EP3491158B1 - Steel strip for producing a non-oriented electrical steel, and method for producing such a steel strip - Google Patents
Steel strip for producing a non-oriented electrical steel, and method for producing such a steel strip Download PDFInfo
- Publication number
- EP3491158B1 EP3491158B1 EP17745283.6A EP17745283A EP3491158B1 EP 3491158 B1 EP3491158 B1 EP 3491158B1 EP 17745283 A EP17745283 A EP 17745283A EP 3491158 B1 EP3491158 B1 EP 3491158B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- steel
- rolling
- hot
- steel strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 54
- 239000010959 steel Substances 0.000 title claims description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 title description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 26
- 239000000956 alloy Substances 0.000 claims description 26
- 238000005096 rolling process Methods 0.000 claims description 24
- 238000005266 casting Methods 0.000 claims description 22
- 238000000137 annealing Methods 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 15
- 238000005098 hot rolling Methods 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 238000009413 insulation Methods 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000000161 steel melt Substances 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052681 coesite Inorganic materials 0.000 claims description 4
- 229910052593 corundum Inorganic materials 0.000 claims description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052682 stishovite Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 229910052905 tridymite Inorganic materials 0.000 claims description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011572 manganese Substances 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- 239000010949 copper Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 238000005097 cold rolling Methods 0.000 description 12
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 9
- 229910000976 Electrical steel Inorganic materials 0.000 description 8
- 238000007792 addition Methods 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- 230000009467 reduction Effects 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 101100537098 Mus musculus Alyref gene Proteins 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 101150095908 apex1 gene Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- -1 iron-silicon-aluminum Chemical compound 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
- C21D8/1283—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
- C21D8/1211—Rapid solidification; Thin strip casting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1261—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- the invention relates to a steel strip for producing a non-grain-oriented electrical steel sheet and a method for producing such a steel strip.
- Materials for electrical steel are z. B. from the DE 101 53 234 A1 or DE 601 08 980 T2 known. They usually consist of an iron-silicon or iron-silicon-aluminum alloy, a distinction being made between grain-oriented (KO) and non-grain-oriented (NO) electrical sheets and these are used for different applications. Aluminum and silicon are added in particular in order to obtain an increase in strength and a reduction in density, and in particular an increase in electrical resistance, with the magnetic saturation polarization as unchanged as possible.
- non-grain-oriented electrical steel For applications in electrical engineering, in which the magnetic flux is not fixed in any particular direction and therefore equally good magnetic properties are required in all directions, electrical steel is usually produced with properties that are as isotropic as possible, which is referred to as non-grain-oriented (NO) electrical steel.
- NO non-grain-oriented
- the ideal structure (structure) for a non-grain-oriented (NO-) electrical steel is a polycrystalline structure with grain sizes between 20 ⁇ m and 200 ⁇ m, whereby the crystallites are randomly aligned in the plane of the sheet with the surface (100).
- the magnetic properties of real, non-grain-oriented electrical steel in the plane of the sheet are dependent to a small extent on the direction of magnetization. The differences in loss between the longitudinal and transverse directions are max. 10%.
- the development of a sufficient isotropy of the magnetic properties in non-grain-oriented electrical steel is significantly influenced by the design of the hot forming, cold forming and final annealing process.
- the magnetic properties of electrical steel are essentially due to a high degree of purity, the content of silicon and aluminum (up to approx. 4 mass fractions in%) and the targeted addition of others Alloying elements such as B. manganese, sulfur and nitrogen, as well as determined by hot rolling, cold rolling and annealing processes.
- Alloying elements such as B. manganese, sulfur and nitrogen, as well as determined by hot rolling, cold rolling and annealing processes.
- the usual sheet thicknesses are in the range well below 1 mm, e.g. B. at 0.18 or 0.35 mm.
- the one from the Offenlegungsschrift DE 101 53 234 A1 known material for a non-grain oriented electrical steel sheet has an alloy composition in wt .-% with C ⁇ 0.02%, Mn ⁇ 1.2%, Si 0.1-4.4% and Al 0.1-4.4% .
- the Patent DE 603 06 365 T2 discloses a material for a non-grain-oriented electrical steel sheet in% by weight, consisting of up to about 6.5% silicon, 5% chromium, 0.05% carbon, 3% aluminum, 3% manganese, the remainder iron and residues.
- the steel strip is produced by a vertical thin strip casting process in which the liquid steel is poured into the casting gap of two counter-rotating, internally cooled casting rolls. The cast strip can then be hot-rolled and cold-rolled, with strip thicknesses of less than 1 mm being achieved.
- a hot strip for producing a non-grain-oriented or grain-oriented electrical steel sheet, the hot strip consisting of the following alloy composition in% by weight: C: 0.001 to 0.08, Al: 4.8 to 20, Si: 0.05 to 10, B : up to 0.1, Zr: up to 0.1, Cr: 0.1 to 4, remainder iron and impurities from the melting process.
- the hot strip is manufactured in such a way that the melt is first poured into a pre-strip in the range between 6 and 30 mm in a horizontal strip caster in a flow-calmed and bending-free manner and then rolled into hot strip with a degree of deformation of at least 50%. The hot strip can then be cold rolled to a thickness of up to 0.150 mm.
- the known alloys for non-grain oriented electrical steel have the disadvantage that the magnetic properties, in particular the hysteresis losses, are heavily dependent on the frequency and the amplitude of the magnetizing current. In particular, increase at high frequencies and higher amplitudes clearly show the hysteresis losses, which has a disadvantageous effect especially with high-speed motors.
- the electrical steel sheet is made of steel with the following chemical composition: C: 0.01% or less; Si: 2.0 to 7.0%; Al: 0.3 to 10.0%; Mn: 0.2 to 2.0%; P: 0.1% or less; S: 0.005% or less and of Ni: 0.1 to 5% and / or Cu: 0.1 to 3%.
- JP 2008 223045 A discloses a non-oriented electromagnetic steel sheet whose strength can be increased with an aging heat treatment.
- the steel sheet has a steel composition containing, in mass%, 0.02 or less C; 0 to 1 Si; 1 or less; Mn: 0.2 or less; P: 0.03 or less; S: 2 to 4; Al: 0.1 to 2 Ni; comprises more than 1 to 3 Cu and the remainder Fe with impurities.
- the disclosure document WO 00/75389 A1 describes a steel component of a solid oxide fuel cell.
- the steel component should have good heat resistance and be particularly suitable for use in an environment with an oxidizing atmosphere.
- the following chemical composition is specified in% by weight for the steel component: Al: 5.0-10.0; Si: 0.1-3.8; Mn: ⁇ 0.5; Cu: ⁇ 0.23; Ni: ⁇ 0.61; C: ⁇ 0.02; P: ⁇ 0.04; S: ⁇ 0.04; Cr: ⁇ 5.0 balance iron and unavoidable impurities.
- the object of the invention is to specify a steel strip for producing a non-grain-oriented electrical steel sheet which, compared to known electrical steel sheets, has significantly improved frequency-independent magnetic properties, in particular significantly reduced hysteresis losses. Another object is to provide a manufacturing method for such a steel strip.
- the specific volume resistance of the material can also be advantageously influenced.
- this essentially means that at least 50% of the insulation layer consists of Al 2 O 3 or SiO 2 or the sum of the two aforementioned components.
- the thickness of the insulation layer is preferably in the range from 20 ⁇ m to 100 ⁇ m and particularly preferably in the range from 20 ⁇ m to 50 ⁇ m.
- Al-containing precipitates in the steel significantly increase the strength.
- the minimum aluminum content is set at 1% by weight.
- Al contents higher than 12% by weight can lead to difficulties in cold rolling due to the formation of ordered phases. It is therefore advantageous to adhere to Al contents of up to 10% by weight.
- the hot strip according to claim 16 is hot-rolled at temperatures above 1000 ° C or higher, there is a very high level of protection against scaling. Due to the extraordinarily high Al contents of up to 12% by weight or Si of up to 3.5% by weight, a dense, intrinsically formed insulation layer essentially consisting of Al 2 O 3 is formed on the surface of the heated sheet and / or SiO 2 , which effectively reduces or even completely inhibits scaling of the iron in the steel.
- the thickness of the layer can also advantageously be influenced by the temperature and the time span of the annealing, in particular the final annealing of the steel strip, which is usually understood to mean a cold strip. The thickness of the layer increases with increasing temperature and time of annealing.
- this layer of scale should not exceed a thickness of 100 ⁇ m, better 50 ⁇ m, so that the layer, because of the increasing brittleness with increasing thickness, the rollability is not adversely affected by flaking scale.
- An addition of Si causes an increase in the electrical resistance.
- a minimum content of 0.3% by weight is required to achieve an effect.
- contents of more than 3.5% by weight Si the cold-rollability is reduced, since the material becomes increasingly brittle and there are more edge cracks on the steel strip.
- Contents of 1.0 to 3.0% by weight and preferably from 1.5 to 2.5% by weight are therefore advantageously set.
- the addition of Si and Al represents an optimal combination of increasing the electrical resistance and reducing the magnetic saturation polarization in the selected alloy element contents.
- the carbon content should be kept as low as possible in order to prevent magnetic aging, which is caused by carbide precipitations, in the finished steel strip. Low carbon contents lead to an improvement in the magnetic properties, since fewer defects occur in the material, which are caused, for example, by the carbon atoms and carbides. Carbon contents of a maximum of 0.03% by weight have been found to be favorable.
- Manganese is contained in the steels according to the invention in an amount of more than 0.25 up to 10% by weight. Manganese increases the volume resistivity. In order to produce a corresponding effect, the steel should contain more than 0.25% by weight of manganese. In order to ensure problem-free further processing by hot and cold rolling, the manganese content should not exceed 10% by weight because of the formation of brittle phases.
- a negative effect of Mn for the rollability depends on the sum of the elements Al, Si and Mn. A total Mn + Al + Si content of less than or equal to 20% by weight should advantageously be maintained as the upper limit for the rollability.
- the addition of copper also increases the volume resistivity.
- the Cu content should be more than 0.05% by weight. No more than 3% by weight Cu should be added to the steel, since otherwise the rollability is impaired due to precipitates that form on the grain boundaries and solder cracks may occur during hot rolling.
- the addition of nickel has a positive effect in terms of reducing the magnetic reversal losses.
- the minimum content should be above 0.01% by weight, but since nickel is a very expensive element, a maximum value of 5.0% by weight should not be exceeded for economic reasons.
- the nickel content is preferably between 0.01 and 3.0% by weight.
- these alloy compositions can be used to produce steel strips with similar electromagnetic properties with a specific density of 6.40 to 7.30 g / cm 3 in order to meet the requirements for the lowest possible specific weight of the steel strip.
- the mechanical properties can also be varied over a wide range through the different alloy concepts.
- Steel strips according to the invention have a strength Rm of 450 to 690 MPa, a yield point Rp0.2 of 310 to 550 MPa and an elongation A80 of 5 to 30%.
- the advantage of the proposed method is also to be seen in the fact that when a horizontal strip caster is used, macro segregation and voids can largely be avoided due to the very homogeneous cooling conditions in the horizontal strip caster.
- the strip casting process In terms of process technology, it is proposed for the strip casting process to achieve flow calming by using an electromagnetic brake that generates a synchronous or optimal relative speed to the strip, which ensures that, in the ideal case, the speed of the melt inflow is equal to the speed of the circulating one Conveyor belt is.
- the bending during solidification which is regarded as disadvantageous, is avoided in that the underside of the casting belt receiving the melt is supported on a plurality of rollers lying next to one another.
- the support is reinforced in such a way that a negative pressure is generated in the area of the casting belt, so that the casting belt is pressed firmly onto the rollers.
- the Al-rich or Si-rich melt solidifies in an almost oxygen-free casting atmosphere.
- the length of the conveyor belt is chosen so that at the end of the conveyor belt the pre-belt has largely solidified before it is deflected.
- the rolling of the pre-strip into hot strip can be done either in-line or separately off-line. Before the off-line rolling, the pre-strip can either be directly hot reeled or cut into sheets after production before cooling. The strip or sheet material is then reheated after any cooling and unwound for off-line rolling or reheated and rolled as sheet.
- the rolling of the hot strip to its final thickness can be carried out by means of classic cold rolling at room temperature or, according to the invention, particularly advantageously at an elevated temperature well above room temperature.
- finish rolling is used below when a hot strip is finish-rolled at an elevated temperature to the required final thickness.
- finish rolling at elevated temperatures is that it can significantly reduce a possible tendency to edge cracks during rolling.
- the hot strip is heated to a temperature range from 350 to 570 ° C., preferably from 350 to 520 ° C., and is finish-rolled to the intended final thickness at this temperature.
- the hot strip is finish-rolled to the required final thickness at room temperature.
- two-stage cold rolling according to Route 2 can be used by first rolling to the desired final thickness at room temperature with a degree of thickness reduction of up to 60%, then in a temperature range of 550 aged up to 650 ° C for 40 to 60 min, and then the remaining 40% of the desired final thickness is in turn achieved by cold rolling.
- a material, in particular with an increased Al content greater than 6% by weight or Al + Si in total greater than 6% by weight, which has edge cracks after the first cold rolling, can be produced according to route 3 by finish rolling at an elevated temperature. After heating in a temperature range from 350 to 600 ° C, preferably 350 to 520 ° C, rolling is carried out, and then iteratively reheated in the aforementioned temperature range for 2-5 min between the rolling steps and finish-rolled until the desired final thickness is reached.
- Table 2 shows the mechanical properties of the alloys and the determined specific density of the materials. In addition to different mechanical properties, materials with different specific densities can also be produced, so that a wide range of requirements can be met for the materials according to the invention.
- Table 2 Mechanical properties; 0.7mm thickness alloy Rp 0.2 Rm A80 density [N / mm 2 ] [%] [kg / dm 3 ] 13 679 688 2 6.8 17th 570 635 6th 6.9 22nd 560 600 1.6 7.1 Ref1 500 600 15.0 7.6
- Table 3 shows the results for measuring the frequency dependence of the magnetic flux density B max on steel sheets with a thickness of 0.7 mm of the alloys examined. The measurements were carried out at frequencies f of 50, 200, 400, 750 and 1000 Hz. The results impressively demonstrate the extensive frequency independence of the magnetic flux density and thus the hysteresis losses in a periodic alternating field.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
Die Erfindung betrifft ein Stahlband zur Herstellung eines nichtkornorientierten Elektroblechs und ein Verfahren zur Herstellung eines solchen Stahlbandes.The invention relates to a steel strip for producing a non-grain-oriented electrical steel sheet and a method for producing such a steel strip.
Werkstoffe für Elektrobleche sind z. B. aus der
Für Anwendungen im Elektromaschinenbau, bei denen der magnetische Fluss auf keine bestimmte Richtung festgelegt ist und deshalb gleich gute magnetische Eigenschaften in allen Richtungen verlangt werden, erzeugt man üblicherweise Elektroband mit möglichst isotropen Eigenschaften, welches als nichtkornorientiertes (NO-) Elektroband bezeichnet wird. Dieses wird schwerpunktmäßig in Generatoren, Elektromotoren, Schützen, Relais und Kleintransformatoren eingesetzt.For applications in electrical engineering, in which the magnetic flux is not fixed in any particular direction and therefore equally good magnetic properties are required in all directions, electrical steel is usually produced with properties that are as isotropic as possible, which is referred to as non-grain-oriented (NO) electrical steel. This is mainly used in generators, electric motors, contactors, relays and small transformers.
Die ideale Struktur (Gefügeaufbau) für ein nichtkornorientiertes (NO-) Elektroband ist ein polykristallines Gefüge mit Korngrößen zwischen 20 µm und 200 µm, wobei die Kristallite regellos in der Blechebene mit der Fläche (100) ausgerichtet sind. In der Praxis sind jedoch die magnetischen Eigenschaften von realem nichtkornorientierten Elektroband in der Blechebene in geringem Umfang von der Magnetisierungsrichtung abhängig. So betragen die Verlustunterschiede zwischen Längs- und Querrichtung max. 10 %. Die Ausprägung einer hinreichenden Isotropie der magnetischen Eigenschaften bei nichtkornorientiertem Elektroband wird wesentlich durch die Gestaltung des Fertigungsweges Warmumformung, Kaltumformung und Schlussglühung beeinflusst.
Nach dem bekannten Stand der Technik werden die magnetischen Eigenschaften beim Elektroband wesentlich durch einen hohen Reinheitsgrad, den Gehalt an Silizium und Aluminium (bis ca. 4 Massenanteile in %) und gezielter Zugabe anderer Legierungselemente, wie z. B. Mangan, Schwefel und Stickstoff, sowie durch Warmwalz-, Kaltwalz- und Glühprozesse bestimmt. Die gängigen Blechdicken liegen im Bereich deutlich unter 1 mm, z. B. bei 0,18 oder 0,35 mm.The ideal structure (structure) for a non-grain-oriented (NO-) electrical steel is a polycrystalline structure with grain sizes between 20 µm and 200 µm, whereby the crystallites are randomly aligned in the plane of the sheet with the surface (100). In practice, however, the magnetic properties of real, non-grain-oriented electrical steel in the plane of the sheet are dependent to a small extent on the direction of magnetization. The differences in loss between the longitudinal and transverse directions are max. 10%. The development of a sufficient isotropy of the magnetic properties in non-grain-oriented electrical steel is significantly influenced by the design of the hot forming, cold forming and final annealing process.
According to the known state of the art, the magnetic properties of electrical steel are essentially due to a high degree of purity, the content of silicon and aluminum (up to approx. 4 mass fractions in%) and the targeted addition of others Alloying elements such as B. manganese, sulfur and nitrogen, as well as determined by hot rolling, cold rolling and annealing processes. The usual sheet thicknesses are in the range well below 1 mm, e.g. B. at 0.18 or 0.35 mm.
Der aus der
Die
Aus der Offenlegungsschrift
Die bekannten Legierungen für ein nichtkornorientiertes Elektroblech weisen den Nachteil auf, dass die magnetischen Eigenschaften, insbesondere die Hystereseverluste, stark von der Frequenz und der Amplitude des Magnetisierungsstroms abhängig sind. Insbesondere steigen bei hohen Frequenzen und höheren Amplituden die Hystereseverluste deutlich an, was sich nachteilig gerade bei schnelllaufenden Motoren auswirkt.The known alloys for non-grain oriented electrical steel have the disadvantage that the magnetic properties, in particular the hysteresis losses, are heavily dependent on the frequency and the amplitude of the magnetizing current. In particular, increase at high frequencies and higher amplitudes clearly show the hysteresis losses, which has a disadvantageous effect especially with high-speed motors.
Aus der
In der weiteren japanischen Offenlegungsschrift
Die Offenlegungsschrift
Es besteht deshalb ein Bedarf nach einem Stahlband aus einem nichtkornorientierten Werkstoff mit einem Legierungskonzept, welches die Verluste minimiert und diese auch bei hohen Frequenzen konstant niedrig hält.There is therefore a need for a steel strip made of a non-grain-oriented material with an alloy concept that minimizes losses and keeps them constantly low even at high frequencies.
Aufgabe der Erfindung ist es ein Stahlband zur Herstellung eines nichtkornorientierten Elektroblechs anzugeben, welches im Vergleich zu bekannten Elektroblechen deutlich verbesserte frequenzunabhängige magnetische Eigenschaften, insbesondere deutlich verringerte Hystereseverluste aufweist. Eine weitere Aufgabe besteht darin, ein Herstellungsverfahren für ein solches Stahlband anzugeben.The object of the invention is to specify a steel strip for producing a non-grain-oriented electrical steel sheet which, compared to known electrical steel sheets, has significantly improved frequency-independent magnetic properties, in particular significantly reduced hysteresis losses. Another object is to provide a manufacturing method for such a steel strip.
Das erfindungsgemäße Stahlband zur Herstellung eines nichtkornorientierten Elektroblechs weist folgende Legierungszusammensetzung in Gew.-% auf:
- C: < 0,03
- Al: 1 bis 12
- Si: 0,3 bis 3,5
- Mn: >0,25 bis 10
- Cu: >0,05 bis 3,0
- Ni: > 0,01 bis 5,0
- Summe aus N, S und P: höchstens 0,07
- Rest Eisen und erschmelzungsbedingte Verunreinigungen, mit optionaler Zugabe eines oder mehrere Elemente aus Cr, Mo, Zn und Sn, wobei ein Summengehalt von Cr und Mo optional 0,01 bis 0,5 Gew.-% und ein Summengehalt von Zn und Sn optional 0,01 bis 0,05 Gew.-% beträgt, wobei das Stahlband eine Isolationsschicht im Wesentlichen bestehend aus Al2O3 und/oder SiO2 mit einer Dicke im Bereich von 10µm bis 100µm aufweist.
- C: <0.03
- Al: 1 to 12
- Si: 0.3 to 3.5
- Mn:> 0.25 to 10
- Cu:> 0.05 to 3.0
- Ni:> 0.01 to 5.0
- Sum of N, S and P: 0.07 or less
- The remainder is iron and impurities caused by the melting process, with the optional addition of one or more elements from Cr, Mo, Zn and Sn, with a total content of Cr and Mo optionally 0.01 to 0.5% by weight and a total content of Zn and Sn optionally 0 .01 to 0.05% by weight, the steel strip having an insulation layer consisting essentially of Al 2 O 3 and / or SiO 2 with a thickness in the range from 10 μm to 100 μm.
Mit den optionalen Zugaben von Chrom und Molybdän bzw. von Zink und Zinn kann weiterhin vorteilhaft der spezifische Volumenwiderstand des Werkstoffs beeinflusst werden.With the optional additions of chromium and molybdenum or of zinc and tin, the specific volume resistance of the material can also be advantageously influenced.
Im Zusammenhang mit der Zusammensetzung der Isolationsschicht bedeutet im Wesentlichen, dass mindestens 50% der Isolationsschicht aus Al2O3 oder SiO2 oder der Summe der beiden vorgenannten Bestandteile bestehen.In connection with the composition of the insulation layer, this essentially means that at least 50% of the insulation layer consists of Al 2 O 3 or SiO 2 or the sum of the two aforementioned components.
Vorzugsweise ist die Dicke der Isolationsschicht im Bereich von 20µm bis 100µm und besonders vorzugsweise im Bereich von 20µm bis 50µm.The thickness of the insulation layer is preferably in the range from 20 μm to 100 μm and particularly preferably in the range from 20 μm to 50 μm.
Das Stahlband mit der erfindungsgemäßen Legierungszusammensetzung zeichnet sich durch deutlich reduzierte Hystereseverluste sowie eine weitgehendeThe steel strip with the alloy composition according to the invention is characterized by significantly reduced hysteresis losses as well as extensive
Unabhängigkeit der magnetischen Eigenschaften von der Frequenz des Magnetisierungsstroms. Dadurch kann der Einsatzbereich dieses Werkstoffs unter energetischen und wirtschaftlichen Aspekten deutlich vergrößert werden, insbesondere für schnelllaufende Elektromotoren und bei hohen Frequenzen des Magnetisierungsstroms.Independence of the magnetic properties from the frequency of the magnetizing current. As a result, the field of application of this material can be significantly increased from an energetic and economic point of view, especially for high-speed electric motors and at high magnetizing current frequencies.
Insbesondere der mit max. 12% hohe Al-Gehalt bewirkt eine deutliche Erhöhung des elektrischen Widerstands und eine entsprechende Verringerung der Ummagnetisierungsverluste.In particular the one with max. A 12% high Al content causes a significant increase in electrical resistance and a corresponding reduction in magnetic reversal losses.
Durch die Zugabe von Aluminium von bis zu 12 Gew.-% wird zudem die spezifische Dichte des Stahls verringert, was sich positiv auf das Gewicht von sich drehenden Motorenteilen und die entstehenden Fliehkräfte gerade bei hohen Drehfrequenzen auswirkt.The addition of aluminum of up to 12% by weight also reduces the specific density of the steel, which has a positive effect on the weight of rotating engine parts and the centrifugal forces that arise, especially at high speeds.
Zudem wird durch Al-haltige Ausscheidungen im Stahl die Festigkeit deutlich gesteigert. Um entsprechende Effekte zu erzielen, wird der Mindestgehalt an Aluminium auf 1 Gew.-% festgelegt. Höhere Al-Gehalte als 12 Gew.-% können jedoch durch Bildung geordneter Phasen zu Schwierigkeiten beim Kaltwalzen führen. Vorteilhaft sind daher Al-Gehalte von bis zu 10 Gew.-% einzuhalten.In addition, Al-containing precipitates in the steel significantly increase the strength. In order to achieve corresponding effects, the minimum aluminum content is set at 1% by weight. However, Al contents higher than 12% by weight can lead to difficulties in cold rolling due to the formation of ordered phases. It is therefore advantageous to adhere to Al contents of up to 10% by weight.
Obwohl das Warmband gemäß Patentanspruch 16 bei Temperaturen oberhalb von 1000°C oder höher warmgewalzt wird, ist ein sehr hoher Verzunderungsschutz vorhanden. Durch die außergewöhnlich hohen Gehalte an Al von bis zu 12 Gew.-% bzw. Si von bis zu 3,5 Gew.-% bildet sich auf der Oberfläche des erwärmten Bleches eine dichte, intrinsisch ausgebildete Isolationsschicht im Wesentlichen bestehend aus Al2O3 und/oder SiO2 aus, die eine Verzunderung des Eisens im Stahl wirksam verringert bzw. sogar vollständig hemmt. Die Dicke der Schicht kann zudem vorteilhaft durch die Temperatur und die Zeitspanne der Glühung, insbesondere der abschließenden Glühung des Stahlbandes, worunter meist ein Kaltband zu verstehen ist, beeinflusst werden. Dabei nimmt mit zunehmender Temperatur und Zeitspanne der Glühung die Dicke der Schicht zu. In vorteilhafter Weise wird eine Schichtdicke von mindestens 10µm, bevorzugt von mindestens 20µm, erzielt. Allerdings sollte diese Zunderschicht eine Dicke von 100 µm, besser 50µm, nicht überschreiten, damit die Schicht wegen der mit zunehmender Dicke ebenfalls zunehmenden Sprödigkeit, die Walzbarkeit durch abplatzenden Zunder nicht negativ beeinflusst.Although the hot strip according to claim 16 is hot-rolled at temperatures above 1000 ° C or higher, there is a very high level of protection against scaling. Due to the extraordinarily high Al contents of up to 12% by weight or Si of up to 3.5% by weight, a dense, intrinsically formed insulation layer essentially consisting of Al 2 O 3 is formed on the surface of the heated sheet and / or SiO 2 , which effectively reduces or even completely inhibits scaling of the iron in the steel. The thickness of the layer can also advantageously be influenced by the temperature and the time span of the annealing, in particular the final annealing of the steel strip, which is usually understood to mean a cold strip. The thickness of the layer increases with increasing temperature and time of annealing. A layer thickness of at least 10 μm, preferably of at least 20 μm, is advantageously achieved. However, this layer of scale should not exceed a thickness of 100 µm, better 50 µm, so that the layer, because of the increasing brittleness with increasing thickness, the rollability is not adversely affected by flaking scale.
Dadurch, dass diese Schicht in der weiteren Prozessierung des Bandes erhalten bleibt und elektrisch isolierend wirkt, kann eine zusätzliche Isolationsschicht zwischen den Blechlamellen des Lamellenpakets ggfs. eingespart oder deutlich verringert werden. Hierdurch kann ansonsten notwendiges Isolationsmaterial eingespart werden, was Kosten und das Bauteilgewicht reduziert.Because this layer is retained in the further processing of the strip and has an electrically insulating effect, an additional insulation layer between the sheet-metal lamellae of the lamellae pack can possibly be saved or significantly reduced. This saves insulation material that would otherwise be required, which reduces costs and the weight of the component.
Eine Zugabe von Si bewirkt eine Steigerung des elektrischen Widerstandes. Um einen Effekt zu erzielen, ist erfindungsgemäß ein Mindestgehalt von 0,3 Gew.-% erforderlich. Bei Gehalten von mehr als 3,5 Gew.-% Si verringert sich die Kaltwalzbarkeit, da der Werkstoff zunehmend spröder wird und sich vermehrt Kantenrisse am Stahlband zeigen. Vorteilhaft werden daher Gehalte von 1,0 bis 3,0 Gew.-% und bevorzugt von 1,5 bis 2,5 Gew.-% eingestellt. Die Zugabe von Si und Al stellt dabei in den ausgewählten Legierungselementgehalten eine optimale Kombination aus Erhöhung des elektrischen Widerstandes und Verringerung der magnetischen Sättigungspolarisation dar.An addition of Si causes an increase in the electrical resistance. According to the invention, a minimum content of 0.3% by weight is required to achieve an effect. With contents of more than 3.5% by weight Si, the cold-rollability is reduced, since the material becomes increasingly brittle and there are more edge cracks on the steel strip. Contents of 1.0 to 3.0% by weight and preferably from 1.5 to 2.5% by weight are therefore advantageously set. The addition of Si and Al represents an optimal combination of increasing the electrical resistance and reducing the magnetic saturation polarization in the selected alloy element contents.
Der Gehalt an Kohlenstoff sollte so gering wie möglich gehalten werden, um ein magnetisches Altern, welches durch Carbid-Ausscheidungen verursacht wird, im fertigen Stahlband zu verhindern. Niedrige Kohlenstoffgehalte führen zu einer Verbesserung der magnetischen Eigenschaften, da weniger Fehlstellen im Material auftreten, die beispielsweise durch die Kohlenstoffatome und Karbide verursacht werden. Als günstig haben sich Kohlenstoffgehalte von maximal 0,03 Gew.-% ergeben.The carbon content should be kept as low as possible in order to prevent magnetic aging, which is caused by carbide precipitations, in the finished steel strip. Low carbon contents lead to an improvement in the magnetic properties, since fewer defects occur in the material, which are caused, for example, by the carbon atoms and carbides. Carbon contents of a maximum of 0.03% by weight have been found to be favorable.
In den erfindungsgemäßen Stählen ist Mangan in einer Menge von mehr als 0,25 bis zu 10 Gew.-% enthalten. Mangan erhöht den spezifischen Volumenwiderstand. Um einen entsprechenden Effekt zu erzeugen, sollten mehr als 0,25 Gew.-% Mangan im Stahl enthalten sein. Um eine problemlose Weiterverarbeitung durch Warm- und Kaltwalzen sicherzustellen, sollte der Mangangehalt wegen der Bildung spröder Phasen nicht über 10 Gew.-% liegen. Dabei hängt eine negative Wirkung von Mn für die Walzbarkeit komplex von der Summe der Elemente Al, Si und Mn ab. Vorteilhaft sollte ein Summengehalt aus Mn+Al+Si von kleiner gleich 20 Gew.-% als Obergrenze für die Walzbarkeit eingehalten werden.Manganese is contained in the steels according to the invention in an amount of more than 0.25 up to 10% by weight. Manganese increases the volume resistivity. In order to produce a corresponding effect, the steel should contain more than 0.25% by weight of manganese. In order to ensure problem-free further processing by hot and cold rolling, the manganese content should not exceed 10% by weight because of the formation of brittle phases. A negative effect of Mn for the rollability depends on the sum of the elements Al, Si and Mn. A total Mn + Al + Si content of less than or equal to 20% by weight should advantageously be maintained as the upper limit for the rollability.
Eine Zugabe von Kupfer erhöht ebenfalls den spezifischen Volumenwiderstand. Um einen entsprechenden Effekt zu erzielen, sollte der Cu-Gehalt mehr als 0,05 Gew.-% betragen. Es sollte nicht mehr als 3 Gew.-% Cu dem Stahl zulegiert werden, da ansonsten durch sich bildende Ausscheidungen auf den Korngrenzen die Walzbarkeit verschlechtert wird und möglicherweise Lotrissigkeit beim Warmwalzen auftreten kann.The addition of copper also increases the volume resistivity. In order to achieve a corresponding effect, the Cu content should be more than 0.05% by weight. No more than 3% by weight Cu should be added to the steel, since otherwise the rollability is impaired due to precipitates that form on the grain boundaries and solder cracks may occur during hot rolling.
Die Zugabe von Nickel wirkt sich positiv im Hinblick auf eine Reduzierung der Ummagnetisierungsverluste aus. Um einen entsprechenden Effekt zu erreichen, sollte der Mindestgehalt bei oberhalb von 0,01 Gew.-% liegen, aber da Nickel ein sehr teures Element ist, sollte aus wirtschaftlichen Gründen ein maximaler Wert von 5,0 Gew.-% nicht überschritten werden. Vorzugsweise liegt der Gehalt an Nickel zwischen 0,01 und 3,0 Gew.-%.The addition of nickel has a positive effect in terms of reducing the magnetic reversal losses. In order to achieve a corresponding effect, the minimum content should be above 0.01% by weight, but since nickel is a very expensive element, a maximum value of 5.0% by weight should not be exceeded for economic reasons. The nickel content is preferably between 0.01 and 3.0% by weight.
Unter Berücksichtigung einer guten Warm- und Kaltwalzbarkeit haben sich die folgenden Legierungsvarianten als besonders günstig herausgestellt (Gew.-%):
- Al: 1 bis 6
- Si: 0,5
bis 1 - Mn: >1,0 bis 7
- Cu: >0,1
bis 2,0 - Ni: > 0,1 bis 3,0
- Al: >6 bis 10
- Si: 0,5 bis 0,8
- Mn: >0,5 bis 3
- Cu: >0,1
bis 2,5 - Ni: > 0,1
bis 2,5
- Al: >6 bis 10
- Si: 0,3 bis 0,5
- Mn: >0,5
bis 2 - Cu: >0,1 bis 0,5
- Ni: > 0,1
bis 2,5
- Al: 1 to 6
- Si: 0.5 to 1
- Mn:> 1.0 to 7
- Cu:> 0.1 to 2.0
- Ni:> 0.1 to 3.0
- Al:> 6 to 10
- Si: 0.5 to 0.8
- Mn:> 0.5 to 3
- Cu:> 0.1 to 2.5
- Ni:> 0.1 to 2.5
- Al:> 6 to 10
- Si: 0.3 to 0.5
- Mn:> 0.5 to 2
- Cu:> 0.1 to 0.5
- Ni:> 0.1 to 2.5
Erfindungsgemäß lassen sich mit diesen Legierungszusammensetzungen Stahlbänder mit ähnlichen elektromagnetischen Eigenschaften mit einer spezifischen Dichte von 6,40 bis 7,30 g/cm3 erzeugen, um die Anforderungen an ein möglichst geringes spezifisches Gewicht des Stahlbandes zu erfüllen.According to the invention, these alloy compositions can be used to produce steel strips with similar electromagnetic properties with a specific density of 6.40 to 7.30 g / cm 3 in order to meet the requirements for the lowest possible specific weight of the steel strip.
Die mechanischen Eigenschaften lassen sich erfindungsgemäß durch die unterschiedlichen Legierungskonzepte ebenfalls in einem weiten Spektrum variieren. Erfindungsgemäße Stahlbänder weisen eine Festigkeit Rm von 450 bis 690 MPa, eine Streckgrenze Rp0,2 von 310 bis 550 MPa und eine Dehnung A80 von 5 bis 30 % auf.According to the invention, the mechanical properties can also be varied over a wide range through the different alloy concepts. Steel strips according to the invention have a strength Rm of 450 to 690 MPa, a yield point Rp0.2 of 310 to 550 MPa and an elongation A80 of 5 to 30%.
Ein erfindungsgemäßes Verfahren zur Herstellung eines erfindungsgemäßen Stahlbandes umfasst die Schritte:
- Erschmelzen einer Stahlschmelze mit einer vorbeschriebenen erfindungsgemäßen Legierungszusammensetzung,
- Vergießen der Stahlschmelze zu einem Vorband mittels eines endabmessungsnahen horizontalen oder vertikalen Bandgießverfahrens oder Vergießen der Stahlschmelze zu einer Bramme oder Dünnbramme mittels eines horizontalen oder vertikalen Brammen- oder Dünnbrammengießverfahrens,
- Wiedererwärmen der Bramme oder Dünnbramme auf 1050 °C bis 1250 °C und anschließendes Warmwalzen der Bramme oder Dünnbramme zu einem Warmband oder Wiedererwärmen des endabmessungsnah erzeugten Vorbandes auf 1000 °C bis 1100 °C und anschließendes Warmwalzen des Vorbandes zu einem Warmband oder Warmwalzen des Vorbandes ohne Wiedererwärmen aus der Gießhitze zu einem Warmband mit optionalem Zwischenerwärmen zwischen den einzelnen Walzstichen des Warmwalzens,
- Aufhaspeln des Warmbandes bei einer Haspeltemperatur zwischen 850 °C und Raumtemperatur,
- Optionales Glühen des Warmbandes mit folgenden Parametern:
Glühtemperatur: 550 bis 800°C Glühdauer: 20 bis 80 min, anschließende Abkühlung an Luft - Ein- oder mehrstufiges Fertigwalzen des Warmbandes oder des endabmessungsnah erzeugten Vorbandes mit einer Dicke von kleiner 3 mm zu Stahlband mit einer Enddicke von minimal 0,10mm.
- anschließendes Glühen des Stahlbandes mit folgenden Parametern:
Glühtemperatur: 900 bis 1080 °C, Glühdauer: 10bis 60 Sekunden mit anschließender Abkühlung an Luft zum Einstellen einer Isolationsschicht im Wesentlichen bestehend aus Al2O3 und/oder SiO2 auf dem Stahlband mit einer Dicke im Bereich von 10µm bis 100µm, vorzugsweise im Bereich von 20µm bis 100µm, besonders vorzugsweise von im Bereich 20µm bis 50µm, hierdurch.
- Melting a steel melt with a previously described alloy composition according to the invention,
- Pouring the steel melt into a pre-strip by means of a near-net-shape horizontal or vertical strip casting process or casting the steel melt into a slab or thin slab by means of a horizontal or vertical slab or thin slab casting process,
- Reheating of the slab or thin slab to 1050 ° C to 1250 ° C and subsequent hot rolling of the slab or thin slab to form a hot strip or reheating of the pre-strip produced near net dimensions to 1000 ° C to 1100 ° C and subsequent hot rolling of the pre-strip to form a hot strip or hot rolling of the pre-strip without Reheating from the casting heat to form a hot strip with optional intermediate heating between the individual passes of the hot rolling,
- Coiling of the hot strip at a coiling temperature between 850 ° C and room temperature,
- Optional annealing of the hot strip with the following parameters:
Annealing temperature: 550 to 800 ° C Annealing time: 20 to 80 min, subsequent cooling in air - Single or multi-stage finish rolling of the hot strip or the pre-strip produced near net dimensions with a thickness of less than 3 mm to steel strip with a final thickness of at least 0.10 mm.
- subsequent annealing of the steel strip with the following parameters:
Annealing temperature: 900 to 1080 ° C, annealing time: 10 to 60 seconds with subsequent cooling in air to set an insulation layer essentially consisting of Al 2 O 3 and / or SiO 2 on the steel strip with a thickness in the range from 10 μm to 100 μm, preferably in the range from 20 µm to 100 µm, particularly preferably in the range from 20 µm to 50 µm, thereby.
Wenngleich im Grundsatz alle herkömmlichen Stahlherstellungsverfahren (zum Beispiel Stranggießen, Dünnbrammengießen oder Dünnbandgießen) für die Herstellung eines Stahlbandes aus der erfindungsgemäßen Legierungszusammensetzung geeignet sind, hat sich bei der Stahlherstellung schwieriger herzustellender Legierungsvarianten, insbesondere bei erhöhten Gehalten an Mangan, Aluminium und Silizium, die Erzeugung des Stahlbandes in einer horizontalen Bandgießanlage bewährt, bei der die Schmelze strömungsberuhigt und biegefrei zu einem Vorband im Bereich zwischen 6 und 30 mm Dicke vergossen und anschließend zu Warmband mit einem Umformungsgrad von mindestens 50% in Dicken von etwa 0,9 bis 6,0 mm gewalzt wird.Although in principle all conventional steel production processes (for example continuous casting, thin slab casting or thin strip casting) are suitable for the production of a steel strip from the alloy composition according to the invention, the production of the alloy variants that are more difficult to produce, in particular with increased contents of manganese, aluminum and silicon, has become more difficult in steel production Steel strip has proven its worth in a horizontal strip casting plant, in which the melt is poured flow-calmed and bend-free to form a pre-strip in the range between 6 and 30 mm thick and then rolled into hot strip with a degree of deformation of at least 50% in thicknesses of around 0.9 to 6.0 mm becomes.
Für den einzuhaltenden Mindestdickenreduktionsgrad beim Warmwalzen hat sich gezeigt, dass dieser mit steigendem Al-Gehalt ebenfalls erhöht werden sollte. So sind abhängig von der zu erreichenden Endbanddicke und vom Al-Gehalt Reduktionsgrade von mehr als 50, 70 oder sogar mehr als 90% einzuhalten, um eine gemischte Struktur aus geordneten und ungeordneten Phasen zu erreichen. Der hohe Reduktionsgrad ist auch notwendig, um die Gefügestruktur besonders bei Hoch-AI-Legierungen zu zerstören und damit die Körner zu verkleinern (Kornfeinung). Höhere Al-Gehalte erfordern deshalb entsprechend höhere Reduktionsgrade.For the minimum degree of thickness reduction to be observed in hot rolling, it has been shown that this should also be increased with increasing Al content. Depending on the final strip thickness to be achieved and the Al content, degrees of reduction of more than 50, 70 or even more than 90% must be observed in order to achieve a mixed structure of ordered and disordered phases. The high degree of reduction is also necessary to destroy the microstructure, especially in the case of high-aluminum alloys, and thus to reduce the grain size (grain refinement). Higher Al contents therefore require correspondingly higher degrees of reduction.
Der Vorteil des vorgeschlagenen Verfahrens ist ebenfalls darin zu sehen, dass bei Verwendung einer horizontalen Bandgießanlage Makroseigerungen und Lunker aufgrund sehr homogener Abkühlbedingungen in der horizontalen Bandgießanlage weitgehend vermieden werden können.The advantage of the proposed method is also to be seen in the fact that when a horizontal strip caster is used, macro segregation and voids can largely be avoided due to the very homogeneous cooling conditions in the horizontal strip caster.
Verfahrenstechnisch wird für den Bandgießprozess vorgeschlagen, die Strömungsberuhigung dadurch zu erreichen, dass eine ein synchron oder mit optimaler Relativ-geschwindigkeit zum Band mitlaufendes Feld erzeugende mitlaufende elektromagnetische Bremse eingesetzt wird, die dafür sorgt, dass im Idealfall die Geschwindigkeit des Schmelzenzulaufs gleich der Geschwindigkeit des umlaufenden Förderbandes ist. Die als nachteilig angesehene Biegung während der Erstarrung wird dadurch vermieden, dass die Unterseite des die Schmelze aufnehmenden Gießbandes sich auf einer Vielzahl von nebeneinander liegenden Rollen abstützt. Verstärkt wird die Abstützung in der Weise, dass im Bereich des Gießbandes ein Unterdruck erzeugt wird, so dass das Gießband fest auf die Rollen gedrückt wird. Zusätzlich erstarrt die Al-reiche bzw. Si-reiche Schmelze in einer fast sauerstofffreien Gießatmosphäre.In terms of process technology, it is proposed for the strip casting process to achieve flow calming by using an electromagnetic brake that generates a synchronous or optimal relative speed to the strip, which ensures that, in the ideal case, the speed of the melt inflow is equal to the speed of the circulating one Conveyor belt is. The bending during solidification, which is regarded as disadvantageous, is avoided in that the underside of the casting belt receiving the melt is supported on a plurality of rollers lying next to one another. The support is reinforced in such a way that a negative pressure is generated in the area of the casting belt, so that the casting belt is pressed firmly onto the rollers. In addition, the Al-rich or Si-rich melt solidifies in an almost oxygen-free casting atmosphere.
Um diese Bedingungen während der kritischen Phase der Erstarrung aufrecht zu erhalten, wird die Länge des Förderbandes so gewählt, dass am Ende des Förderbandes vor dessen Umlenkung das Vorband weitestgehend durcherstarrt ist.In order to maintain these conditions during the critical phase of solidification, the length of the conveyor belt is chosen so that at the end of the conveyor belt the pre-belt has largely solidified before it is deflected.
Am Ende des Förderbandes schließt sich eine Homogenisierungszone an, die für einen Temperaturausgleich und möglichen Spannungsabbau genutzt wird.At the end of the conveyor belt there is a homogenization zone that is used for temperature equalization and possible stress relief.
Das Walzen des Vorbandes zu Warmband kann entweder in-line oder separat off-line erfolgen. Vor dem off-line-Walzen kann das Vorband nach der Herstellung vor dem Abkühlen entweder direkt warm gehaspelt oder zu Tafeln geschnitten werden. Das Band- oder Tafelmaterial wird dann nach einer eventuellen Abkühlung wiedererwärmt und für das Off-line-Walzen abgewickelt bzw. als Tafel wiedererwärmt und gewalzt.The rolling of the pre-strip into hot strip can be done either in-line or separately off-line. Before the off-line rolling, the pre-strip can either be directly hot reeled or cut into sheets after production before cooling. The strip or sheet material is then reheated after any cooling and unwound for off-line rolling or reheated and rolled as sheet.
Das Walzen des Warmbandes auf Enddicke kann mittels klassischen Kaltwalzens bei Raumtemperatur oder erfindungsgemäß besonders vorteilhaft bei erhöhter Temperatur deutlich oberhalb der der Raumtemperatur durchgeführt werden.The rolling of the hot strip to its final thickness can be carried out by means of classic cold rolling at room temperature or, according to the invention, particularly advantageously at an elevated temperature well above room temperature.
Da dieses Walzverfahren nicht dem klassischen Kaltwalzen bei Raumtemperatur entspricht, wird nachfolgend der Begriff "Fertigwalzen" verwendet, wenn ein Warmband bei erhöhter Temperatur mit der geforderten Enddicke fertiggewalzt wird. Ein Vorteil des Fertigwalzens bei erhöhter Temperatur liegt darin, dass hierdurch eine mögliche Neigung zu Kantenrissen beim Walzen deutlich verringert werden kann. Des Weiteren ist es dadurch möglich, die elektromagnetischen Eigenschaften in einem weiten Feld zu beeinflussen, zum Beispiel über die Korngröße, Domänengrößenverteilung und Blochwandstabilisierung.Since this rolling process does not correspond to classic cold rolling at room temperature, the term "finish rolling" is used below when a hot strip is finish-rolled at an elevated temperature to the required final thickness. One advantage of finish rolling at elevated temperatures is that it can significantly reduce a possible tendency to edge cracks during rolling. Furthermore, it is possible to influence the electromagnetic properties in a wide field, for example via the grain size, domain size distribution and Bloch wall stabilization.
Als günstig hat sich erwiesen, wenn das Warmband auf einen Temperaturbereich von 350 bis 570 °C, bevorzugt 350 bis 520 °C, aufgewärmt und bei dieser Temperatur auf die vorgesehene Enddicke fertiggewalzt wird.It has proven to be favorable if the hot strip is heated to a temperature range from 350 to 570 ° C., preferably from 350 to 520 ° C., and is finish-rolled to the intended final thickness at this temperature.
Bei einem mehrstufigen Fertigwalzen hat sich eine Wiedererwärmung zwischen den Walzschritten auf eine Temperatur von 600 bis 800 °C bei einer Haltezeit von 20 min bis 80 min bewährt, wobei anschließend eine Abkühlung auf Fertigwalztemperatur erfolgt.In the case of multistage finish rolling, reheating between the rolling steps to a temperature of 600 to 800 ° C. with a holding time of 20 min to 80 min has proven useful, with subsequent cooling to the finish rolling temperature.
Abhängig von der konkreten Legierungszusammensetzung haben sich mehrere vorteilhafte Erzeugungswege herausgestellt, um ein erfindungsgemäßes Stahlband zu erzeugen, siehe
Hierin bedeuten:
- THR: Warmwalzen bei Temperaturen zwischen 1000 bis 1150 °C,
- CR: Kaltwalzen,
- T1, T2C, T3C: Schlussglühung für alle Route (900 bis 1080 °C, 10-60 s, Luftabkühlen),
- T2A, T2B, T3A, T3B:
Zwischenglühen für Route 2 und 3 (550 bis 800 °C, 20 bis 80 min), - TR: Fertigwalzen für Route 3 bei erhöhten Temperaturen von 350 bis 570 °C
- T HR : hot rolling at temperatures between 1000 and 1150 ° C,
- CR: cold rolling,
- T 1 , T 2C , T 3C : final annealing for all routes (900 to 1080 ° C, 10-60 s, air cooling),
- T 2A , T 2B , T 3A , T 3B : intermediate annealing for
route 2 and 3 (550 to 800 ° C, 20 to 80 min), - T R : Finish rolling for Route 3 at elevated temperatures of 350 to 570 ° C
Gemäß Route 1 wird das Warmband bei Raumtemperatur auf die geforderte Enddicke fertiggewalzt.According to
Sollte die Legierung zu fest für ein klassisches Kaltwalzen bei Raumtemperatur sein, kann ein zwei-stufiges Kaltwalzen gemäß Route 2 genutzt werden, indem zunächst mit einem Dickenreduktionsgrad von bis zu 60 % bei Raumtemperatur auf die gewünschte Enddicke gewalzt wird, danach in einem Temperaturbereich von 550 bis 650 °C für 40 bis 60 min ausgelagert, und danach die restlichen 40 % der gewünschten Enddicke wiederum durch Kaltwalzen erreicht wird.If the alloy is too strong for classic cold rolling at room temperature, two-stage cold rolling according to
Ein Werkstoff insbesondere mit erhöhtem Al-Gehalt größer 6 Gew.-% oder Al+Si in Summe größer als 6 Gew.-%, der Kantenrisse nach dem ersten Kaltwalzen aufweist, kann gemäß Route 3 durch Fertigwalzen bei erhöhter Temperatur erzeugt werden. Nach Erwärmen in einem Temperaturbereich von 350 bis 600 °C, bevorzugt 350 bis 520 °C, wird gewalzt, und dann iterativ wiedererwärmt im vorgenannten Temperaturbereich für je 2-5 min zwischen den Walzschritten und fertiggewalzt bis die gewünschte Enddicke erreicht ist.A material, in particular with an increased Al content greater than 6% by weight or Al + Si in total greater than 6% by weight, which has edge cracks after the first cold rolling, can be produced according to route 3 by finish rolling at an elevated temperature. After heating in a temperature range from 350 to 600 ° C, preferably 350 to 520 ° C, rolling is carried out, and then iteratively reheated in the aforementioned temperature range for 2-5 min between the rolling steps and finish-rolled until the desired final thickness is reached.
Nachfolgend werden einige Ergebnisse an erfindungsgemäßen Legierungen beschrieben.Some results for alloys according to the invention are described below.
Untersucht wurden Legierungen entsprechend Tabelle 1, wobei nur die wesentlichen Elemente bestimmt wurden. Die Legierungen 13, 17 und 22 sind erfindungsgemäß und wurden im Vergleich zum nicht erfindungsgemäßen Referenzmaterial Ref1 untersucht.
Tabelle 2 zeigt die mechanischen Eigenschaften der Legierungen und die ermittelte spezifische Dichte der Werkstoffe. Neben unterschiedlichen mechanischen Eigenschaften lassen sich auch Werkstoffe mit unterschiedlichen spezifischen Dichten erzeugen, sodass vielfältige Anforderungen an die erfindungsgemäßen Werkstoffe realisiert werden können.
Tabelle 3 zeigt die Ergebnisse zur Messung der Frequenzabhängigkeit der magnetischen Flussdichte Bmax an Stahlblechen mit einer Dicke von 0,7 mm der untersuchten Legierungen. Die Messungen wurden bei Frequenzen f von 50, 200, 400, 750 und 1000 Hz durchgeführt. Die Ergebnisse belegen eindrucksvoll die weitgehende Frequenzunabhängigkeit der magnetischen Flussdichte und damit die Hystereseverluste in einem periodischen Wechselfeld.
Claims (11)
- Steel strip for producing a non-grain-oriented electrical sheet, in particular produced according to a method as claimed in claims 8 to 11, consisting of the following alloy composition in wt.%:C: ≤ 0.03Al: 1 to 12, preferably a maximum of 10Si: 0.3 to 3.5, preferably from 1.0 to 3.0, particularly preferably from 1.5 to 2.5Mn: > 0.25 to 10Cu: > 0.05 to 3.0Ni: > 0.01 to 5.0, preferably a maximum of 3.0a total of N, S and P: at most 0.07,with the remainder being iron and melting-induced impurities, with the optional addition of one or a plurality of elements out of Cr, Mo, Zn and Sn, wherein a total content of Cr and Mo is optionally 0.01 to 0.5 wt.% and a total content of Zn and Sn is optionally 0.01 to 0.05 wt.%, wherein the steel strip has an insulation layer substantially consisting of Al2O3 and/or SiO2 having a thickness in the range of 10 µm to 100 µm.
- Steel strip as claimed in claim 1, characterised by the thickness of the insulation layer in the range of 20 µm to 100 µm, preferably 20 µm to 50 µm.
- Steel strip as claimed in claim 1 or 2, characterised by a maximum total content of Mn and Al of 20 wt.%.
- Steel strip as claimed in at least one of claims 1 to 3, characterised by the following alloy composition in wt.%:Al: 1 to 6Si: 0.5 to 1Mn: > 1.0 to 7Cu: > 0.1 to 2.0Ni: > 0.1 to 3.0.
- Steel strip as claimed in at least one of claims 1 to 4, characterised by the following alloy composition in wt.%:Al: > 6 to 10Si: 0.5 to 0.8, preferably 0.3 to 0.5Mn: > 0.5 to 3, preferably > 0.5 to 2Cu: > 0.1 to 2.5, preferably > 0.1 to 0.5Ni: > 0.1 to 2.5.
- Steel strip as claimed in at least one of claims 1 to 5, having a specific density of 6.40 to 7.30 g/cm3.
- Steel strip as claimed in at least one of claims 1 to 6, having a strength Rm of 450 to 690 MPa, a yield strength Rp0.2 of 310 to 550 MPa and an elongation A80 of 5 to 30%.
- Method for producing a steel strip for producing a non-grain-oriented electrical sheet, comprising the steps of:- melting a steel melt made from a steel as claimed in at least one of the previously stated claims 1 to 7,- casting the steel melt to form a pre-strip by means of a horizontal or vertical strip casting method approximating a final dimension or casting the steel melt to form a slab or thin slab by means of a horizontal or vertical slab or thin slab casting method,- re-heating the slab or thin slab to 1050°C to 1250°C and subsequently hot-rolling the slab or thin slab to form a hot strip or re-heating the pre-strip, produced approximating a final dimension, to 1000°C to 1100°C and subsequently hot-rolling the pre-strip to form a hot strip or hot-rolling the pre-strip without re-heating from the casting heat to form a hot strip with optional intermediate heating between individual rolling passes of the hot-rolling,- reeling the hot strip at a reeling temperature between 850°C and room temperature,- optionally annealing the hot strip with the following parameters:
annealing temperature: 550°C to 800°C, annealing duration: 20 to 80 min., subsequent cooling in air,- single or multi-stage finish-rolling of the hot strip or the pre-strip, produced approximating a final dimension, having a thickness of less than 3 mm to form a steel strip having a minimum final thickness of 0.10 mm,- subsequently annealing the steel strip with the following parameters:
annealing temperature: 900°C to 1080°C, annealing duration: 10 to 60 seconds with subsequent cooling in air to adjust an insulation layer substantially consisting of Al2O3 and/or SiO2 on the steel strip having a thickness in the range of 10 µm to 100 µm, preferably in the range of 20 µm to 100 µm, particularly preferably in the range of 20 µm to 50 µm. - Method as claimed in claim 8, characterised in that prior to the finish-rolling, the hot strip is heated to a temperature above room temperature and is finish-rolled at this temperature to the designated final thickness.
- Method as claimed in claim 9, characterised in that prior to the finish-rolling, the hot strip is heated to a temperature of 350 to 570°C, in particular 350 to 520°C and is finish-rolled at this temperature to the designated final thickness.
- Method as claimed in claims 8 to 10, characterised in that in a multi-stage finish-rolling procedure, between rolling steps, re-heating to a temperature of 600 to 800°C is effected and subsequently cooling to rolling temperature is effected.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016114094 | 2016-07-29 | ||
PCT/EP2017/067703 WO2018019602A1 (en) | 2016-07-29 | 2017-07-13 | Steel strip for producing a non-oriented electrical steel, and method for producing such a steel strip |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3491158A1 EP3491158A1 (en) | 2019-06-05 |
EP3491158B1 true EP3491158B1 (en) | 2020-12-02 |
Family
ID=59416665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17745283.6A Active EP3491158B1 (en) | 2016-07-29 | 2017-07-13 | Steel strip for producing a non-oriented electrical steel, and method for producing such a steel strip |
Country Status (6)
Country | Link |
---|---|
US (1) | US11047018B2 (en) |
EP (1) | EP3491158B1 (en) |
KR (1) | KR102364477B1 (en) |
CN (1) | CN109477188B (en) |
RU (1) | RU2715586C1 (en) |
WO (1) | WO2018019602A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101901313B1 (en) * | 2016-12-19 | 2018-09-21 | 주식회사 포스코 | Non-oriented electrical steel sheet and method for manufacturing the same |
JP7415135B2 (en) * | 2019-11-15 | 2024-01-17 | 日本製鉄株式会社 | Manufacturing method of non-oriented electrical steel sheet |
DE102019133493A1 (en) * | 2019-12-09 | 2021-06-10 | Salzgitter Flachstahl Gmbh | Electrical steel strip or sheet, method for producing this and component made from it |
JP7477748B2 (en) * | 2020-02-20 | 2024-05-02 | 日本製鉄株式会社 | Non-oriented electrical steel sheets and hot-rolled steel sheets |
EP3960886B1 (en) | 2020-09-01 | 2024-07-03 | ThyssenKrupp Steel Europe AG | Non-grain oriented metallic flat product, method for its production and use of same |
EP4082772A1 (en) * | 2021-04-30 | 2022-11-02 | Wickeder Westfalenstahl GmbH | Electric sheet, use of an electric sheet and method for manufacturing an electric sheet |
DE102021115174A1 (en) | 2021-06-11 | 2021-11-11 | Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts | Process for the production of a higher permeability, non-grain oriented electrical steel sheet and its use |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100240995B1 (en) * | 1995-12-19 | 2000-03-02 | 이구택 | The manufacturing method for non-oriented electric steel sheet with excellent heat insulating coated property |
AUPQ078999A0 (en) * | 1999-06-04 | 1999-06-24 | Ceramic Fuel Cells Limited | Air-side solid oxide fuel cell components |
JP4507316B2 (en) | 1999-11-26 | 2010-07-21 | Jfeスチール株式会社 | DC brushless motor |
JP4116749B2 (en) | 1999-12-16 | 2008-07-09 | 新日本製鐵株式会社 | Non-oriented electrical steel sheet |
IT1316029B1 (en) | 2000-12-18 | 2003-03-26 | Acciai Speciali Terni Spa | ORIENTED GRAIN MAGNETIC STEEL PRODUCTION PROCESS. |
DE10153234A1 (en) | 2001-10-31 | 2003-05-22 | Thyssenkrupp Stahl Ag | Hot-rolled steel strip intended for the production of non-grain-oriented electrical sheet and method for its production |
ATE338146T1 (en) | 2002-05-08 | 2006-09-15 | Ak Steel Properties Inc | METHOD FOR CONTINUOUS CASTING NON-ORIENTED ELECTRICAL STEEL STRIP |
EP1632582B1 (en) | 2003-05-06 | 2011-01-26 | Nippon Steel Corporation | Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof |
US20050000596A1 (en) | 2003-05-14 | 2005-01-06 | Ak Properties Inc. | Method for production of non-oriented electrical steel strip |
JP4457835B2 (en) | 2004-09-29 | 2010-04-28 | 住友金属工業株式会社 | SOFT MAGNETIC STEEL FOR LOW TEMPERATURE OXIDE FILM FORMATION, SOFT MAGNETIC STEEL, AND METHOD FOR PRODUCING THEM |
US7922834B2 (en) | 2005-07-07 | 2011-04-12 | Sumitomo Metal Industries, Ltd. | Non-oriented electrical steel sheet and production process thereof |
JP5186781B2 (en) * | 2007-03-08 | 2013-04-24 | 新日鐵住金株式会社 | Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same |
JP4510911B2 (en) | 2008-07-24 | 2010-07-28 | 新日本製鐵株式会社 | Method for producing high-frequency non-oriented electrical steel slabs |
MX2013009670A (en) * | 2011-02-24 | 2013-10-28 | Jfe Steel Corp | Non-oriented electromagnetic steel sheet and method for manufacturing same. |
TW201316538A (en) * | 2011-10-06 | 2013-04-16 | Univ Nat Taiwan | A method for fabricating a solar cell |
DE102012002642B4 (en) | 2012-02-08 | 2013-08-14 | Salzgitter Flachstahl Gmbh | Hot strip for producing an electric sheet and method for this |
JP6375692B2 (en) * | 2014-05-26 | 2018-08-22 | 新日鐵住金株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof, hot-rolled sheet for non-oriented electrical steel sheet and manufacturing method thereof |
JP2015224339A (en) * | 2014-05-30 | 2015-12-14 | 株式会社東芝 | Phosphor, production method thereof, and light emitting device |
JP6226072B2 (en) * | 2014-06-26 | 2017-11-08 | 新日鐵住金株式会社 | Electrical steel sheet |
-
2017
- 2017-07-13 CN CN201780046706.3A patent/CN109477188B/en active Active
- 2017-07-13 KR KR1020197005472A patent/KR102364477B1/en active IP Right Grant
- 2017-07-13 WO PCT/EP2017/067703 patent/WO2018019602A1/en unknown
- 2017-07-13 US US16/320,219 patent/US11047018B2/en active Active
- 2017-07-13 EP EP17745283.6A patent/EP3491158B1/en active Active
- 2017-07-13 RU RU2019101938A patent/RU2715586C1/en active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN109477188B (en) | 2021-09-14 |
WO2018019602A1 (en) | 2018-02-01 |
US11047018B2 (en) | 2021-06-29 |
US20190271053A1 (en) | 2019-09-05 |
RU2715586C1 (en) | 2020-03-02 |
CN109477188A (en) | 2019-03-15 |
EP3491158A1 (en) | 2019-06-05 |
KR20190034585A (en) | 2019-04-02 |
KR102364477B1 (en) | 2022-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3491158B1 (en) | Steel strip for producing a non-oriented electrical steel, and method for producing such a steel strip | |
DE3885584T2 (en) | Process for the production of austenitic stainless steel with excellent seawater resistance. | |
DE60306365T2 (en) | METHOD FOR THE CONTINUOUS CASTING OF NON-ORIENTED ELECTRON BELT | |
EP2690183B1 (en) | Hot-rolled steel flat product and method for its production | |
DE60211542T2 (en) | METHOD FOR THE CONTINUOUS MOLDING OF ELECTRIC BELT WITH CONTROLLED SPRAY COOLING | |
DE602004008909T2 (en) | IMPROVED METHOD FOR THE PRODUCTION OF NON-ORIENTED ELECTRON BELT | |
DE69518529T2 (en) | METHOD FOR THE PRODUCTION OF ELECTRICAL NON-ORIENTED STEEL PLATES WITH HIGH MAGNETIC FLOW DENSITY AND LOW IRON LOSS | |
DE69706388T2 (en) | Grain-oriented electromagnetic steel sheet | |
EP2812456B1 (en) | Process for manufacturing an electric sheet from a hot-rolled steel strip | |
EP2612942B1 (en) | Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal | |
DE69916743T2 (en) | Electric steel sheet and its manufacturing process | |
EP2787088B1 (en) | Method for producing a high strength non-oriented electrical strip, electrical strip and its use | |
EP1918402B1 (en) | Process for manufacturing steel flat products from a steel forming a complex phase structure | |
EP3712283B1 (en) | Method of manufacturing a cobalt-iron alloy strip | |
EP1056890B1 (en) | Method for producing non-grain oriented electro sheet steel | |
EP2840159B1 (en) | Method for producing a steel component | |
DE102019110872A1 (en) | Laminated core and method for producing a highly permeable soft magnetic alloy | |
DE69030781T2 (en) | Process for the production of grain-oriented electrical steel sheets by means of rapid quenching and solidification | |
DD299102A7 (en) | METHOD FOR PRODUCING NONORIENTED ELECTROBLECH | |
CH654027A5 (en) | METHOD FOR PRODUCING FINE-GRINED ALUMINUM ROLLING PRODUCTS. | |
DE102014005662A1 (en) | Material concept for a malleable lightweight steel | |
DE4336882C2 (en) | Method for preventing Mo precipitates in magnetic Ni-Fe alloys | |
DE3220307C2 (en) | Process for the manufacture of grain-oriented silicon steel sheet or strip | |
DE69704381T2 (en) | Iron-cobalt alloy, production process for tape from this alloy, and the products of this process | |
EP1444372B1 (en) | Method for the production of electrical sheet with non-oriented grains |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190214 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200708 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1341024 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017008474 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210302 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210302 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210405 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017008474 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210402 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
26N | No opposition filed |
Effective date: 20210903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210713 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210402 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210713 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210713 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170713 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1341024 Country of ref document: AT Kind code of ref document: T Effective date: 20220713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 8 |