EP4308325A1 - Process for manufacturing tungsten carbide parts and resulting material based on sps sintering of tungsten carbide - Google Patents
Process for manufacturing tungsten carbide parts and resulting material based on sps sintering of tungsten carbideInfo
- Publication number
- EP4308325A1 EP4308325A1 EP22712988.9A EP22712988A EP4308325A1 EP 4308325 A1 EP4308325 A1 EP 4308325A1 EP 22712988 A EP22712988 A EP 22712988A EP 4308325 A1 EP4308325 A1 EP 4308325A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tungsten carbide
- predetermined
- grain
- powder
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical group [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 239000000463 material Substances 0.000 title claims abstract description 32
- 238000005245 sintering Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 28
- 239000011230 binding agent Substances 0.000 claims abstract description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 238000000889 atomisation Methods 0.000 claims description 4
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 claims description 3
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 2
- 238000000227 grinding Methods 0.000 abstract description 7
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 238000002490 spark plasma sintering Methods 0.000 description 7
- 238000000280 densification Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 238000001812 pycnometry Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
- C04B35/5626—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/528—Spheres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5472—Bimodal, multi-modal or multi-fraction
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/549—Particle size related information the particle size being expressed by crystallite size or primary particle size
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the present invention relates to the manufacture of tungsten carbide parts by sintering, in particular the manufacture of parts having mechanical properties of particular hardness and toughness.
- the invention proposes a material obtained by SPS sintering comprising pure tungsten carbide characterized in that the material:
- - comprises at least one type of homogeneous tungsten carbide grains, each of the grain types having a predetermined grain microstructure
- - has a toughness of between 8 and 17 MPa -m 1 / 2 (m being a length), and/or a hardness of between 1500 and 2700 (Vickers hardness HV).
- the proposed material offers both greater toughness and/or hardness compared to the materials of the prior art, while limiting the costs thanks in particular to the absence of a mixture material such as for example cobalt.
- the tenacity is measured by the so-called Palmquist method.
- tungsten carbide powder a powder comprising at least 95% tungsten carbide, advantageously at least 96% tungsten carbide, advantageously at least 97% tungsten carbide, advantageously at least 98% tungsten carbide, preferably at least 99% tungsten carbide, or preferably comprising 99.9% tungsten carbide;
- binder any material making it possible to improve the densification and/or the final mechanical properties giving mechanical cohesion to the final part, for example cobalt material or another sintering agent;
- - atomization or atomization in particular concerning a powder, a method of transforming a metal ingot into spherical powder by melting and spraying metal drops under a gas stream to make them spherical, - spheroidization, or spheroidize, in particular concerning a powder, a method of transforming an angular ground metal powder by melting, most often plasma assisted, to make it spherical.
- toughness is meant the ability of a material to resist the propagation of a crack.
- Hardness means the resistance of a material to being marked by another.
- Each type of grain has a predetermined grain size, a predetermined crystallite size and a predetermined form factor.
- the grain size can be measured by an optical or electron microscope or by a particle sizer.
- the particle sizer it is possible to use a particle sizer of the laser or optical type, in the dry or liquid way.
- the toughness is measurable from 3-point bending tests on pre-cracked specimens, and/or by measuring the lengths of cracking induced by the penetration of an indenter used to measure the hardness.
- the predetermined grain microstructure may have the following characteristics:
- d50 being between 0.1 and 100 m m ,
- a type of grain has the following characteristics: d50 equal or substantially equal to 1 micrometer and a crystallite size equal to 130 nm plus or minus 30 nm. This combination of values makes it possible to obtain a high tenacity/high hardness ratio, for example approximately 2700HV.
- a type of grain has the following characteristics: d50 equal or substantially equal to 80 micrometers and a crystallite size equal to 30 nm plus or minus 15 nm. This combination of values makes it possible to obtain an average toughness/average hardness ratio, for example approximately 1800 HV.
- One embodiment consists in using a monomodal particle size distribution before grinding of between 0.1 and 100 micrometers (y/m).
- the powders have a bimodal distribution before grinding with d50 values separated by a decade, typically O. ⁇ iti and 1 m m or 1 mm m and 1 () m m or even 1 () m m and 1 ()()// m .
- This bimodal distribution may be separated by 2 decades, typically 0.1 and IO iti or 1 and 1 ()()// m .
- the distribution is trimodal with d50 separated by a decade, typically O. ⁇ iti, 1 m m and IO iti. These examples are obviously non-limiting.
- the powder is used as it is, raw from the supplier.
- this powder may have a d50 value, in particular a grain diameter, of less than 100 micrometers, preferably less than 50 micrometers, preferably less than 15 micrometers.
- the powder is ground in order to refine the size of the crystallites (coherent crystallographic domains) which is different from the particle size distribution.
- the size of the crystallites coherent crystallographic domains
- the powder is ground in order to refine the size of the crystallites (coherent crystallographic domains) which is different from the particle size distribution.
- the size of the crystallites is between 20 and 1000 nanometers (nm).
- the size of the crystallites is between 20 and 100 nm.
- the size of the crystallites is between 20 and 50 nm. In one embodiment, it is possible to associate several sizes of crystallites.
- the material comprises at least two types of tungsten carbide grains.
- Each of the at least two types of grains has the characteristics mentioned above; the at least two types of grains being different from each other.
- the material is free of cobalt, niobium carbide, vanadium carbide, titanium carbide, or the like.
- the invention proposes a part comprising a material, or consisting of a material, according to one or more of the characteristics of the first aspect.
- part is meant a mechanical part, for example cutting tools for machining.
- the invention proposes a method for manufacturing a material or a part based on pure tungsten carbide comprising the following steps:
- a powder comprising at least one type of tungsten carbide grain having a predetermined grain size, a predetermined crystallite size and a predetermined shape factor
- the powder comprising at least one type of tungsten carbide grain is ground until obtaining grains having a predetermined grain size, a predetermined crystallite size and a predetermined form factor.
- the powder comprises at least two types of tungsten carbide grains, each type having a predetermined grain size, a predetermined crystallite size and a predetermined form factor.
- each type of grain is ground separately.
- each type of tungsten carbide grain is ground separately before mixing them.
- One embodiment consists in grinding the base powder, which is mono or multimodal.
- the final particle size distribution is refined and recentered or even, in the case of multimodal distribution, the elimination of this multiple character.
- the difference between dlO and d90 is reduced around d50.
- the particle size distribution is finer around the target d50 value.
- At least two powders of different characteristics are ground separately in order to generate particle size distributions and of different crystallite sizes and then are mixed in order to design a specific powder making it possible to obtain improved final properties.
- the method further comprises a step of selecting at least one powder atomization mode, or at least one powder spheroidization mode.
- the manufacturing method provides for taking into account only the grain size and/or the crystallite size.
- the manufacturing method does not take into account the problem of stoichiometry of the tungsten carbide, its contamination with possible oxide(s) or even its specific surface.
- the stress applied may be greater than 0 Mpa, preferably greater than or equal to 5 Mpa and less than or equal to 150 Mpa, preferably less than or equal to 75 Mpa, preferably less than or equal to 50 Mpa, preferably less or equal to 25 MPa, preferably less than or equal to 20 MPa, preferably less than or equal to 18 MPa, preferably less than or equal to 15 MPa;
- the duration of the SPS sintering stage can be greater than or equal to 2 minutes and less than or equal to 45 minutes;
- the sintering temperature can be greater than or equal to 1300° C. and less than or equal to 2200° C.
- the grain size can be between 0.020 and 0.500 micrometers for a moderate temperature between 1300° C. and 1600° C., and between 0.500 and 5 mna for the range of 1600 to 2200° C., according to non-limiting examples; the smaller the grain size, the lower the sintering temperature.
- a desired densification rate which may be equal to or greater than 70% and may be equal to 100%.
- the combination of the temperature, the stress and the duration of the plateau allow access to a desired densification rate.
- the quality of the sintering can be determined by geometric density measurement, by Archimedean thrust, by helium pycnometry, by porosimetry, by mercury intrusion, and possibly by BET (specific surface measurement of materials measured by adsorption of a gas (nitrogen) with the BET method (Brunauer, Emett and Teller)), or image analysis in microscopy, or a combination of several methods.
- FIG. 1 represents a graph showing the hardness along the abscissa and the tenacity along the ordinate, icons in the shape of a triangle and a circle representing the results of the prior art, areas surrounded by the graph indicating the results obtained by virtue of the present invention.
- the prior art proposes materials having a hardness of between 1400 and 1900 HV and/or a toughness of between 7 and approximately 12 MPa-ml/2
- the invention also makes it possible to propose new modes embodiment, to obtain tungsten carbide materials having a higher hardness, in particular up to 2700HV and/or a higher toughness, in particular up to 17 MPa-ml/2, see for example the DS areas in Figure 1.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Powder Metallurgy (AREA)
Abstract
The invention relates to a material obtained by SPS sintering, comprising pure tungsten carbide, characterized in that the material: - comprises at least one type of homogeneous grains of tungsten carbide, each of the grain types having a predetermined grain microstructure, - is devoid of binder, - has a strength of between 8 and 17 MPa-m1/2 and/or a hardness of between 1500 and 2700 (Vickers hardness HV). The invention also relates to a process for manufacturing a material based on pure tungsten carbide, characterized by the following steps: - using or grinding a powder exhibiting at least one type of grains of tungsten carbide to give grains having a predetermined grain size and a predetermined shape factor, - sintering using an SPS sintering process.
Description
PROCEDE DE FABRICATION DE PIECES EN CARBURE DE TUNGSTENE ET MATERIAU OBTENU A BASE DE FRITTAGE SPS DE CARBURE DE TUNGSTENEMETHOD FOR MANUFACTURING PARTS IN TUNGSTEN CARBIDE AND MATERIAL OBTAINED FROM SPS SINTERING OF TUNGSTEN CARBIDE
DOMAINE TECHNIQUE DE L’INVENTION TECHNICAL FIELD OF THE INVENTION
[001] La présente invention concerne la fabrication de pièces en carbure de tungstène par frittage, en particulier la fabrication de pièces présentant des propriétés mécaniques de dureté et de ténacité particulières. The present invention relates to the manufacture of tungsten carbide parts by sintering, in particular the manufacture of parts having mechanical properties of particular hardness and toughness.
ETAT DE LA TECHNIQUE STATE OF THE ART
[002] On connaît de l’état de la technique un procédé de fabrication au cours duquel le matériau cobalt est ajouté à du carbure de tungstène afin d’augmenter la ténacité d’un matériau. Le document CN108624772 divulgue le mélange de carbure de tungstène avec notamment du cobalt et du carbure de vanadium. L’inconvénient des mélanges est qu’il est relativement coûteux. [002] Known from the state of the art is a manufacturing process during which the cobalt material is added to tungsten carbide in order to increase the toughness of a material. Document CN108624772 discloses the mixture of tungsten carbide with in particular cobalt and vanadium carbide. The disadvantage of blends is that it is relatively expensive.
[003] Il est ainsi désireux de proposer un matériau présentant une dureté et une ténacité équivalentes ou supérieures à celles de l’état de la technique. [003] It is thus desired to propose a material having a hardness and a tenacity equivalent to or greater than those of the state of the art.
L’INVENTION THE INVENTION
[004] A cet effet, et selon un premier aspect, l’invention propose un matériau obtenu par frittage SPS comprenant du carbure de tungstène pur caractérisé en ce que le matériau :[004] To this end, and according to a first aspect, the invention proposes a material obtained by SPS sintering comprising pure tungsten carbide characterized in that the material:
- comprend au moins un type de grains de carbure de tungstène homogènes, chacun des types de grains présentant une microstructure de grains prédéterminée,- comprises at least one type of homogeneous tungsten carbide grains, each of the grain types having a predetermined grain microstructure,
- est dépourvu de liant, - is devoid of binder,
- présente une ténacité comprise entre 8 et 17 MPa -m1/2(m étant une longueur), et/ou une dureté comprise entre 1500 et 2700 (dureté Vickers HV). - has a toughness of between 8 and 17 MPa -m 1 / 2 (m being a length), and/or a hardness of between 1500 and 2700 (Vickers hardness HV).
[005] Le matériau proposé offre à la fois une ténacité et/ou une dureté plus grande par rapport aux matériaux de l’art antérieur, tout en limitant les coûts grâce notamment à l’absence de matériau de mélange comme par exemple le cobalt. [005] The proposed material offers both greater toughness and/or hardness compared to the materials of the prior art, while limiting the costs thanks in particular to the absence of a mixture material such as for example cobalt.
[006] De préférence, la ténacité est mesurée par la méthode dite méthode Palmquist. [006] Preferably, the tenacity is measured by the so-called Palmquist method.
[007] Pour ce qui précède et pour la suite de la description, on entend par :
[008] - frittage SPS , acronyme de « Spark Plasma Sintering », un procédé de frittage sous pression basé sur la densification d’un échantillon de poudre par application d’une contrainte mécanique associée au passage d’un courant pulsé permettant de chauffer l’échantillon ; par exemple une méthode de frittage apparentée au pressage isostatique à chaud mais utilisant l'effet joule pour chauffer la poudre précompactée dans un creuset cylindrique creux entre deux électrodes en graphite sous atmosphère inerte ou sous vide, l'ensemble étant soumis à une pression de plusieurs mégapascals sous l'action d'une presse hydraulique. Un courant continu ou alternatif de plusieurs kiloampères, pulsé ou non, est appliqué entre les électrodes avec une tension de quelques volts. ; [007] For the foregoing and for the rest of the description, the following terms mean: [008] - SPS sintering, acronym for "Spark Plasma Sintering", a pressure sintering process based on the densification of a powder sample by applying a mechanical stress associated with the passage of a pulsed current to heat the 'sample ; for example a sintering method related to hot isostatic pressing but using the Joule effect to heat the precompacted powder in a hollow cylindrical crucible between two graphite electrodes under an inert atmosphere or under vacuum, the assembly being subjected to a pressure of several megapascals under the action of a hydraulic press. A direct or alternating current of several kiloamperes, pulsed or not, is applied between the electrodes with a voltage of a few volts. ;
[009] - pur, en particulier concernant une poudre de carbure de tungstène, une poudre comprenant au moins 95% de carbure de tungstène, avantageusement au moins 96% de carbure de tungstène, avantageusement au moins 97% de carbure de tungstène, avantageusement au moins 98% de carbure de tungstène, avantageusement au moins 99% de carbure de tungstène, ou comprenant de préférence 99,9% de carbure de tungstène ; [009] - pure, in particular concerning a tungsten carbide powder, a powder comprising at least 95% tungsten carbide, advantageously at least 96% tungsten carbide, advantageously at least 97% tungsten carbide, advantageously at least 98% tungsten carbide, preferably at least 99% tungsten carbide, or preferably comprising 99.9% tungsten carbide;
[0010] - liant, toute matière permettant d’améliorer la densification et/ou les propriétés mécaniques finales donnant une cohésion mécanique à la pièce finale, par exemple le matériau cobalt ou un autre agent de frittage ; [0010] binder, any material making it possible to improve the densification and/or the final mechanical properties giving mechanical cohesion to the final part, for example cobalt material or another sintering agent;
[0011] - taille de grains, la granulométrie des grains caractérisée par les valeurs dlO, d90, d50 afin de quantifier la dispersion de cette distribution de taille de grains, [0011] - grain size, the particle size of the grains characterized by the values d10, d90, d50 in order to quantify the dispersion of this grain size distribution,
[0012] - taille de cristallites, chaque grain pouvant présenter des cristallites, la taille se rapportant aux domaines cristallographiques cohérents et qui est mesurée par des techniques du type MEB , TEM, ... ; [0012] size of crystallites, each grain possibly having crystallites, the size relating to the coherent crystallographic domains and which is measured by techniques of the SEM, TEM, etc. type;
[0013] - facteur de forme, le rapport entre deux longueurs caractéristiques, chaque longueur s’étendant selon une direction déterminée, lesdites longueurs caractéristiques présentant un angle non-nul l’une par rapport à l’autre, par exemple un angle de 90 degrés ; [0013] - form factor, the ratio between two characteristic lengths, each length extending in a determined direction, said characteristic lengths having a non-zero angle with respect to each other, for example an angle of 90 degrees ;
[0014] - atomisation ou atomiser, en particulier concernant une poudre, une méthode de transformation d’un lingot métallique en poudre sphérique par fusion et projection des gouttes métalliques sous flux gazeux pour les rendre sphérique,
[0015] - sphéroïdisation, ou sphéroïdiser, en particulier concernant une poudre, une méthode de transformation d’une poudre métallique broyée anguleuse par fusion le plus souvent assisté plasma pour la rendre sphérique. [0014] - atomization or atomization, in particular concerning a powder, a method of transforming a metal ingot into spherical powder by melting and spraying metal drops under a gas stream to make them spherical, - spheroidization, or spheroidize, in particular concerning a powder, a method of transforming an angular ground metal powder by melting, most often plasma assisted, to make it spherical.
[0016] En outre, on entend par ténacité, la capacité d’un matériau à résister à la propagation d’une fissure. On entend par dureté, la résistance d'un matériau à être marqué par un autre. [0016] In addition, by toughness is meant the ability of a material to resist the propagation of a crack. Hardness means the resistance of a material to being marked by another.
[0017] Chaque type de grains présente une taille de grains prédéterminée, une taille de cristallite prédéterminée et un facteur de forme prédéterminé. [0017] Each type of grain has a predetermined grain size, a predetermined crystallite size and a predetermined form factor.
[0018] De préférence, la taille de grain est mesurable par un microscope optique ou électronique ou par un granulomètre. Dans le cas du granulomètre, il est possible d’utiliser un granulomètre du type laser ou optique, en voie sèche ou liquide. [0018] Preferably, the grain size can be measured by an optical or electron microscope or by a particle sizer. In the case of the particle sizer, it is possible to use a particle sizer of the laser or optical type, in the dry or liquid way.
[0019] De préférence, la ténacité est mesurable à partir d'essais de flexion 3 points sur des éprouvettes pré-fissurées, et/ou par mesure les longueurs de fissuration induite par la pénétration de d’un indenteur servant à mesurer la dureté. [0019] Preferably, the toughness is measurable from 3-point bending tests on pre-cracked specimens, and/or by measuring the lengths of cracking induced by the penetration of an indenter used to measure the hardness.
[0020] La microstructure de grains prédéterminée peut présenter les caractéristiques suivantes : [0020] The predetermined grain microstructure may have the following characteristics:
- Distribution granulométrique : d50 étant compris entre 0.1 et 100 m m , - Particle size distribution: d50 being between 0.1 and 100 m m ,
- Taille de cristallite : 20 à 1000 nm, - Crystallite size: 20 to 1000 nm,
- Facteur de forme : entre 1 et 5 (sphérique à anguleux, sans être cylindrique). - Form factor: between 1 and 5 (spherical to angular, without being cylindrical).
[0021] Selon un mode de réalisation, un type de grains présente les caractéristiques suivantes : d50 égale ou sensiblement égale à 1 micromètre et une taille de cristallites égale à 130 nm plus ou moins 30 nm. Cette combinaison de valeurs permet d’obtenir un rapport haute ténacité/haute dureté, par exemple environ 2700HV. According to one embodiment, a type of grain has the following characteristics: d50 equal or substantially equal to 1 micrometer and a crystallite size equal to 130 nm plus or minus 30 nm. This combination of values makes it possible to obtain a high tenacity/high hardness ratio, for example approximately 2700HV.
[0022] Selon un autre mode de réalisation, un type de grains présente les caractéristiques suivantes : d50 égale ou sensiblement égale à 80 micromètres et une taille de cristallites égale à 30 nm plus ou moins 15 nm. Cette combinaison de valeurs permet d’obtenir un rapport moyenne ténacité/moyenne dureté, par exemple environ 1800HV.
[0023] Un mode de réalisation consiste à utiliser une distribution granulométrique monomodale avant broyage comprise entre 0.1 et 100 micromètres (y/m). According to another embodiment, a type of grain has the following characteristics: d50 equal or substantially equal to 80 micrometers and a crystallite size equal to 30 nm plus or minus 15 nm. This combination of values makes it possible to obtain an average toughness/average hardness ratio, for example approximately 1800 HV. [0023] One embodiment consists in using a monomodal particle size distribution before grinding of between 0.1 and 100 micrometers (y/m).
[0024] Selon un autre mode de réalisation, les poudres présentent une distribution bimodale avant broyage avec des valeurs d50 séparées d’une décade, typiquement O.ΐ iti et 1 m m ou 1 m m et 1 ()m m ou encore 1 ()m m et 1 ()()// m . Il se peut que cette distribution bimodale soit séparée de 2 décades, typiquement 0.1 et IO iti ou 1 et 1 ()()// m . According to another embodiment, the powders have a bimodal distribution before grinding with d50 values separated by a decade, typically O.ΐ iti and 1 m m or 1 mm m and 1 () m m or even 1 () m m and 1 ()()// m . This bimodal distribution may be separated by 2 decades, typically 0.1 and IO iti or 1 and 1 ()()// m .
[0025] Selon encore un autre mode de réalisation, la distribution est trimodale avec des d50 séparées d’une décade, typiquement O.ΐ iti, 1 m m et IO iti. Ces exemples sont évidemment non limitatifs. According to yet another embodiment, the distribution is trimodal with d50 separated by a decade, typically O.ΐ iti, 1 m m and IO iti. These examples are obviously non-limiting.
[0026] Dans un mode de réalisation, la poudre est utilisée telle quelle, brute de fournisseur. Par exemple, cette poudre peut présenter une valeur d50, en particulier un diamètre, de grain inférieur(e) à 100 micromètres, de préférence inférieur(e) à 50 micromètres, de préférence inférieur(e) à 15 micromètres. [0026] In one embodiment, the powder is used as it is, raw from the supplier. For example, this powder may have a d50 value, in particular a grain diameter, of less than 100 micrometers, preferably less than 50 micrometers, preferably less than 15 micrometers.
[0027] Dans un mode préférentiel, la poudre est broyée afin d’affiner la taille des cristallites (domaines cristallographiques cohérents) qui est différente de la distribution granulométrique. Ainsi, après broyage, on constate une réduction de la taille des cristallites, mais pas nécessairement une réduction de la taille des grains. In a preferred mode, the powder is ground in order to refine the size of the crystallites (coherent crystallographic domains) which is different from the particle size distribution. Thus, after grinding, a reduction in the size of the crystallites is observed, but not necessarily a reduction in the size of the grains.
[0028] Préférentiellement, la taille des cristallites est comprise entre 20 et 1000 nanomètres (nm). Préférentiellement, la taille des cristallites est comprise entre 20 et 100 nm. Préférentiellement enfin, la taille des cristallites est comprise entre 20 et 50 nm. Dans un mode de réalisation, il est envisageable d’associer plusieurs tailles de cristallites. Preferably, the size of the crystallites is between 20 and 1000 nanometers (nm). Preferably, the size of the crystallites is between 20 and 100 nm. Finally, preferably, the size of the crystallites is between 20 and 50 nm. In one embodiment, it is possible to associate several sizes of crystallites.
[0029] De préférence, le matériau comprend au moins deux types de grains de carbure de tungstène. Chacun des au moins deux types de grains présente des caractéristiques cités au- dessus ; les au moins deux types de grains étant différents les uns par rapport aux autres. [0029] Preferably, the material comprises at least two types of tungsten carbide grains. Each of the at least two types of grains has the characteristics mentioned above; the at least two types of grains being different from each other.
[0030] De préférence, le matériau est dépourvu de cobalt, de carbure de niobium, de carbure de vanadium, de carbure de titane, ou agent similaire. [0030] Preferably, the material is free of cobalt, niobium carbide, vanadium carbide, titanium carbide, or the like.
[0031] Selon un deuxième aspect, l’invention propose une pièce comprenant un matériau, ou constituée d’un matériau, selon l’une ou plusieurs des caractéristques du premier aspect. On entend par pièce, une pièce mécanique par exemple des outils de coupe pour l’usinage.
[0032] Selon un troisième aspect, l’invention propose un procédé de fabrication d’un matériau ou d’une pièce à base de carbure de tungstène pur comprenant les étapes suivantes :According to a second aspect, the invention proposes a part comprising a material, or consisting of a material, according to one or more of the characteristics of the first aspect. By part is meant a mechanical part, for example cutting tools for machining. According to a third aspect, the invention proposes a method for manufacturing a material or a part based on pure tungsten carbide comprising the following steps:
- utiliser une poudre comprenant au moins un type de grains de carbure de tungstène présentant une taille de grains prédéterminée, une taille de cristallite prédéterminée et un facteur de forme prédéterminé,- using a powder comprising at least one type of tungsten carbide grain having a predetermined grain size, a predetermined crystallite size and a predetermined shape factor,
- fritter en utilisant un procédé de frittage SPS. - sinter using an SPS sintering process.
[0033] Selon un mode de réalisation, la poudre comprenant au moins un type de grains de carbure de tungstène est broyée jusqu’à obtenir des grains présentant une taille de grains prédéterminée, une taille de cristallite prédéterminée et un facteur de forme prédéterminé. [0033] According to one embodiment, the powder comprising at least one type of tungsten carbide grain is ground until obtaining grains having a predetermined grain size, a predetermined crystallite size and a predetermined form factor.
[0034] De préférence, la poudre comprend au moins deux types de grains de carbure de tungstène, chaque type présentant une taille de grains prédéterminée, une taille de cristallite préderterminée et un facteur de forme prédéterminé. [0034] Preferably, the powder comprises at least two types of tungsten carbide grains, each type having a predetermined grain size, a predetermined crystallite size and a predetermined form factor.
[0035] Selon un mode de réalisation, chaque type de grains est broyé séparemment. De préférence, chaque type de grains de carbure de tungstène est broyé séparemment avant de les mélanger. According to one embodiment, each type of grain is ground separately. Preferably, each type of tungsten carbide grain is ground separately before mixing them.
[0036] Un mode de réalisation consiste à broyer la poudre de base quelle soit mono ou multimodale. Dans ce mode de réalisation, la distribution granulométrique finale est affinée et recentrée voire, dans le cas des distribution multimodale, la suppression de ce caractère multiple. L’écart entre dlO et d90 se réduit autour du d50. La distribution granulométrique est plus fine autour de la valeur de d50 cible. [0036] One embodiment consists in grinding the base powder, which is mono or multimodal. In this embodiment, the final particle size distribution is refined and recentered or even, in the case of multimodal distribution, the elimination of this multiple character. The difference between dlO and d90 is reduced around d50. The particle size distribution is finer around the target d50 value.
[0037] Dans un autre mode de réalisation, au moins deux poudres de caractéristiques différentes sont broyées séparément afin de générer des distributions granulométriques et de tailles de cristallites différentes puis sont mélangées afin de concevoir une poudre spécifique permettant d’obtenir des propriétés finales améliorées. In another embodiment, at least two powders of different characteristics are ground separately in order to generate particle size distributions and of different crystallite sizes and then are mixed in order to design a specific powder making it possible to obtain improved final properties.
[0038] Le broyage permet d’obtenir une poudre qui aura des propriétés « finales » en terme de géométrie, facteur de forme, taille de cristallites. Le broyage permet également dans certains cas de former des sites actifs en surface de poudre qui favorisent et améliorent le comportement au frittage.
[0039] Selon un mode de réalisation, le procédé comprend en outre une étape de sélection d’au moins un mode d’atomisation de la poudre, ou d’au moins un mode de sphéroïdisation de la poudre. [0038] Grinding makes it possible to obtain a powder which will have “final” properties in terms of geometry, form factor, size of crystallites. Grinding also makes it possible, in certain cases, to form active sites on the surface of the powder which promote and improve the sintering behavior. According to one embodiment, the method further comprises a step of selecting at least one powder atomization mode, or at least one powder spheroidization mode.
[0040] De préférence, le procédé de fabrication prévoit de prendre en compte seulement la taille de grain et/ou la taille de cristallites. Dans un mode de réalisation préféré, le procédé de fabrication ne prend pas en compte la problématique de stœchiométrie du carbure de tungstène, sa contamination en éventuel(s) oxyde(s) ou encore sa surface spécifique. [0040] Preferably, the manufacturing method provides for taking into account only the grain size and/or the crystallite size. In a preferred embodiment, the manufacturing method does not take into account the problem of stoichiometry of the tungsten carbide, its contamination with possible oxide(s) or even its specific surface.
[0041] Selon un ou plusieurs modes de réalisation, pouvant être combinable, lors de l’étape de frittage en utilisant un procédé de frittage SPS : According to one or more embodiments, which can be combined, during the sintering step using an SPS sintering process:
[0042] -la contrainte appliquée peut être supérieure à 0 Mpa, de préférence supérieure ou égale à 5Mpa et inférieure ou égale à 150 Mpa, de préférence inférieure ou égale à 75 Mpa, de préférence inférieure ou égale à 50 Mpa, de préférence inférieure ou égale à 25 Mpa, de préférence inférieure ou égale à 20 Mpa, de préférence inférieure ou égale à 18 Mpa, de préférence inférieure ou égale à 15 Mpa ; [0042] the stress applied may be greater than 0 Mpa, preferably greater than or equal to 5 Mpa and less than or equal to 150 Mpa, preferably less than or equal to 75 Mpa, preferably less than or equal to 50 Mpa, preferably less or equal to 25 MPa, preferably less than or equal to 20 MPa, preferably less than or equal to 18 MPa, preferably less than or equal to 15 MPa;
[0043] - la durée de palier du frittage SPS peut être supérieure ou égale à 2 minutes et inférieure ou égale à 45 minutes,; [0043] - the duration of the SPS sintering stage can be greater than or equal to 2 minutes and less than or equal to 45 minutes;
[0044] - la température de frittage peut être supérieure ou égale à 1300°C et inférieure ou égale à 2200°C ; - the sintering temperature can be greater than or equal to 1300° C. and less than or equal to 2200° C.;
[0045] - la taille de grains peut être comprise selon des exemples non limitatifs entre 0,020 et 0,500 micromètre pour une température modérée entre 1300°C et 1600°C, et entre 0.500 et 5 mna pour la gamme de 1600 à 2200°C ; plus la taille de grain est faible plus la température de frittage sera faible. - the grain size can be between 0.020 and 0.500 micrometers for a moderate temperature between 1300° C. and 1600° C., and between 0.500 and 5 mna for the range of 1600 to 2200° C., according to non-limiting examples; the smaller the grain size, the lower the sintering temperature.
[0046] Ces caractéristiques permettent d’obtenir une pièce présentant un taux de densification souhaité, qui peut être égal ou supérieur à 70% et peut être égal à 100%. En particulier, l’association de la température, de la contrainte et de la durée du pallier permettent d’accéder à un taux de densification souhaité. These characteristics make it possible to obtain a part having a desired densification rate, which may be equal to or greater than 70% and may be equal to 100%. In particular, the combination of the temperature, the stress and the duration of the plateau allow access to a desired densification rate.
[0047] De préférence, la qualité du frittage peut être déterminée par mesure de densité géométrique, par poussée d’Archimède, par pycnométrie hélium, par porosimétrie, par intrusion de mercure, et éventuellement par BET (mesure de surface spécifique des
matériaux mesurée par adsorption d'un gaz (azote) avec la méthode BET (Brunauer, Emett et Teller)), ou analyse d’image en microscopie, ou une combinaison de plusieurs méthodes. Preferably, the quality of the sintering can be determined by geometric density measurement, by Archimedean thrust, by helium pycnometry, by porosimetry, by mercury intrusion, and possibly by BET (specific surface measurement of materials measured by adsorption of a gas (nitrogen) with the BET method (Brunauer, Emett and Teller)), or image analysis in microscopy, or a combination of several methods.
[0048] Description de la figure [0048] Description of the figure
[0049] [fïg.1] la figure 1 représente un graphique présentant en abscisse la dureté et en ordonnée la ténacité, des icônes en forme de triangle et de cercle représentant les résultats de l’art antérieur, des zones entourées du graphique indiquant les résultats obtenus grâce à la présente invention. [0049] [fig.1] FIG. 1 represents a graph showing the hardness along the abscissa and the tenacity along the ordinate, icons in the shape of a triangle and a circle representing the results of the prior art, areas surrounded by the graph indicating the results obtained by virtue of the present invention.
[0050] Alors que l’art antérieur propose des matériaux présentant une dureté comprise entre 1400 et 1900 HV et/ou une ténacité comprise entre 7 et environ 12 MPa-ml/2, l’invention permet, en outre de proposer de nouveaux modes de réalisation, d’obtenir des matériaux en carbure de tungstène présentant une dureté plus élevée, en particulier allant jusqu’à 2700HV et/ou une ténacité plus élevée, en particulier allant jusqu’à 17 MPa-ml/2, voir par exemple les zones DS sur la figure 1.
[0050] While the prior art proposes materials having a hardness of between 1400 and 1900 HV and/or a toughness of between 7 and approximately 12 MPa-ml/2, the invention also makes it possible to propose new modes embodiment, to obtain tungsten carbide materials having a higher hardness, in particular up to 2700HV and/or a higher toughness, in particular up to 17 MPa-ml/2, see for example the DS areas in Figure 1.
Claims
1. Matériau obtenu par frittage SPS comprenant du carbure de tungstène pur caractérisé en ce que le matériau : 1. Material obtained by SPS sintering comprising pure tungsten carbide characterized in that the material:
- comprend au moins un type de grains de carbure de tungstène homogènes, chacun des types de grains présentant une microstructure de grains prédéterminée, - comprises at least one type of homogeneous tungsten carbide grains, each of the grain types having a predetermined grain microstructure,
- est dépourvu de liant, - is devoid of binder,
- présente une ténacité comprise entre 8 et 17 MPa-ml/2 et/ou une dureté comprise entre 1500 et 2700 (dureté Vickers HV). - has a toughness of between 8 and 17 MPa-ml/2 and/or a hardness of between 1500 and 2700 (Vickers hardness HV).
2. Matériau selon la revendication 1 , caractérisé en ce qu’il comprend au moins deux types de grains de carbure de tungstène. 2. Material according to claim 1, characterized in that it comprises at least two types of tungsten carbide grains.
3. Matériau selon la revendication 1 ou 2, caractérisé en ce que chaque type de grains présente une taille de grains prédéterminée, une taille de cristallite prédéterminée et un facteur de forme prédéterminé. 3. Material according to claim 1 or 2, characterized in that each type of grain has a predetermined grain size, a predetermined crystallite size and a predetermined form factor.
4. Matériau selon la revendication 1 , caractérisé en ce qu’il est dépourvu de cobalt, carbure de niobium, carbure de vanadium, carbure de titane. 4. Material according to claim 1, characterized in that it is devoid of cobalt, niobium carbide, vanadium carbide, titanium carbide.
5. Pièce comprenant un matériau selon l’une des revendications précédentes. 5. Part comprising a material according to one of the preceding claims.
6. Procédé de fabrication d’un matériau à base de carbure de tungstène pur caractérisé par les étapes suivantes : 6. Process for manufacturing a material based on pure tungsten carbide characterized by the following steps:
- Utiliser une poudre comprenant au moins un type de grains de carbure de tungstène présentant une taille de grains prédéterminée, une taille de cristallite prédéterminée et un facteur de forme prédéterminé, - Use a powder comprising at least one type of tungsten carbide grains having a predetermined grain size, a predetermined crystallite size and a predetermined shape factor,
- Fritter en utilisant un procédé de frittage SPS . - Sinter using an SPS sintering process.
7. Procédé de fabrication selon la revendication précédente, caractérisé en ce que la poudre comprenant au moins un type de grains de carbure de tungstène est broyée jusqu’à obtenir des grains présentant une taille de grains prédéterminée, une taille de cristallite prédéterminée et un facteur de forme prédéterminé. 7. Manufacturing process according to the preceding claim, characterized in that the powder comprising at least one type of tungsten carbide grains is ground until obtaining grains having a predetermined grain size, a predetermined crystallite size and a factor in a predetermined shape.
8. Procédé de fabrication selon la revendication 6 ou 7, caractérisé en ce que la poudre comprend au moins deux types de grains de carbure de tungstène, chaque type présentant une taille de grains prédéterminée, une taille de cristallite prédéterminée et un facteur de forme prédéterminé.
8. Manufacturing process according to claim 6 or 7, characterized in that the powder comprises at least two types of tungsten carbide grains, each type having a predetermined grain size, a predetermined crystallite size and a predetermined form factor .
9. Procédé de fabrication selon la revendication précédente, caractérisé en ce que chaque type de grains de carbure de tungstène est broyé séparemment avant de les mélanger. 9. Manufacturing process according to the preceding claim, characterized in that each type of tungsten carbide grain is ground separately before mixing them.
10. Procédé de fabrication selon l’une des revendications 6 à 9, caractérisé en ce qu’il comprend en outre une étape de sélection d’au moins un mode d’atomisation de la poudre, ou d’au moins un mode de sphéroïdisation de la poudre.
10. Manufacturing process according to one of claims 6 to 9, characterized in that it further comprises a step of selecting at least one mode of atomization of the powder, or at least one mode of spheroidization powder.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2102543A FR3120636A1 (en) | 2021-03-15 | 2021-03-15 | Method for manufacturing tungsten carbide parts and material obtained based on SPS sintering of tungsten carbide |
PCT/FR2022/050464 WO2022195215A1 (en) | 2021-03-15 | 2022-03-15 | Process for manufacturing tungsten carbide parts and resulting material based on sps sintering of tungsten carbide |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4308325A1 true EP4308325A1 (en) | 2024-01-24 |
Family
ID=77519150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22712988.9A Pending EP4308325A1 (en) | 2021-03-15 | 2022-03-15 | Process for manufacturing tungsten carbide parts and resulting material based on sps sintering of tungsten carbide |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4308325A1 (en) |
FR (1) | FR3120636A1 (en) |
WO (1) | WO2022195215A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6617271B1 (en) * | 2002-03-19 | 2003-09-09 | Vladimir Yurievich Kodash | Tungsten carbide cutting tool materials |
DE102014204277B4 (en) * | 2014-03-07 | 2023-06-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | WEAR-RESISTANT TUNGSTEN CARBIDE CERAMICS AND PROCESSES FOR THEIR MANUFACTURE |
CN108624772B (en) | 2018-06-26 | 2020-12-18 | 南京理工大学 | Ultra-fine grain tungsten carbide-based hard alloy material and preparation method thereof |
CN110577399B (en) * | 2019-07-12 | 2020-10-23 | 北京科技大学 | Multi-field coupling flash sintering system based on induction heating |
-
2021
- 2021-03-15 FR FR2102543A patent/FR3120636A1/en active Pending
-
2022
- 2022-03-15 WO PCT/FR2022/050464 patent/WO2022195215A1/en active Application Filing
- 2022-03-15 EP EP22712988.9A patent/EP4308325A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
FR3120636A1 (en) | 2022-09-16 |
WO2022195215A1 (en) | 2022-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2724771C2 (en) | Hard alloy having a viscosity increasing structure | |
US10875091B2 (en) | Metal powder, feedstock, and preparation method therefor | |
TWI654315B (en) | Sputtering target and process for producing it | |
WO2014208447A1 (en) | Cermet, and method for manufacturing same, as well as cutting tool | |
EP1343600B1 (en) | Method for making thin films in metal/ceramic composite | |
WO2013099791A1 (en) | Mo-Si-B-BASED ALLOY POWDER, RAW METAL MATERIAL POWDER, AND METHOD FOR PRODUCING Mo-Si-B-BASED ALLOY POWDER | |
KR102419945B1 (en) | hard sintered body | |
WO2022074904A1 (en) | Pulverizing, stirring, mixing, and kneading machine members | |
EP4308325A1 (en) | Process for manufacturing tungsten carbide parts and resulting material based on sps sintering of tungsten carbide | |
WO2022208031A1 (en) | Method for manufacturing a precious metal part based on sps sintering and precious metal part thus produced | |
US20160303649A1 (en) | Light weight high stiffness metal composite | |
EP3819046A1 (en) | Method for manufacturing an optimised steel material | |
EP3819047A1 (en) | Optimised steel material | |
WO2018003877A1 (en) | Super hard sintered body | |
WO2022208032A1 (en) | Method for manufacturing metal parts and metal parts obtained using sps sintering | |
Zhao et al. | Contribution of shear deformation to grain refinement and densification of iron powder consolidated by high pressure torsion | |
Zhang et al. | Laser melting deposition of fine-grained 90W-7Ni-3Fe alloys using pre-sintered granulated powder | |
Esparza-Vázquez et al. | Strengthening of alumina-based ceramics with titanium nanoparticles | |
WO2022248808A1 (en) | Sps sintering method for manufacturing parts comprising metallurgical material and natural inorganic gemstones, and parts thus obtained | |
Grzegorek et al. | Effect of milling time on morphology and size of copper/CNT composite powder | |
US11707784B2 (en) | Spark plasma sintered cBN and Ni-cBN bearing steel | |
EP4438203A1 (en) | Composite material, manufacturing method for composite material, and mold | |
Emerla et al. | The influence of graphene oxide on the microstructure and properties of ultrafine-grained copper processed by high-pressure torsion | |
WO2024033586A1 (en) | Alloy with low coefficient of thermal expansion and high mechanical strength | |
Mulser et al. | MIM for HT Turbine Parts: Gas-Atomized Versus Mechanically Milled Nb-Si Alloy Powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230808 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |