus, water which removes DO and a part of silica and is adjusted to alkaline pH is introduced by the treatment up to the preceding stage. Therefore, the load on the electric regeneration type desalination apparatus is small, and the treated water quality does not change even under a constant voltage (current), and the water quality is stable over a long period (specific resistance, silica, etc.).
Can be maintained.
【0020】また、前述の通り、電気再生型脱塩装置で
シリカを除去するために供給電流量を多くすると、水の
分解も生起されてエネルギーの浪費を招くが、本発明で
は、予めpHをアルカリ性に適宜に調整してシリカをイ
オン化し易くし、電気再生型脱塩装置の処理水室から濃
縮水室へ移動し易くしているので、電気再生型脱塩装置
への供給電流量を高くしなくても、定電流(電圧)でも
効率よく除去することができる。As described above, if the amount of the supplied current is increased to remove the silica in the electric regeneration type desalination apparatus, water is also decomposed and energy is wasted. Since the silica is easily ionized by appropriately adjusting to alkalinity, and it is easy to move from the treated water chamber to the concentrated water chamber of the electric regeneration type desalination apparatus, the amount of current supplied to the electric regeneration type desalination apparatus is increased. Even if a constant current (voltage) is not required, it can be efficiently removed.
【0021】更に、電気再生型脱塩装置の前段で、炭酸
成分が脱気処理(及びRO処理)により十分に排除され
ているため、電気再生型脱塩装置への炭酸成分の流入が
極めて少ない。このため、前述のCO2 に起因する電気
再生型脱塩装置処理水の水質低下の問題はなく、安定し
て良好な水質を得ることができる。Further, since the carbonic acid component is sufficiently removed by the deaeration treatment (and the RO treatment) before the electric regeneration type desalination apparatus, the inflow of the carbonic acid component into the electric regeneration type desalination apparatus is extremely small. . For this reason, there is no problem of a decrease in the water quality of the treated water of the electric regeneration type desalination device due to the above-mentioned CO 2 , and a good water quality can be obtained stably.
【0022】[0022]
【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0023】図2は本発明の実施の形態の四例を示す系
統図である。FIG. 2 is a system diagram showing four examples of the embodiment of the present invention.
【0024】本発明において、被処理水としては、工
水、市水、井水等、通常純水製造用原水として使われる
水が使用でき、また、超純水を使用する半導体製造工程
からの排水を常法に従ってTOC1ppm以下に生物処
理し、必要に応じて更にRO処理、イオン交換処理した
ものを被処理水とすることもできる。In the present invention, the water to be treated can be water usually used as raw water for producing pure water, such as industrial water, city water, well water, etc., and can be used from a semiconductor production process using ultrapure water. Wastewater may be biologically treated to a TOC of 1 ppm or less according to a conventional method, and if necessary, may further be subjected to RO treatment and ion exchange treatment as treated water.
【0025】では、被処理水を、まず、前述の軟化処
理を行い、硬度(Ca,Mg)成分を除去した。さらに
HCl、H2SO4等の鉱酸を添加してpH4〜5.5に
調整し、脱気処理、RO処理に供した。では、前述の
除濁処理を行い、被処理水中の濁質や不溶化可能な溶存
物質を除去した後、pH6〜7.5に調整し、RO処理
に供し、さらに必要により酸を添加して脱気処理に供し
た。では、カチオン交換樹脂塔に通水され、脱気処
理、RO処理に供した。では、カチオン交換樹脂塔に
通水され、アルカリを添加してpH6〜7.5に調整さ
れ、RO処理に供し、さらに必要により酸を添加して脱
気処理に供した。Then, the water to be treated was first subjected to the above-mentioned softening treatment to remove the hardness (Ca, Mg) component. Further, the pH was adjusted to 4 to 5.5 by adding a mineral acid such as HCl and H 2 SO 4, and the mixture was subjected to degassing treatment and RO treatment. Then, after performing the above-described turbidity treatment to remove turbidity and insolubilized dissolved substances in the water to be treated, the pH is adjusted to 6 to 7.5, and the resultant is subjected to RO treatment. It was subjected to air treatment. In, water was passed through a cation exchange resin tower and subjected to degassing and RO treatment. In the above, water was passed through a cation exchange resin tower, the pH was adjusted to 6 to 7.5 by adding an alkali, and the mixture was subjected to an RO treatment, and if necessary, an acid was added to perform a deaeration treatment.
【0026】前記,における各脱気処理では、被処
理水からDOが除去される。また、水のpHが5.5以
下の酸性であるため、水中の(重)炭酸成分はCO2 の
状態となってDOと同時に炭酸も除去することができ
る。また、各RO処理では、塩類、イオン性物質が分
離、除去され、シリカの一部も除去される。また、前記
,における各RO処理では、炭酸の大部分は(重)
炭酸イオンになっているのでその大部分を除去すること
ができる。また、pH6〜7.5のほぼ中性の水が給水
されるため、NaCl除去率が98%以上の通常の高脱
塩率のRO膜、例えばポリアミド系又は酢酸セルロース
系等のRO膜を用いることができる。その後の各脱気処
理では主にDOを除去するが、残存している炭酸(CO
2 )も酸添加してpH調整されることにより同時に除去
される。尚、RO処理後のpHが5.5以下になってい
る場合は酸添加を省略しても良い。In each of the above deaeration treatments, DO is removed from the water to be treated. Further, since the pH of the water is acidic at 5.5 or less, the (bi) carbonic acid component in the water is in a CO 2 state, and the carbonic acid can be removed simultaneously with the DO. In each RO treatment, salts and ionic substances are separated and removed, and a part of silica is also removed. In each of the RO treatments in the above, most of the carbonic acid is (heavy)
Most of them can be removed because they are carbonate ions. Since almost neutral water having a pH of 6 to 7.5 is supplied, an RO film having a high NaCl removal rate of 98% or more, such as a polyamide film or a cellulose acetate film, is used. be able to. In the subsequent degassing treatment, DO is mainly removed, but the remaining carbonic acid (CO
2 ) is also removed by adjusting the pH by adding an acid. When the pH after the RO treatment is 5.5 or less, the acid addition may be omitted.
【0027】その後、それぞれアルカリを添加してpH
を9以上に調整し、電気再生型脱塩装置に通水する。電
気再生型脱塩装置では、前述の原理で脱塩処理がなさ
れ、処理水室24から脱塩水(純水)が得られ、濃縮水
室23からは濃縮水が排出される。なお、電気再生型脱
塩装置の電極室(陽極室27、陰極室28)にはRO装
置の透過水が給水される。処理水室24からの純水は系
外へ排出され、使用場所へ供給される。一方、濃縮水室
23からの濃縮水はRO装置の前段に返送され、RO装
置に給水される。また、電極室からの流出水もRO装置
の前段に返送される。Thereafter, an alkali is added to the mixture to adjust the pH.
Is adjusted to 9 or more, and water is passed through the electric regeneration type desalination apparatus. In the electric regeneration type desalination apparatus, desalination is performed according to the above-described principle, demineralized water (pure water) is obtained from the treated water chamber 24, and concentrated water is discharged from the concentrated water chamber 23. The permeated water of the RO device is supplied to the electrode chambers (the anode chamber 27 and the cathode chamber 28) of the electric regeneration type desalination apparatus. Pure water from the treated water chamber 24 is discharged out of the system and supplied to a place of use. On the other hand, the concentrated water from the concentrated water chamber 23 is returned to the preceding stage of the RO device and supplied to the RO device. Also, the effluent from the electrode chamber is returned to the preceding stage of the RO device.
【0028】前記〜においては、何れも電気再生型
脱塩装置の前段までの処理で、DOが除去されると共に
シリカの一部が除去され、しかもアルカリ性にpH調整
されている水を導入する。そのため、給水水質が変化し
ても一定電圧(電流)下でも処理水質が変化することが
なく、長期的に安定した水質(比抵抗、シリカ等)を維
持することができる。In the above-mentioned items (1) and (2), DO is removed and a part of the silica is removed in the treatment up to the preceding stage of the electric regeneration type desalination apparatus, and water whose pH is adjusted to alkaline is introduced. For this reason, the treated water quality does not change even under a constant voltage (current) even when the supply water quality changes, and stable water quality (specific resistance, silica, etc.) can be maintained for a long time.
【0029】[0029]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。The present invention will be described more specifically below with reference to examples and comparative examples.
【0030】〔実施例1〕厚木市水をUF(栗田工業
(株)製「KU−1010」)で処理した。HClでp
H5.0に調整した後、脱気膜(ヘキスト社「Liqu
−Cell:4インチ」)に1.5m3 /hrで通水し
た。脱気水をRO(日東電工社製「ES−20」4イン
チ,2本シリーズ)に0.47m2 /hrで通水し、運
転圧6〜6.5kg/cm2 ,水回収率70%で運転し
た。RO処理水に、NaOHを添加し、pH9.2に調
整した後、180L/hrのうち電気再生型脱塩装置
(栗田工業「ピュアエースP120」)の処理水室に1
40L/hrを給水し、濃縮水室及び電極室に40L/
hrを給水した。電圧50V,電流0.3Aで運転し
た。得られた処理水の水質を調べ、結果を表1に示し
た。[Example 1] Atsugi-shi water was treated with UF ("KU-1010" manufactured by Kurita Water Industries Ltd.). HCl with p
After adjusting to H5.0, the degassing membrane (Hoechst “Liqu
-Cell: 4 inches ") at 1.5 m 3 / hr. Degassed water is passed through RO (Nitto Denko “ES-20” 4-inch, 2-piece series) at 0.47 m 2 / hr, operating pressure 6 to 6.5 kg / cm 2 , water recovery rate 70% Driven by After adding NaOH to the RO treated water and adjusting the pH to 9.2, 1 of the 180 L / hr was introduced into the treated water chamber of the electric regeneration type desalination apparatus (Kurita Kogyo “Pure Ace P120”).
40 L / hr was supplied and 40 L / hr was supplied to the concentrated water chamber and the electrode chamber.
hr. The operation was performed at a voltage of 50 V and a current of 0.3 A. The quality of the obtained treated water was examined, and the results are shown in Table 1.
【0031】〔比較例1〕前記pH調整を行わない(p
H5.6)以外は前記実施例1と同条件で電気再生型脱
塩装置に通水した。得られた処理水の水質を調べ、結果
を表1に示した。Comparative Example 1 The pH was not adjusted (p.
Except for H5.6), water was passed through the electric regeneration type desalination apparatus under the same conditions as in Example 1 above. The quality of the obtained treated water was examined, and the results are shown in Table 1.
【0032】〔比較例2〕前記脱気処理を行わない以外
は前記実施例1と同条件で電気再生型脱塩装置に通水し
た。得られた処理水の水質を調べ、結果を表1に示し
た。Comparative Example 2 Water was passed through an electric regeneration type desalination apparatus under the same conditions as in Example 1 except that the degassing treatment was not performed. The quality of the obtained treated water was examined, and the results are shown in Table 1.
【0033】[0033]
【表1】 [Table 1]
【0034】表1より明らかなように、本発明によれ
ば、長期的に安定した水質(比抵抗、シリカ等)を維持
することができる。As is clear from Table 1, according to the present invention, stable water quality (specific resistance, silica, etc.) can be maintained for a long time.
【0035】[0035]
【発明の効果】以上詳述した通り、本発明の脱塩方法に
よれば、電気再生型脱塩装置には、脱気処理及び逆浸透
膜(RO)処理によって溶存酸素(DO)が除去される
と共にシリカの一部が除去され、しかもアルカリ性にp
H調整されている水を導入するので、長期間安定した水
質を得ることができ、また高純度の水質を得ることがで
きるものである。即ち、本発明では、電気再生型脱塩装
置に通水する前段階で予めpHをアルカリ性に調整する
ので、シリカがイオン化し易くなり、電気再生型脱塩装
置の処理水室から濃縮水室へ移動し易くなるので、電気
再生型脱塩装置への供給電流量を高くしなくても、定電
流(電圧)でも効率よく除去することができる。また、
アルカリ性にすることにより、給水水質が変化しても入
口の電気伝導率がほぼ一定となり、一定電圧(電流)下
でも処理水質が変化することがない。さらに、RO処理
により、シリカの一部が除去されるので、電気再生型脱
塩装置にかかる負荷も少ない。また、DOと共に炭酸成
分が脱気処理(及びRO処理)により十分に排除されて
いるため、電気再生型脱塩装置への炭酸成分の流入が極
めて少ない。このため、前述のCO2 に起因する電気再
生型脱塩装置処理水の水質低下の問題はなく、安定して
良好な水質を得ることができる。As described above in detail, according to the desalination method of the present invention, the oxygen regeneration (DO) is removed by the degassing treatment and the reverse osmosis membrane (RO) treatment in the electric regeneration type desalination apparatus. At the same time, part of the silica is removed.
Since water whose H is adjusted is introduced, stable water quality can be obtained for a long time, and high-purity water quality can be obtained. That is, in the present invention, the pH is previously adjusted to alkaline before the water is passed through the electric regeneration type desalination apparatus, so that the silica is easily ionized, and the treated water chamber of the electric regeneration type desalination apparatus is transferred to the concentrated water chamber. Since it is easy to move, a constant current (voltage) can be efficiently removed without increasing the amount of current supplied to the electric regeneration type desalination apparatus. Also,
By making the feed water alkaline, the electrical conductivity at the inlet becomes almost constant even if the feed water quality changes, and the treated water quality does not change even under a constant voltage (current). Further, since a part of the silica is removed by the RO treatment, the load on the electric regeneration type desalination apparatus is small. Further, since the carbonic acid component is sufficiently removed together with the DO by the deaeration treatment (and the RO treatment), the inflow of the carbonic acid component into the electric regeneration type desalination apparatus is extremely small. For this reason, there is no problem of a decrease in the water quality of the treated water of the electric regeneration type desalination device due to the above-mentioned CO 2 , and a good water quality can be obtained stably.
【図1】本発明の実施の形態の四例を示す系統図であ
る。FIG. 1 is a system diagram showing four examples of an embodiment of the present invention.
【図2】電気再生型脱塩装置の構造を示す概略的な構成
図である。FIG. 2 is a schematic configuration diagram showing the structure of an electric regeneration type desalination apparatus.
20 イオン交換樹脂 21 アニオン交換膜 22 カチオン交換膜 23 濃縮水室 24 処理水室 25 陽極 26 陰極 27 陽極室 28 陰極室 Reference Signs List 20 ion exchange resin 21 anion exchange membrane 22 cation exchange membrane 23 concentrated water chamber 24 treated water chamber 25 anode 26 cathode 27 anode chamber 28 cathode chamber
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA03 GA06 GA07 GA17 GA32 HA47 JA43Z JA44Z KA01 KA03 KA52 KA57 KA72 KB11 KB13 KB14 KB17 KB30 KD11 KD17 KE15Q MA03 MA13 MA14 MC18 MC54 MC55 PA01 PB02 PB23 PC01 PC02 PC42 4D037 AA01 AB11 AB18 BA23 BB09 CA03 CA04 CA14 CA15 4D061 AA01 AB07 AB13 AB15 AC06 AC18 BA02 BA09 BB01 BB04 BB13 BB14 BB18 BB19 CA03 CA08 CA09 CA11 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4D006 GA03 GA06 GA07 GA17 GA32 HA47 JA43Z JA44Z KA01 KA03 KA52 KA57 KA72 KB11 KB13 KB14 KB17 KB30 KD11 KD17 KE15Q MA03 MA13 MA14 MC18 MC54 MC55 PA01 PB02 PB23 PC01 PC37 AB42 AB0 BA23 BB09 CA03 CA04 CA14 CA15 4D061 AA01 AB07 AB13 AB15 AC06 AC18 BA02 BA09 BB01 BB04 BB13 BB14 BB18 BB19 CA03 CA08 CA09 CA11
Claims (1)
と共に逆浸透膜処理して脱塩し、pH9以上にpH調整
した後、電気再生型脱塩装置に通水することを特徴とす
る脱塩方法。The present invention is characterized in that the water to be treated is degassed to remove dissolved oxygen, desalted by reverse osmosis membrane treatment, adjusted to pH 9 or more, and then passed through an electric regeneration type desalination apparatus. Desalination method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10221476A JP2000051665A (en) | 1998-08-05 | 1998-08-05 | Desalination method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10221476A JP2000051665A (en) | 1998-08-05 | 1998-08-05 | Desalination method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000051665A true JP2000051665A (en) | 2000-02-22 |
Family
ID=16767320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10221476A Pending JP2000051665A (en) | 1998-08-05 | 1998-08-05 | Desalination method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000051665A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002011476A (en) * | 2000-06-30 | 2002-01-15 | Kurita Water Ind Ltd | Method of operating electric deionization device |
JP2002028660A (en) * | 2000-07-13 | 2002-01-29 | Nomura Micro Sci Co Ltd | Desalting device |
JP2002119974A (en) * | 2000-10-12 | 2002-04-23 | Kurita Water Ind Ltd | Pure water making method |
JP2002320971A (en) * | 2001-04-26 | 2002-11-05 | Nippon Rensui Co Ltd | Method and equipment for producing pure water by electric regeneration |
WO2006125263A1 (en) * | 2005-05-25 | 2006-11-30 | The Australian National University | Improved method for desalination |
JP2010155227A (en) * | 2009-01-05 | 2010-07-15 | Nikka Micron Kk | Ozonated water producing apparatus |
AU2006251862B2 (en) * | 2005-05-25 | 2011-12-01 | Curtin University Of Technology | Improved method for desalination |
JP2012183487A (en) * | 2011-03-04 | 2012-09-27 | Miura Co Ltd | Water treatment method and water treatment system |
JP2012183488A (en) * | 2011-03-04 | 2012-09-27 | Miura Co Ltd | Water treatment method and water treatment system |
JP2012183485A (en) * | 2011-03-04 | 2012-09-27 | Miura Co Ltd | Water treatment method and water treatment system |
JP2012183484A (en) * | 2011-03-04 | 2012-09-27 | Miura Co Ltd | Water treatment method and water treatment system |
JP2021084075A (en) * | 2019-11-28 | 2021-06-03 | 株式会社東芝 | Adsorption treatment device for scale causing substances and reverse osmosis membrane device |
JP7477009B1 (en) | 2023-03-30 | 2024-05-01 | 栗田工業株式会社 | Method for operating an electrodeionization apparatus |
-
1998
- 1998-08-05 JP JP10221476A patent/JP2000051665A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002011476A (en) * | 2000-06-30 | 2002-01-15 | Kurita Water Ind Ltd | Method of operating electric deionization device |
JP4599668B2 (en) * | 2000-06-30 | 2010-12-15 | 栗田工業株式会社 | Operation method of electrodeionization equipment |
JP4531213B2 (en) * | 2000-07-13 | 2010-08-25 | 野村マイクロ・サイエンス株式会社 | Desalination equipment |
JP2002028660A (en) * | 2000-07-13 | 2002-01-29 | Nomura Micro Sci Co Ltd | Desalting device |
JP2002119974A (en) * | 2000-10-12 | 2002-04-23 | Kurita Water Ind Ltd | Pure water making method |
JP4631148B2 (en) * | 2000-10-12 | 2011-02-16 | 栗田工業株式会社 | Pure water production method |
JP2002320971A (en) * | 2001-04-26 | 2002-11-05 | Nippon Rensui Co Ltd | Method and equipment for producing pure water by electric regeneration |
WO2006125263A1 (en) * | 2005-05-25 | 2006-11-30 | The Australian National University | Improved method for desalination |
JP2008542002A (en) * | 2005-05-25 | 2008-11-27 | マードック ユニバーシティ | Improved method for desalination |
AU2006251862B2 (en) * | 2005-05-25 | 2011-12-01 | Curtin University Of Technology | Improved method for desalination |
JP2010155227A (en) * | 2009-01-05 | 2010-07-15 | Nikka Micron Kk | Ozonated water producing apparatus |
JP2012183487A (en) * | 2011-03-04 | 2012-09-27 | Miura Co Ltd | Water treatment method and water treatment system |
JP2012183488A (en) * | 2011-03-04 | 2012-09-27 | Miura Co Ltd | Water treatment method and water treatment system |
JP2012183485A (en) * | 2011-03-04 | 2012-09-27 | Miura Co Ltd | Water treatment method and water treatment system |
JP2012183484A (en) * | 2011-03-04 | 2012-09-27 | Miura Co Ltd | Water treatment method and water treatment system |
JP2021084075A (en) * | 2019-11-28 | 2021-06-03 | 株式会社東芝 | Adsorption treatment device for scale causing substances and reverse osmosis membrane device |
JP7313262B2 (en) | 2019-11-28 | 2023-07-24 | 株式会社東芝 | Reverse osmosis membrane device |
JP7477009B1 (en) | 2023-03-30 | 2024-05-01 | 栗田工業株式会社 | Method for operating an electrodeionization apparatus |
WO2024202119A1 (en) * | 2023-03-30 | 2024-10-03 | 栗田工業株式会社 | Method for operating electric deionizer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3426072B2 (en) | Ultrapure water production equipment | |
KR101563169B1 (en) | Pure water production apparatus and pure water production method | |
KR100361799B1 (en) | Method and apparatus for regenerating photoresist developing waste liquid | |
JP3575271B2 (en) | Pure water production method | |
KR20040106478A (en) | Method and apparatus for fluid treatment by reverse osmosis under acidic conditions | |
JP2000051665A (en) | Desalination method | |
JP4599803B2 (en) | Demineralized water production equipment | |
JPH10272495A (en) | Treatment of organic waste water containing salts of high concentration | |
JP3800449B2 (en) | Method and apparatus for treating organic wastewater containing high concentrations of salts | |
JP3137831B2 (en) | Membrane processing equipment | |
JP3656458B2 (en) | Pure water production method | |
JP2014000575A (en) | Apparatus and method for producing purified water | |
CN114616212A (en) | Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system | |
JP2007307561A (en) | High-purity water producing apparatus and method | |
JP2000015257A (en) | Apparatus and method for making high purity water | |
JP2002192152A (en) | Method and apparatus for water treatment | |
JP2001029752A (en) | Manufacture of high-purity water and device therefor | |
JP2001191080A (en) | Electric deionizing device and electric deionizing treatment method using the same | |
JP2004167423A (en) | Apparatus and method for pure water production | |
JP2001170630A (en) | Pure water production device | |
US20230295019A1 (en) | Hybrid electrochemical and membrane-based processes for treating water with high silica concentrations | |
KR100398417B1 (en) | A method for treating electrogalvanizing wastewaters | |
WO2021215099A1 (en) | Waste water treatment method, ultrapure water production method, and waste water treatment apparatus | |
JPH11262771A (en) | Production of pure water | |
JP2002001069A (en) | Method for producing pure water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081110 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091201 |