Nothing Special   »   [go: up one dir, main page]

EP3760671B1 - Kautschukmischung und reifen - Google Patents

Kautschukmischung und reifen Download PDF

Info

Publication number
EP3760671B1
EP3760671B1 EP20178430.3A EP20178430A EP3760671B1 EP 3760671 B1 EP3760671 B1 EP 3760671B1 EP 20178430 A EP20178430 A EP 20178430A EP 3760671 B1 EP3760671 B1 EP 3760671B1
Authority
EP
European Patent Office
Prior art keywords
phr
styrene
rubber mixture
butadiene copolymer
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20178430.3A
Other languages
English (en)
French (fr)
Other versions
EP3760671A1 (de
Inventor
Catarina Sa
Viktoria Pavon Sierra
Norbert Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Reifen Deutschland GmbH
Original Assignee
Continental Reifen Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Reifen Deutschland GmbH filed Critical Continental Reifen Deutschland GmbH
Publication of EP3760671A1 publication Critical patent/EP3760671A1/de
Application granted granted Critical
Publication of EP3760671B1 publication Critical patent/EP3760671B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton

Definitions

  • the EP 3 150 402 A1 the EP 3 150 401 A1 , the DE 10 2015 218 745 A1 ,the DE 10 2013 105 193 A1 and the DE 10 2015 218 746 A1 describes the solution-polymerized styrene-butadiene copolymers functionalized on at least one chain end with amino-containing alkoxysilyl groups and another group selected from the group consisting of alkoxysilyl groups and amino-containing alkoxysilyl groups. They are used in combination with various other additives in the rubber mixture.
  • the functionalized styrene-butadiene copolymer A preferably has a weight-average molecular weight M w according to GPC of 300,000 to 500,000 g/mol, particularly preferably 300,000 to 400,000 g/mol, and can therefore also be referred to as a rubber that is solid at least at room temperature.
  • styrene content and the vinyl content of the polymers discussed in the context of the present invention are determined by means of 13 C-NMR (solvent deuterochloroform CDCl 3 ; NMR: " nuclear magnetic resonance") and comparison with data from infrared spectrometry (IR; FT-IR spectrometer from Nicolet, KBr window 25 mm diameter x 5 mm, 80 mg sample in 5 mL 1,2-dichlorobenzene).
  • At least one silane coupling agent is preferably used in amounts of 1-15 phf (parts by weight, based on 100 parts by weight silica) in the rubber mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Description

  • Die Erfindung betrifft eine schwefelvernetzbare Kautschukmischung und einen Fahrzeugluftreifen mit einem Laufstreifen, der zumindest zum Teil aus einer solchen, mit Schwefel vulkanisierten Kautschukmischung besteht.
  • Da die Fahreigenschaften eines Reifens, insbesondere Fahrzeugluftreifens, in einem großen Umfang von der Kautschukzusammensetzung des Laufstreifens abhängig sind, werden besonders hohe Anforderungen an die Zusammensetzung der Laufstreifenmischung gestellt. So wurden vielfältige Versuche unternommen, die Eigenschaften des Reifens durch die Variation der Polymerkomponenten, der Füllstoffe und der sonstigen Zuschlagstoffe in der Laufstreifenmischung positiv zu beeinflussen. Dabei muss man berücksichtigen, dass eine Verbesserung in der einen Reifeneigenschaft oft eine Verschlechterung einer anderen Eigenschaft mit sich bringt, so ist eine Verbesserung des Rollwiderstandes üblicherweise mit einer Verschlechterung des Bremsverhaltens verbunden.
  • Um Reifeneigenschaften wie Abrieb, Nassrutschverhalten und Rollwiderstand zu beeinflussen, ist es z. B. bekannt, lösungspolymerisierte Styrol-Butadien-Copolymere mit unterschiedlicher Mikrostruktur einzusetzen. Außerdem lassen sich Styrol-Butadien-Copolymere modifizieren, indem z. B. die Styrol- und Vinyl-Anteile variiert werden, Endgruppenmodifizierungen, Kopplungen oder Hydrierungen vorgenommen werden. Die verschiedenen Copolymertypen haben unterschiedlichen Einfluss auf die Vulkanisat- und damit auch auf die Reifeneigenschaften.
  • In der EP 3 150 403 A1 werden kieselsäurehaltige Kautschukmischungen für Reifen mit niedrigem Rollwiderstand beschrieben, die lösungspolymerisierte Styrol-Butadien-Copolymere enthalten, welche an wenigstens einem Kettenende mit aminogruppen-enthaltenden Alkoxysilylgruppen und einer weiteren Gruppe ausgewählt aus der Gruppe bestehend aus Alkoxysilylgruppen und aminogruppen-enthaltenden Alkoxysilylgruppen funktionalisiert sind. Die Rollwiderstandsreduzierung begründet sich vermutlich in einer verstärkten Füllstoff-Polymer-Wechselwirkung.
  • Auch in der EP 3 150 402 A1 , der EP 3 150 401 A1 , der DE 10 2015 218 745 A1 ,der DE 10 2013 105 193 A1 und der DE 10 2015 218 746 A1 werden die lösungspolymerisierten Styrol-Butadien-Copolymere beschrieben, welche an wenigstens einem Kettenende mit aminogruppen-enthaltenden Alkoxysilylgruppen und einer weiteren Gruppe ausgewählt aus der Gruppe bestehend aus Alkoxysilylgruppen und aminogruppen-enthaltenden Alkoxysilylgruppen funktionalisiert sind. Sie werden in Kombination mit unterschiedlichen weiteren Zuschlagstoffen der Kautschukmischungen eingesetzt.
  • Die EP 2 703 416 A1 offenbart modifizierte lösungspolymerisierte Styrol-Butadien-Copolymere, deren Herstellung und deren Verwendung in Reifen. Die Styrol-Butadien-Copolymere weisen stickstoffenthaltende Gruppen (aminogruppen-enthaltende Organosilylgruppen) auf, die bei der Herstellung der Polymere mit Schutzgruppen geschützt waren. Die Kautschukmischungen mit derartigen Styrol-Butadien-Copolymeren sollen sich durch ein ausgewogenes Verhältnis von Verarbeitbarkeit, Nassgriff und niedriger Hysterese auszeichnen.
  • Kautschukmischungen mit den vorgenannten lösungspolymerisierte Styrol-Butadien-Copolymeren mit aminogruppen-enthaltenden Organosilylgruppen zeichnen sich häufig durch einen niedrigen Rollwiderstand beim Einsatz am Reifen aus, das Bremsverhalten der Mischungen auf nasser Straße liegt aber durch die geringe Hysterese nicht auf dem gewünschten Niveau.
  • Weitere lösungspolymerisierte Styrol-Butadien-Copolymere mit unterschiedlichen Funktionalisierungen in Kombination mit Harzen sind aus folgenden Schriften bekannt: EP 3 363 854 A1 , US 2012/0016056 A1 , US 2018/0099527 A1 , EP 3 181 630 A1 , EP 3 450 494 A1 , EP 3 450 465 A1 .
  • Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, Kautschukmischungen für die Laufstreifen von Fahrzeugluftreifen bereitzustellen, die beim Reifen den Konflikt zwischen den sich gegensätzlich verhaltenden Reifeneigenschaften Nassgriff und Rollwiderstand zumindest entschärft.
  • Gelöst wird diese Aufgabe durch eine Kautschukmischung, die
    • 20 - 100 phr (Gewichtsteile, bezogen auf 100 Gewichtsteile der gesamten Kautschuke in der Mischung) zumindest eines funktionalisierten Styrol-Butadien-Copolymers A, wobei das funktionalisierte Styrol-Butadien-Copolymer A an einem Kettenende mit einer aminogruppen- und/oder ammoniumgruppen-enthaltenden Organosilylgruppe funktionalisiert ist,
      und wobei das funktionalisierte Styrol-Butadien-Copolymer A am anderen Kettenende mit einer Aminogruppe funktionalisiert ist,
    • bis zu 80 phr zumindest eines weiteren Dienkautschuks,
    • 40 - 350 phr zumindest eines Füllstoffes und
    • 5 bis 150 phr zumindest eines aromatischen C9- und/oder eines aliphatischen C5-Kohlenwasserstoffharzes enthält.
  • Die in dieser Schrift verwendete Angabe phr (parts per hundred parts of rubber by weight) ist dabei die in der Kautschukindustrie übliche Mengenangabe für Mischungsrezepturen. Die Dosierung der Gewichtsteile der einzelnen Substanzen wird dabei stets auf 100 Gewichtsteile der gesamten Masse aller in der Mischung vorhandenen Kautschuke bezogen.
  • Überraschenderweise wurde gefunden, dass durch den Einsatz eines speziell funktionalisierten lösungspolymerisierten Styrol-Butadien-Copolymers in Kombination mit 5 bis 150 phr zumindest eines aromatischen C9- und/oder eines aliphatischen C5-Kohlenwasserstoffharzes eine füllstoffhaltige Kautschukmischung erhalten werden kann, die beim Einsatz im Laufstreifen von Reifen zu einer Entkopplung des Zielkonfliktes zwischen Rollwiderstand und Nassbremsen führt.
  • Durch die beiden unterschiedlichen funktionellen Gruppen am Styrol-Butadien-Copolymer A scheinen sowohl Wechselwirkungen des Polymers mit in der Mischung vorhandenen polaren Füllstoffen, wie Kieselsäure, als auch mit in der Mischung vorhandenen unpolaren Füllstoffen stattfinden zu können. Im Zusammenspiel mit den Kohlenwasserstoffharzen ergeben sich überraschend besonders gute Eigenschaften im Hinblick auf den Nassgriff und den Rollwiderstand.
  • Bei dem funktionalisierten Styrol-Butadien-Copolymer A kann es sich sowohl um emulsions- als auch um lösungspolymerisierte Typen handeln. Bevorzugt handelt es sich um lösungspolymerisiertes Styrol-Butadien-Copolymer (SSBR), da in Lösung die Polymerisation zu den Funktionalisierungsgruppen besser gesteuert werden kann.
  • Das funktionalisierte Styrol-Butadien-Copolymer A weist bevorzugt ein Gewichtsmittel Mw des Molekulargewichts gemäß GPC von 300000 bis 500000 g/mol, besonders bevorzugt 300000 bis 400000 g/mol, auf und kann damit auch als zumindest bei Raumtemperatur fester Kautschuk bezeichnet werden.
  • Das funktionalisierte Styrol-Butadien-Copolymer A kann im unvulkanisierten Zustand unterschiedliche Styrol-Gehalte von 5 bis 45 Gew.-% aufweisen. Für einen besonders guten Rollwiderstand weist das funktionalisierte Styrol-Butadien-Copolymer A bevorzugt einen Styrol-Gehalt von 5 bis 20 Gew.-% auf. Für eine höhere Steifigkeit und damit besseres Handling und kurze Vulkanisationszeiten weist das funktionalisierte Styrol-Butadien-Copolymer A bevorzugt einen Styrol-Gehalt von 21 bis 30 Gew.-% auf.
  • Der Vinyl-Anteil des funktionalisierte Styrol-Butadien-Copolymer A beträgt 5 bis 80 Gew.-%, besonders bevorzugt 10 bis 70 Gew.-%.
  • Die Glasübergangstemperatur Tg des funktionalisierten Styrol-Butadien-Copolymers A beträgt im unvulkanisierten Zustand -10 °C bis -80 °C. Für gute Wintereigenschaften weist das funktionalisierte Styrol-Butadien-Copolymers A vorzugsweise eine Glasübergangstemperatur von -30 bis -80 °C auf.
  • Die Bestimmung des Styrol-Gehaltes und des Vinyl-Anteils der im Rahmen der vorliegenden Erfindung diskutierten Polymere erfolgt mittels 13C-NMR (Lösungsmittel Deuterochloroform CDCl3; NMR: engl. "nuclear magnetic resonance") und Abgleich mit Daten aus der Infrarot-Spektrometrie (IR; FT-IR Spektrometer der Firma Nicolet, KBr-Fenster 25 mm Durchmesser x 5 mm, 80 mg Probe in 5 mL 1,2-Dichlorbenzol). Die Bestimmung der Glasübergangstemperatur (Tg) erfolgt anhand von Dynamischer-Differenz-Kalorimetrie (engl. Dynamic Scanning Calorimetry, DSC gemäß DIN 53765: 1994-03 bzw. ISO 11357-2: 1999-03, Kalibrierte DSC mit Tieftemperatureinrichtung, Kalibrierung nach Gerätetyp und Herstellerangaben, Probe im Aluminiumtiegel mit Aluminiumdeckel, Abkühlung auf Temperaturen niedriger als -120 °C mit 10 °C/min).
  • Die Herstellung des funktionalisierten Styrol-Butadien-Copolymers A ist beispielsweise in der EP 2 703 416 A1 beschrieben.
  • Das funktionalisierte Styrol-Butadien-Copolymer A ist an einem Kettenende mit einer aminogruppen- und/oder ammoniumgruppen-enthaltenden Organosilylgruppe funktionalisiert. Derartige Funktionalisierungen können erhalten werden, indem man das Polymer mit einer aminogruppen-enthaltenden Alkoxysilylverbindung mit Schutzgruppen an der Aminogruppe reagieren lässt. Beispielsweise kann N,N-Bis(trimethylsily)aminopropylmethyldiethoxysilan eingesetzt werden. Weitere mögliche Substanzen für eine derartige Funktionalisierung sind in der EP 2 703 416 A1 beschrieben. Nach Entschützung erhält man das funktionalisierte Styrol-Butadien-Copolymer A.
  • Das funktionalisierte Styrol-Butadien-Copolymer A ist am anderen Kettenende mit einer Aminogruppe funktionalisiert. Dabei kann es sich um primäre, sekundäre oder tertiäre Aminogruppen handeln, die auch ringförmig vorliegen können. Die Funktionalisierung kann erreicht werden, indem bei der Polymerisation Lithiumamide, wie in der EP 2 703 416 A1 beschrieben, zugegeben werden oder die Amide in situ durch Zugabe von n-Butyllithium und Aminen, z. B. ringförmigen Aminen wie Piperidin oder Piperazine, bei der Polymerisation erzeugt werden.
  • Es handelt sich bei der Aminogruppe am anderen Kettenende um eine ringförmige Diamingruppe. Hierzu kann beispielsweise N-(t-Butyldimethylsilyl)piperazin in Kombination mit n-Butyllithium bei der Polymerisation zugegeben werden.
  • Die erfindungsgemäße Kautschukmischung enthält 20 bis 100 phr, vorzugsweise 50 bis 100 phr, zumindest eines funktionalisierten Styrol-Butadien-Copolymers A. Es können auch mehrere Polymere dieses Typs im Verschnitt eingesetzt werden.
  • Die erfindungsgemäße Kautschukmischung enthält weiterhin bis zu 80 phr, vorzugsweise bis zu 50 phr, zumindest eines weiteren Dienkautschuks. Als Dienkautschuke werden Kautschuke bezeichnet, die durch Polymerisation oder Copolymerisation von Dienen und/oder Cycloalkenen entstehen und somit entweder in der Hauptkette oder in den Seitengruppen C=C-Doppelbindungen aufweisen.
  • Bei den Dienkautschuken kann es sich z. B. um natürliches Polyisopren und/oder synthetisches Polyisopren und/oder Polybutadien (Butadien-Kautschuk) und/oder Styrol-Butadien-Copolymer (Styrol-Butadien-Kautschuk) und/oder epoxidiertes Polyisopren und/oder Styrol-Isopren-Kautschuk und/oder Halobutyl-Kautschuk und/oder Polynorbornen und/oder Isopren-Isobutylen-Copolymer und/oder Ethylen-Propylen-DienKautschuk handeln. Die Kautschuke können als reine Kautschuke oder in ölverstreckter Form eingesetzt werden.
  • Bevorzugt ist der weitere Dienkautschuk jedoch ausgewählt aus der Gruppe, bestehend aus natürlichem Polyisopren, synthetischem Polyisopren, Polybutadien und weiteren Styrol-Butadien-Copolymeren. Diese Dienkautschuke lassen sich gut zu der Kautschukmischung verarbeiten und ergeben in den vulkanisierten Reifen gute Reifeneigenschaften.
  • Bei dem natürlichen und/oder synthetischen Polyisopren kann es sich sowohl um cis-1,4-Polyisopren als auch um 3,4-Polyisopren handeln. Bevorzugt ist allerdings die Verwendung von cis-1,4-Polyisoprenen mit einem cis 1,4 Anteil > 90 Gew.-%. Zum einen kann solch ein Polyisopren durch stereospezifische Polymerisation in Lösung mit Ziegler-Natta-Katalysatoren oder unter Verwendung von fein verteilten Lithiumalkylen erhalten werden. Zum anderen handelt es sich bei Naturkautschuk (NR) um ein solches cis-1,4 Polyisopren; der cis-1,4-Anteil im Naturkautschuk ist größer 99 Gew.-%.
  • Ferner ist auch ein Gemisch eines oder mehrerer natürlicher Polyisoprene mit einem oder mehreren synthetischen Polyisoprenen denkbar. Natürliches Polyisopren wird verstanden als Kautschuk, der durch Ernte von Quellen wie Kautschukbäumen (Hevea brasiliensis) oder nicht-Kautschukbaumquellen (wie z. B. Guayule oder Löwenzahn (z. B. Taraxacum koksaghyz)) gewonnen werden kann. Unter natürlichem Polyisopren (NR) wird nicht synthetisches Polyisopren verstanden.
  • Bei dem Butadien-Kautschuk (BR, Polybutadien) kann es sich um alle dem Fachmann bekannten Typen mit einem Mw von 250000 bis 500000 g/mol handeln. Darunter fallen u. a. die sogenannten high-cis- und low-cis-Typen, wobei Polybutadien mit einem cis-Anteil größer oder gleich 90 Gew.-% als high-cis-Typ und Polybutadien mit einem cis-Anteil kleiner als 90 Gew.-% als low-cis-Typ bezeichnet wird. Ein low-cis-Polybutadien ist z. B. Li-BR (Lithium-katalysierter Butadien-Kautschuk) mit einem cis-Anteil von 20 bis 50 Gew.-%. Mit einem high-cis BR werden besonders gute Abriebeigenschaften sowie eine niedrige Hysterese der Kautschukmischung erzielt. Das eingesetzte Polybutadien kann mit Modifizierungen und Funktionalisierungen endgruppenmodifiziert und/oder entlang der Polymerketten funktionalisiert sein. Bei der Modifizierung kann es sich um solche mit Hydroxy-Gruppen und/oder Ethoxy-Gruppen und/oder Epoxy-Gruppen und/oder SiloxanGruppen und/oder Amino-Gruppen und/oder Aminosiloxan und/oder Carboxy-Gruppen und/oder Phthalocyanin-Gruppen und/oder Silan-Sulfid-Gruppen handeln. Es kommen aber auch weitere, der fachkundigen Person bekannte, Modifizierungen, auch als Funktionalisierungen bezeichnet, in Frage. Bestandteil solcher Funktionalisierungen können Metallatome sein.
  • Bei dem weiteren Styrol-Butadien-Kautschuk (Styrol-Butadien-Copolymer) kann es sich sowohl um lösungspolymerisierten Styrol-Butadien-Kautschuk (SSBR) als auch um emulsionspolymerisierten Styrol-Butadien-Kautschuk (ESBR) handeln, wobei auch ein Gemisch aus wenigstens einem SSBR und wenigstens einem ESBR eingesetzt werden kann. Die Begriffe "Styrol-Butadien-Kautschuk" und "Styrol-Butadien-Copolymer" werden im Rahmen der vorliegenden Erfindung synonym verwendet. Bevorzugt sind in jedem Fall Styrol-Butadien-Copolymere mit einem Mw von 250000 bis 600000 g/mol (zweihundertfünfzigtausend bis sechshunderttausend Gramm pro Mol).
  • Das oder die eingesetzte(n) weiteren Styrol-Butadien-Copolymere kann/können mit anderen Modifizierungen und Funktionalisierungen als beim Styrol-Butadien-Copolymer A endgruppenmodifiziert und/oder entlang der Polymerketten funktionalisiert sein.
  • Die Kautschukmischung enthält 40 bis 350 phr zumindest eines Füllstoffes. Dabei kann es sich um Füllstoffe, wie Ruße, Kieselsäuren, Alumosilicate, Kreide, Stärke, Magnesiumoxid, Titandioxid oder Kautschukgele handeln, wobei die Füllstoffe in Kombination eingesetzt werden können. Weiterhin sind Kohlenstoffnanoröhrchen (carbon nanotubes (CNT) inklusive diskreter CNTs, sogenannte hollow carbon fibers (HCF) und modifizierte CNT enthaltend eine oder mehrere funktionelle Gruppen, wie Hydroxy-, Carboxy und Carbonyl-Gruppen) denkbar. Auch Graphit und Graphene sowie sogenannte "carbon-silica dual-phase filler" sind als Füllstoff einsetzbar.
  • Ist in der Kautschukmischung Ruß enthalten, können alle dem Fachmann bekannten Ruß-Typen eingesetzt werden. Bevorzugt wird jedoch ein Ruß eingesetzt, der eine Jodadsorptionszahl gemäß ASTM D 1510 von 30 bis 180 g/kg, bevorzugt 30 bis 130 kg/g, und eine DBP-Zahl gemäß ASTM D 2414 von 80 bis 200 ml/100 g, bevorzugt 100 bis 200 ml/100g, besonders bevorzugt 100 bis 180 ml/100g, aufweist. Hiermit werden für die Anwendung im Fahrzeugreifen besonders gute Rollwiderstandsindikatoren (Rückprallelastizität bei 70 °C) bei guten sonstigen Reifeneigenschaften erzielt. Das Styrol-Butadien-Copolymer A kann mit seiner Aminogruppenfunktionalisierung mit dem Ruß in Wechselwirkung treten.
  • Zur Reduzierung des Rollwiderstandes hat es sich als vorteilhaft erwiesen, wenn die Kautschukmischung als Füllstoff Kieselsäure enthält. Das Styrol-Butadien-Copolymer A kann über seine aminogruppen- und/oder ammoniumgruppen-enthaltenden Organosilylgruppen mit der Kieselsäure in Wechselwirkung treten.
  • Es können unterschiedlichste Kieselsäuren, wie "low surface area" oder hoch dispergierbare Kieselsäure, auch im Gemisch, zum Einsatz kommen. Besonders bevorzugt ist es, wenn eine fein verteilte, gefällte Kieselsäure verwendet wird, die eine CTAB-Oberfläche (gemäß ASTM D 3765) von 30 bis 350 m2/g, vorzugsweise von 110 bis 250 m2/g, aufweist. Als Kieselsäuren können sowohl konventionelle Kieselsäuren wie die des Typs VN3 (Handelsname) der Firma Evonik als auch hoch dispergierbare Kieselsäuren, so genannte HD-Kieselsäuren (z. B. Ultrasil 7000 der Firma Evonik), zum Einsatz kommen.
  • Vorzugsweise enthält die Kautschukmischung 50 bis 150 phr Kieselsäure, um eine gute Verarbeitbarkeit bei guten Reifeneigenschaften zu erzielen.
  • Zur Verbesserung der Verarbeitbarkeit und zur Anbindung der Kieselsäure an den Dienkautschuk in kieselsäurehaltigen Mischungen wird vorzugsweise zumindest ein Silan-Kupplungsagens in Mengen von 1 - 15 phf (Gewichtsteile, bezogen auf 100 Gewichtsteile Kieselsäure) in der Kautschukmischung eingesetzt.
  • Die in dieser Schrift verwendete Angabe phf (parts per hundred parts of filler by weight) ist dabei die in der Kautschukindustrie gebräuchliche Mengenangabe für Kupplungsagenzien für Füllstoffe. Im Rahmen der vorliegenden Anmeldung bezieht sich phf auf die vorhandene Kieselsäure, das heißt, dass andere eventuell vorhandene Füllstoffe wie Ruß nicht in die Berechnung der Menge an Silan-Kupplungsagens mit eingehen.
  • Die Silan-Kupplungsagenzien reagieren mit den oberflächlichen Silanolgruppen der Kieselsäure oder anderen polaren Gruppen während des Mischens des Kautschuks bzw. der Kautschukmischung (in situ) oder bereits vor der Zugabe des Füllstoffes zum Kautschuk im Sinne einer Vorbehandlung (Vormodifizierung). Als Silan-Kupplungsagenzien können dabei alle dem Fachmann für die Verwendung in Kautschukmischungen bekannten Silan-Kupplungsagenzien verwendet werden. Solche aus dem Stand der Technik bekannten Kupplungsagenzien sind bifunktionelle Organosilane, die am Siliciumatom mindestens eine Alkoxy-, Cycloalkoxy- oder Phenoxygruppe als Abgangsgruppe besitzen und die als andere Funktionalität eine Gruppe aufweisen, die gegebenenfalls nach Spaltung eine chemische Reaktion mit den Doppelbindungen des Polymers eingehen kann. Bei der letztgenannten Gruppe kann es sich z. B. um die folgenden chemischen Gruppen handeln: -SCN, -SH, -NH2 oder -Sx- (mit x = 2-8). So können als Silan-Kupplungsagenzien z. B. 3-Mercaptopropyltriethoxysilan, 3-Thiocyanato-propyltrimethoxysilan oder 3,3'-Bis(triethoxysilylpropyl)polysulfide mit 2 bis 8 Schwefelatomen, wie z. B. 3,3'-Bis(triethoxysilylpropyl)tetrasulfid (TESPT), das entsprechende Disulfid oder auch Gemische aus den Sulfiden mit 1 bis 8 Schwefelatomen mit unterschiedlichen Gehalten an den verschiedenen Sulfiden, verwendet werden. TESPT kann dabei beispielsweise auch als Gemisch mit Industrieruß (Handelsname X50S der Firma Degussa) zugesetzt werden. Auch geblockte Mercaptosilane, wie sie z. B. aus der WO 99/09036 bekannt sind, können als Silan-Kupplungsagens eingesetzt werden. Auch Silane, wie sie in der WO 2008/083241 A1 , der WO 2008/083242 A1 , der WO 2008/083243 A1 und der WO 2008/083244 A1 beschrieben sind, können eingesetzt werden. Verwendbar sind z. B. Silane, die unter dem Namen NXT® in verschiedenen Varianten von der Firma Momentive, USA, oder solche, die unter dem Namen VP Si 363 von der Firma Evonik Industries vertrieben werden. Einsetzbar sind auch sogenannte "silated core polysulfides" (SCP, Polysulfide mit silyliertem Kern), die z. B. in der US 20080161477 A1 und der EP 2 114 961 B1 beschrieben werden.
  • Erfindungswesentlich ist, dass die Kautschukmischung 5 bis 150 phr, bevorzugt 20 bis 70 phr, besonders bevorzugt 20 bis 40 phr, zumindest eines aromatischen C9- und/oder eines aliphatischen C5-Kohlenwasserstoffharzes enthält. Es können auch unterschiedliche Harze im Verschnitt eingesetzt werden.
  • Aliphatische C5-Kohlenwasserstoffharze sind dabei Harze, die durch Polymerisation von Monomeren, enthaltend vorwiegend C5-Olefine, erhalten werden. Diese Monomere fallen beispielsweise beim Cracken von Erdöl an.
  • Aromatische C9-Kohlenwasserstoffharze sind Harze, die aus der C9-Fraktion als Nebenprodukt beim Cracken von Erdöl erhalten wird. Es enthält einen hohen Anteil an aromatischen Strukturen.
  • Ein besonders ausgewogenes Verhältnis von Nassgriff zu Rollwiderstand lässt sich erzielen, wenn zumindest ein aliphatisches C5-Kohlenwasserstoffharz in der Kautschukmischung eingesetzt wird.
  • In der Kautschukmischung können außerdem Weichmacher in Mengen von 1 bis 300 phr, bevorzugt von 5 bis 150 phr, besonders bevorzugt von 15 bis 90 phr, enthalten sein. Als Weichmacher können alle dem Fachmann bekannten Weichmacher wie aromatische, naphthenische oder paraffinische Mineralölweichmacher, wie z.B. MES (mild extraction solvate) oder RAE (Residual Aromatic Extract) oder TDAE (treated distillate aromatic extract), oder Rubber-to-Liquid-Öle (RTL) oder Biomass-to-Liquid-Öle (BTL) bevorzugt mit einem Gehalt an polyzyklischen Aromaten von weniger als 3 Gew.-% gemäß Methode IP 346 oder Rapsöl oder Faktisse oder Flüssig-Polymere, wie flüssiges Polybutadien - auch in modifizierter Form - eingesetzt werden. Der oder die Weichmacher werden bei der Herstellung der erfindungsgemäßen Kautschukmischung bevorzugt in wenigstens einer Grundmischstufe zugegeben.
  • Des Weiteren kann die Kautschukmischung übliche Zusatzstoffe in üblichen Gewichtsteilen enthalten, die bei deren Herstellung bevorzugt in wenigstens einer Grundmischstufe zugegeben werden. Zu diesen Zusatzstoffen zählen
    1. a) Alterungsschutzmittel, wie z. B. N-Phenyl-N'-(1,3-dimethylbutyl)-p-phenylendiamin (6PPD), N,N'-Diphenyl-p-phenylendiamin (DPPD), N,N'-Ditolyl-p-phenylendiamin (DTPD), N-Isopropyl-N'-phenyl-p-phenylendiamin (IPPD), 2,2,4-Trimethyl-1,2-dihydrochinolin (TMQ),
    2. b) Aktivatoren, wie z. B. Zinkoxid und Fettsäuren (z. B. Stearinsäure) oder Zinkkomplexe wie z. B. Zinkethylhexanoat,
    3. c) Wachse,
    4. d) Mastikationshilfsmittel, wie z. B. 2,2'-Dibenzamidodiphenyldisulfid (DBD), und
    5. e) Verarbeitungshilfsmittel, wie z.B. Fettsäuresalze, wie z.B. Zinkseifen, und Fettsäureester und deren Derivate.
  • Der Mengenanteil der Gesamtmenge an weiteren Zusatzstoffen beträgt 3 bis 150 phr, bevorzugt 3 bis 100 phr und besonders bevorzugt 5 bis 80 phr.
  • Die Vulkanisation der Kautschukmischung wird in Anwesenheit von Schwefel und/oder Schwefelspendern mit Hilfe von Vulkanisationsbeschleunigern durchgeführt, wobei einige Vulkanisationsbeschleuniger zugleich als Schwefelspender wirken können. Dabei ist der Beschleuniger ausgewählt aus der Gruppe bestehend aus Thiazolbeschleunigern und/oder Mercaptobeschleunigern und/oder Sulfenamidbeschleunigern und/oder Thiocarbamatbeschleunigern und/oder Thiurambeschleunigern und/oder Thiophosphatbeschleunigern und/oder Thioharnstoffbeschleunigern und/oder Xanthogenat-Beschleunigern und/oder Guanidin-Beschleunigern.
  • Bevorzugt ist die Verwendung eines Sulfenamidbeschleunigers, der ausgewählt ist aus der Gruppe bestehend aus N-Cyclohexyl-2-benzothiazolsufenamid (CBS) und/oder N,N-Dicyclohexylbenzothiazol-2-sulfenamid (DCBS) und/oder Benzothiazyl-2-sulfenmorpholid (MBS) und/oder N-tert-Butyl-2-benzothiazylsulfenamid (TBBS).
  • Außerdem kann die Kautschukmischung Vulkanisationsverzögerer enthalten.
  • Als schwefelspendende Substanz können dabei alle dem Fachmann bekannten schwefelspendenden Substanzen verwendet werden. Enthält die Kautschukmischung eine schwefelspendende Substanz, ist diese bevorzugt ausgewählt aus der Gruppe bestehend aus z. B. Thiuramdisulfiden, wie z. B. Tetrabenzylthiuramdisulfid (TBzTD), Tetramethylthiuramdisulfid (TMTD) oder Tetraethylthiuramdisulfid (TETD), Thiuramtetrasulfiden, wie z. B. Dipentamethylenthiuramtetrasulfid (DPTT), Dithiophosphaten, wie z. B. DipDis (Bis-(Diisopropyl)thiophosphoryldisulfid), Bis(O,O-2-ethylhexyl-thiophosphoryl)Polysulfid (z. B. Rhenocure SDT 50®, Rheinchemie GmbH, Zinkdichloryldithiophosphat (z. B. Rhenocure ZDT/S®, Rheinchemie GmbH) oder Zinkalkyldithiophosphat, und 1,6-Bis(N,N-dibenzylthiocarbamoyldithio)hexan und Diarylpolysulfiden und Dialkylpolysulfiden.
  • Auch weitere netzwerkbildende Systeme, wie sie beispielsweise unter den Handelsnamen Vulkuren®, Duralink® oder Perkalink® erhältlich sind, oder netzwerkbildende Systeme, wie sie in der WO 2010/049216 A2 beschrieben sind, können in der Kautschukmischung eingesetzt werden. Das letztere System enthält ein Vulkanisationsmittel, welches mit einer Funktionalität größer vier vernetzt und zumindest einen Vulkanisationsbeschleuniger.
  • Der Kautschukmischung wird bei deren Herstellung bevorzugt wenigstens ein Vulkanisationsmittel ausgewählt aus der Gruppe bestehend aus Schwefel, Schwefelspender, Vulkanisationsbeschleuniger und Vulkanisationsmittel, die mit einer Funktionalität größer vier vernetzen, in der Fertigmischstufe zugegeben. Hierdurch lässt sich aus der gemischten Fertigmischung durch Vulkanisation eine schwefelvernetzte Kautschukmischung für die Anwendung im Fahrzeugluftreifen herstellen.
  • Die Begriffe "vulkanisiert" und "vernetzt" werden im Rahmen der vorliegenden Erfindung synonym verwendet.
  • Die Herstellung der Kautschukmischung erfolgt nach dem in der Kautschukindustrie üblichen Verfahren, bei dem zunächst in ein oder mehreren Mischstufen eine Grundmischung mit allen Bestandteilen außer dem Vulkanisationssystem (Schwefel und vulkanisationsbeeinflussende Substanzen) hergestellt wird. Durch Zugabe des Vulkanisationssystems in einer letzten Mischstufe wird die Fertigmischung erzeugt. Die Fertigmischung wird z. B. durch einen Extrusionsvorgang weiterverarbeitet und in die entsprechende Form gebracht. Anschließend erfolgt die Weiterverarbeitung durch Vulkanisation, wobei aufgrund des im Rahmen der vorliegenden Erfindung zugegebenen Vulkanisationssystems eine Schwefelvernetzung stattfindet.
  • Die Kautschukmischung wird für die Herstellung von Fahrzeugluftreifen, wie PKW-, Van- , LKW- oder Zweiradreifen, verwendet, wobei die Kautschukmischung zumindest den mit der Fahrbahn in Berührung kommenden Teil des Laufstreifens bildet.
  • Bei einem Fahrzeugluftreifen kann der Laufstreifen aus einer einzigen Mischung bestehen, die dann ein funktionalisierte Styrol-Butadien-Copolymer A, ggf. einen weiteren Dienkautschuk, einen Füllstoff und ein aromatisches C9- und/oder ein aliphatisches C5-Kohlenwasserstoffharz enthält. Häufig weisen Fahrzeugluftreifen heute jedoch einen Laufstreifen mit einer sogenannten Cap/Base-Konstruktion auf. Unter "Cap" wird dabei der mit der Fahrbahn in Berührung kommende Teil des Laufstreifens verstanden, der radial außen angeordnet ist (Laufstreifenoberteil oder Laufstreifencap). Unter "Base" wird dabei der Teil des Laufstreifens verstanden, der radial innen angeordnet ist, und somit im Fahrbetrieb nicht oder nur am Ende des Reifenlebens mit der Fahrbahn in Berührung kommt (Laufstreifenunterteil oder Laustreifenbase). Bei einem Fahrzeugluftreifen mit einer solchen Cap/Base-Konstruktion ist zumindest die Kautschukmischung für die Cap gemäß dem Anspruch 1 ausgebildet.
  • Der erfindungsgemäße Fahrzeugluftreifen kann auch einen Laufstreifen aufweisen, der aus verschiedenen nebeneinander und/oder untereinander angeordneten Laufstreifenmischungen besteht (Multikomponentenlaufstreifen).
  • Bei der Herstellung des Fahrzeugluftreifens wird die Mischung als Fertigmischung vor der Vulkanisation in die Form eines Laufstreifens, bevorzugt wenigstens in die Form einer Laufstreifencap, gebracht und bei der Herstellung des Fahrzeugreifenrohlings wie bekannt aufgebracht. Der Laufstreifen, bevorzugt wenigstens die Laufstreifencap, kann auch in Form eines schmalen Kautschukmischungsstreifens auf einen Reifenrohling aufgewickelt werden.
  • Die Erfindung soll nun anhand von Vergleichs- und Ausführungsbeispielen, die in den Tabellen 1 und 2 zusammengefasst sind, näher erläutert werden.
  • Es wurde ein funktionalisiertes Styrol-Butadien-Copolymer A1 gemäß folgender Versuchsbeschreibung synthetisiert:
    In einem 5 L-Autoklaven wurden unter Stickstoffatmosphäre 2750 g Cyclohexan, 10,3 g Tetrahydrofuran, 50 g Styrol, 440 g 1,3-Butadien und 3,48 mmol N-(t-Butyldimethylsilyl)piperazin gegeben. Die Temperatur der Reaktionsmischung wurde auf 10 °C heruntergekühlt und im Anschluss eine Cyclohexanlösung, enthaltend 5,8 mmol n-Butyllithium, zum Start der Polymerisationsreaktion zugegeben. Die Polymerisation wurde unter adiabatischen Bedingungen durchgeführt. Es wurde eine maximale Temperatur von 90 °C erreicht. Bei Erreichung eines Umsetzungsgrades von 99 % wurden 10 g 1,3-Butadien hinzugefügt und die Monomere wurden für weitere 5 min polymerisiert. 10 g des entstandenen Polymers wurden für Analysezwecke entnommen. Anschließend wurde eine Lösung aus 4,96 mmol N,N-bis(Trimethylsilyl)aminopropylmethyldimethoxysilan in Cyclohexan zum restlichen Reaktionsgemisch hinzugefügt und für 15 min reagieren gelassen. Zu der erhaltenen Polymerlösung mit einem Polymer auf Basis von konjugierten Dienen wurden 2,07g (12,18 mmol) Siliziumtetrachlorid als ein Metallhalogenid gegeben. Es wurde für 5 min gemischt. Danach wurde eine Cyclohexanlösung enthaltend 4,96 mmol Tetrakis(2-Ethylhexyloxy)titan hinzugefügt und für weitere 5 min gemischt. Im Anschluss wurden 2,0 g 2,6-Di-tert-butyl-p-cresol zugegeben. Das Lösemittel wurde danach mit Hilfe einer Wasserdampfdestillation entfernt, wobei der pH-Wert mi Hilfe von Natriumhydroxid auf 10 eingestellt wurde. Das verbleibende funktionalisierte Styrol-Butadien-Copolymer A wurde mit Heizwalzen bei einer Temperatur von 110 °C getrocknet.
  • Dieses so erhaltene funktionalisierte Styrol-Butadien-Copolymer A1 wurde für die erfindungsgemäßen Mischungen der Tabelle 1 eingesetzt.
  • Ferner wurde ein funktionalisiertes Styrol-Butadien-Copolymer A2 gemäß folgender Versuchsbeschreibung synthetisiert:
    In einem 5 L-Autoklaven wurden unter Stickstoffatmosphäre 2500 g Cyclohexan, 50 g Tetrahydrofuran, 125 g Styrol, 365 g 1,3-Butadien und 4,2 mmol N-(t-Butyldimethylsilyl)piperazin gegeben. Die Temperatur der Reaktionsmischung wurde auf 10 °C heruntergekühlt und im Anschluss eine Cyclohexanlösung, enthaltend 5,2 mmol n-Butyllithium, zum Start der Polymerisationsreaktion zugegeben. Die Polymerisation wurde unter adiabatischen Bedingungen durchgeführt. Es wurde eine maximale Temperatur von 85 °C erreicht. Bei Erreichung eines Umsetzungsgrades von 99 % wurden 10 g 1,3-Butadien hinzugefügt und die Monomere wurden für weitere 5 min polymerisiert. 10 g des entstandenen Polymers wurden für Analysezwecke entnommen. Anschließend wurde eine Lösung aus 4,46 mmol N,N-bis(Trimethylsilyl)aminopropylmethyldimethoxysilan in Cyclohexan zum restlichen Reaktionsgemisch hinzugefügt und für 15 min reagieren gelassen. Zu der erhaltenen Polymerlösung wurden 2,0 g 2,6-Di-tert-butyl-p-cresol zugegeben. Das Lösemittel wurde danach mit Hilfe einer Wasserdampfdestillation entfernt, wobei der pH-Wert mi Hilfe von Natriumhydroxid auf 9 eingestellt wurde. Das verbleibende funktionalisierte Styrol-Butadien-Copolymer A2 wurde mit Heizwalzen bei einer Temperatur von 110 °C getrocknet.
  • Dieses so erhaltene funktionalisierte Styrol-Butadien-Copolymer A2 wurde für die erfindungsgemäßen Mischungen der Tabelle 2 eingesetzt.
  • In den Tabellen 1 und 2 sind Vergleichsmischungen mit V, die erfindungsgemäßen Mischungen mit E gekennzeichnet.
  • Die Mischungsherstellung erfolgte nach den in der Kautschukindustrie üblichen Verfahren unter üblichen Bedingungen in drei Stufen in einem Labormischer bei dem zunächst in der ersten Mischstufe (Grundmischstufe) alle Bestandteile außer dem Vulkanisationssystem (Schwefel und vulkanisationsbeeinflussende Substanzen) vermischt wurden. In der zweiten Mischstufe wurde die Grundmischung nochmals durchmischt. Durch Zugabe des Vulkanisationssystems in der dritten Stufe (Fertigmischstufe) wurde die Fertigmischung erzeugt, wobei bei 90 bis 120 °C gemischt wurde.
  • Mit den Mischungen der Tabelle 2 wurden die Vernetzungszeiten bei 10 % Umsatz (t10 Anvulkanisationszeit), 40 % Umsatz (t40) und 90 % Umsatz (t90, Ausvulkanisationszeit) mittels rotorlosem Vulkameter (MDR = Moving Disc Rheometer) gemäß ASTM D5289 und ISO 6502 ermittelt.
  • Aus sämtlichen Mischungen wurden Prüfkörper durch 20-minütige Vulkanisation unter Druck bei 160 °C hergestellt und mit diesen Prüfkörpern für die Kautschukindustrie typische Materialeigenschaften mit den im Folgenden angegebenen Testverfahren ermittelt:
    • Shore-A-Härte bei Raumtemperatur mittels Durometer gemäß DIN ISO 7619-1
    • Rückprallelastizität bei Raumtemperatur gemäß DIN 53 512 als Indikator für den Nassgriff (kleinerer Wert korreliert mit einem besseren Nassgriff beim Reifen)
    • Rückprallelastizität bei 70 °C gemäß DIN 53 512 als Indikator für den Rollwiderstand (größerer Wert korreliert mit einem besseren Rollwiderstand beim Reifen)
    Tabelle 1
    Bestandteile Einheit 1(V) 2(V) 3(V) 4(V) 5(E) 6(E)
    Naturkautschuk phr 15 15 15 15 15 15
    SBR a phr 85 85 85
    SBR A1b phr 85 85 85
    Ruß N339 phr 5 5 5 5 5 5
    Kieselsäure phr 115 115 115 115 115 115
    Weichmacher phr 49 49 49 49 49 49
    aliphat. C5-Harzc phr 30 30
    aromat. C9-Harzd phr 30 30
    Zusatzstoffe phr 19 19 19 19 19 19
    Silan-Kupplungsagense phr 8,3 8,3 8,3 8,3 8,3 8,3
    Beschleuniger phr 5,4 5,4 5,4 5,4 5,4 5,4
    Schwefel phr 1,3 1,3 1,3 1,3 1,3 1,3
    Eigenschaften
    Shorehärte ShoreA 76 69 75 78 68 72
    Rückpra. bei RT % 32 38 24 24 27 24
    Rückpra. bei 70 °C % 49 56 45 45 56 48
    Δ (Rückpra. bei 70 °C - Rückpra. bei RT) - 17 18 22 21 29 24
    a NS 612, Nippon Zeon, Japan, lösungspolymerisiertes Styrol-Butadien-Copolymer, Styrol-Anteil: 15 Gew.-%, funktionalisiert mit Epoxy- und Hydroxygruppen
    b funktionalisiertes lösungspolymerisiertes Styrol-Butadien-Copolymer A1 gemäß Versuchsbeschreibung, Styrol-Anteil: 10 Gew.-%, Aminfunktionalisierung: Piperazingruppe, Tg = -60 °C
    c Piccotac 1095, Eastman, USA, C5-Kohlenwasserstoffharz, Erweichungspunkt = 96 °C (gemäß ASTM E 28), Mw = 1700 g/mol
    d Hikotack P-90, Kolon Industries, Korea, C9-Kohlenwasserstoffharz, Erweichungspunkt = 98 °C (gemäß ASTM E 28), Mw = 1200 g/mol
    e TESPD, 3,3'-Bis(triethoxysilylpropyl)disulfid
  • Aus den Daten der Tabelle 1 wird ersichtlich, dass erst durch die gleichzeitige Anwesenheit des funktionalisierten Styrol-Butadien-Copolymers A1 und eines aliphatischen C5-Kohlenwasserstoffharzes oder eines aromatischen C9-Kohlenwasserstoffharzes (s. 5(E) und 6(E)) eine Verbesserung der Rollwiderstandindikatoren bei gleichzeitiger Verbesserung der Nassbremsindikatoren erreicht werden kann. Besonders überraschend ist, dass die erreichte Verbesserung des Zielkonfliktes aus Rollwiderstand und Nassgriff (s. a. Differenz der Rückprallelastizitäten) deutlich über den additiven Effekt der einzelnen Maßnahmen gemäß 2(V), 3(V) und 4(V) hinausgeht.
  • Ein besonders positiver Effekt auf den Konflikt auf Rollwiderstand und Nassgriff kann bei Kombination von funktionalisiertem Styrol-Butadien-Copolymers A mit einem aliphatischen C5-Kohlenwasserstoffharz gemäß 5(E) erzielt werden. Tabelle 2
    Bestandteile Einheit 7(V) 8(V) 9(V) 10(E)
    Naturkautschuk phr 15 15 15 15
    SBR f phr 85 85
    SBR A2g phr 85 85
    Ruß N339 phr 5 5 5 5
    Kieselsäure phr 115 115 115 115
    Weichmacher phr 49 49 49 49
    aromat. C9-Harzd phr 30 30
    Zusatzstoffe phr 19 19 19 19
    Silan-Kupplungsagense phr 8,3 8,3 8,3 8,3
    Beschleuniger phr 5,4 5,4 5,4 5,4
    Schwefel phr 1,3 1,3 1,3 1,3
    Eigenschaften
    t10 min 2,5 3,1 2,6 2,2
    t40 min 3,2 3,9 3,5 3,1
    t90 min 9,2 10,6 9,9 6,4
    Shorehärte ShoreA 76 69 78 75
    Rückpra. bei RT % 18 19 9 8
    Rückpra. bei 70 °C % 45 54 43 46
    f NS 616, Nippon Zeon, Japan, lösungspolymerisiertes Styrol-Butadien-Copolymer, Styrol-Anteil: 21 Gew.-%, funktionalisiert mit Epoxy- und Hydroxygruppen
    g funktionalisiertes lösungspolymerisiertes Styrol-Butadien-Copolymer A2 gemäß Versuchsbeschreibung, Styrol-Anteil: 27 Gew.-%, Aminfunktionalisierung: Piperazingruppe, Tg = -23 °C
    d Hikotack P-90, Kolon Industries, Korea, C9-Kohlenwasserstoffharz, Erweichungspunkt = 98 °C (gemäß ASTM E 28), Mw = 1200 g/mol
    e TESPD, 3,3'-Bis(triethoxysilylpropyl)disulfid
  • Der Tabelle 2 kann man entnehmen, dass durch die spezielle Kombination des funktionalisierten Styrol-Butadien-Copolymers A2 mit einem aromatischen C9-Kohlenwasserstoffharzes (s. 10(E)) eine Verbesserung der Rollwiderstandindikatoren bei gleichzeitiger Verbesserung der Nassbremsindikatoren erreicht werden kann. Bei Verwendung des funktionalisierten Styrol-Butadien-Copolymers A2 in Kombination mit dem Kohlenwasserstoffharz kann überraschenderweise auch eine deutliche Verkürzung der Vulkanisationszeit erzielt werden, wodurch die Produktivität gesteigert werden kann. Vorteile ergeben sich bei der erfindungsgemäßen Mischung 10(E) auch im Hinblick auf die ShoreA-Härte, welche bei den aus den Mischungen hergestellten Reifen zu einem verbesserten Handlingverhalten führt.

Claims (12)

  1. Schwefelvernetzbare Kautschukmischung, insbesondere für den Laufstreifen von Fahrzeugluftreifen, enthaltend
    - 20 - 100 phr (Gewichtsteile, bezogen auf 100 Gewichtsteile der gesamten Kautschuke in der Mischung) zumindest eines funktionalisierten Styrol-Butadien-Copolymers A,
    wobei das funktionalisierte Styrol-Butadien-Copolymer A an einem Kettenende mit einer aminogruppen- und/oder ammoniumgruppen-enthaltenden Organosilylgruppe funktionalisiert ist,
    und wobei das funktionalisierte Styrol-Butadien-Copolymer A am anderen Kettenende mit einer Aminogruppe funktionalisiert ist, wobei die Aminogruppe am anderen Kettenende eine ringförmige Diamingruppe ist,
    - bis zu 80 phr zumindest eines weiteren Dienkautschuks,
    - 40 - 350 phr zumindest eines Füllstoffes und
    - 5 bis 150 phr zumindest eines aromatischen C9- und/oder eines aliphatischen C5-Kohlenwasserstoffharzes.
  2. Kautschukmischung nach Anspruch 1, dadurch gekennzeichnet, dass das funktionalisierte Styrol-Butadien-Copolymer A ein lösungspolymerisiertes Styrol-Butadien-Copolymer ist.
  3. Kautschukmischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das funktionalisierte Styrol-Butadien-Copolymer A einen Styrol-Gehalt von 5 bis 20 Gew.-% aufweist.
  4. Kautschukmischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das funktionalisierte Styrol-Butadien-Copolymer A einen Styrol-Gehalt von 21 bis 30 Gew.-% aufweist.
  5. Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das funktionalisierte Styrol-Butadien-Copolymer A eine Glasübergangstemperatur von -30 bis -80 °C aufweist.
  6. Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der weitere Dienkautschuk ausgewählt ist aus der Gruppe, bestehend aus natürlichem Polyisopren, synthetischem Polyisopren, Polybutadien und weiteren Styrol-Butadien-Copolymeren.
  7. Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie als Füllstoff Kieselsäure enthält.
  8. Kautschukmischung nach Anspruch 7, dadurch gekennzeichnet, dass sie 50 bis 150 phr Kieselsäure enthält.
  9. Kautschukmischung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass sie 1 - 15 phf (Gewichtsteile, bezogen auf 100 Gewichtsteile Kieselsäure) zumindest eines Silan-Kupplungsagenzes enthält.
  10. Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie 20 bis 70 phr, vorzugsweise 20 bis 40 phr, zumindest eines aromatischen C9- und/oder eines aliphatischen C5-Kohlenwasserstoffharzes enthält.
  11. Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie zumindest ein aliphatisches C5-Kohlenwasserstoffharzes enthält.
  12. Fahrzeugluftreifen mit einem Laufstreifen, dessen zumindest mit der Fahrbahn in Berührung kommender Teil aus einer mit Schwefel vulkanisierten Kautschukmischung nach einem der Ansprüche 1 bis 11 besteht.
EP20178430.3A 2019-07-04 2020-06-05 Kautschukmischung und reifen Active EP3760671B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019209822.3A DE102019209822A1 (de) 2019-07-04 2019-07-04 Kautschukmischung und Reifen

Publications (2)

Publication Number Publication Date
EP3760671A1 EP3760671A1 (de) 2021-01-06
EP3760671B1 true EP3760671B1 (de) 2022-08-10

Family

ID=71069675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20178430.3A Active EP3760671B1 (de) 2019-07-04 2020-06-05 Kautschukmischung und reifen

Country Status (3)

Country Link
EP (1) EP3760671B1 (de)
DE (1) DE102019209822A1 (de)
ES (1) ES2929565T3 (de)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9806096B1 (pt) 1997-08-21 2009-01-13 mercaptosilano bloqueado; processo para a manufatura de uma borracha com carga; processo para a manufatura de um mercaptosilano bloqueado; composiÇço de borracha; e silano.
US7968635B2 (en) 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing free-flowing filler compositions
US7968633B2 (en) 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing free-flowing filler compositions
US7696269B2 (en) 2006-12-28 2010-04-13 Momentive Performance Materials Inc. Silated core polysulfides, their preparation and use in filled elastomer compositions
US7968634B2 (en) 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing silated core polysulfides
US7968636B2 (en) 2006-12-28 2011-06-28 Continental Ag Tire compositions and components containing silated cyclic core polysulfides
US8182626B2 (en) 2008-10-30 2012-05-22 Continental Ag Tire composition with improved vulcanizing agent
JP5200134B2 (ja) * 2010-07-16 2013-05-15 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
WO2012147565A1 (ja) 2011-04-26 2012-11-01 Jsr株式会社 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
DE102013105193B4 (de) * 2013-05-22 2024-10-17 Continental Reifen Deutschland Gmbh Kautschukmischung und Verwendung derselben in Fahrzeugreifen
CN110643094A (zh) * 2014-09-08 2020-01-03 住友橡胶工业株式会社 充气轮胎
JP6030696B1 (ja) * 2015-04-21 2016-11-24 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
ES2745311T3 (es) 2015-09-29 2020-02-28 Continental Reifen Deutschland Gmbh Mezcla de cauchos y neumático de vehículo
EP3150401B1 (de) 2015-09-29 2018-11-14 Continental Reifen Deutschland GmbH Kautschukmischung und fahrzeugreifen
ES2711632T3 (es) 2015-09-29 2019-05-06 Continental Reifen Deutschland Gmbh Mezcla de caucho y neumático de vehículo
DE102015218746A1 (de) 2015-09-29 2017-03-30 Continental Reifen Deutschland Gmbh Kautschukmischung und Fahrzeugreifen
DE102015218745B4 (de) 2015-09-29 2024-09-12 Continental Reifen Deutschland Gmbh Kautschukmischung und Fahrzeugreifen
JP6253822B1 (ja) * 2017-02-20 2017-12-27 住友ゴム工業株式会社 キャップトレッド用ゴム組成物及び空気入りタイヤ
US10428205B2 (en) * 2017-08-31 2019-10-01 The Goodyear Tire & Rubber Company Pneumatic tire
US10544288B2 (en) * 2017-08-31 2020-01-28 The Goodyear Tire & Rubber Company Pneumatic tire

Also Published As

Publication number Publication date
ES2929565T3 (es) 2022-11-30
EP3760671A1 (de) 2021-01-06
DE102019209822A1 (de) 2021-01-07

Similar Documents

Publication Publication Date Title
DE102015218745B4 (de) Kautschukmischung und Fahrzeugreifen
EP3500441B1 (de) Schwefelvernetzbare kautschukmischung und fahrzeugreifen
EP3500597B1 (de) Kautschukblend, schwefelvernetzbare kautschukmischung und fahrzeugreifen
EP3741802A1 (de) Kautschukmischung und reifen
EP4011958B1 (de) Kautschukmischung und fahrzeugluftreifen
EP3500598B1 (de) Kautschukblend, schwefelvernetzbare kautschukmischung und fahrzeugreifen
EP3785929B1 (de) Kautschukmischung und fahrzeugluftreifen
EP4011644B1 (de) Kautschukmischung und fahrzeugluftreifen
EP3500626B1 (de) Kautschukblend, schwefelvernetzbare kautschukmischung und fahrzeugreifen
EP3932984B1 (de) Fahrzeugluftreifen
EP4073127A1 (de) Schwefelvernetzbare kautschukmischung und fahrzeugluftreifen
EP3760671B1 (de) Kautschukmischung und reifen
EP3760670B1 (de) Kautschukmischung und reifen
DE102019209825A1 (de) Kautschukmischung und Reifen
DE102019209830A1 (de) Kautschukmischung und Reifen
EP4011643B1 (de) Kautschukmischung und fahrzeugluftreifen
EP4011920B1 (de) Kautschukmischung und fahrzeugluftreifen
EP4105277B1 (de) Kautschukmischung und reifen
EP4355589A1 (de) Kautschukmischung und reifen
DE102020215723A1 (de) Kautschukmischung und Fahrzeugluftreifen
DE102021206273A1 (de) Kautschukmischung und Reifen
DE102020215724A1 (de) Kautschukmischung und Fahrzeugluftreifen
DE102020215715A1 (de) Kautschukmischung und Fahrzeugluftreifen
DE102021206271A1 (de) Kautschukmischung und Reifen
DE102020215714A1 (de) Kautschukmischung und Fahrzeugluftreifen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210706

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C08C 19/44 20060101ALI20211129BHEP

Ipc: C08C 19/25 20060101ALI20211129BHEP

Ipc: C08C 19/22 20060101ALI20211129BHEP

Ipc: C08L 9/06 20060101AFI20211129BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20220110

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C08C 19/44 20060101ALI20220202BHEP

Ipc: C08C 19/25 20060101ALI20220202BHEP

Ipc: C08C 19/22 20060101ALI20220202BHEP

Ipc: C08L 9/06 20060101AFI20220202BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C08C 19/44 20060101ALI20220328BHEP

Ipc: C08C 19/25 20060101ALI20220328BHEP

Ipc: C08C 19/22 20060101ALI20220328BHEP

Ipc: C08L 9/06 20060101AFI20220328BHEP

INTG Intention to grant announced

Effective date: 20220426

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1510524

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001498

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2929565

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221130

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220810

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001498

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230602

26N No opposition filed

Effective date: 20230511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230830

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230605

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502020001498

Country of ref document: DE

Owner name: CONTINENTAL REIFEN DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL REIFEN DEUTSCHLAND GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230605

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240731

Year of fee payment: 5