EP2079974B1 - Verfahren und vorrichtung zur verbesserung der fluidverteilung in einem wärmetauscher - Google Patents
Verfahren und vorrichtung zur verbesserung der fluidverteilung in einem wärmetauscher Download PDFInfo
- Publication number
- EP2079974B1 EP2079974B1 EP06816875A EP06816875A EP2079974B1 EP 2079974 B1 EP2079974 B1 EP 2079974B1 EP 06816875 A EP06816875 A EP 06816875A EP 06816875 A EP06816875 A EP 06816875A EP 2079974 B1 EP2079974 B1 EP 2079974B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- insert
- manifold
- orifices
- heat exchanger
- tubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/027—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
- F28F9/0273—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/028—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2260/00—Heat exchangers or heat exchange elements having special size, e.g. microstructures
- F28F2260/02—Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0243—Header boxes having a circular cross-section
Definitions
- This disclosure relates generally to mini- or micro-channel heat exchangers and, more particularly, to a method and apparatus for increasing uniformity in distribution of a fluid mixture into a micro-channel or mini-channel tube of mini- or micro-channel heat exchangers.
- MCHX mini-channel or micro-channel heat exchangers
- the fluid flow is divided into many parallel tubes (circuits), where every tube and even every mini-channel should receive just a small and equal fraction of the total fluid flow.
- the non-uniform distribution of two-phase mixture in parallel mini-channel tubes leads to certain tubes getting more liquid while the rest are getting more vapor, resulting in significant reduction in heat exchanger efficiency. This is called maldistribution and is a common problem in heat exchangers that utilize parallel fluid paths.
- Two-phase maldistribution problems are mainly caused by the difference in density of the vapor and the liquid phases.
- US 2005/0132744 A1 discloses a flat-tube heat exchanger including a tube-in-tube insert having orifices and a tubular shape according to the preamble of claim 1, and a respective method according to the preamble of claim 8.
- the present invention provides a mini-channel heat exchanger or a micro-channel heat exchanger comprising: an insert having a volume, said insert being within a gap between a plurality of tubes of the mini-channel heat exchanger or the micro-channel heat exchanger and a manifold inner wall of a manifold, wherein said insert is a tube-in-tube distributor that has a tubular shape with one or more orifices therethrough, characterised in that said insert is a D-shape tube insert having a curved portion adjacent said manifold and a flat portion adjacent to said plurality of tubes, wherein said flat portion has said one or more orifices therethrough, and wherein said D-shape tube insert has a pair of legs having said flat portion therebetween, and wherein said legs abut said tubes; or wherein said insert is a kidney shape tube insert with said one or more orifices on a concave side of said kidney shape tube insert, and wherein said kidney shape tube insert has a first channel and a second channel that define
- the present invention also provides a method for reducing maldistribution of fluid in a mini-channel heat exchanger or a micro-channel heat exchanger, the method comprising: reducing an internal volume of a manifold that distributes a flow including both a vapor and a liquid to a plurality of tubes of the mini-channel heat exchanger or the micro-channel heat exchanger by inserting an insert, characterised in that said insert is a D-shape tube insert having a curved portion adjacent said manifold and a flat portion adjacent to said plurality of tubes, wherein said flat portion has said one or more orifices therethrough, and wherein said D-shape tube insert has a pair of legs having said flat portion therebetween, and wherein said legs abut said tubes; or wherein said insert is a kidney shape tube insert with said one or more orifices on a concave side of said kidney shape tube insert, and wherein said kidney shape tube insert has a first channel and a second channel that define an expanding volume.
- the insert may be a solid cylinder having a solid cylindrical shape. At least one of the one or more orifices may be positioned on the insert having an angle greater than 0 degrees relative to a vertical axis parallel to the plurality of tubes. The one or more orifices may be positioned on the insert having an angle that is about +30° to about +330° relative to the axes of the mini-channel tubes.
- the insert may range from about 1/16 inch to about 3 inch in equivalent hydraulic diameter.
- the manifold and the insert may have a manifold to insert volume ratio that ranges from about 1.10 to about 5.
- the one or more orifices may have an orifice size that ranges from about 0.05 mm to about 4.0 mm.
- the one or more orifices may be sized so that a refrigerant experiences a partial or full expansion effect.
- the one or more orifices can create a pressure drop from an interior volume of the insert to an internal volume of the manifold.
- the pressure drop may be greater than or equal to another pressure drop generated by flow through an internal volume to one of the plurality of tubes.
- the insert may be integrally formed with the manifold.
- the insert may form a first chamber separated from a second chamber in the manifold.
- the second chamber may have refrigerant flowing therethrough and the tubes may be inserted into the first chamber.
- the first chamber and the second chamber may be connected by the one or more orifices through the insert.
- the insert may be a propeller type insert having vanes.
- the reducing may comprise reducing the internal volume by inserting an insert or shaping the manifold.
- the method may further comprise creating a pressure drop from an interior volume of an insert to the internal volume or mixing the vapor and the liquid in the internal volume.
- Figure 1 is a schematic of a front cross-sectional view of a heat exchanger having a first exemplary embodiment of an insert that is not claimed;
- Figure 2 is a schematic of a front cross-sectional view of a heat exchanger having a second exemplary embodiment of an insert that is not claimed;
- Figure 3 is a schematic of a front cross-sectional view of a heat exchanger having a third exemplary embodiment of an insert that is not claimed;
- Figure 4 is a schematic of a front cross-sectional view of a heat exchanger having a fourth exemplary embodiment of an insert within the scope of the claims;
- Figure 5 is a schematic of a front cross-sectional view of a heat exchanger having a fifth exemplary embodiment of an insert that is not claimed;
- Figure 6 is a schematic of a front cross-sectional view of a heat exchanger having a sixth exemplary embodiment of an insert within the scope of the claims;
- Figure 7 is a schematic of a front cross-sectional view of a heat exchanger having a seventh exemplary embodiment of an insert that is not claimed;
- Figure 8 is a schematic of a side cross-sectional view of the heat exchanger having the insert of Figure 7 ;
- Figure 9 is a graphical depiction of a scaled capacity to orifice angle of the insert of Figure 7 ;
- Figure 10 is a representative infrared image for angle ⁇ shown in Figure 7 that equals 90°;
- Figure 11 is a schematic of a front cross-sectional view of a heat exchanger having an eighth exemplary embodiment of an insert that is not claimed.
- Figure 12 is a schematic of a front cross-sectional view of a heat exchanger having an ninth exemplary embodiment of an insert that is not claimed.
- MCHX heat exchanger e.g., evaporator, condenser, gas cooler, or any other heat exchanger
- a MCHX heat exchanger e.g., evaporator, condenser, gas cooler, or any other heat exchanger
- an internal volume of a manifold or header that distributes a multiple-phase flow, for example, a two-phase flow including both a vapor and a liquid, to parallel refrigerant paths, for example, tubes.
- an insert or shape of the manifold reduces the internal volume of the manifold.
- the insert or shape of the manifold may be of any shape or form that assists in forming a uniform and homogeneous mixture and can be used for inlet and/or intermediate length and/or outlet of the manifold.
- FIG. 1 An insert is shown in Figure 1 .
- a solid cylinder 140 having a solid cylindrical shape is introduced in a gap between mini-channel tubes 130 and a manifold inner wall 124 of a header or manifold 120.
- the solid cylinder 140 reduces a net internal open volume of an internal volume 122.
- the reduction of the net internal volume prevents separation of the vapor phase and the liquid phase of the two-phase flow of the refrigerant and results in mixing of the vapor phase and the liquid phase forming a homogeneous two-phase fluid.
- the homogeneous two-phase fluid improves distribution of the refrigerant to mini-channel tubes 130 that reduces maldistribution.
- a second exemplary embodiment of the insert that is illustrated in Figure 2 has a tube-in-tube distributor 240.
- the tube-in-tube distributor 240 is a distributor type of device in a manifold 220 that causes a pressure drop from an interior volume 242 of tube-in-tube distributor 240 to an internal volume 222.
- the pressure drop preferably, is higher or equal to the pressure drop in a mini-channel tubes 230 themselves.
- the pressure drop from interior volume 242 to internal volume 222 back pressurizes the two-phase flow entering manifold 220. The back pressure causes a majority or all of the two-phase flow to remain intact inside the internal volume 242 and hence internal volume 222.
- tube-in-tube distributor 240 effectively reduces or eliminates two-phase separation and allows for the refrigerant flow to be efficiently distributed and/or regulated to the mini-channel tubes 230. Furthermore, tube-in-tube insert 240 reduces internal volume 222 of manifold 220 that results in a higher mass flux, defined as mass flow of refrigerant per unit flow cross-sectional area of open volume 222, and hence, improves mixing thereby reducing maldistrbituon inside manifold 220. Interior volume 242 of tube-in-tube insert 240 also has a higher mass flux which promotes mixing of the flow inside the internal volume 242.
- Tube-in-tube distributor 240 has a hollow cylindrical or tubular shape with one or more orifices 244 therethrough.
- the two-phase refrigerant mixture is distributed into mini-channel tubes 230 through the one or more orifices 244.
- Each orifice 244 through tube-in-tube distributor 240 feeds one or more mini-channel tubes 230.
- Each of the one or more orifices 244 has an orifice size that is sized to produce a pressure drop that is equal to or greater than the pressure drop in mini-channel tubes 230 absent the tube-in-tube distributor 240.
- the one or more orifices 244 may be sized so that the refrigerant experiences partial or full expansion effect that partially vaporizes at least a portion of the two-phase flow inside the one or more orifices 244.
- one or more orifices 244 are 0.05 millimeters (mm) to 4.0mm in diameter and any subranges therebetween. As the orifice size decreases, the expansion effect increases.
- the expansion effect is in addition to expansion from an external device, such as, for example, an expansion valve.
- One or more orifices that are between 0.05mm and about 0.3mm create the expansion effect.
- One or more orifices having a sufficiently small diameter may provide enough expansion to eliminate a need for the expansion device. This allows liquid or low quality refrigerant to be fed to the MCHX heat exchanger and therefore minimizes the refrigerant maldistribution caused by a density difference between the liquid and vapor, and significantly improves heat exchanger efficiency.
- the pressure drop in the manifold may be attained by an insert that is, but is not limited to, a tube-in-tube or plate type distributor with one or more orifices causing a pressure drop, a porous media, a shape of the manifold itself, one or more baffles with one or more orifices, or any combination thereof.
- the insert in the manifold or shape of the manifold that accomplishes such a pressure drop may be of any shape or form and can be used for an inlet and/or an intermediate length and/or an outlet of the manifold.
- Figures 3 through 6 show different types of perforated tube/plate inserts inside the MCHX manifold with one or more orifices that function substantially the same as one or more orifices 244 in tube-in-tube distributor 240 described above.
- Figure 3 shows a D-shape tube insert 340 that has a curved portion 348 adjacent manifold 320 and a flat portion 346 facing tubes 330 of a MCHX heat exchanger.
- the flat portion 346 has one or more orifices 344 therethrough adjacent inlets of tubes 330.
- End caps may be used to hold D-shape tube insert 340 in place in a manifold 320 before brazing D-shape tube insert 340 and manifold 320.
- Figure 4 shows a kidney shape tube insert 440 of the present invention with one or more orifices 444.
- the one or more orifices 444 are on a concave side 446 of kidney shape tube insert 440 adjacent to inlets of mini-channel tubes 430 of a MCHX heat exchanger.
- the kidney shape tube insert 440 has a first wall 448 and a second wall 449 that define a distributing volume 426.
- the channel comprising first wall 448 and the second wall 449 generate a secondary distribution of the two-phase flow from one or more orifices 444 to mini-channel tubes 430.
- the channel with walls 448 and 449 and distributing volume 426 therebetween may provide additional mixing of the two-phase mixture and may further prevent separation of the vapor phase and the liquid phase of the two-phase mixture to promote a uniform distribution of a homogeneous two-phase mixture to mini-channel tubes 430.
- the kidney shape tube insert 440 may sit on mini-channel tubes 430 before brazing kidney shape tube insert 440 and manifold 420 without using end caps.
- Figure 5 shows an extruded manifold 520 with a first chamber 522 separated from a second chamber 524.
- the second chamber 524 can be D-shape or any shape, through which the refrigerant flows.
- Mini-channel tubes 530 of a MCHX heat exchanger may be inserted into first chamber 522.
- the first chamber 522 and second chamber 524 are connected to each other by a set of one or more orifices 544 for refrigerant distribution into mini-channel tubes 530.
- Extruded manifold 520 preferably has an integrally formed insert 540, although the present disclosure contemplates insert 540 being connected to or otherwise assembled with manifold 520 to define second chamber 524.
- Figure 6 shows a D-shape insert 640 of the present invention with a curved portion 648 connected to legs 647.
- the legs 647 have a flat portion 646 therebetween.
- One or more orifices 644 may be positioned on flat portion 646.
- the legs 647 may abut mini-channel tubes 630 of a MCHX heat exchanger for positioning before brazing to a manifold 620.
- legs 647 may abut mini-channel tubes 630 forming a friction fit to maintain D-shape insert 640 in proper position within manifold 620. The friction fit eliminates a need for brazing or other permanent attachment device.
- One or more orifices in an insert may be positioned adjacent to inlets of the mini-channel tubes as shown in Figures 2 through 6 . Alternatively, at least one of the one or more orifices may have an angle greater than 0 degrees relative to a vertical axis A parallel to mini-channel tubes 1.
- Figure 7 shows a manifold 2 of a MCHX heat exchanger with an insert 4.
- the insert 4 may be any shape, such as, a cylindrical tube as shown in Figure 7 .
- the insert 4 has a set of one or more orifices 3. Fluid flows along insert 3 and is fed to the mini-channel tubes 1 through one or more orifices 3. ⁇ is an angle between each of one or more orifices 3 and the flow into mini-channel tubes 1.
- Figure 8 shows a schematic of a mini-channel heat exchanger 10 with insert 4. End caps 5 may be used to seal manifold 2. Fluid flows into insert 3 identified by arrow 12 and fluid flows out of mini-channel tubes 1 identified by arrow 14.
- the insert 3 preferably, ranges from about 1/4 inch to about 1/2 inch in equivalent hydraulic diameter D, with a manifold to insert volume ratio that ranges from about 2 to about 3.
- Each of the one or more orifices 3, preferably, feeds about 1 mini-channel tube to about 10 mini-channel tubes.
- An orifice size preferably, ranges from about 0.3mm to about 1.3 mm, as discussed above.
- Figure 9 shows representative test results of various orifice angles.
- coil capacities defined as the total amount of heat transferred from refrigerant flowing inside mini-channel tubes 1 to the air flowing over the external surfaces of mini-channel tubes 1 are significantly improved relative to different angles ⁇ .
- the orientation of the one or more orifices perpendicular to the mini-channel tubes 3 also creates a swirl effect whereby the fluid exiting the orifices has to travel around the periphery of the insert tube before entering the mini-channel tube promoting fluid mixing.
- the insert may create turbulent and/or mixing conditions inside the manifold such that the liquid and vapor phases of the refrigerant do not separate as another way of reducing maldistribution in a MCHX heat exchanger.
- Mixing inside the manifold could be attained by several means including but not limiting to a mixer insert and/or modified shape of the manifold.
- the insert in the manifold or shape of the manifold to do such mixing could be of any shape or form and can be used for inlet and/or intermediate and/or outlet manifold 920.
- One such example is a propeller type insert 940 in a manifold as shown in Figure 11 .
- the propeller type insert 940 has vanes 943.
- the vanes 943 may cause mixing of fluid in an open volume 922 of manifold 920 shown by arrow 901.
- the mixing prevents vapor and liquid phases from separating to reduce maldistribution to mini-channel tubes 930 and forms a more homogeneous mixture of vapor and liquid of the two-phase flow over the prior art.
- An insert having any combination of features of the inserts described above may also improve uniformity of distribution of two-phase fluid from the manifold to the mini-channel tubes.
- volume reduction and pressure drop can be combined and optimized to give overall distribution improvement greater than that obtained with volume reduction and pressure drop implemented independently.
- An example of optimization could be where the orifice size chosen for pressure drop may be increased when combined with volume reduction as compared to implementing only pressure drop. This may be beneficial especially for cases where the orifice size is limited by manufacturing and cost constraints.
- An insert having volume reduction combined with mixing may be optimized to give overall distribution improvement greater than that obtained with either volume reduction and mixing implemented independently.
- An example of optimization could be where an insert that reduces the internal volume of the manifold or shape of the manifold may be designed/optimized, such as, for example option shown on Figure 13, where insert has a corrugated shape, to also assist in mixing rather than separating the liquid and vapor phases.
- An insert generating a pressure drop and mixing may be optimized to give overall distribution improvement greater than that obtained with either the pressure drop or mixing implemented independently.
- An example of optimization may be where the insert or manifold shape may generate mixing and may also provide a pressure drop before the two-phase flow enters the mini-channel tubes. This could prove beneficial especially for the cases where the orifice size is limited by manufacturing and cost constraints.
- An insert may have volume reduction, a pressure drop, and mixing may be optimized to possibly achieve an overall distribution improvement greater than that obtained with volume reduction, a pressure drop, and mixing implemented independently.
- An example of optimization could be an insert or manifold shape that optimizes volume reduction, pressure drop and mixing before the two-phase flow enters the mini-channel tubes. This could prove beneficial especially for the cases where the orifice size is limited by manufacturing and cost constraints.
- One example which combines all three methods is a tube-in-tube type of distributor 1040 with one or more orifices 1044 directed away from a plane A of mini-channel tubes 1030 as shown in Figure 12 .
- tube-in-tube distributor 1040 inside manifold 1020 reduces an open internal volume 1022 of manifold 1020 which feeds mini-channel tubes 1030, thereby improving maldistribution as discussed above.
- the one or more orifices 1044 on tube-in-tube distributor 1040 provides significant enough pressure drop resulting in even flow distribution as discussed above. Off-setting flow coming out of one or more orifices 1044 and going into mini-channel tubes 1030 provides a rotation/mixing inside a remainder of open internal volume 1022 shown by arrow 1001 thus preventing liquid vapor separation and reducing maldistribution as discussed above.
- one or more of the inserts described above may be implemented in conjunction with a multi-pass MCHX (evaporator or condenser or gas cooler or any other heat exchanger) wherein refrigerant traverses an entire tube length more than one time before exiting the heat exchanger.
- MCHX evaporator or condenser or gas cooler or any other heat exchanger
- a multi-pass MCHX offers additional benefit that a net length of manifold that witnesses two-phase flow is reduced with increasing number of passes but inturn adds maldistribution complexity in intermediate manifolds.
- the insert can vary according to the particular needs of the MCHX heat exchanger.
- the insert is aluminum.
- the present disclosure has described a number of exemplary embodiments having one or more features described therewith. It should be understood that these features are interchangeable between the number of exemplary embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Claims (9)
- Ein Mini-Kanal-Wärmetauscher oder Mikro-Kanal-Wärmetauscher aufweisend:einen Einsatz (140, 240, 340, 440, 540, 640, 4, 940, 1040) mit einem Volumen, wobei der Einsatz sich in einem Spalt zwischen einer Vielzahl von Rohren (130, 230, 330, 430, 530, 630, 1, 930, 1030) des Mini-Kanal-Wärmetauschers oder Mikro-Kanal-Wärmetauschers und einer Verteilerinnenwand eines Verteilers (120, 220, 320, 420, 520, 620, 2, 920, 1020) befindet,wobei der Einsatz (240, 340, 440, 540, 640, 4, 1040) ein Rohr-in-Rohr-Verteiler ist, der eine Rohrform mit einer oder mehreren Öffnungen (244, 344, 444, 544, 644, 3, 1044) aufweist,dadurch gekennzeichnet, dass:der Einsatz ein D-förmiger Rohreinsatz (340, 640) mit einem gebogenen Abschnitt (348, 648) benachbart dem Verteiler und einem flachen Abschnitt (346, 646) benachbart zur Vielzahl von Rohren (330, 630) ist, wobei der flache Abschnitt (346, 646) die eine oder die mehreren Öffnungen (344, 644) aufweist und wobei der D-förmige Rohreinsatz (640) ein Paar Beine (647) aufweist, die dazwischen den flachen Abschnitt (646) aufweisen, und wobei die Beine (647) an den Rohren (630) anstoßen; oderder Einsatz ein nierenförmiger Rohreinsatz (440) mit der einen oder den mehreren Öffnungen (444) auf einer konkaven Seite (446) des nierenförmigen Rohreinsatzes (440) ist, und wobei der nierenförmige Rohreinsatz (440) einen ersten Kanal (448) und einen zweiten Kanal (449) aufweist, die ein Ausdehnvolumen (426) definieren.
- Vorrichtung gemäß Anspruch 1, wobei wenigstens eine der einen oder der mehreren Öffnungen (244, 344, 444, 544, 644, 3, 1044) an dem Einsatz (240, 340, 440, 540, 640, 4, 1040) mit einem Winkel größer als 0 Grad relativ zu einer vertikalen Achse (B) parallel zu der Vielzahl von Rohren (130, 230, 330, 430, 530, 630, 1, 930, 1030) angeordnet sind.
- Vorrichtung gemäß Anspruch 1, wobei die eine oder die mehreren Öffnungen (244, 344, 444, 544, 644, 3, 1044) auf dem Einsatz (240, 340, 440, 540, 640, 4, 1040) mit einem Winkel, der ungefähr +30° zu ungefähr 330° relativ zu den Achsen der Mini-Kanal-Rohren (130, 230, 330, 430, 530, 630, 1, 930, 1030) beträgt, angeordnet sind.
- Vorrichtung gemäß Anspruch 1, wobei der Einsatz (140, 240, 340, 440, 540, 640, 4, 940, 1040) äquivalent zum hydraulischen Durchmesser sich von ungefähr 1/16 inch zu ungefähr 3 inch bewegt, und wobei der Verteiler und der Einsatz ein Verteiler-zu-Einsatz-Volumenverhältnis aufweisen, dass sich von ungefähr 1,10 bis ungefähr 5 bewegt.
- Vorrichtung gemäß Anspruch 1, wobei die eine oder die mehreren Öffnungen (244, 344, 444, 544, 644, 3, 1044) eine Öffnungsgröße aufweisen, die sich von ungefähr 0,05 mm bis ungefähr 4,0 mm bewegt.
- Vorrichtung gemäß Anspruch 1, wobei die eine oder die mehreren Öffnungen (244, 344, 444, 544, 644, 3, 1044) so groß sind, dass ein Kühlmittel einen teilweisen oder vollständigen Expansionseffekt erfährt.
- Vorrichtung gemäß Anspruch 1, wobei die eine oder die mehreren Öffnungen (244, 344, 444, 544, 644, 3, 1044) einen Druckabfall von einem Innenvolumen des Einsatzes zu einem internen Volumen des Verteilers (120, 220, 320, 420, 520, 620, 2, 920, 1020) erzeugen und wobei der Druckabfall größer gleich einem weiteren Druckabfall ist, der durch einen Fluss durch ein internes Volumen zu einer der Vielzahl von Rohren (130, 230, 330, 430, 530, 630, 1, 930, 1030) erzeugt wird.
- Verfahren zum Reduzieren einer Fehlverteilung von Fluid in einem Mini-Kanal- Wärmetauscher oder einem Mikro-Kanal-Wärmetauscher, wobei das Verfahren aufweist:Verkleinern eines internen Volumens eines Verteilers (120, 220, 320, 420, 520, 620, 2, 920, 1020), der einen Fluss, der sowohl aus Dampf als auch aus Flüssigkeit besteht, zu einer Vielzahl von Rohren (130, 230, 330, 430, 530, 630, 1, 930, 1030) des Mini-Kanal-Wärmetauschers oder des Mikro-Kanal-Wärmetauschers verteilt, durch Einsetzen eines Einsatzes (130, 230, 330, 430, 530, 630, 1, 930, 1030),dadurch gekennzeichnet, dass:der Einsatz ein D-förmiger Rohreinsatz (340, 640) ist, der einen gebogenen Abschnitt (348, 648) benachbart zum Verteiler und einen flachen Abschnitt (346, 646) benachbart zur Vielzahl von Rohren (330, 630) aufweist, wobei der flache Abschnitt (346, 646) die eine oder die mehreren Öffnungen (344, 644) aufweist, undwobei der D-förmige Rohreinsatz (640) ein Paar Beine (647) aufweist, die dazwischen den flachen Abschnitt (646) aufweisen, und wobei die Beine (647) an den Rohren (630) anstoßen; oderwobei der Einsatz ein nierenförmiger Rohreinsatz (440) mit der einen oder den mehreren Öffnungen (444) auf einer konkaven Seite (446) des nierenförmigen Rohreinsatzes (440) ist, und wobei der nierenförmige Rohreinsatz (440) einen ersten Kanal (448) und einen zweiten Kanal (449) aufweist, der ein Ausdehnvolumen (426) definiert.
- Verfahren gemäß Anspruch 8, weiter aufweisend Erzeugen eines Druckabfalls von einem Innenvolumen eines Einsatzes (130, 230, 330, 430, 530, 630, 1, 930, 1030) zu dem internen Volumen oder Mischen des Dampfes und der Flüssigkeit im internen Volumen.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2006/040112 WO2008048251A2 (en) | 2006-10-13 | 2006-10-13 | Method and apparatus for improving distribution of fluid in a heat exchanger |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2079974A2 EP2079974A2 (de) | 2009-07-22 |
EP2079974A4 EP2079974A4 (de) | 2011-02-23 |
EP2079974B1 true EP2079974B1 (de) | 2012-03-14 |
Family
ID=39314520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06816875A Not-in-force EP2079974B1 (de) | 2006-10-13 | 2006-10-13 | Verfahren und vorrichtung zur verbesserung der fluidverteilung in einem wärmetauscher |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100089559A1 (de) |
EP (1) | EP2079974B1 (de) |
CN (1) | CN101548150B (de) |
AT (1) | ATE549590T1 (de) |
ES (1) | ES2384185T3 (de) |
WO (1) | WO2008048251A2 (de) |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101680689B (zh) * | 2007-05-22 | 2012-11-14 | 贝洱两合公司 | 热交换器 |
JP5114771B2 (ja) * | 2007-05-29 | 2013-01-09 | 株式会社ケーヒン・サーマル・テクノロジー | 熱交換器 |
US7921558B2 (en) * | 2008-01-09 | 2011-04-12 | Delphi Technologies, Inc. | Non-cylindrical refrigerant conduit and method of making same |
US20090173482A1 (en) * | 2008-01-09 | 2009-07-09 | Beamer Henry E | Distributor tube subassembly |
WO2010000311A1 (de) * | 2008-07-01 | 2010-01-07 | A-Heat Allied Heat Exchange Technology Ag | Wärmetauscherblock, sowie ein verfahren zur herstellung eines wärmetauscherblocks |
US20110127023A1 (en) * | 2008-07-10 | 2011-06-02 | Taras Michael F | Design characteristics for heat exchangers distribution insert |
CN101782295B (zh) * | 2009-01-20 | 2012-11-14 | 三花控股集团有限公司 | 双向微通道换热器的回路结构 |
CN101691981B (zh) * | 2009-07-23 | 2011-12-07 | 三花丹佛斯(杭州)微通道换热器有限公司 | 具有改进的制冷剂流体分配均匀性的多通道换热器 |
CN101660870B (zh) * | 2009-09-16 | 2012-07-18 | 三花丹佛斯(杭州)微通道换热器有限公司 | 具有改进制冷剂分配性能的换热器 |
KR20110104667A (ko) * | 2010-03-17 | 2011-09-23 | 엘지전자 주식회사 | 냉매 분배장치, 그 냉매 분배장치를 구비하는 증발기 및 냉동장치 |
US20110240276A1 (en) * | 2010-04-01 | 2011-10-06 | Delphi Technologies, Inc. | Heat exchanger having an inlet distributor and outlet collector |
KR101666253B1 (ko) * | 2010-04-26 | 2016-10-13 | 린나이가부시기가이샤 | 열교환기 |
CN101865574B (zh) | 2010-06-21 | 2013-01-30 | 三花控股集团有限公司 | 换热器 |
WO2012006073A2 (en) * | 2010-06-29 | 2012-01-12 | Johnson Controls Technology Company | Multichannel heat exchangers employing flow distribution manifolds |
US9267737B2 (en) | 2010-06-29 | 2016-02-23 | Johnson Controls Technology Company | Multichannel heat exchangers employing flow distribution manifolds |
US9151540B2 (en) | 2010-06-29 | 2015-10-06 | Johnson Controls Technology Company | Multichannel heat exchanger tubes with flow path inlet sections |
CN101886891B (zh) * | 2010-07-20 | 2012-07-18 | 三花丹佛斯(杭州)微通道换热器有限公司 | 制冷剂导引装置和具有它的换热器 |
CN101922883B (zh) * | 2010-09-13 | 2012-09-26 | 三花控股集团有限公司 | 制冷剂导管和具有该制冷剂导管的换热器 |
JP5651431B2 (ja) * | 2010-11-08 | 2015-01-14 | 株式会社ケーヒン・サーマル・テクノロジー | コンデンサ |
CN102072684B (zh) * | 2011-01-06 | 2012-10-17 | 三花控股集团有限公司 | 制冷剂分配装置和具有它的换热器 |
CN102252559B (zh) * | 2011-05-20 | 2013-02-13 | 广东美的制冷设备有限公司 | 微通道换热器及其制作方法 |
KR101317377B1 (ko) * | 2011-11-21 | 2013-10-22 | 현대자동차주식회사 | 차량용 컨덴서 |
US9581397B2 (en) | 2011-12-29 | 2017-02-28 | Mahle International Gmbh | Heat exchanger assembly having a distributor tube retainer tab |
EP2810014B1 (de) * | 2012-02-02 | 2017-12-13 | Carrier Corporation | Verfahren zur herstellung eines rippenwärmetauschers mit abgeflachtem rohr |
CN103363732A (zh) * | 2012-04-10 | 2013-10-23 | 珠海格力电器股份有限公司 | 分液装置及包括该分液装置的空调器 |
CN103363731A (zh) * | 2012-04-10 | 2013-10-23 | 珠海格力电器股份有限公司 | 分液装置及包括该分液装置的空调器 |
WO2013190617A1 (ja) * | 2012-06-18 | 2013-12-27 | 三菱電機株式会社 | 熱交換器 |
FR2993647B1 (fr) * | 2012-07-23 | 2016-09-30 | Commissariat Energie Atomique | Absorbeur a echangeur a plaques avec element de repartition poreux |
JP6015229B2 (ja) * | 2012-08-10 | 2016-10-26 | ダイキン工業株式会社 | 熱交換器 |
DE102012217340A1 (de) * | 2012-09-25 | 2014-03-27 | Behr Gmbh & Co. Kg | Wärmeübertrager |
WO2014100651A1 (en) * | 2012-12-21 | 2014-06-26 | Trane International Inc. | Refrigerant distributor of micro-channel heat exchanger |
KR102079722B1 (ko) * | 2013-04-18 | 2020-02-20 | 삼성전자주식회사 | 열교환기 |
CN104344607B (zh) * | 2013-08-08 | 2018-07-06 | 浙江盾安热工科技有限公司 | 一种换热器 |
US9989283B2 (en) * | 2013-08-12 | 2018-06-05 | Carrier Corporation | Heat exchanger and flow distributor |
WO2015073106A1 (en) * | 2013-11-18 | 2015-05-21 | Carrier Corporation | Flash gas bypass evaporator |
US10184703B2 (en) | 2014-08-19 | 2019-01-22 | Carrier Corporation | Multipass microchannel heat exchanger |
EP3183528B1 (de) * | 2014-08-19 | 2019-04-17 | Carrier Corporation | Mikrokanalwärmetauscher mit niedriger kühlmittelladung |
US10197312B2 (en) * | 2014-08-26 | 2019-02-05 | Mahle International Gmbh | Heat exchanger with reduced length distributor tube |
DE102015114562A1 (de) | 2015-09-01 | 2017-03-02 | Halla Visteon Climate Control Corp. | Wärmeübertrager mit Sammlerrohr |
EP3236189B1 (de) | 2015-11-30 | 2019-01-09 | Carrier Corporation | Wärmetauscher für hlk-geräte zur wohnnutzung |
US10551099B2 (en) | 2016-02-04 | 2020-02-04 | Mahle International Gmbh | Micro-channel evaporator having compartmentalized distribution |
JP6155412B1 (ja) * | 2016-09-12 | 2017-06-28 | 三菱電機株式会社 | ヘッダー、熱交換器および空気調和装置 |
EP3309494B1 (de) * | 2016-10-13 | 2021-04-28 | HS Marston Aerospace Limited | Wärmetauscher |
FR3059394B1 (fr) * | 2016-11-30 | 2019-06-21 | Valeo Systemes Thermiques | Dispositif d’homogeneisation de la distribution d’un fluide refrigerant a l’interieur de tubes d’un echangeur de chaleur constitutif d’un circuit de fluide refrigerant |
CN110168305A (zh) * | 2016-11-30 | 2019-08-23 | 法雷奥热系统公司 | 用于均匀化构成制冷剂回路的热交换器的管内的制冷剂分配的装置 |
US10563895B2 (en) * | 2016-12-07 | 2020-02-18 | Johnson Controls Technology Company | Adjustable inlet header for heat exchanger of an HVAC system |
EP3619492B1 (de) * | 2017-05-05 | 2023-07-26 | Carrier Corporation | Wärmetauscher für wärmepumpenanwendungen |
FR3066262B1 (fr) * | 2017-05-10 | 2019-11-22 | Valeo Systemes Thermiques | Echangeur de chaleur constitutif d'un circuit de fluide refrigerant |
US11022382B2 (en) | 2018-03-08 | 2021-06-01 | Johnson Controls Technology Company | System and method for heat exchanger of an HVAC and R system |
WO2019207799A1 (ja) * | 2018-04-27 | 2019-10-31 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和機および熱交換器 |
JP7124425B2 (ja) * | 2018-05-02 | 2022-08-24 | 富士電機株式会社 | 冷却装置、半導体モジュールおよび車両 |
CN108645271B (zh) * | 2018-05-11 | 2019-10-11 | 西安交通大学 | 一种均匀分配管式换热器管内流量的进出口管箱 |
US10982870B2 (en) * | 2018-08-31 | 2021-04-20 | Jonhson Controls Technology Company | Working fluid distribution systems |
CN110940220B (zh) * | 2018-09-25 | 2022-03-01 | 丹佛斯有限公司 | 用于换热器的分配管组件和具有该分配管组件的集流管组件和换热器 |
US11713931B2 (en) * | 2019-05-02 | 2023-08-01 | Carrier Corporation | Multichannel evaporator distributor |
CN110207507B (zh) * | 2019-06-19 | 2020-07-17 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | 一种适用于水下装备的舷间换热器 |
CN112125299A (zh) * | 2019-06-24 | 2020-12-25 | 浙江工业大学 | 一种气体驱动的多通道层状材料剥离装置 |
CN110470165A (zh) * | 2019-09-10 | 2019-11-19 | 江苏科菱库精工科技有限公司 | 一种双排微通道集管及其使用方法 |
CN110806142A (zh) * | 2019-09-10 | 2020-02-18 | 江苏科菱库精工科技有限公司 | 一种微通道集管及其使用方法 |
JP6840212B2 (ja) * | 2019-11-11 | 2021-03-10 | 日立ジョンソンコントロールズ空調株式会社 | 分配器、熱交換器、室内機、室外機および空気調和装置 |
WO2021234959A1 (ja) * | 2020-05-22 | 2021-11-25 | 三菱電機株式会社 | 冷媒分配器、熱交換器及び空気調和装置 |
GB2625961A (en) * | 2021-10-15 | 2024-07-03 | Mitsubishi Electric Corp | Distributor, heat exchanger, and heat pump device |
WO2023175926A1 (ja) * | 2022-03-18 | 2023-09-21 | 三菱電機株式会社 | 空気調和装置の室外機および空気調和装置 |
WO2024224637A1 (ja) * | 2023-04-28 | 2024-10-31 | 三菱電機株式会社 | 熱交換器及び冷凍サイクル装置 |
CN117641850B (zh) * | 2023-12-04 | 2024-07-02 | 南京理工大学 | 一种仿生植物根茎的歧管微通道散热装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1684083A (en) * | 1927-06-02 | 1928-09-11 | Samuel C Bloom | Refrigerating coil |
US2759248A (en) * | 1950-06-22 | 1956-08-21 | Russell H Burgess | Method of making heat transfer units |
DE3311579C2 (de) * | 1983-03-30 | 1985-10-03 | Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart | Wärmetauscher |
JPS6030971U (ja) * | 1983-08-08 | 1985-03-02 | カルソニックカンセイ株式会社 | 異形管エバポレ−タ |
JP3017272B2 (ja) * | 1990-11-07 | 2000-03-06 | 株式会社ゼクセル | 熱交換器 |
JPH10206081A (ja) * | 1997-01-27 | 1998-08-07 | Kobe Steel Ltd | オープンラック型蒸発装置の熱交換パネル |
US6179051B1 (en) * | 1997-12-24 | 2001-01-30 | Delaware Capital Formation, Inc. | Distributor for plate heat exchangers |
JP2000346568A (ja) * | 1999-05-31 | 2000-12-15 | Mitsubishi Heavy Ind Ltd | 熱交換器 |
CN1611907A (zh) * | 2003-10-30 | 2005-05-04 | 乐金电子(天津)电器有限公司 | 集管内的制冷剂分配结构 |
EP1548380A3 (de) * | 2003-12-22 | 2006-10-04 | Hussmann Corporation | Flachrohrverdampfer mit Mikroverteiler |
-
2006
- 2006-10-13 EP EP06816875A patent/EP2079974B1/de not_active Not-in-force
- 2006-10-13 CN CN200680056532.0A patent/CN101548150B/zh not_active Expired - Fee Related
- 2006-10-13 WO PCT/US2006/040112 patent/WO2008048251A2/en active Application Filing
- 2006-10-13 ES ES06816875T patent/ES2384185T3/es active Active
- 2006-10-13 US US12/445,443 patent/US20100089559A1/en not_active Abandoned
- 2006-10-13 AT AT06816875T patent/ATE549590T1/de active
Also Published As
Publication number | Publication date |
---|---|
WO2008048251A2 (en) | 2008-04-24 |
EP2079974A4 (de) | 2011-02-23 |
US20100089559A1 (en) | 2010-04-15 |
CN101548150B (zh) | 2015-09-09 |
ATE549590T1 (de) | 2012-03-15 |
WO2008048251A3 (en) | 2009-04-30 |
CN101548150A (zh) | 2009-09-30 |
ES2384185T3 (es) | 2012-07-02 |
EP2079974A2 (de) | 2009-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2079974B1 (de) | Verfahren und vorrichtung zur verbesserung der fluidverteilung in einem wärmetauscher | |
EP2082181B1 (de) | Parallelstromwärmetauscher | |
KR100908769B1 (ko) | 병류 열교환기와, 균일한 냉매 유동을 촉진하는 방법 | |
EP2278246B1 (de) | Verteilerrohr mit gleichmäßiger Kühlflüssigkeitsverteilung | |
US7806171B2 (en) | Parallel flow evaporator with spiral inlet manifold | |
JP5142109B2 (ja) | エバポレータ | |
US8225853B2 (en) | Multi-pass heat exchangers having return manifolds with distributing inserts | |
CA2471164C (en) | Device for exchanging heat | |
US9366463B2 (en) | Evaporator | |
US10161686B2 (en) | Microchanel heat exchanger evaporator | |
JP2008528941A (ja) | 小流路熱交換器のヘッダ | |
JP2006029697A (ja) | 冷媒蒸発器 | |
JP5194279B2 (ja) | エバポレータ | |
US20060266502A1 (en) | Multi-flow condenser for air conditioning systems | |
JP2005195318A (ja) | エバポレータ | |
JPH10206078A (ja) | 熱交換器 | |
JP5396255B2 (ja) | 熱交換器 | |
CN215447502U (zh) | 一种具有同通道变通径微管结构的风冷型换热器 | |
CN112964088A (zh) | 一种具有同通道变通径微管结构的风冷型换热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090513 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WINTERSTEEN, DOUGLAS C. Inventor name: VERMA, PARMESH Inventor name: DITTLY, BRUCE Inventor name: MUNOZ, JULES R. Inventor name: RADCLIFF, THOMAS D. Inventor name: BEAMER, HENRY Inventor name: FORD, MICHAEL, D. Inventor name: MCGREEVY, THOMAS Inventor name: PARK, YOUNG K. Inventor name: GORBOUNOV, MIKHAIL B. Inventor name: SAMUELSON, DAVID E. Inventor name: SANGIOVANNI, JOSEPH J. Inventor name: JIANG, YIRONG Inventor name: ZHANG, JIFENG |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20110125 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28F 9/02 20060101ALI20110119BHEP Ipc: F28F 9/22 20060101AFI20090525BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28F 9/22 20060101AFI20110818BHEP Ipc: F28F 9/02 20060101ALI20110818BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 549590 Country of ref document: AT Kind code of ref document: T Effective date: 20120315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006028225 Country of ref document: DE Effective date: 20120510 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2384185 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120702 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120615 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 549590 Country of ref document: AT Kind code of ref document: T Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120714 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120716 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
26N | No opposition filed |
Effective date: 20121217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20121018 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006028225 Country of ref document: DE Effective date: 20121217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121013 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120614 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131013 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20141008 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151013 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160921 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160922 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160922 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602006028225 Country of ref document: DE Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006028225 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171014 |