EP2975618B1 - Core for an electrical induction device - Google Patents
Core for an electrical induction device Download PDFInfo
- Publication number
- EP2975618B1 EP2975618B1 EP14177246.7A EP14177246A EP2975618B1 EP 2975618 B1 EP2975618 B1 EP 2975618B1 EP 14177246 A EP14177246 A EP 14177246A EP 2975618 B1 EP2975618 B1 EP 2975618B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- lamination
- partial
- lamination stacks
- stacks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006698 induction Effects 0.000 title claims description 4
- 238000001816 cooling Methods 0.000 claims description 64
- 238000003475 lamination Methods 0.000 claims description 50
- 239000000463 material Substances 0.000 claims description 22
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 239000002826 coolant Substances 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 6
- 239000011796 hollow space material Substances 0.000 claims 3
- 239000011162 core material Substances 0.000 description 169
- 238000004804 winding Methods 0.000 description 15
- 239000002184 metal Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 230000008901 benefit Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000012809 cooling fluid Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/10—Liquid cooling
- H01F27/12—Oil cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/06—Fixed inductances of the signal type with magnetic core with core substantially closed in itself, e.g. toroid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/02—Cores, Yokes, or armatures made from sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
- H01F27/2455—Magnetic cores made from sheets, e.g. grain-oriented using bent laminations
Definitions
- the invention relates to a core for an electrical induction device with a plurality of laminated cores, each formed by laminated sheets, wherein the laminated cores are parallel to the layer plane of the laminated sheets to each other, wherein at least one of the laminated cores is segmented and has at least two partial laminated cores, the two Partial laminated cores each with their sheet metal end faces, which are transversely, in particular perpendicularly, to the layer plane of the laminated sheets, face each other, the sheet metal end faces of the two partial laminated cores have a distance from each other through which a perpendicular to the layer plane extending gap between the two partial laminated cores is formed and the Gap forms a cooling channel or at least a portion of a cooling channel whose channel longitudinal direction extends transversely, in particular perpendicular, to the layer plane of the laminated sheets.
- Such a ker is from the US 2991437 A already known.
- the core shown there has legs, which are formed from stacked sheets.
- Each laminated core is subdivided into two partial laminated cores, which form sheet metal end faces that run transversely to the layer plane of the laminated metal sheets.
- these end faces are arranged at a distance from each other and delimit a cooling channel, which has a larger diameter in the interior than in its outer edge regions.
- a further cooling channel is provided whose channel longitudinal direction extends parallel to the layer plane of the laminated sheets.
- the FR 573664 A also discloses a core whose legs define internal cooling channels. Again, the production of the core is costly.
- laminated cores are known from sheets (also called magnetic sheets or core sheets), these are also called stack cores. Such cores can be performed by cutting different width sheets, graded for each individual laminated core. Furthermore, cores (also called band cores) are known in which the sheet is wound coil-shaped largely uninterrupted.
- the material used for the sheets mainly grain-oriented, cold-rolled sheet is used, which has a magnetic preferred direction in the rolling direction. Due to the layering of the core from these grain-oriented sheets, the heat resulting from the no-load losses is dissipated to and across the layer plane at different extents from the surface. This is expressed in a usually by the factor 6 ... 7 different thermal conductivity.
- cooling ducts are used parallel to the layer plane in transformer construction, since they can be easily formed by inserting strips or spacers (for example, ceramic disks).
- a disadvantage of this cooling channel formation is that the arrangement of the cooling channels can not exploit the favorable heat conduction parallel to the layer direction of the sheets.
- amorphous core materials are used in distribution transformers.
- the state of the art with regard to the use of amorphous core material is disclosed, for example, in the European published patent application EP 2 474 985 and Japanese Patent Publication JP 2010 289 858 described.
- the invention has for its object to provide a core of the type mentioned, which is inexpensive to produce and ensures a sufficiently good heat dissipation.
- This object is achieved in that the width of the sheets of laminated cores is different with the formation of steps between stacked laminated cores, the number of different sheet widths in the partial laminated cores is a maximum of one third of the number of stages.
- the invention provides that at least one of the laminated cores is segmented and has at least two partial laminated cores, each with their sheet metal end faces, which are transversely, in particular perpendicular to the layer plane of the laminated sheets, face each other, the sheet metal end faces of the two partial laminated cores a distance have to each other through which a gap extending perpendicular to the layer plane between the two partial laminated cores is formed and the gap forms a cooling channel or at least a portion of a cooling channel whose channel longitudinal direction extends transversely, in particular perpendicular, to the layer plane of the laminated sheets.
- An essential advantage of the core according to the invention is that the good thermal longitudinal conductivity of the sheets is used for cooling the core by the described arrangement of the cooling channels or transverse to the layer plane of the sheets. As a result, it is advantageously possible to achieve a reduction in the space requirement required for cooling and an increase in the filling factor for the core limb.
- a further significant advantage of the core according to the invention is the fact that the described formation of the core of partial laminated cores is suitable both for cores layered from individual sheets and for cores wound from magnetic tapes.
- the width of the laminations of the laminations is different to form steps between stacked laminations.
- the number of different sheet widths in the partial laminated cores is a maximum of one third of the number of stages.
- the number of different sheet widths in the partial laminated cores is a maximum of three. In this way, the core can be cut easily and thus inexpensively.
- the cross section of the core is adapted at least in sections to a circular cross section.
- the sheet widths in the partial laminated cores are preferably identical.
- At least two stacked laminated cores have an identical number of equally wide partial laminated cores but are nevertheless of different widths, wherein at least two partial corrugated iron packages are separated from one another by the or one of the cooling channels in the case of the broader laminated core.
- the core viewed from the inside out alternately comprises a laminated core of the first type and a laminated core of the second type, wherein in a laminated core of the first kind at least two partial laminated cores, preferably all partial laminated cores, are separated from each other by a gap or cooling channel, and being at one Laminated core of the second kind, at least two partial laminated cores, preferably all partial laminated cores, lying gap-free on each other.
- At least two stacked laminated cores of the first and second type have the same number of equally wide partial laminated cores.
- the sheets are formed by a thin-walled strip material, preferably an amorphous strip material, and the laminated cores are each wound from this strip material.
- At least one cooling channel is preferably additionally present whose channel longitudinal direction extends parallel to the layer plane of the laminated sheets.
- a further preferred embodiment provides that the laminated cores are bent in sections, wherein the bending radii of at least two stacked laminated cores are selected such that in the bending region between these laminated cores, a cavity, preferably in the form of an arcuate gap, is formed, wherein the cavity with a the cooling channels or all the cooling channels communicates and allows feeding of a coolant through the cavity into the one or more cooling channels.
- the width of the widest partial laminated core is preferably an integer multiple of the narrowest partial laminated core.
- Tension bands are preferably used for the mechanical stabilization. Accordingly, it is provided in a further preferred embodiment of the core, that the wound partial laminated cores are stabilized and fixed by means of clamping bands, wherein the clamping bands are arranged on the laminated cores, that they each in their position to the clamping band of adjacent partial laminated core are offset and are designed such that forms a cooling channel in the space between the partial laminated cores.
- clamping bands are arranged on the laminated cores, that they each in their position to the clamping band of adjacent partial laminated core are offset and are designed such that forms a cooling channel in the space between the partial laminated cores.
- straps made of metallic non-magnetic material are preferably used.
- windings with circular coils which are placed on the limbs of the core are preferred for transformers and chokes.
- the cross-section of the limb is preferably stepped several times.
- a further advantageous embodiment of the core provides for the formation of core stages from the laminated cores and thus an approximation to the circular shape of the winding when using core sheets only one or less sheet widths. At the same time the formation of effective and space-saving cooling channels is made possible.
- the preferred core configurations are also suitable for cores of electrical induction devices which operate in the high-frequency range, since the above-mentioned advantages due to the frequency dependency of the magnetic reversal losses in these preferably come into effect and the application even with relatively small benefits offers economic benefits.
- the bending radii of the wound partial laminated core of a composite core are each selected such that in each case a gap is formed for the circulation of a cooling fluid in the arc between leg and yoke.
- the lower sheet for receiving the cooling fluid which flows transversely to the winding direction, is distributed within the arc on the cooling channels between the partial laminated cores to then ascend by the heating and exit at the upper arc between leg and yoke again.
- the FIG. 1 shows an example of a core 1 for an electromagnetic induction device, not shown.
- the core 1 consists of a plurality of laminated cores 2, which are each formed by laminated sheets 11 of magnetizable material, wherein the laminated cores are parallel to the layer plane of the laminated sheets 11 to each other.
- the laminated cores 2 is segmented and has a plurality of partial laminated cores 3.
- the partial laminated cores 3 are at least partially arranged such that at the joint between the sheet metal end faces 3a of the partial laminated cores a gap results, which is dimensioned such that the flow of a coolant allows and a cooling channel 4 is formed.
- the total width of the individual laminated cores 2 is determined in each case.
- the height of the laminated cores 2 is adjusted by the number of layered sheets 11.
- a stepped core is formed.
- all core lamination packages 2 are formed from core sheet metal stiffeners or partial lamination stacks 3 of the same width.
- the partial laminated cores 3 are each arranged alternately with or without a gap, that is, with or without cooling channels between the partial laminated cores 3. This results in a different overall width of the laminations 2 forming the steps of the core 1.
- Every second laminated core has cooling channels 4, so that the number of stages doubles again, without the need for additional sheet metal widths. In this way it is possible to achieve a substantial approximation of a core leg to a circular shape.
- the use of round windings with high filling factor of the core is possible without the use of a variety of different sheet widths.
- FIG. 2 shows in a plan view the sectional view of a laminated from magnetic sheets leg 6 of another example of a core 1.
- the leg 6 and connected thereto yoke 7 are stacked in this example of individual sheets.
- the individual sheets form in the transition region between the legs and yoke joints, which are offset in layers against each other and form a tapping.
- the illustrated arrangement of the cooling channels 4 along the cut edges of the sheets 11 not only a good thermal conductivity of the sheets 11 is used transversely to the layer plane, but it can continue to use targeted cooling channels in the thermally highly stressed areas of the core.
- Cooling channels in the already well cooled edge layers of the core 1 can be omitted, and a further increase in the filling factor of the core 1 is possible.
- the FIG. 3 shows an embodiment in which a five-stage core 1 using two different widths for the sheets 11.1 and 11.2 of the partial laminated cores 3 is executed. As a result, it is possible to form a finely graded core of high number of stages with only two different sheet widths of the core material.
- the width of the largest partial laminated core 3 forms a multiple of the smallest width of a partial laminated core. Due to the aforementioned formation of multiples of the width of the partial laminated cores 3, the formation of connections between the cooling channels 4 of the successive laminated cores is simplified.
- the embodiment according to FIG. 3 are provided by this design all stages with cooling channels 4, which are connected to each other such that a cooling medium can flow transversely to the laminar layer direction of the sheets 11.1 and 11.2.
- the FIG. 4 shows another example;
- the laminated sheets 11 of the laminated cores 2 are formed by means of a wound strip material.
- This example lends itself, for example, to sheets with a preferred magnetic direction, since the sheet is obtained in strip form and can be wound without interruption.
- the individual turns of the ribbon core are separated so staggered that in each case only one point of application lies in the magnetic circuit.
- This wound core design is particularly suitable for the use of strips of amorphous core material or strips of nanocrystalline metals.
- the layering of the winding layers is in the FIG. 4 shown in the sectional view of the leg 6. You can see that here only strip material of a width is used.
- the strip material is continuous, each comprising two legs 6 and the yokes 7, wound.
- the composition of the middle laminated cores from a plurality of partial laminated cores 3 creates a stepped core, which is adapted to the circular shape 8.
- the laminated cores which form the central core stage, each provided with transverse to the layer plane cooling channels 4.
- FIG. 4 shows a three-dimensional sectional view of the three-limb core wound from strip material.
- the strip material is wound circumferentially to form the cooling channels 4 designed as described above, each in partial laminated cores 3, which respectively form corresponding legs 6 and yoke sections 7.
- the cooling channels 4 of the core legs 6 are continued in the yokes 7 of the core.
- FIG. 6 shows the full view of an embodiment of the active part of a three-phase transformer, which is provided with a cooling channels 43 provided with core 1. On the legs 6 windings 9 of the three-phase transformer are arranged in the embodiment.
- the partial laminated core of the core 1 are formed in the embodiment of amorphous strip material.
- FIG. 7 shows a sectional view of the in FIG. 6 shown embodiment in more detail.
- the bending radii 17 of the mutually stacked laminated core 3 of a composite core 1 are each selected such that in the arc between leg 6 and yoke 7 each arcuate gap 23 and thus a cooling channel 43 is formed for the circulation of a cooling fluid.
- FIG. 8 shows a section through the leg 6 of another example of a core 1, in which the partial laminated cores 3 of the metal sheets 2 are produced by means of a wound strip material.
- the seven-stage core shown in the example uses only plates 11 of a single bandwidth to form the steps.
- the lower yoke 7 of the core 1 is seen in full view.
- the strip material is continuous, each comprising two legs 6 and the yokes 7, wound.
- FIG. 9 shows the core 1 according to FIG. 8 in a three-dimensional view obliquely from the side.
- FIG. 10 shows a sectional view through the axis of the central limb of another embodiment of a three-limb core parallel to the plane of the core band. Between the partial laminated cores 3 of the leg 6 vertical cooling channels 4 are arranged.
- the winding radii 17 of the partial laminated core 3 of the core 1 are each chosen such that in the arc between leg 6 and yoke 7 each have a curved gap 23 is formed to form a cooling channel 43 for the circulation of the coolant.
- This arcuate gap 23 is connected to the cooling channels 4 between the partial laminated cores 3.
- the lower sheet for receiving the coolant which flows transversely to the winding direction, is distributed within the arc on the cooling channels 43 between the bands to then ascend by the heating and exit at the upper arc between leg 6 and yoke 7 again.
- FIG. 11 shows a partial view of the leg-yoke transition of in FIG. 10 described embodiment in more detail.
- FIG. 12 shows the front view of an embodiment with wound ribbon core of amorphous material, in which the laminations 2 are radially spaced from each other by means of inserts 48 such that a cooling channel 42 for supplying the cooling channels (not visible) is formed between the mutually parallel partial laminated cores.
- FIG. 13 shows an embodiment of the center leg 6 of a three-phase transformer, each with a plurality of the center leg 6 with a neighboring leg magnetically coupling partial laminated cores. It can be seen in the region of the associated with the yoke 7 leg 6 radial cooling channels 42 between the partial laminated cores.
- the mechanical Stabilizing clamping bands 52 are used, which include the partial laminated cores at the periphery. These can be arranged both transversely and longitudinally to the winding direction. In the embodiment according to FIG. 13 the arrangement is longitudinal, ie parallel to the winding direction.
- the clamping bands 52 are preferably positioned in the transverse direction on the partial laminated cores in such a way that they are offset in their position relative to the clamping band of the adjacent partial laminated core and the space between the partial laminated cores forms a cooling channel.
- FIG. 14 shows a three-dimensional view of the three-limb core according to FIG. 13 .
- FIGS. 15 and 16 show an embodiment of a five-limb core.
- the core is preferably formed from wound partial laminated cores of a strip material.
- the three inner legs are provided for mounting windings, while the outer serve as a return leg.
- the cores are made of wound segments of preferably amorphous strip material.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
Die Erfindung betrifft einen Kern für eine elektrische Induktionseinrichtung mit einer Vielzahl an Blechpaketen, die jeweils durch laminierte Bleche gebildet sind, wobei die Blechpakete parallel zur Schichtebene der laminierten Bleche aufeinander liegen, wobei zumindest eines der Blechpakete segmentiert ist und zumindest zwei Teilblechpakete aufweist, die zwei Teilblechpakete jeweils mit ihren Blechstirnseiten, die quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche stehen, einander gegenüber liegen, die Blechstirnseiten der zwei Teilblechpakete einen Abstand zueinander aufweisen, durch den ein sich senkrecht zur Schichtebene erstreckender Spalt zwischen den zwei Teilblechpaketen gebildet wird und der Spalt einen Kühlkanal oder zumindest einen Abschnitt eines Kühlkanals bildet, dessen Kanallängsrichtung sich quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche erstreckt.The invention relates to a core for an electrical induction device with a plurality of laminated cores, each formed by laminated sheets, wherein the laminated cores are parallel to the layer plane of the laminated sheets to each other, wherein at least one of the laminated cores is segmented and has at least two partial laminated cores, the two Partial laminated cores each with their sheet metal end faces, which are transversely, in particular perpendicularly, to the layer plane of the laminated sheets, face each other, the sheet metal end faces of the two partial laminated cores have a distance from each other through which a perpendicular to the layer plane extending gap between the two partial laminated cores is formed and the Gap forms a cooling channel or at least a portion of a cooling channel whose channel longitudinal direction extends transversely, in particular perpendicular, to the layer plane of the laminated sheets.
Ein solcher Ker ist aus der
Die
Aus dem Stand der Technik sind laminar aus Blechen (auch Magnetbleche oder Kernbleche genannt) geschichtete Kerne bekannt, diese werden auch Stapelkerne genannt. Solche Kerne können durch den Zuschnitt unterschiedlich breiter Bleche, für jedes einzelne Blechpaket gestuft, ausgeführt werden. Weiterhin sind Kerne (auch Bandkerne genannt) bekannt, bei welchen das Blech spulenförmig weitgehend unterbrechungsfrei aufgewickelt wird.From the state of the art, laminated cores are known from sheets (also called magnetic sheets or core sheets), these are also called stack cores. Such cores can be performed by cutting different width sheets, graded for each individual laminated core. Furthermore, cores (also called band cores) are known in which the sheet is wound coil-shaped largely uninterrupted.
Als Werkstoff für die Bleche wird vorwiegend kornorientiertes, kaltgewalztes Blech verwendet, das eine magnetische Vorzugsrichtung in Walzrichtung besitzt. Durch die Schichtung des Kerns aus diesen kornorientierten Blechen wird die von den Leerlaufverlusten herrührende Wärme längs und quer zur Schichtebene unterschiedlich stark zur Oberfläche abgeleitet. Dies kommt in einer zumeist um den Faktor 6 ...7 unterschiedlichen Wärmeleitfähigkeit zum Ausdruck.The material used for the sheets mainly grain-oriented, cold-rolled sheet is used, which has a magnetic preferred direction in the rolling direction. Due to the layering of the core from these grain-oriented sheets, the heat resulting from the no-load losses is dissipated to and across the layer plane at different extents from the surface. This is expressed in a usually by the
Derzeit werden im Transformatorenbau Kühlkanäle parallel zur Schichtebene eingesetzt, da sich diese leicht durch Einlegen von Leisten oder Distanzkörpern (zum Beispiel Keramikscheiben) bilden lassen. Nachteilig bei dieser Kühlkanalbildung ist, dass die Anordnung der Kühlkanäle die günstige Wärmeleitung parallel zur Schichtrichtung der Bleche nicht ausnutzen kann.At present, cooling ducts are used parallel to the layer plane in transformer construction, since they can be easily formed by inserting strips or spacers (for example, ceramic disks). A disadvantage of this cooling channel formation is that the arrangement of the cooling channels can not exploit the favorable heat conduction parallel to the layer direction of the sheets.
Auch sind spezielle externe Kühlflächen zum Kühlen von Kernen bekannt; solche sind beispielsweise in der deutschen Patentschrift
Zur weiteren Verringerung der Leerlaufverluste kommen bei Verteilertransformatoren heutzutage verstärkt amorphe Kernmaterialien zum Einsatz. Der Stand der Technik bezüglich des Einsatzes amorphen Kernmaterials ist beispielsweise in der europäischen Offenlegungsschrift
Auf Grund der hohen Materialkosten für amorphe Kernmaterialien, die schwierige Verarbeitung sowie die eingeschränkten Gestaltungsmöglichkeiten haben sich amorphe Materialien, insbesondere bei größeren Leistungstransformatoren, jedoch bis heute noch nicht durchsetzen können.Due to the high material costs for amorphous core materials, the difficult processing as well as the restricted design options, amorphous materials, especially for larger power transformers, have not yet been able to assert themselves.
Der Erfindung liegt die Aufgabe zugrunde, einen Kern der eingangs genannten Art anzugeben, der kostengünstig herstellbar ist und eine ausreichend gute Wärmeabfuhr gewährleistet.The invention has for its object to provide a core of the type mentioned, which is inexpensive to produce and ensures a sufficiently good heat dissipation.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Breite der Bleche der Blechpakete unter Bildung von Stufen zwischen aufeinander liegenden Blechpaketen unterschiedlich ist, die Anzahl unterschiedlicher Blechbreiten in den Teilblechpaketen maximal ein Drittel der Anzahl an Stufen beträgt.This object is achieved in that the width of the sheets of laminated cores is different with the formation of steps between stacked laminated cores, the number of different sheet widths in the partial laminated cores is a maximum of one third of the number of stages.
Danach ist erfindungsgemäß vorgesehen, dass zumindest eines der Blechpakete segmentiert ist und zumindest zwei Teilblechpakete aufweist, die zwei Teilblechpakete jeweils mit ihren Blechstirnseiten, die quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche stehen, einander gegenüber liegen, die Blechstirnseiten der zwei Teilblechpakete einen Abstand zueinander aufweisen, durch den ein sich senkrecht zur Schichtebene erstreckender Spalt zwischen den zwei Teilblechpaketen gebildet wird und der Spalt einen Kühlkanal oder zumindest einen Abschnitt eines Kühlkanals bildet, dessen Kanallängsrichtung sich quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche erstreckt.Thereafter, the invention provides that at least one of the laminated cores is segmented and has at least two partial laminated cores, each with their sheet metal end faces, which are transversely, in particular perpendicular to the layer plane of the laminated sheets, face each other, the sheet metal end faces of the two partial laminated cores a distance have to each other through which a gap extending perpendicular to the layer plane between the two partial laminated cores is formed and the gap forms a cooling channel or at least a portion of a cooling channel whose channel longitudinal direction extends transversely, in particular perpendicular, to the layer plane of the laminated sheets.
Ein wesentlicher Vorteil des erfindungsgemäßen Kernes besteht darin, dass durch die beschriebene Anordnung des oder der Kühlkanäle quer zur Schichtebene der Bleche die gute Wärmelängsleitfähigkeit der Bleche zur Kühlung des Kernes ausgenutzt wird. Dies führt dazu, dass sich in vorteilhafter Weise eine Reduzierung des für die Kühlung benötigten Raumbedarfs und eine Erhöhung des Füllfaktors für den Kernschenkel erreichen lässt.An essential advantage of the core according to the invention is that the good thermal longitudinal conductivity of the sheets is used for cooling the core by the described arrangement of the cooling channels or transverse to the layer plane of the sheets. As a result, it is advantageously possible to achieve a reduction in the space requirement required for cooling and an increase in the filling factor for the core limb.
Ein weiterer wesentlicher Vorteil des erfindungsgemäßen Kernes ist darin zu sehen, dass sich die beschriebene Bildung des Kernes aus Teilblechpaketen sowohl für aus Einzelblechen geschichtete Kerne als auch für aus magnetischen Bändern gewickelte Kerne eignet.A further significant advantage of the core according to the invention is the fact that the described formation of the core of partial laminated cores is suitable both for cores layered from individual sheets and for cores wound from magnetic tapes.
Erfindungsgemäß ist die Breite der Bleche der Blechpakete unter Bildung von Stufen zwischen aufeinander liegenden Blechpaketen unterschiedlich.According to the invention, the width of the laminations of the laminations is different to form steps between stacked laminations.
Dabei beträgt die Anzahl unterschiedlicher Blechbreiten in den Teilblechpaketen maximal ein Drittel der Anzahl an Stufen. Bevorzugt beträgt die Anzahl unterschiedlicher Blechbreiten in den Teilblechpaketen maximal drei. Auf diese Weise kann der Kern einfach und somit kostengünstig zugeschnitten werden.The number of different sheet widths in the partial laminated cores is a maximum of one third of the number of stages. Preferably, the number of different sheet widths in the partial laminated cores is a maximum of three. In this way, the core can be cut easily and thus inexpensively.
Vorteilhaft ist es, wenn durch die Stufenbildung der Querschnitt des Kernes zumindest abschnittsweise an einen kreisförmigen Querschnitt angepasst ist.It is advantageous if, due to the step formation, the cross section of the core is adapted at least in sections to a circular cross section.
Die Blechbreiten in den Teilblechpaketen sind vorzugsweise identisch.The sheet widths in the partial laminated cores are preferably identical.
Als vorteilhaft wird es auch angesehen, wenn zumindest zwei aufeinander liegende Blechpakete eine identische Anzahl an gleich breiten Teilblechpaketen aufweisen, aber dennoch unterschiedlich breit sind, wobei bei dem breiteren Blechpaket zumindest zwei Teilblechpakete durch den oder einen der Kühlkanäle voneinander getrennt sind.It is also considered to be advantageous if at least two stacked laminated cores have an identical number of equally wide partial laminated cores but are nevertheless of different widths, wherein at least two partial corrugated iron packages are separated from one another by the or one of the cooling channels in the case of the broader laminated core.
Eine besonders bevorzugte Ausgestaltung sieht vor, dass der Kern von innen nach außen betrachtet abwechselnd ein Blechpaket erster Art und ein Blechpaket zweiter Art aufweist, wobei bei einem Blechpaket erster Art zumindest zwei Teilblechpakete, vorzugsweise alle Teilblechpakete, durch einen Spalt oder Kühlkanal voneinander getrennt sind, und wobei bei einem Blechpaket zweiter Art zumindest zwei Teilblechpakete, vorzugsweise alle Teilblechpakete, spaltfrei aufeinander liegen.A particularly preferred embodiment provides that the core viewed from the inside out alternately comprises a laminated core of the first type and a laminated core of the second type, wherein in a laminated core of the first kind at least two partial laminated cores, preferably all partial laminated cores, are separated from each other by a gap or cooling channel, and being at one Laminated core of the second kind, at least two partial laminated cores, preferably all partial laminated cores, lying gap-free on each other.
Vorzugsweise weisen zumindest zwei aufeinander liegende Blechpakete erster und zweiter Art dieselbe Anzahl an gleich breiten Teilblechpaketen auf.Preferably, at least two stacked laminated cores of the first and second type have the same number of equally wide partial laminated cores.
Auch ist es vorteilhaft, wenn die Bleche durch ein dünnwandiges Bandmaterial, vorzugsweise ein amorphes Bandmaterial gebildet sind, und die Blechpakete jeweils aus diesem Bandmaterial gewickelt sind.It is also advantageous if the sheets are formed by a thin-walled strip material, preferably an amorphous strip material, and the laminated cores are each wound from this strip material.
Zur weiteren Kühlung ist vorzugsweise zusätzlich zumindest ein Kühlkanal vorhanden, dessen Kanallängsrichtung sich parallel zur Schichtebene der laminierten Bleche erstreckt.For further cooling, at least one cooling channel is preferably additionally present whose channel longitudinal direction extends parallel to the layer plane of the laminated sheets.
Eine weitere bevorzugte Ausgestaltung sieht vor, dass die Blechpakete abschnittsweise gebogen sind, wobei die Biegeradien zumindest zweier aufeinander liegender Blechpakete derart gewählt sind, dass im Biegebereich zwischen diesen Blechpaketen ein Hohlraum, vorzugsweise in Form eines bogenförmigen Spalts, gebildet wird, wobei der Hohlraum mit einem der Kühlkanäle oder allen Kühlkanälen in Verbindung steht und ein Einspeisen eines Kühlmittels durch den Hohlraum hindurch in den oder die Kühlkanäle ermöglicht.A further preferred embodiment provides that the laminated cores are bent in sections, wherein the bending radii of at least two stacked laminated cores are selected such that in the bending region between these laminated cores, a cavity, preferably in the form of an arcuate gap, is formed, wherein the cavity with a the cooling channels or all the cooling channels communicates and allows feeding of a coolant through the cavity into the one or more cooling channels.
Die Breite des breitesten Teilblechpaketes beträgt bevorzugt ein ganzzahliges Vielfaches des schmalsten Teilblechpaketes.The width of the widest partial laminated core is preferably an integer multiple of the narrowest partial laminated core.
Für die mechanische Stabilisierung kommen bevorzugt Spannbänder zum Einsatz. Demgemäß ist bei einer weiteren bevorzugten Ausgestaltung des Kernes vorgesehen, dass die gewickelten Teilblechpakete mittels Spannbändern stabilisiert und fixiert sind, wobei die Spannbänder derart auf den Blechpaketen angeordnet sind, dass sie in ihrer Lage jeweils zum Spannband des benachbarten Teilblechpaketes versetzt sind und derart gestaltet sind, dass sich in dem Raum zwischen den Teilblechpaketen ein Kühlkanal bildet. Aus Kostengründen werden vorzugsweise Spannbänder aus metallischem unmagnetischem Material eingesetzt.Tension bands are preferably used for the mechanical stabilization. Accordingly, it is provided in a further preferred embodiment of the core, that the wound partial laminated cores are stabilized and fixed by means of clamping bands, wherein the clamping bands are arranged on the laminated cores, that they each in their position to the clamping band of adjacent partial laminated core are offset and are designed such that forms a cooling channel in the space between the partial laminated cores. For cost reasons, straps made of metallic non-magnetic material are preferably used.
Bei Einsatz des Kernes in Drosseln können Luftspalteinlagen vorgesehen werden, die mit dem Kernmaterial verklebt werden.When using the core in throttles air gaps can be provided, which are glued to the core material.
Besonders vorteilhaft ist die oben beschriebene Stufung des Kerns bei Kernen aus amorphem oder nanokristallinem Bandmaterial, da die Verwendung runder kurzschlussfester Wicklungen ermöglicht wird.Particularly advantageous is the above-described gradation of the core in cores made of amorphous or nanocrystalline strip material, since the use of round short-circuit resistant windings is made possible.
Um die bei Kurzschluss auftretenden radialen Wicklungskräfte einfach zu beherrschen, werden für Transformatoren und Drosseln vorzugsweise Wicklungen mit kreisförmigen Spulen bevorzugt, welche auf die Schenkel des Kernes aufgesetzt werden.In order to easily control the radial winding forces occurring in the event of a short circuit, windings with circular coils which are placed on the limbs of the core are preferred for transformers and chokes.
Um für den Kernschenkel einen hohen Füllfaktor (optimale Füllung des kreisförmigen Querschnittes der Wicklung mit magnetischem Material) zu erreichen, wird der Querschnitt des Schenkels vorzugsweise mehrfach abgestuft.In order to achieve a high filling factor for the core limb (optimum filling of the circular cross-section of the winding with magnetic material), the cross-section of the limb is preferably stepped several times.
Eine weitere vorteilhafte Ausführung des Kernes sieht die Bildung von Kernstufen aus den Blechpaketen und damit eine Annäherung an die Kreisform der Wicklung bei Einsatz von Kernblechen nur einer oder weniger Blechbreiten vor. Gleichzeitig wird die Bildung von effektiven und raumsparenden Kühlkanälen ermöglicht.A further advantageous embodiment of the core provides for the formation of core stages from the laminated cores and thus an approximation to the circular shape of the winding when using core sheets only one or less sheet widths. At the same time the formation of effective and space-saving cooling channels is made possible.
Wie sich den obigen Erläuterungen entnehmen lässt, sind die bevorzugten Kernausgestaltungen auch für Kerne von elektrischen Induktionseinrichtungen geeignet, welche im Hochfrequenzbereich arbeiten, da die oben angegebenen Vorteile auf Grund der Frequenzabhängigkeit der Ummagnetisierungsverluste bei diesen bevorzugt zur Geltung kommen und die Anwendung auch bei relativ kleinen Leistungen wirtschaftliche Vorteile bietet.As can be seen from the above explanations, the preferred core configurations are also suitable for cores of electrical induction devices which operate in the high-frequency range, since the above-mentioned advantages due to the frequency dependency of the magnetic reversal losses in these preferably come into effect and the application even with relatively small benefits offers economic benefits.
In einer bevorzugten Ausführungsform werden die Biegeradien der gewickelten Teilblechpakete eines zusammengesetzten Kernes jeweils derart gewählt, dass im Bogen zwischen Schenkel und Joch jeweils ein Spalt zur Zirkulation eines Kühlfluides gebildet wird. Dabei dient der untere Bogen zur Aufnahme des Kühlfluides, welches quer zur Wickelrichtung einströmt, sich innerhalb des Bogens auf die Kühlkanäle zwischen den Teilblechpaketen verteilt, um dann durch die Erwärmung aufzusteigen und am oberen Bogen zwischen Schenkel und Joch wieder auszutreten.In a preferred embodiment, the bending radii of the wound partial laminated core of a composite core are each selected such that in each case a gap is formed for the circulation of a cooling fluid in the arc between leg and yoke. In this case, the lower sheet for receiving the cooling fluid, which flows transversely to the winding direction, is distributed within the arc on the cooling channels between the partial laminated cores to then ascend by the heating and exit at the upper arc between leg and yoke again.
Die Erfindung wird nachfolgend anhand von bevorzugten Ausführungsbeispielen näher erläutert, diese sind in den
In den Figuren werden der Übersicht halber für identische - oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet.For the sake of clarity, the same reference numerals are always used in the figures for identical or comparable components.
Die
Bei dem Beispiel ist zumindest ein Teil der Blechpakete 2 segmentiert und weist mehrere Teilblechpakete 3 auf. Die Teilblechpakete 3 werden zumindest teilweise derart zueinander angeordnet, dass sich an der Stoßstelle zwischen den Blechstirnseiten 3a der Teilblechpakete ein Spalt ergibt, welcher derart dimensioniert wird, dass die Strömung eines Kühlmittels ermöglicht und ein Kühlkanal 4 gebildet wird.In the example, at least part of the laminated
Bei einem Blechpaket mit rechteckigem Querschnitt stellen sich neutrale Ebenen mit der höchsten Temperatur ein, die jeweils senkrecht zur Richtung des betrachteten Wärmeflusses stehen und die Paketachsen schneiden. Von ihnen ausgehend sinkt die Kerntemperatur parabelförmig bis zur Kernoberfläche, um dort innerhalb der Strömungszone des Kühlmittels auf den Betrag der Öltemperatur abzufallen. Die Wärmestromdichte an der Kernoberfläche ist weitgehend vom inneren Wärmewiderstand des Körpers abhängig. Dieser ist in der Schichtebene bedeutend kleiner als quer dazu. Die Verluste hingegen sind weitgehend gleichmäßig auf den Blechkörper verteilt. Mit den Kühlkanälen 4 senkrecht zur Schichtebene lässt sich somit eine besonders effektive Kühlung erreichen. Durch die folglich mögliche Reduzierung des Querschnittsbedarfs für die Kühlkanäle 4 lässt sich eine Erhöhung des Füllfaktors des Eisenkreises und damit eine Reduzierung des Kernquerschnittes erzielen.In the case of a laminated core with a rectangular cross-section, neutral planes with the highest temperature are established, which are each perpendicular to the direction of the considered heat flow and intersect the package axes. Starting from them, the core temperature drops parabolic down to the core surface to drop there within the flow zone of the coolant to the amount of oil temperature. The heat flux density at the core surface is largely dependent on the internal thermal resistance of the body. This is significantly smaller in the layer plane than across it. The losses, however, are largely evenly distributed on the sheet metal body. With the
Durch die Anzahl der Teilblechpakete 3 wird jeweils die Gesamtbreite der einzelnen Blechpakete 2 bestimmt. Die Höhe der Blechpakete 2 wird durch die Anzahl der geschichteten Bleche 11 eingestellt. Durch entsprechende Auswahl der genannten Parameter wird ein gestufter Kern gebildet. Im Beispiel gemäß
Bei dem Beispiel gemäß
Bei dem Beispiel gemäß
Die
Durch die dargestellte Segmentierung der Blechpakete 2 in Teilblechpakte 3 und die damit mögliche Anordnung der Kühlkanäle 4 an den Schnittkanten des Bleches wird die Nutzung der hohen thermischen Längsleitfähigkeit der Bleche 11 möglich.The illustrated segmentation of the
Durch die dargestellte Anordnung der Kühlkanäle 4 längs der Schnittkanten der Bleche 11 wird nicht nur eine gute Wärmeleitfähigkeit der Bleche 11 quer zur Schichtebene ausgenutzt, sondern es lassen sich weiterhin Kühlkanäle gezielt in den thermisch hochbeanspruchten Bereichen des Kernes einsetzen.The illustrated arrangement of the
Bei dem Beispiel gemäß
Die
In der in der
Die
Die Schichtung der Wickellagen ist in der
Wie ersichtlich, sind die Blechpakete, welche die mittlere Kernstufe bilden, mit jeweils quer zur Schichtebene angeordneten Kühlkanälen 4 versehen.As can be seen, the laminated cores, which form the central core stage, each provided with transverse to the layer
Die
Die
Die
Die
Im Hintergrund ist das untere Joch 7 des Kernes 1 in Vollansicht zu sehen. Das Bandmaterial ist fortlaufend, jeweils zwei Schenkel 6 und die Joche 7 umfassend, gewickelt.In the background, the
Die
Die
Bei dem Ausführungsbeispiel gemäß
Die
Die
Die
Die Spannbänder 52 werden in Querrichtung vorzugsweise derart auf den Teilblechpaketen positioniert, dass sie in ihrer Lage jeweils zum Spannband des benachbarten Teilblechpaketes versetzt sind und der Raum zwischen den Teilblechpaketen einen Kühlkanal bildet.The clamping
Die
Die
Die drei inneren Schenkel sind zur Montage von Wicklungen vorgesehen, während die äußeren als Rückschlussschenkel dienen. Auch hier sind die Kerne aus gewickelten Segmenten aus vorzugsweise amorphem Bandmaterial gebildet.The three inner legs are provided for mounting windings, while the outer serve as a return leg. Again, the cores are made of wound segments of preferably amorphous strip material.
Claims (12)
- Core (1) for an electrical induction device comprising a large number of lamination stacks (2) which are each formed by laminated sheets (11, 11.1, 11.2), wherein the lamination stacks (2) lie one on the other parallel to the layer plane of the laminated sheets (11, 11.1, 11.2), wherein- at least one of the lamination stacks (2) is segmented and has at least two partial lamination stacks (3),- the two partial lamination stacks (3) lie opposite one another in each case by way of their lamination end sides (3a) which are transverse, in particular perpendicular, to the layer plane of the laminated sheets (11, 11.1, 11.2),- the lamination end sides (3a) of the two partial lamination stacks (3) are at a distance from one another, a gap, which extends perpendicular to the layer plane, between the two partial lamination stacks (3) being formed by said distance, and- the gap forms a cooling channel (4) or at least a section of a cooling channel (4), the longitudinal direction of said cooling channel extending transverse, in particular perpendicular, to the layer plane of the laminated sheets (11, 11.1, 11.2),characterized in that
the width of the laminations (11, 11.1, 11.2) of the lamination stacks (2) is different, so as to form steps between lamination stacks (2) which lie one on the other, the number of different lamination widths in the partial lamination stacks (3) is at most one third of the number of steps. - Core (1) according to Claim 1,
characterized in that
the cross section of the core (1) is matched to a circular cross section at least in sections owing to the formation of steps. - Core (1) according to one of the preceding claims,
characterized in that
the number of different lamination widths in the partial lamination stacks (3) is at most three. - Core (1) according to one of the preceding claims,
characterized in that
the lamination widths in the partial lamination stacks (3) are identical. - Core (1) according to one of the preceding claims, characterized in that- at least two lamination stacks (2) which are situated one on the other have an identical number of partial lamination stacks (3) of identical width, but are nevertheless of different width,- wherein, in the case of the relatively wide lamination stack (2), at least two partial lamination stacks (3) are separated from one another by the or one of the cooling channels (4).
- Core (1) according to one of the preceding claims,
characterized in that- the core (1), as viewed from the inside to the outside, alternately has a lamination stack of the first kind and a lamination stack of the second kind.- wherein, in the case of a lamination stack of the first kind, at least two partial lamination stacks (3), preferably all of the partial lamination stacks (3), are separated from one another by a gap or cooling channel (4), and- wherein, in the case of a lamination stack of the second kind, at least two partial lamination stacks (3), preferably all of the partial lamination stacks (3), lie one on the other without a gap. - Core (1) according to Claim 6,
characterized in that
at least two lamination stacks (2) of the first and second kind which lie one on the other have the same number of partial lamination stacks (3) of identical width. - Core (1) according to one of the preceding claims,
characterized in that- the laminations (11, 11.1, 11.2) are formed by a thin-walled strip material, preferably an amorphous strip material, and- the lamination stacks (2) are each wound from this strip material. - Core (1) according to one of the preceding claims,
characterized in that
there is additionally at least one cooling channel (4), the longitudinal direction of said cooling channel extending parallel to the layer plane of the laminated sheets (11, 11.1, 11.2). - Core (1) according to one of the preceding claims,
characterized in that- the lamination stacks (2) are bent in sections, wherein the bending radii of at least two lamination stacks (2) which lie one on the other are selected in such a way that a hollow space, in particular in the form of an arcuate gap (23), is formed in the bending region between these lamination stacks (2),- wherein the hollow space is connected to one of the cooling channels (4) or all of the cooling channels and makes it possible for a coolant to be fed into the cooling channel or cooling channels (4) through the hollow space. - Core (1) according to one of the preceding claims,
characterized in that
the width of the widest partial lamination stack is an integer multiple of the narrowest partial lamination stack. - Core (1) according to Claim 8,
characterized in that- the wound partial lamination stacks (3) are stabilized and fixed by means of tensioning belts (52),- wherein the tensioning belts (52) are arranged on the lamination stacks (2) in such a way that the position of said tensioning belts is respectively offset in relation to the tensioning belt of the adjacent partial lamination stack (3) and said tensioning belts are designed in such a way that a cooling channel (4) is formed in the space between the partial lamination stacks (3).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14177246.7A EP2975618B1 (en) | 2014-07-16 | 2014-07-16 | Core for an electrical induction device |
US15/326,886 US9941043B2 (en) | 2014-07-16 | 2015-07-01 | Core for an electrical induction device |
PCT/EP2015/065002 WO2016008727A1 (en) | 2014-07-16 | 2015-07-01 | Core for an electrical induction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14177246.7A EP2975618B1 (en) | 2014-07-16 | 2014-07-16 | Core for an electrical induction device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2975618A1 EP2975618A1 (en) | 2016-01-20 |
EP2975618B1 true EP2975618B1 (en) | 2019-05-29 |
Family
ID=51176978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14177246.7A Active EP2975618B1 (en) | 2014-07-16 | 2014-07-16 | Core for an electrical induction device |
Country Status (3)
Country | Link |
---|---|
US (1) | US9941043B2 (en) |
EP (1) | EP2975618B1 (en) |
WO (1) | WO2016008727A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ201791A3 (en) * | 2017-02-17 | 2018-04-25 | Vysoké Učení Technické V Brně | A core skeleton made of rods of a ferromagnetic material |
JP2020068346A (en) * | 2018-10-26 | 2020-04-30 | 三菱重工サーマルシステムズ株式会社 | Reactor and outdoor apparatus |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR573664A (en) * | 1923-02-22 | 1924-06-27 | Alsacienne Constr Meca | Process for cooling the magnetic circuit of electrical appliances and in particular transformers |
GB830688A (en) * | 1955-04-13 | 1960-03-16 | Gen Electric | Improvements in laminated magnetic cores |
US2991437A (en) * | 1955-09-20 | 1961-07-04 | Elin Ag Fur Elek Sche Ind | Magnetic core |
US3157850A (en) * | 1959-04-29 | 1964-11-17 | Moloney Electric Company | Magnetic cores |
US3183461A (en) * | 1962-02-05 | 1965-05-11 | Westinghouse Electric Corp | Magnetic core structure with cooling passages therein |
US3967226A (en) * | 1975-06-10 | 1976-06-29 | Westinghouse Electric Corporation | Electrical inductive apparatus having magnetic shielding cores and a gapped main core structure |
DE3505120C1 (en) | 1985-02-14 | 1986-10-09 | Hans O. Habermann Transformatoren -Elektroapparate, 7898 Lauchringen | Transformer |
JP5341058B2 (en) | 2010-12-27 | 2013-11-13 | 株式会社日立産機システム | Amorphous transformer |
FR2995127B1 (en) * | 2012-08-31 | 2016-02-05 | Ge Energy Power Conversion Technology Ltd | MAGNETIC CORE FOR A WINDING MAGNETIC COMPONENT HAVING IMPROVED COOLING MEANS |
-
2014
- 2014-07-16 EP EP14177246.7A patent/EP2975618B1/en active Active
-
2015
- 2015-07-01 US US15/326,886 patent/US9941043B2/en active Active
- 2015-07-01 WO PCT/EP2015/065002 patent/WO2016008727A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US9941043B2 (en) | 2018-04-10 |
WO2016008727A1 (en) | 2016-01-21 |
US20170213631A1 (en) | 2017-07-27 |
EP2975618A1 (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2463869B1 (en) | Inductive component with improved core properties | |
EP1725420B1 (en) | Magnet arrangement for carrying, guiding and/or braking systems in magnetic levitation vehicles | |
EP2688183A2 (en) | Cast electric coil | |
EP3815221A1 (en) | Actively cooled coil | |
DE102015101230A1 (en) | inductor | |
EP3649655B1 (en) | Storage choke | |
EP3078097A2 (en) | Stator core comprising a flow-path barrier | |
EP1849169A1 (en) | Transformer core comprising magnetic shielding | |
DE102013009588A1 (en) | Welding transformer for use in direct current-resistance point weld system, has iron core provided with iron core segments, primary winding provided with primary winding coils, and secondary windings provided with secondary winding coils | |
EP2975618B1 (en) | Core for an electrical induction device | |
WO2021239403A1 (en) | Coil element | |
EP1501106B1 (en) | Ferrite core for inductive element | |
DE102005015006B4 (en) | magnetic core | |
DE102015118652A1 (en) | coil assembly | |
DE102012222440A1 (en) | Induction heater for metal body | |
EP2079604A1 (en) | Magnet pole for magnetically levitated vehicles | |
EP2867906B1 (en) | Inductive component | |
DE112022000924T5 (en) | Coil device and power conversion device | |
DE102011080827A1 (en) | Winding and method for producing a winding with a cooling channel | |
DE19920268C1 (en) | Inductive device e.g. choke coil or transformer, has laminations of magnetic circuit offset relative to one another in vicinity of electrical circuit for increasing magnetic circuit surface | |
DE202013103599U1 (en) | Electrical component | |
EP2330603A1 (en) | Transformer with tape coil | |
DE2259465C3 (en) | Multi-layer core for high-performance transformers | |
DE102017223839A1 (en) | Magnetic core with yoke legs | |
EP4152352A1 (en) | Coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160719 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: FINDEISEN, JOERG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190111 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1138756 Country of ref document: AT Kind code of ref document: T Effective date: 20190615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014011796 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190529 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190930 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190829 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190830 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190829 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014011796 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
26N | No opposition filed |
Effective date: 20200303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190716 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190716 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1138756 Country of ref document: AT Kind code of ref document: T Effective date: 20190716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190716 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502014011796 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220908 AND 20220914 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230725 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240626 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240730 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240724 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240801 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240725 Year of fee payment: 11 Ref country code: IT Payment date: 20240722 Year of fee payment: 11 |