EP2967222B1 - Encased asymmetric coil innersprings with alternating coil spring orientations - Google Patents
Encased asymmetric coil innersprings with alternating coil spring orientations Download PDFInfo
- Publication number
- EP2967222B1 EP2967222B1 EP14768907.9A EP14768907A EP2967222B1 EP 2967222 B1 EP2967222 B1 EP 2967222B1 EP 14768907 A EP14768907 A EP 14768907A EP 2967222 B1 EP2967222 B1 EP 2967222B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coil
- coils
- encased
- mattress
- orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47C—CHAIRS; SOFAS; BEDS
- A47C27/00—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
- A47C27/04—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays
- A47C27/05—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays with padding material, e.g. foamed material, in top, bottom, or side layers
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47C—CHAIRS; SOFAS; BEDS
- A47C27/00—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
- A47C27/04—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with spring inlays
- A47C27/06—Spring inlays
- A47C27/063—Spring inlays wrapped or otherwise protected
- A47C27/064—Pocketed springs
Definitions
- the disclosure of this application is in the field of reflexive and spring-containing support structures, including furniture and mattresses.
- the present application concerns a mattress according to the preamble part of claim 1.
- Such a mattress is known from EP 2 105 069 A1 or JP H11 128027 A .
- Wire form springs individually encased in fabric also known as "pocketed” or Marshall-type coils and have been manufactured for many years for use as spring cores for mattresses by arranging the strings of pocketed coils in rows or columns within a perimeter. With each coil contained in its own pocket and attached to adjacent pockets, the axes of the coils are held in alignment and each coil is able to be compressed individually or in combination in accordance with the flexibility of the encasing fabric and the manner of attachment or connection between the coil pockets. In addition to conventional stitching, thermal welds have been used at different intervals to form and connect the pockets and thereby dictate to some extent the support characteristics of a pocketed spring core.
- pocketed coil spring cores have focused on details of the fabric encasement - such as altering the length of the pockets or pre-compressing coils within a pocket -- but with common coil configurations throughout, or different coil configurations with variations in wire gauge, numbers and pitches of turns, shapes and heights, in different strings of the core.
- These prior art designs require manufacturing strings of identical coils, encasing the coils in the particular fabric configurations, and then assembling the strings in an alternating pattern, about a perimeter or in zones to form the finished spring core assembly.
- various pocketed spring core characteristics and performance can be achieved in these manners, the manufacture and assembly thereof is tedious and expensive.
- the present invention concerns a mattress according to claim 1 and provides a pocketed spring core which in a preferred embodiment utilizes a common coil configuration and a uniform encasement or pocket configuration, and wherein the coils have an asymmetrical configuration and the vertical end-up orientation of the coils is alternated or otherwise varied.
- the coil configurations in various alternate embodiments are generally helical coil springs with spring bodies which are generally cylindrical (in profile), conical, hour glass, barrel shaped or coil-in-coil, i.e. a smaller diameter helical coil body formed continuously with and inside of a larger diameter helical coil body.
- ends of any of these different types of coil springs can be of any particular configuration, but in general include wire form which lies in a plane generally perpendicular to a longitudinal axis of the helical coil body.
- the first and second ends of the coil may be identically configured, or vary in size or configuration.
- FIG. 1 illustrates a portion of a first embodiment of an encased asymmetric coil innerspring, indicated generally at 100 in which each of the coils 10 are encased or pocketed within an encasement or pocket 101, which may be formed from fabric or other flexible material in sheet form and bonded together by stitching or adhesive.
- the encasements 101 are generally cylindrical and aligned with planar ends 1001 and 1002 to form generally planar support surfaces. Continuous bands of encased coils are arranged in a rectangular array of rows, indicated at R, and columns, indicated at C, to form an innerspring for a mattress or other flexible support structure.
- the columns C of aligned encased coils are oriented to run in a lengthwise direction between the head and foot ends of the mattress, and the rows R of aligned encased coils are oriented to run transversely between the longitudinal sides of the mattress.
- the references to columns C and rows R are representative orientations only and the inventions as disclosed and claimed are not limited to any particular arrangement of the encased coils.
- coils 10A and 10B are in the configuration of generally helical springs which include a helical coil body 11 formed by multiple turns or helical windings of wire W, a first end 10B1 and a second end 10B2. As shown, the turns or helical windings of the coil body 11 are of varying diameter, for example gradually decreasing in diameter from first end 10B1 to second end 10B2, so that the coil has a generally tapered profile as shown in FIG. 4 , and the second end 10B2 is generally smaller than first end 10B1.
- the pitch or angle of inclination of the wire through the helical turns may be relatively constant, or may vary as in later described embodiments.
- the diameters of the helical turns and the variation thereof whether constant or otherwise is a significant factor in the overall spring rate or stiffness of the coil, in addition to other factors such as overall coil height and any pre-compression of the coil by the encasement.
- the support characteristics of the coils 10A and 10B as oriented in the innerspring for example with coil ends 10B2 and 10A1 being co-planar to form support surface 1001 of the innerspring, are very different.
- coil end 10B2 will have a higher apparent spring rate and stiffer feel than coil end 10A1.
- the juxtaposition of these coils and the respective coil ends in the alternating column configuration shown in FIG. 2 to define the support plane 1001 creates a unique and novel support surface.
- FIG. 6 illustrates an alternate embodiment of an encased asymmetric coil innerspring 200, also referred to as a "core", in which encased asymmetric coils 10A and 10B as previously described (or alternatively other embodiments of encased asymmetric coils as later described) are arranged in their respective orientations in groups which define right and left sides of the innerspring 200, with coil end 10A1 of coils 10A forming one half of the planar support surface 2001, and coil end 10B1 of coils 10B forming the other half of the planar support surface 2001.
- the two sides of the innerspring 200 will have perceptibly different support characteristics and feel when employed as the innerspring or core of a mattress.
- This also enables customization of a mattress by selection and orientation of coils for each side of the mattress.
- This embodiment also lends itself to expeditious or automated manufacture, for example by simply inverting the strings of encased coils on one side of the innerspring, or by use of two set-ups or lanes of encased coil manufacturing equipment in which the coil orientation differs and feeds directly to the designated half or zone of an innerspring.
- FIG. 9 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 20, which can be utilized in any of the described encased asymmetric coil innersprings.
- the coil 20 has an outer generally helical coil body 21 which extends between a first coil end 20B1 and a second coil end 20B2.
- the coil body 21 may be generally cylindrical with a generally constant diameter of the helical turns, although the diameters and number of turns of the coil body may be varied according to configurations of the coil forming machinery.
- the coil ends 20B1 and 20B2 may be generally the same diameter or of different diameters as illustrated, also by configuration of the coil forming machinery.
- the coil 20 also includes an inner helical coil body indicated generally at 22 which is generally co-axial with the outer coil body 21 and extends into the interior of the outer coil body 21 from the coil end 20B1.
- an inner helical coil body indicated generally at 22 which is generally co-axial with the outer coil body 21 and extends into the interior of the outer coil body 21 from the coil end 20B1.
- Alternate embodiments and other aspects and features of this type of coil-in-coil spring which can be used in any of the encased asymmetric coil innerspring described herein are disclosed in commonly owned U.S. Patent No. 7,908,693 .
- FIG. 10 illustrates a strand of encased coils 20 with alternating orientation of the coil ends 20B1 and 20B2 between the opposed innerspring surfaces 2001 and 2002.
- the alternating orientation of the coils creates a support surface with a novel hybrid combination of spring characteristics which act together to define the overall support and feel of the innerspring and mattress.
- FIG. 11 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 30, which can be utilized in any of the described encased asymmetric coil innersprings.
- the coil 30 has a generally helical coil body 31 which extends between coil ends 30B1 and 30B2.
- the diameter and pitch of each of the helical turns of the coil body 31 may be constant or varied according to the configuration of the coil forming machinery.
- the coil ends 30B1 and 30B2 can be of any particular formation and as illustrated are of the type with one or more generally linear segments or offsets which are not aligned or continuous with the helical coil body 31, and which may extend beyond a diameter of the coil body 31.
- the coil 30 also includes a non-helical segment indicated at 301 which extends from coil end 30B1.
- the non-helical segment 301 alters the overall spring rate and characteristics of the coil 30 and the initial spring rate and feel of coil end 30B1.
- Other embodiments of coils with non-helical segments proximate either or both ends of the coil, which can be used in any of the encased asymmetric innersprings of the present disclosure, are described below with reference to FIGS. 13-15 , and further disclosed in commonly owned U.S. Patent No. 7,404,223 .
- FIG. 12 illustrates a strand of encased coils 30 with alternating orientation of the coil ends 30B1 and 30B2 between the opposed innerspring surfaces 2001 and 2002.
- the alternating orientation of the coils creates a support surface with a novel hybrid combination of spring characteristics which act together to define the overall support and feel of the innerspring and mattress.
- Also contributing to the hybrid spring characteristics of the innerspring is the fact that the encasement 101 of the strands of coils of both orientations may be fused or otherwise attached.
- FIG. 13 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 40, which can be utilized in any of the described encased asymmetric coil innersprings.
- the coil 40 has a generally helical coil body 41 which extends between coil ends 40B1 and 40B2.
- the diameter and pitch of each of the helical turns of the coil body 41 may be constant or varied according to the configuration of the coil forming machinery.
- the coil ends 40B1 and 40B2 can be of any particular formation and as illustrated are generally circular and with a radius greater than that of the coil body 41.
- the coil 40 also includes a non-helical segment indicated at 401 which extends from coil end 40B1.
- the non-helical segment 401 alters the overall spring rate and characteristics of the coil 40 and the initial spring rate and feel of coil end 40B1.
- Either coil end 40B1 or 40B2 can be oriented within the encasement 101 to lie in the support plane 2001 or 2002, in any arrangement or alternating arrangement, for example in the manner as described with reference to FIG. 12 .
- FIG. 14 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 50, which can be utilized in any of the described encased asymmetric coil innersprings.
- the coil 50 has a generally helical coil body 51 which extends between coil ends 50B1 and 50B2.
- the diameter and pitch of each of the helical turns of the coil body 51 may be constant or varied according to the configuration of the coil forming machinery.
- the coil ends 50B1 and 50B2 can be of any particular formation and as illustrated are of the type with one or more generally linear segments or offsets which are not aligned or continuous with the helical coil body 51, and which may extend beyond a diameter of the coil body 51.
- the coil 50 also includes a non-helical segment indicated at 501 which extends from coil end 50B1.
- the non-helical segment 501 alters the overall spring rate and characteristics of the coil 50 and the initial spring rate and feel of coil end 50B1.
- Either coil end 50B1 or 50B2 can be oriented within the encasement 101 to lie in the support plane 2001 or 2002, in any arrangement or alternating arrangement, for example in the manner as described with reference to FIG. 12 .
- FIG. 15 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 60, which can be utilized in any of the described encased asymmetric coil innersprings.
- the coil 60 has a generally helical coil body 61 which extends between coil ends 60B1 and 60B2.
- the diameter and pitch of each of the helical turns of the coil body 61 may be constant or varied according to the configuration of the coil forming machinery, to produce a coil body which generally cylindrical (equal diameter turns), hourglass (smaller diameter intermediate turns) or barrel-shaped (larger diameter intermediate turns).
- the coil ends 60B1 and 60B2 can be of any particular formation and as illustrated are generally circular and with a radius equal to or less than that of the coil body 61.
- the coil 60 also optionally includes a non-helical segment indicated at 601 which extends from coil end 60B1.
- the non-helical segment 601 alters the overall spring rate and characteristics of the coil 60 and the initial spring rate and feel of coil end 60B1.
- Either coil end 60B1 or 60B2 can be oriented within the encasement 101 to lie in the support plane 2001 or 2002, in any arrangement or alternating arrangement, for example in the manner as described with reference to FIG. 12 .
- FIG. 16 illustrates asymmetric coils 70 in which a generally helical coil body 71 is formed by multiple helical turns or wire in which the pitch or angle of the helix is varied among the turns, as illustrated.
- the coils 70 are illustrated in an alternating orientation arrangement in an encased strand as the innerspring or core of a mattress with at least one layer of overlying foam F and upholstery U, for example over support surface 2001.
- FIG. 7 illustrates an alternate embodiment of an encased asymmetric coil innerspring 300 in which encased asymmetric coils, including any of the coils 10, 20, 30, 40, 50, 60 or 70 and variants thereof, are in an alternating arrangement with coils in a first orientation A in selected rows and coils in a second orientation, e.g. 180 degree or upside-down orientation, across a width dimension of an innerspring as illustrated.
- This width-wise zoning of the innerspring 300 is beneficial for optimizing support of a mattress in higher pressure zones such as the head, shoulder and lumbar areas.
- the width-wise row patterns of alternating coil orientations may be equally spaced from head to foot, or not.
- FIG. 8 illustrates an alternate embodiment of an encased asymmetric coil innerspring 400 in which encased asymmetric coils, including any of the coils 10, 20, 30, 40, 50, 60 or 70 and variants thereof, are in an alternating arrangement with coils in a first orientation A at the longitudinal perimeters of the innerspring and coils in a second orientation, e.g. 180 degree or upside-down orientation, in the central region of the innerspring.
- the coils of orientation A have a higher spring rate in order to create a firmer support surface along the longitudinal edges of a mattress support surface.
- any of the described coils and coil arrangements can be manual or automated by appropriate configuration of coil forming and pocketed coil manufacturing machinery.
- the coil orientation within its encasement 101 can be determined by coil handling machinery between a coil former and transition to automated equipment which handles the encasement material to receive coils and forms the individual encasements between coils.
- a single coil forming machine can be used and the coils then oriented accordingly prior to closure of the encasement material.
- two coil forming machines one can be configured to deliver coils for encapsulation in the opposite orientation.
- coils can be fed from one or two coil forming machines to a coil encapsulation mechanism and the orientation of the coil changed in a continuous feed operation so that a single strand of coils may include coils with first and second or inverted orientations.
- the single strand containing coils with first and second orientations can then be assembled or arranged as desired to form the core.
- uniformly completed strands of coils can be simply cut to length and placed in the desired orientation in a desired row or column of an innerspring array.
- a single innerspring may contain two or more types of encased asymmetric coils in either orientation and in any pattern.
Landscapes
- Mattresses And Other Support Structures For Chairs And Beds (AREA)
- Springs (AREA)
Description
- This application is related to
U.S. provisional patent application number 61/784,085, filed March 14, 2013 - The disclosure of this application is in the field of reflexive and spring-containing support structures, including furniture and mattresses. In particular the present application concerns a mattress according to the preamble part of claim 1. Such a mattress is known from
EP 2 105 069 A1 orJP H11 128027 A - Wire form springs individually encased in fabric, also known as "pocketed" or Marshall-type coils and have been manufactured for many years for use as spring cores for mattresses by arranging the strings of pocketed coils in rows or columns within a perimeter. With each coil contained in its own pocket and attached to adjacent pockets, the axes of the coils are held in alignment and each coil is able to be compressed individually or in combination in accordance with the flexibility of the encasing fabric and the manner of attachment or connection between the coil pockets. In addition to conventional stitching, thermal welds have been used at different intervals to form and connect the pockets and thereby dictate to some extent the support characteristics of a pocketed spring core. Other variations on the basic construct of pocketed coil spring cores have focused on details of the fabric encasement - such as altering the length of the pockets or pre-compressing coils within a pocket -- but with common coil configurations throughout, or different coil configurations with variations in wire gauge, numbers and pitches of turns, shapes and heights, in different strings of the core. These prior art designs require manufacturing strings of identical coils, encasing the coils in the particular fabric configurations, and then assembling the strings in an alternating pattern, about a perimeter or in zones to form the finished spring core assembly. Although various pocketed spring core characteristics and performance can be achieved in these manners, the manufacture and assembly thereof is tedious and expensive.
- The present invention concerns a mattress according to claim 1 and provides a pocketed spring core which in a preferred embodiment utilizes a common coil configuration and a uniform encasement or pocket configuration, and wherein the coils have an asymmetrical configuration and the vertical end-up orientation of the coils is alternated or otherwise varied. The coil configurations in various alternate embodiments are generally helical coil springs with spring bodies which are generally cylindrical (in profile), conical, hour glass, barrel shaped or coil-in-coil, i.e. a smaller diameter helical coil body formed continuously with and inside of a larger diameter helical coil body. The ends of any of these different types of coil springs can be of any particular configuration, but in general include wire form which lies in a plane generally perpendicular to a longitudinal axis of the helical coil body. The first and second ends of the coil may be identically configured, or vary in size or configuration.
- These and other aspects of the present disclosure and related inventions are further described herein with reference to the drawing Figures.
- In the accompanying drawing Figures:
-
FIG. 1 is a perspective view of a portion of an embodiment of an encased asymmetric coil innerspring of the present disclosure; -
FIG. 2 is a plan view of an embodiment of an encased asymmetric coil innerspring of the disclosure with columns of encased asymmetric coils with coil orientation alternating between columns; -
FIG. 3 is a perspective view of an encased asymmetric coil of the present disclosure; -
FIG. 4 is an elevation of an encased asymmetric coil of the present disclosure; -
FIG. 5 is an end view of the encased asymmetric coil ofFIG. 4 ; -
FIG. 6 is a plan view of an alternate embodiment of an encased asymmetric coil innerspring of the disclosure with zones or sides of an innerspring defined by encased asymmetric coils defined by coil orientation; -
FIG. 7 is a plan view of an alternate embodiment of an encased asymmetric coil innerspring of the disclosure with zones of an innerspring defined by encased asymmetric coils defined by coil orientation; -
Fig. 8 is a plan view of an alternate embodiment of an encased asymmetric coil innerspring of the disclosure with perimeter and non-perimeter zones of an innerspring defined by encased asymmetric coils defined by coil orientation; -
FIG. 9 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure; -
FIG. 10 is an elevation of an alternate embodiment of a portion of an encased asymmetric coil innerspring of the present disclosure; -
FIG. 11 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure; -
FIG. 12 is an elevation of an alternate embodiment of a portion of an encased asymmetric coil innerspring of the present disclosure; -
FIG. 13 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure; -
FIG. 14 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure; -
FIG. 15 is a perspective view of an alternate embodiment of encased asymmetric coil of the present disclosure; -
FIG. 16 is an elevation of an alternate embodiment of a portion of an encased asymmetric coil innerspring of the present disclosure. -
FIG. 1 illustrates a portion of a first embodiment of an encased asymmetric coil innerspring, indicated generally at 100 in which each of thecoils 10 are encased or pocketed within an encasement orpocket 101, which may be formed from fabric or other flexible material in sheet form and bonded together by stitching or adhesive. Theencasements 101 are generally cylindrical and aligned withplanar ends - The term "coil" refers to a single coil spring, and is generally synonymous with the word "spring". As illustrated in
FIGS. 1 ,3, 4 and 5 ,coils helical coil body 11 formed by multiple turns or helical windings of wire W, a first end 10B1 and a second end 10B2. As shown, the turns or helical windings of thecoil body 11 are of varying diameter, for example gradually decreasing in diameter from first end 10B1 to second end 10B2, so that the coil has a generally tapered profile as shown inFIG. 4 , and the second end 10B2 is generally smaller than first end 10B1. As illustrated in this particular coil embodiment, the pitch or angle of inclination of the wire through the helical turns may be relatively constant, or may vary as in later described embodiments. The diameters of the helical turns and the variation thereof whether constant or otherwise is a significant factor in the overall spring rate or stiffness of the coil, in addition to other factors such as overall coil height and any pre-compression of the coil by the encasement. In this example of anasymmetrical coil body 11 and the differently sized coil ends 10B1 and 10B2, the support characteristics of thecoils support surface 1001 of the innerspring, are very different. For example, in thesupport surface plane 1001, coil end 10B2 will have a higher apparent spring rate and stiffer feel than coil end 10A1. The juxtaposition of these coils and the respective coil ends in the alternating column configuration shown inFIG. 2 to define thesupport plane 1001 creates a unique and novel support surface. -
FIG. 6 illustrates an alternate embodiment of an encasedasymmetric coil innerspring 200, also referred to as a "core", in which encasedasymmetric coils innerspring 200, with coil end 10A1 ofcoils 10A forming one half of theplanar support surface 2001, and coil end 10B1 ofcoils 10B forming the other half of theplanar support surface 2001. In this embodiment, the two sides of theinnerspring 200 will have perceptibly different support characteristics and feel when employed as the innerspring or core of a mattress. This also enables customization of a mattress by selection and orientation of coils for each side of the mattress. This embodiment also lends itself to expeditious or automated manufacture, for example by simply inverting the strings of encased coils on one side of the innerspring, or by use of two set-ups or lanes of encased coil manufacturing equipment in which the coil orientation differs and feeds directly to the designated half or zone of an innerspring. -
FIG. 9 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 20, which can be utilized in any of the described encased asymmetric coil innersprings. Thecoil 20 has an outer generallyhelical coil body 21 which extends between a first coil end 20B1 and a second coil end 20B2. Thecoil body 21 may be generally cylindrical with a generally constant diameter of the helical turns, although the diameters and number of turns of the coil body may be varied according to configurations of the coil forming machinery. The coil ends 20B1 and 20B2 may be generally the same diameter or of different diameters as illustrated, also by configuration of the coil forming machinery. Thecoil 20 also includes an inner helical coil body indicated generally at 22 which is generally co-axial with theouter coil body 21 and extends into the interior of theouter coil body 21 from the coil end 20B1. Alternate embodiments and other aspects and features of this type of coil-in-coil spring which can be used in any of the encased asymmetric coil innerspring described herein are disclosed in commonly ownedU.S. Patent No. 7,908,693 . -
FIG. 10 illustrates a strand of encasedcoils 20 with alternating orientation of the coil ends 20B1 and 20B2 between the opposedinnerspring surfaces -
FIG. 11 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 30, which can be utilized in any of the described encased asymmetric coil innersprings. Thecoil 30 has a generallyhelical coil body 31 which extends between coil ends 30B1 and 30B2. The diameter and pitch of each of the helical turns of thecoil body 31 may be constant or varied according to the configuration of the coil forming machinery. The coil ends 30B1 and 30B2 can be of any particular formation and as illustrated are of the type with one or more generally linear segments or offsets which are not aligned or continuous with thehelical coil body 31, and which may extend beyond a diameter of thecoil body 31. Thecoil 30 also includes a non-helical segment indicated at 301 which extends from coil end 30B1. Thenon-helical segment 301 alters the overall spring rate and characteristics of thecoil 30 and the initial spring rate and feel of coil end 30B1. Other embodiments of coils with non-helical segments proximate either or both ends of the coil, which can be used in any of the encased asymmetric innersprings of the present disclosure, are described below with reference toFIGS. 13-15 , and further disclosed in commonly ownedU.S. Patent No. 7,404,223 . -
FIG. 12 illustrates a strand of encasedcoils 30 with alternating orientation of the coil ends 30B1 and 30B2 between the opposedinnerspring surfaces encasement 101 of the strands of coils of both orientations may be fused or otherwise attached. -
FIG. 13 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 40, which can be utilized in any of the described encased asymmetric coil innersprings. Thecoil 40 has a generallyhelical coil body 41 which extends between coil ends 40B1 and 40B2. The diameter and pitch of each of the helical turns of thecoil body 41 may be constant or varied according to the configuration of the coil forming machinery. The coil ends 40B1 and 40B2 can be of any particular formation and as illustrated are generally circular and with a radius greater than that of thecoil body 41. Thecoil 40 also includes a non-helical segment indicated at 401 which extends from coil end 40B1. Thenon-helical segment 401 alters the overall spring rate and characteristics of thecoil 40 and the initial spring rate and feel of coil end 40B1. Either coil end 40B1 or 40B2 can be oriented within theencasement 101 to lie in thesupport plane FIG. 12 . -
FIG. 14 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 50, which can be utilized in any of the described encased asymmetric coil innersprings. Thecoil 50 has a generallyhelical coil body 51 which extends between coil ends 50B1 and 50B2. The diameter and pitch of each of the helical turns of thecoil body 51 may be constant or varied according to the configuration of the coil forming machinery. The coil ends 50B1 and 50B2 can be of any particular formation and as illustrated are of the type with one or more generally linear segments or offsets which are not aligned or continuous with thehelical coil body 51, and which may extend beyond a diameter of thecoil body 51. Thecoil 50 also includes a non-helical segment indicated at 501 which extends from coil end 50B1. Thenon-helical segment 501 alters the overall spring rate and characteristics of thecoil 50 and the initial spring rate and feel of coil end 50B1. Either coil end 50B1 or 50B2 can be oriented within theencasement 101 to lie in thesupport plane FIG. 12 . -
FIG. 15 illustrates an alternate embodiment of an encased asymmetric coil, indicated generally at 60, which can be utilized in any of the described encased asymmetric coil innersprings. Thecoil 60 has a generallyhelical coil body 61 which extends between coil ends 60B1 and 60B2. The diameter and pitch of each of the helical turns of thecoil body 61 may be constant or varied according to the configuration of the coil forming machinery, to produce a coil body which generally cylindrical (equal diameter turns), hourglass (smaller diameter intermediate turns) or barrel-shaped (larger diameter intermediate turns). The coil ends 60B1 and 60B2 can be of any particular formation and as illustrated are generally circular and with a radius equal to or less than that of thecoil body 61. Thecoil 60 also optionally includes a non-helical segment indicated at 601 which extends from coil end 60B1. Thenon-helical segment 601 alters the overall spring rate and characteristics of thecoil 60 and the initial spring rate and feel of coil end 60B1. Either coil end 60B1 or 60B2 can be oriented within theencasement 101 to lie in thesupport plane FIG. 12 . - Any of the described asymmetric coil configurations can be modified in order to achieve any desired form of asymmetry. For example,
FIG. 16 illustratesasymmetric coils 70 in which a generallyhelical coil body 71 is formed by multiple helical turns or wire in which the pitch or angle of the helix is varied among the turns, as illustrated. In general, the smaller the pitch turns, such as those proximate to coil end 70B1, produce a lower spring rate and softer support characteristic, and the larger pitch turns such as those proximate to coil end 70B2 produce a higher spring rate and firmer support characteristic. Thecoils 70 are illustrated in an alternating orientation arrangement in an encased strand as the innerspring or core of a mattress with at least one layer of overlying foam F and upholstery U, for example oversupport surface 2001. -
FIG. 7 illustrates an alternate embodiment of an encased asymmetric coil innerspring 300 in which encased asymmetric coils, including any of thecoils -
FIG. 8 illustrates an alternate embodiment of an encased asymmetric coil innerspring 400 in which encased asymmetric coils, including any of thecoils - The production of any of the described coils and coil arrangements can be manual or automated by appropriate configuration of coil forming and pocketed coil manufacturing machinery. The coil orientation within its
encasement 101 can be determined by coil handling machinery between a coil former and transition to automated equipment which handles the encasement material to receive coils and forms the individual encasements between coils. A single coil forming machine can be used and the coils then oriented accordingly prior to closure of the encasement material. Alternatively, when two coil forming machines are employed, one can be configured to deliver coils for encapsulation in the opposite orientation. In a continuous coil production operation, coils can be fed from one or two coil forming machines to a coil encapsulation mechanism and the orientation of the coil changed in a continuous feed operation so that a single strand of coils may include coils with first and second or inverted orientations. The single strand containing coils with first and second orientations can then be assembled or arranged as desired to form the core. For simple manual assembly, uniformly completed strands of coils can be simply cut to length and placed in the desired orientation in a desired row or column of an innerspring array. Also as noted a single innerspring may contain two or more types of encased asymmetric coils in either orientation and in any pattern. - The foregoing descriptions of various embodiments of the disclosure and related inventions are representative of ways in which the inventions may be realized and are not otherwise limiting to the scope of the following claims.
Claims (19)
- A mattress comprising:a core including a plurality of individually encased asymmetric coils (10, 10A, 10B, 20, 30, 40, 50, 60, 70) in strands, each asymmetric coil having an asymmetric coil body (11), a first coil end (10B1) and a second coil end (10B2), the first and second ends of the coils located in first or second planes of the innerspring (200, 300, 400),at least one layer of padding on one of the surfaces of the innerspring (200, 300, 400), andan upholstery layer over the padding and the core, characterized ina first strand of the encased asymmetric coils (10, 10A, 10B, 20, 30, 40, 50, 60, 70) in a first orientation (A),a second strand of the encased asymmetric coils (10, 10A, 10B, 20, 30, 40, 50, 60, 70) in a second orientation (B),wherein the first and second strands are connected together.
- The mattress of claim 1 wherein the first and second strands are arranged in a longitudinal direction in the core.
- The mattress of claim 1 wherein the first and second strands are arranged in a transverse direction in the core.
- The mattress of claim 1 wherein the encased asymmetric coils (10, 10A, 10B, 20, 30, 40, 50, 60, 70) have a generally helical coil body.
- The mattress of claim 1 wherein the generally encased asymmetric coils (10, 10A, 10B, 20, 30, 40, 50, 60, 70) have a generally helical coil body which is asymmetrical.
- The mattress of claim 5 wherein the coil body of the encased asymmetric coil has helical turns with differing pitch.
- The mattress of claim 5 wherein the coil body of the encased asymmetric coil has helical turns with differing diameter.
- The mattress of claim 5 wherein the coil body of the encased asymmetric coil has at least one non-helical segment.
- The mattress of claim 1 wherein a lateral extent of the first coil end of the encased asymmetric coil differs from a lateral extent of the second coil end of the asymmetric coil.
- The mattress of claim 1 wherein the encased asymmetric coils in a first orientation are located in a first column of coils of the core, and encased asymmetric coils in a second orientation are located in a second column of coils of the core.
- The mattress of claim 1 wherein the encased asymmetric coils in the first orientation (A) are located in a first row of coils of the core, and the encased asymmetric coils in the second orientation (B) are located in a second row of coils of the core.
- The mattress of claim 1 wherein the encased asymmetric coils in the first orientation (A) are located in a first region of the core, and the encased asymmetric coils in the second orientation (B) are located in a second region of the core.
- The mattress of claim 1 wherein the encased asymmetric coils in the first orientation (A) are located on a first lateral side of the core, and the encased asymmetric coils in the second orientation (B) are located on a second lateral side of the core.
- The mattress of claim 1 wherein the encased asymmetric coils in the first orientation (A) are located at a perimeter of the core, and the encased asymmetric coils in the second orientation (B) are located in a non-perimeter region of the core.
- The mattress of claim 1 wherein the core is comprised of a plurality of asymmetric coils encased in a first strand of encasement material in the first orientation (A) and a plurality of asymmetric coils encased in a second strand of encasement material in the second orientation (B).
- The mattress of claim 1 wherein the encased asymmetric coils (10, 10A, 10B, 20, 30, 40, 50, 60, 70) have first and second coil ends (10B1, 10B2), and wherein the first coil end (10B1) has a configuration that differs from a configuration of the second coil end (10B2).
- The mattress of claim 1 wherein the first and second strands are arranged in groups in the core.
- The mattress of claim 1 wherein the first orientation (A) of the encased asymmetric coil is an inversion of the second orientation (B) of the encased asymmetric coil
- The mattress of claim 1 wherein the first and second strands are in the form of a continuous strand.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL14768907T PL2967222T3 (en) | 2013-03-14 | 2014-03-14 | Encased asymmetric coil innersprings with alternating coil spring orientations |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361784085P | 2013-03-14 | 2013-03-14 | |
PCT/US2014/028311 WO2014152935A1 (en) | 2013-03-14 | 2014-03-14 | Encased asymmetric coil innersprings with alternating coil spring orientations |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2967222A1 EP2967222A1 (en) | 2016-01-20 |
EP2967222A4 EP2967222A4 (en) | 2016-09-21 |
EP2967222B1 true EP2967222B1 (en) | 2017-12-06 |
Family
ID=51581361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14768907.9A Not-in-force EP2967222B1 (en) | 2013-03-14 | 2014-03-14 | Encased asymmetric coil innersprings with alternating coil spring orientations |
Country Status (11)
Country | Link |
---|---|
US (1) | US20160029809A1 (en) |
EP (1) | EP2967222B1 (en) |
JP (1) | JP2016512156A (en) |
CN (1) | CN105377082A (en) |
AU (1) | AU2014236431B2 (en) |
CA (1) | CA2906122A1 (en) |
DK (1) | DK2967222T3 (en) |
ES (1) | ES2660293T3 (en) |
MX (1) | MX362901B (en) |
PL (1) | PL2967222T3 (en) |
WO (1) | WO2014152935A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11480228B2 (en) | 2016-12-15 | 2022-10-25 | Sealy Technology, Llc | Open coil spring assemblies |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11076705B2 (en) | 2014-05-30 | 2021-08-03 | Sealy Technology, Llc | Spring core with integrated cushioning layer |
GB201505820D0 (en) * | 2015-04-03 | 2015-05-20 | Mammoth Sport Ltd | An improved pressure control layer for a mattress or seating |
BR122021011053B1 (en) * | 2015-06-05 | 2022-07-12 | Sealy Technology Llc | MATTRESS WITH BAG SPRINGS WITH COMPRESSION SPRING AND TENSION ELEMENT |
US11033114B2 (en) | 2015-12-17 | 2021-06-15 | Sealy Technology, Llc | Coil-in-coil spring with variable loading response and mattresses including the same |
WO2017127082A1 (en) | 2016-01-21 | 2017-07-27 | Sealy Technology, Llc | Coil-in-coil springs with non-linear loading responses and mattresses including the same |
GB201604040D0 (en) * | 2016-03-09 | 2016-04-20 | Harrison Spinks Components Ltd | Apparatus and method for making a resilient unit |
CN105852517A (en) * | 2016-04-07 | 2016-08-17 | 徐尚柔 | Integrated type independent spring cushion |
US20170311731A1 (en) * | 2016-04-28 | 2017-11-02 | Tualatin Sleep Products | Hybrid mattress unit |
US10598242B2 (en) * | 2016-05-20 | 2020-03-24 | Sealy Technology, Llc | Coil springs with non-linear loading responses and mattresses including the same |
DE102017117833A1 (en) * | 2017-08-07 | 2019-02-07 | Agro Holding Gmbh | Pocket spring core and method for its production |
KR102608775B1 (en) | 2017-10-31 | 2023-11-30 | 실리 테크놀로지 엘엘씨 | Pocket coil spring assembly comprising soft foam |
US20210068553A1 (en) * | 2018-01-04 | 2021-03-11 | Ikea Supply Ag | Reinforced pocket spring mattress |
US11013340B2 (en) * | 2018-05-23 | 2021-05-25 | L&P Property Management Company | Pocketed spring assembly having dimensionally stabilizing substrate |
US20210227989A1 (en) * | 2018-07-05 | 2021-07-29 | Zeb Metal Sanayi Iç Ve Dis Ticaret Limited Sirketi | A spring system and method for production of spring system |
US11412861B1 (en) * | 2019-02-13 | 2022-08-16 | Protscel, LLC | Mattress comprising a core of pocket springs disposed within a periphery of outer springs |
RU194207U1 (en) * | 2019-07-02 | 2019-12-03 | Общество с ограниченной ответственностью "ЖИВЫЕ ДИВАНЫ" | ORTHOPEDIC MATTRESS WITH INDEPENDENT SPRING BLOCK |
CN112674543B (en) * | 2019-10-17 | 2024-07-26 | 厦门新技术集成有限公司 | Elastic module and elastic pad for furniture |
US11627813B2 (en) * | 2021-03-02 | 2023-04-18 | Avocado Green Brands, LLC | Multiple zone mattress core element with multiple coil configurations |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1250892A (en) * | 1916-08-26 | 1917-12-18 | Frithiof N Johnson | Spring-mattress. |
US3874423A (en) * | 1972-01-03 | 1975-04-01 | Spring Associates Inc | Spring base and method of forming same |
US3873388A (en) * | 1972-04-21 | 1975-03-25 | Hunter Mildred B | Mattress pad and method and apparatus for constructing the same |
US4290155A (en) * | 1974-12-18 | 1981-09-22 | Hanson Paul B | Articulated bed |
US4003563A (en) * | 1975-09-04 | 1977-01-18 | Nachman Corporation | Spring assembly and elements |
US4480823A (en) * | 1982-09-30 | 1984-11-06 | Webster Spring Co. Inc. | Innerspring assembly for furniture seats and backs |
DE3236714A1 (en) * | 1982-10-04 | 1984-04-26 | Odo Prof. 5600 Wuppertal Klose | Spring core for mattresses |
NL8203880A (en) * | 1982-10-06 | 1984-05-01 | Auping Bv | FOAM MATTRESS FITTED WITH SPRING ELEMENTS. |
DE3728148A1 (en) * | 1987-08-24 | 1989-03-09 | Andreas Breckle | POCKET SPRING MATTRESS |
JPH01128027A (en) | 1987-11-13 | 1989-05-19 | Ricoh Co Ltd | Original reading lens |
US5080329A (en) * | 1990-05-14 | 1992-01-14 | Hoover Group, Inc. | Spring loaded locking system for box spring assemblies |
JP3553346B2 (en) * | 1997-10-30 | 2004-08-11 | ドリームベッド株式会社 | Pocket coil structure made of morning glory spring |
GB9813805D0 (en) * | 1998-06-27 | 1998-08-26 | Harrison Bedding Limited A | Spring units |
US6260223B1 (en) * | 1999-12-15 | 2001-07-17 | Leggett & Platt, Incorporated | Pocketed coil spring units |
US20030025254A1 (en) * | 2001-08-06 | 2003-02-06 | L&P Property Management Company | Spring assembly having bands of springs |
US6684435B1 (en) * | 2002-10-24 | 2004-02-03 | L&P Property Management Company | Method of manufacturing bedding or seating product having coaxial coil springs |
US6931685B2 (en) * | 2003-09-12 | 2005-08-23 | Dreamwell, Ltd. | One-sided mattress |
SE527152C2 (en) * | 2003-12-12 | 2006-01-10 | Stjernfjaedrar Ab | Separate pocket mattress with cut strings, as well as method and apparatus for its manufacture |
US7404223B2 (en) * | 2004-08-28 | 2008-07-29 | Sealy Technology Llc | Innerspring coils and innersprings with non-helical segments |
US7178187B2 (en) * | 2004-08-28 | 2007-02-20 | Sealy Technology Llc | Asymmetric spring components and innersprings for one-sided mattresses |
US20070017035A1 (en) * | 2005-07-25 | 2007-01-25 | Jack Chen | Mattress and Coil-in-Coil Assembly |
AU2005334829A1 (en) * | 2005-07-28 | 2007-02-01 | Kai Long Tan | An innerspring unit |
US20070094807A1 (en) * | 2005-10-31 | 2007-05-03 | L&P Property Management Company | Posturized bedding or seating product incorporating Bonnell coil springs with tapered middle portions |
DE102005053123A1 (en) * | 2005-11-08 | 2007-05-10 | Agro Federkernproduktions Gmbh | innerspring |
SE529550C2 (en) * | 2006-03-08 | 2007-09-11 | Stjernfjaedrar Ab | Cushioned pocket mattress and method and apparatus for manufacturing one |
KR100717535B1 (en) * | 2006-04-07 | 2007-05-15 | 주식회사 에이스침대 | Spring structure for mattress |
AU2007313050B2 (en) * | 2006-08-29 | 2012-05-31 | Liao, Hsiu-Chen | A foam spring mattress configured with variable firmness |
US8117700B2 (en) * | 2007-02-26 | 2012-02-21 | Howard John Hunter | Mattress system and method |
US20110148018A1 (en) * | 2007-10-29 | 2011-06-23 | Dreamwell, Ltd. | Asymmetrical combined cylindrical and conical springs |
US9161634B2 (en) * | 2007-10-29 | 2015-10-20 | Dreamwell, Ltd. | Asymmetrical combined cylindrical and conical springs |
US7805790B2 (en) * | 2008-01-18 | 2010-10-05 | Sealy Technology Llc | Foam springs and innerspring combinations for mattresses |
EP2105069A1 (en) * | 2008-03-25 | 2009-09-30 | L&P Swiss Holding Company | Coil spring assembly |
ES2686277T3 (en) * | 2009-04-14 | 2018-10-17 | Sealy Technology Llc | Nested springs and mattress spring units |
CN102481056B (en) * | 2009-08-06 | 2015-01-07 | 美梦有限公司 | Systems And Methods For Cushion Supports |
WO2011150080A1 (en) * | 2010-05-25 | 2011-12-01 | Kingsdown, Inc. | Independent mattress units with transition zone |
US20120047657A1 (en) * | 2010-09-01 | 2012-03-01 | L&P Property Management Company | Spring Assembly Having Continuous Bands of Springs |
KR20120039814A (en) * | 2010-10-18 | 2012-04-26 | 안유수 | Pocket spring structure for mattress |
US9022369B2 (en) * | 2011-01-20 | 2015-05-05 | Sealy Technology, Llc | Reverse coil head coils and innersprings |
EP2665391A4 (en) * | 2011-01-21 | 2014-10-01 | Sealy Technology Llc | Encased hourglass coils and mattress cores |
GB201102187D0 (en) * | 2011-02-09 | 2011-03-23 | Harrison Spinks Components Ltd | Multi-purpose resiient pad |
GB2489426A (en) * | 2011-03-25 | 2012-10-03 | Kit For Kids Ltd | Infant mattress |
JP5227447B2 (en) * | 2011-08-23 | 2013-07-03 | 株式会社ルービックJp | mattress |
US20130174350A1 (en) * | 2012-01-10 | 2013-07-11 | Michael Allman | Mattress assemblies and methods employing cloth member(s) thermally bonded to foam side support member(s) to form mattress encasements |
US9974395B2 (en) * | 2015-02-06 | 2018-05-22 | Diamond Mattress Company, Inc. | Mattress spring assembly |
-
2014
- 2014-03-14 EP EP14768907.9A patent/EP2967222B1/en not_active Not-in-force
- 2014-03-14 PL PL14768907T patent/PL2967222T3/en unknown
- 2014-03-14 WO PCT/US2014/028311 patent/WO2014152935A1/en active Application Filing
- 2014-03-14 CN CN201480015541.XA patent/CN105377082A/en active Pending
- 2014-03-14 JP JP2016502757A patent/JP2016512156A/en active Pending
- 2014-03-14 ES ES14768907.9T patent/ES2660293T3/en active Active
- 2014-03-14 US US14/775,849 patent/US20160029809A1/en not_active Abandoned
- 2014-03-14 DK DK14768907.9T patent/DK2967222T3/en active
- 2014-03-14 MX MX2015012909A patent/MX362901B/en active IP Right Grant
- 2014-03-14 CA CA2906122A patent/CA2906122A1/en not_active Abandoned
- 2014-03-14 AU AU2014236431A patent/AU2014236431B2/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11480228B2 (en) | 2016-12-15 | 2022-10-25 | Sealy Technology, Llc | Open coil spring assemblies |
Also Published As
Publication number | Publication date |
---|---|
AU2014236431B2 (en) | 2018-06-07 |
EP2967222A1 (en) | 2016-01-20 |
DK2967222T3 (en) | 2018-03-05 |
US20160029809A1 (en) | 2016-02-04 |
WO2014152935A1 (en) | 2014-09-25 |
MX362901B (en) | 2019-02-25 |
ES2660293T3 (en) | 2018-03-21 |
PL2967222T3 (en) | 2018-05-30 |
JP2016512156A (en) | 2016-04-25 |
EP2967222A4 (en) | 2016-09-21 |
MX2015012909A (en) | 2015-12-03 |
CA2906122A1 (en) | 2014-09-25 |
AU2014236431A1 (en) | 2015-10-08 |
CN105377082A (en) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2967222B1 (en) | Encased asymmetric coil innersprings with alternating coil spring orientations | |
US11317730B2 (en) | Pocketed spring assembly | |
EP2954801B1 (en) | Coil-in-coil springs and innersprings | |
US7178187B2 (en) | Asymmetric spring components and innersprings for one-sided mattresses | |
US8490232B2 (en) | Spring core having border wire with generally rectangular cross-section | |
EP3932258B1 (en) | Pocketed spring assembly | |
US20170340130A1 (en) | Pocketed Spring Assembly Comprising Perimeter Strings of Springs Having Rectangular Convolutions | |
US20040025256A1 (en) | Multilayered pocketed bedding or seating product | |
EP2689695B1 (en) | Spring core | |
US8769748B2 (en) | Spring core having border wire with generally rectangular cross-section |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150911 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20160824 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A47C 27/05 20060101ALI20160818BHEP Ipc: A47C 27/06 20060101AFI20160818BHEP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602014018234 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: A47C0027070000 Ipc: A47C0027060000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A47C 27/05 20060101ALI20170616BHEP Ipc: A47C 27/06 20060101AFI20170616BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170829 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 951577 Country of ref document: AT Kind code of ref document: T Effective date: 20171215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014018234 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20180301 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2660293 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180321 Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180306 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 951577 Country of ref document: AT Kind code of ref document: T Effective date: 20171206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014018234 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20180907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20200327 Year of fee payment: 7 Ref country code: PL Payment date: 20200218 Year of fee payment: 7 Ref country code: IT Payment date: 20200323 Year of fee payment: 7 Ref country code: NL Payment date: 20200326 Year of fee payment: 7 Ref country code: GB Payment date: 20200327 Year of fee payment: 7 Ref country code: DE Payment date: 20200327 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20200327 Year of fee payment: 7 Ref country code: LU Payment date: 20200327 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140314 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171206 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200325 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20200401 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602014018234 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20210331 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20210401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210314 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210314 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210314 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210315 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210314 |