EP1994349B1 - Heat transfer unit - Google Patents
Heat transfer unit Download PDFInfo
- Publication number
- EP1994349B1 EP1994349B1 EP07712105A EP07712105A EP1994349B1 EP 1994349 B1 EP1994349 B1 EP 1994349B1 EP 07712105 A EP07712105 A EP 07712105A EP 07712105 A EP07712105 A EP 07712105A EP 1994349 B1 EP1994349 B1 EP 1994349B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- shut
- partial
- transmission unit
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
- F28D9/0056—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/06—Derivation channels, e.g. bypass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/14—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
Definitions
- the invention relates to a heat transfer unit with a channel through which a coolant flows and a channel through which a fluid to be cooled flow, which are separated from one another by a wall, from which ribs extend in at least one of the two channels.
- Such heat transfer units are used for example for exhaust gas cooling in an exhaust gas recirculation train in an internal combustion engine.
- the ribs usually protrude into the channel through which the fluid to be cooled flows.
- the ribs extend from the two opposite sides of the heat transfer unit into the channel, as well as cooling devices in which the ribs only extend from one side into the channel.
- the ribs may take on different shapes and either extend integrally along the main flow direction or be formed as a single ribs, here both pin and tubular as well as wing-shaped ribs are known.
- the channel through which the coolant flows can be arranged both within the channel through which the fluid to be cooled and also surround it in cross section.
- intercoolers serve to reduce the combustion temperatures and thus the resulting nitrogen oxides and exhaust gas cooler for heating the air for faster heating of a passenger compartment or in the exhaust system to reduce the exhaust gas temperature of a gas flowing to a catalyst.
- exhaust gas recirculation lines are using the exhaust gas cooler the exhaust gas temperatures and thus the combustion temperature in the engine lowered, which in turn pollutant emissions can be reduced.
- the cooling water of the internal combustion engine serve as a coolant, the cooling water of the internal combustion engine.
- a heat transfer unit which is arranged in an exhaust gas recirculation system of an internal combustion engine is, for example, from DE 10 2004 019 554 A1 known. This consists of an inner U-shaped flowed through by exhaust gas channel, which is surrounded over the entire cross-section of a coolant flow channel. This is a multi-part die-cast cooler, which has different graduation levels.
- a charge air cooler is known in which the flow through the radiator can be changed via two flaps. With open flaps, this cooler is flowed through over its entire cross-section in one direction, while with the flaps closed, only the third cross-section is traversed over the third section.
- the known heat transfer units have only low cooling capacities and cooler efficiencies, in particular at low throughputs and temperature differences. However, especially in the field of exhaust gas recirculation, it may be desirable to further reduce the pollutant emissions to achieve a high cooling capacity at low pressure loss, both at high and at low flow rates.
- shut-off devices are arranged in the heat transfer unit, wherein when the first fluid part inlet is closed by means of the first shut-off device, the second shut-off device is connected such that the cooling path for the fluid in the heat transfer unit lengthens.
- the shut-off devices are arranged such that the heat transfer unit is flowed through in part by the second barrier in the opposite direction.
- the heat transfer unit has two partitions, which cooperate with the shut-off devices in such a way that the entire channel flows through in both switching positions of the shut-off devices, wherein the cooling section extends when the cross-section narrows. It is thus used the entire available cross section of the heat transfer unit in both switching positions of the shut-off, which in turn leads to an increase in efficiency.
- the cooling section preferably extends substantially to the same extent as the cross section through which it flows decreases. This means that when halving the flow-through cross section, the cooling section is doubled. This can be achieved by using the entire heat transfer unit in both switching positions of the shut-off devices and by multiple deflection.
- the use of the entire available heat transfer surface in both switching positions of the shut-off to increase the efficiency is achieved in particular by a heat transfer unit, wherein the first partition from the fluid inlet between the first and second fluid part inlet in the main flow direction in the heat transfer unit to the opposite to the fluid inlet End extends and the second partition extends from the fluid outlet between the first and the second Fluidteilauslass in the main flow direction in the heat transfer unit to the fluid outlet opposite end, wherein the first and the second shut-off device are designed as a flap and the flaps at the opposite ends of the heat transfer unit are each arranged between the first and the second partition wall, wherein the flaps are arranged perpendicular to each other in both switching positions.
- a cooler is formed, in which the flow-through cross-section is halved when the first fluid inlet is closed, at the same time the cooling section is doubled.
- the first flap is closed, the fluid to be cooled is thus flowed through the narrowed cross section into the heat transfer unit behind the first partition due to the closed position of the second shut-off device deflected by 180 °, behind the central wall in turn deflected by 180 °, which again performed behind the second partition becomes. Only here can the exhaust gas flow out.
- the first partition wall extends in a U-shape from the fluid inlet between the first and second fluid part inlet in the main flow direction to the second fluid part outlet and the second partition wall extends U-shaped from the fluid outlet between the first and second fluid part outlet in the main flow direction to the first fluid part inlet , wherein the first and the second shut-off device are designed as a flap, wherein the first flap through the first Fluid part inlet is closed and closed by the second flap of the second Fluidteilauslass, the flaps open and close parallel to each other.
- the flow-through cross-section is divided by three when the first fluid part inlet is closed, and at the same time the cooling section is tripled so that a very good cooling effect is achieved with even lower throughputs or fluid mass flows due to the long existing cooling section and the small cross section.
- the pressure loss across the cooler can be kept low.
- a first embodiment of a heat transfer unit 1 which is preferably used as exhaust gas heat exchanger in motor vehicles. It consists of an outer housing 2, in which an inner housing 3, which can be produced, for example, by die-casting, is arranged. Between the inner housing 3 and the outer housing 2, a channel 4 flows through the fluid to be cooled after assembly. In the interior of the inner housing 3, a coolant through-flow channel 5 is arranged, the inlet and outlet nozzles 6, 7 in FIG. 2 are shown and which are arranged in the present embodiment at one to a fluid inlet 8 and a fluid outlet 9 opposite end 10 of the heat transfer unit.
- the coolant flowed through channel 5 is limited by a circumferential wall 11 in the wall, from which ribs 12 extend in the flowed through by the fluid to be cooled channel 4.
- the channel 4 through which the fluid to be cooled flows is designed such that its fluid inlet 8 is arranged on the same side of the head as the fluid outlet 9, so that the fluid to be cooled is deflected by 180 ° at the opposite end 10. Accordingly, the ribs 12 are arranged in this region following the main flow direction.
- the ribs 12 are seen in the main flow direction, arranged in rows next to each other, with completion of a first row each followed by a second row, the ribs 12 are arranged offset from the ribs 12 of the first row.
- Such an arrangement of the ribs 12 increases the residence time of the fluid in the heat transfer unit and thus its efficiency, since a straight, obstacle-free flow is no longer possible for the fluid to be cooled.
- the heat transfer unit additionally has a first partition wall 14, which extends in a U-shape from the fluid inlet 8 via the end 10 to the fluid outlet 9.
- This partition wall 14 divides in the present embodiment, the channel 4 in two sub-channels 15 and 16 and thus the fluid inlet 8 and the fluid outlet 9 in two approximately equal fluid part inlets 17, 18 and two fluid part outlets 19, 20.
- the first fluid part inlet 17 is of a Shut-off device 21 dominated in the form of a flap whose axis of rotation 22 is arranged in the present embodiment in extension to the outer housing 2.
- both the shut-off device 21 and the partition wall 14 extend over the entire height of the heat transfer unit 1.
- an exhaust gas recirculation valve is usually formed before the heat transfer unit 1, so that different fluid mass flows or exhaust gas mass flows of the heat transfer unit 1 are supplied. Especially at low exhaust gas mass flows and smaller temperature differences between the exhaust gas and the coolant, the cooling capacity of a heat transfer unit without partition 14 and shut-off device 21 is only very small.
- the first fluid inlet 17 is closed by the shut-off device 21, so that the entire mass flow flows via the second fluid inlet 18 to the second fluid outlet 20. This is compared to a heat transfer unit 1 without disconnectable channel only half the cross-section available.
- FIG. 3 A further embodiment of this is in the FIG. 3 shown.
- two partition walls 23 and 24 are arranged, of which the first partition wall 23 extends from the fluid inlet 8 to the opposite end 10 of the heat transfer unit 1 and the second partition wall 24 extends from the fluid outlet 9 to the opposite end 10 of the heat transfer unit 1 extends.
- Both partitions 23, 24 terminate at a sufficient distance from the end 10, so that when closing one of the fluid part inlets 17, 18 a sufficient cross-section for the flow of fluid behind the ends of the partition walls 23 and 24 and the outer housing 2 is available.
- a shut-off device in the form of a flap 27, 28 is mounted between the respective ends of the two partitions 23, 24 in extension to the wall 13 .
- the width of the flaps 27, 28 corresponds to the distance between the two partitions 23, 24.
- the width of the end of the wall 13 of the axes of rotation 25, 26 each half the width of such a flap 27, 28, so that the first flap 27 in its first position, the first fluid part inlet 17 and the first Fluidteilauslass 19 shuts off, while the second flap 28 is disposed in its first end position offset by 90 ° to the first flap 27 and thus rests in its width with one end against the wall 13 and abuts against the outer housing 2 with its other end. In its second position, the first flap 27 abuts with its two ends against the partitions 23 and 24.
- the first shut-off device 27 in a position in which it rests against the two partitions 23, 24, the first fluid part inlet 17 is closed.
- the fluid mass flow thus enters via the second fluid part inlet 18 in the sub-channel 16 and from here to the opposite end 10 of the heat transfer unit 1.
- the second shut-off device 28 prevents now by their above-mentioned first position a fluid mass flow over the extension of the wall 13 addition. Consequently, the fluid mass flow undergoes a 180 ° turn and passes behind the dividing wall 23 into the partial passage 15, but flows through it in the opposite direction, ie in the direction of the first fluid inlet inlet 10.
- FIG. 4 shows a further alternative heat transfer unit 1 in which again two partitions 29, 30 and two shut-off devices 31, 32 are used.
- first partition wall 29 runs the first partition wall 29 from the fluid inlet 8 U-shaped to the fluid outlet 9 and ends at a distance in front of the fluid outlet 9, which corresponds to half the width of the shut-32.
- parallel to the U-shaped second partition wall 30 extends from the fluid outlet 9 in the direction of the fluid inlet 8 where it in turn ends at a distance from the fluid inlet 8, which corresponds to half the width of the shut-off device 31.
- These two partitions 29, 30 are arranged so that the fluid inlet 8 and the fluid outlet 9 are approximately divided in their cross-section and in their width.
- shut-off devices 31, 32 are arranged on axes of rotation 33, 34, which are arranged in extension to the ends of the partitions 29, 30 in the region of the fluid part inlets 17, 18 or fluid part outlets 19, 20.
- shut-off devices 31, 32 open, that is to say when the flap extension extends in the direction of the dividing walls 29, 30, the usual fluid mass flow is U-shaped through the entire cross section from the fluid inlet 8 to the fluid outlet 9, reliably avoiding excessive pressure losses at high throughputs.
- the illustrated embodiments of the heat transfer unit allow use with very good cooling performance and cooler efficiencies over a wide range of throughput and temperature. At the same time, the pressure loss across the cooler is kept as small as possible.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- General Details Of Gearings (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
Die Erfindung betrifft eine Wärmeübertragungseinheit mit einem Kühlmittel durchströmten Kanal und einem von einem zu kühlenden Fluid durchströmten Kanal, die durch eine Wand voneinander getrennt sind, von welcher ausgehend sich Rippen in zumindest einen der beiden Kanäle erstrecken.The invention relates to a heat transfer unit with a channel through which a coolant flows and a channel through which a fluid to be cooled flow, which are separated from one another by a wall, from which ribs extend in at least one of the two channels.
Derartige Wärmeübertragungseinheiten werden beispielsweise zur Abgaskühlung in einem Abgasrückführstrang in einer Verbrennungskraftmaschine verwendet. Die Rippen ragen dabei gewöhnlich in den vom zu kühlenden Fluid durchströmten Kanal. Hierbei gibt es sowohl Ausführungen, bei denen sich die Rippen von den beiden gegenüber liegenden Seiten der Wärmeübertragungseinheit in den Kanal erstrecken als auch Kühlvorrichtungen bei denen sich die Rippen lediglich von einer Seite in den Kanal erstrecken. Die Rippen können dabei unterschiedliche Formen annehmen und sich entweder einteilig entlang der Hauptströmungsrichtung erstrecken oder als einzelne Rippen ausgebildet sein, wobei hier sowohl Stift- als auch Rohrförmige als auch Tragflächenförmige Rippen bekannt sind.Such heat transfer units are used for example for exhaust gas cooling in an exhaust gas recirculation train in an internal combustion engine. The ribs usually protrude into the channel through which the fluid to be cooled flows. In this case, there are embodiments in which the ribs extend from the two opposite sides of the heat transfer unit into the channel, as well as cooling devices in which the ribs only extend from one side into the channel. The ribs may take on different shapes and either extend integrally along the main flow direction or be formed as a single ribs, here both pin and tubular as well as wing-shaped ribs are known.
Der vom Kühlmittel durchströmte Kanal kann sowohl innerhalb des vom zu kühlenden Fluids durchströmten Kanals angeordnet sein als auch diesen im Querschnitt umgeben.The channel through which the coolant flows can be arranged both within the channel through which the fluid to be cooled and also surround it in cross section.
In Verbrennungskraftmaschinen werden Wärmeübertragungseinheiten beispielsweise zur Luft-, Abgas- oder Ölkühlung verwendet. So dienen Ladeluftkühler zur Verringerung der Verbrennungstemperaturen und somit der entstehenden Stickoxide und Abgaskühler zur Aufheizung der Luft zur schnelleren Erwärmung eines Fahrgastraumes oder im Abgasstrang zur Verminderung der Abgastemperatur eines zu einem Katalysator strömenden Gases. In Abgasrückführleitungen werden mit Hilfe des Abgaskühlers die Abgastemperaturen und somit die Verbrennungstemperatur im Motor herab gesetzt, wodurch wiederum Schadstoffemissionen verringert werden können. Als Kühlmittel kann dabei jeweils das Kühlwasser der Verbrennungskraftmaschine dienen.In internal combustion engines heat transfer units are used for example for air, exhaust or oil cooling. Thus, intercoolers serve to reduce the combustion temperatures and thus the resulting nitrogen oxides and exhaust gas cooler for heating the air for faster heating of a passenger compartment or in the exhaust system to reduce the exhaust gas temperature of a gas flowing to a catalyst. In exhaust gas recirculation lines are using the exhaust gas cooler the exhaust gas temperatures and thus the combustion temperature in the engine lowered, which in turn pollutant emissions can be reduced. In each case serve as a coolant, the cooling water of the internal combustion engine.
Eine Wärmeübertragungseinheit, welche in einem Abgasrückführsystem einer Verbrennungskraftmaschine angeordnet ist, ist beispielsweise aus der
Bei derartigen Wärmetauschern ist sowohl ein hoher Wirkungsgrad bezüglich der zu übertragenden Wärme als auch eine möglichst geringe Versottung gewünscht. Gleichzeitig soll der Druckverlust über die Wärmeübertragungseinheiten möglichst gering gehalten werden.In such heat exchangers, both a high efficiency with respect to the heat to be transferred and the lowest possible sooting are desired. At the same time, the pressure loss over the heat transfer units should be kept as low as possible.
Aus der
Die bekannten Wärmeübertragungseinheiten weisen jedoch insbesondere bei geringen Durchsätzen und Temperaturdifferenzen lediglich geringe Kühlleistungen und Kühlerwirkungsgrade auf. Insbesondere im Bereich der Abgasrückführung kann es jedoch zur weiteren Reduzierung der Schadstoffemissionen wünschenswert sein, sowohl bei großen als auch bei kleinen Durchsätzen eine hohe Kühlleistung bei geringem Druckverlust zu erzielen.The known heat transfer units, however, have only low cooling capacities and cooler efficiencies, in particular at low throughputs and temperature differences. However, especially in the field of exhaust gas recirculation, it may be desirable to further reduce the pollutant emissions to achieve a high cooling capacity at low pressure loss, both at high and at low flow rates.
Daher ist es Aufgabe der Erfindung, eine Wärmeübertragungseinheit bereit zu stellen, mit der über einen großen Durchsatz- und Temperaturbereich hohe Kühlleistungen beziehungsweise Wirkungsgrade erzielt werden können und gleichzeitig der Druckverlust möglichst gering gehalten wird.It is therefore the object of the invention to provide a heat transfer unit with high cooling capacities over a large throughput and temperature range Efficiencies can be achieved and at the same time the pressure loss is kept as low as possible.
Diese Aufgabe wird durch den kennzeichnenden Teil des Hauptanspruchs gelöst.
Hierdurch entsteht eine zweistufige Wärmeübertragungseinheit, welche bei geringen Durchsätzen und relativ niedrigen Temperaturdifferenzen zum Kühlmittel dennoch eine hohe Kühlleistung beziehungsweise einen hohen Kühlerwirkungsgrad erreicht, da durch den verringerten durchströmten Querschnitt eine hohe Strömungsgeschwindigkeit durch den Kühler erzielt wird. Eine derartige Bauweise verringert die benötigte axiale Ausdehnung der Wärmeübertragungseinheit, so dass diese kleiner gebaut werden kann.This object is achieved by the characterizing part of the main claim.
This results in a two-stage heat transfer unit, which at low throughputs and relatively low temperature differences to the coolant still achieves a high cooling capacity or a high radiator efficiency, since a high flow rate is achieved by the radiator through the reduced flow-through cross-section. Such a construction reduces the required axial extent of the heat transfer unit, so that it can be built smaller.
Vorzugsweise sind in der Wärmeübertragungseinheit zwei Absperreinrichtungen angeordnet, wobei bei Verschluss des ersten Fluidteileinlasses mittels der ersten Absperreinrichtung, die zweite Absperreinrichtung derart geschaltet ist, dass sich die Kühlstrecke für das Fluid in der Wärmeübertragungseinheit verlängert. Dies bedeutet, dass die Absperreinrichtungen derart angeordnet werden, dass die Wärmeübertragungseinheit durch die zweite Absperrung zum Teil in entgegengesetzter Richtung durchströmt wird. Dies führt zu einer weiteren Verlängerung der wirksamen Kühlstrecke und somit zu einer weiteren Erhöhung des Wirkungsgrades bei geringen Durchsätzen und Temperaturen, während bei geöffneter Absperreinrichtung im Vergleich zu bekannten Kühlern gleich gute Wirkungsgrade mit geringem Druckverlust erzielt werden.Preferably, two shut-off devices are arranged in the heat transfer unit, wherein when the first fluid part inlet is closed by means of the first shut-off device, the second shut-off device is connected such that the cooling path for the fluid in the heat transfer unit lengthens. This means that the shut-off devices are arranged such that the heat transfer unit is flowed through in part by the second barrier in the opposite direction. This leads to a further extension of the effective cooling section and thus to a further increase in efficiency at low flow rates and temperatures, while with open shut-off device compared to known coolers equally good efficiencies are achieved with low pressure drop.
In einer weiterführenden Ausführungsform weist die Wärmeübertragungseinheit zwei Trennwände auf, welche derart mit den Absperreinrichtungen zusammen wirken, dass der gesamte Kanal in beiden Schaltstellungen der Absperreinrichtungen durchströmt ist, wobei sich die Kühlstrecke bei Verengung des Querschnitts verlängert. Es wird somit der gesamte zur Verfügung stehende Querschnitt der Wärmeübertragungseinheit in beiden Schaltstellungen der Absperreinrichtung genutzt, was wiederum zu einer Wirkungsgraderhöhung führt.In a further embodiment, the heat transfer unit has two partitions, which cooperate with the shut-off devices in such a way that the entire channel flows through in both switching positions of the shut-off devices, wherein the cooling section extends when the cross-section narrows. It is thus used the entire available cross section of the heat transfer unit in both switching positions of the shut-off, which in turn leads to an increase in efficiency.
Vorzugsweise verlängert sich dabei die Kühlstrecke im Wesentlichen im gleichen Maß, wie sich der durchströmte Querschnitt verringert. Dies bedeutet, dass bei Halbierung des durchströmten Querschnittes die Kühlstrecke verdoppelt wird. Dies ist durch Nutzung der gesamten Wärmeübertragungseinheit in beiden Schaltstellungen der Absperreinrichtungen und durch mehrfache Umlenkung erreichbar.In this case, the cooling section preferably extends substantially to the same extent as the cross section through which it flows decreases. This means that when halving the flow-through cross section, the cooling section is doubled. This can be achieved by using the entire heat transfer unit in both switching positions of the shut-off devices and by multiple deflection.
Die Nutzung der gesamten zur Verfügung stehenden Wärmeübertragungsfläche in beiden Schaltstellungen der Absperreinrichtungen zur Erhöhung des Wirkungsgrades wird insbesondere durch eine Wärmeübertragungseinheit erreicht, bei der sich die erste Trennwand vom Fluideinlass zwischen dem ersten und dem zweiten Fluidteileinlass in Hauptströmungsrichtung in die Wärmeübertragungseinheit bis vor dem zum Fluideinlass entgegengesetzten Ende erstreckt und sich die zweite Trennwand vom Fluidauslass zwischen dem ersten und dem zweiten Fluidteilauslass in Hauptströmungsrichtung in die Wärmeübertragungseinheit bis vor dem zum Fluidauslass entgegengesetzten Ende erstreckt, wobei die erste und die zweite Absperreinrichtung als Klappe ausgebildet sind und die Klappen an den entgegengesetzten Enden der Wärmeübertragungseinheit jeweils zwischen der ersten und der zweiten Trennwand angeordnet sind, wobei die Klappen in beiden Schaltstellungen senkrecht zueinander angeordnet sind. Mit einer derartigen Bauform entsteht ein Kühler, bei dem bei geschlossenem ersten Fluideinlass der durchströmte Querschnitt halbiert ist, wobei gleichzeitig die Kühlstrecke verdoppelt wird. Bei geschlossener erster Klappe wird somit das zu kühlende Fluid durch den verengten Querschnitt in die Wärmeübertragungseinheit einströmen hinter der ersten Trennwand aufgrund der Verschlussstellung der zweiten Absperreinrichtung um 180° umgelenkt, hinter der mittleren Wand wiederum um 180° umgelenkt, was erneut hinter der zweiten Trennwand vollzogen wird. Erst hier kann das Abgas ausströmen.The use of the entire available heat transfer surface in both switching positions of the shut-off to increase the efficiency is achieved in particular by a heat transfer unit, wherein the first partition from the fluid inlet between the first and second fluid part inlet in the main flow direction in the heat transfer unit to the opposite to the fluid inlet End extends and the second partition extends from the fluid outlet between the first and the second Fluidteilauslass in the main flow direction in the heat transfer unit to the fluid outlet opposite end, wherein the first and the second shut-off device are designed as a flap and the flaps at the opposite ends of the heat transfer unit are each arranged between the first and the second partition wall, wherein the flaps are arranged perpendicular to each other in both switching positions. With such a design, a cooler is formed, in which the flow-through cross-section is halved when the first fluid inlet is closed, at the same time the cooling section is doubled. When the first flap is closed, the fluid to be cooled is thus flowed through the narrowed cross section into the heat transfer unit behind the first partition due to the closed position of the second shut-off device deflected by 180 °, behind the central wall in turn deflected by 180 °, which again performed behind the second partition becomes. Only here can the exhaust gas flow out.
Alternativ erstreckt sich die erste Trennwand U-förmig vom Fluideinlass zwischen dem ersten und dem zweiten Fluidteileinlass in Hauptströmungsrichtung bis vor den zweiten Fluidteilauslass und die zweite Trennwand erstreckt sich U-förmig vom Fluidauslass zwischen dem ersten und dem zweiten Fluidteilauslass in Hauptströmungsrichtung bis vor den ersten Fluidteileinlass, wobei die erste und die zweite Absperreinrichtung als Klappe ausgebildet sind, wobei durch die erste Klappe der erste Fluidteileinlass verschließbar ist und durch die zweite Klappe der zweite Fluidteilauslass verschließbar ist, wobei die Klappen parallel zueinander öffnen und schließen. Durch eine derartige Anordnung wird der durchströmte Querschnitt bei geschlossenem ersten Fluidteileinlass gedrittelt und gleichzeitig die Kühlstrecke verdreifacht, so dass bei noch geringeren Durchsätzen bzw. Fluidmassenströmen dennoch durch die lange vorhandene Kühlstrecke und den kleinen Querschnitt eine sehr gute Kühlwirkung erzielt wird. Gleichzeitig kann bei geöffnetem ersten Fluidteileinlass der Druckverlust über den Kühler niedrig gehalten werden.Alternatively, the first partition wall extends in a U-shape from the fluid inlet between the first and second fluid part inlet in the main flow direction to the second fluid part outlet and the second partition wall extends U-shaped from the fluid outlet between the first and second fluid part outlet in the main flow direction to the first fluid part inlet , wherein the first and the second shut-off device are designed as a flap, wherein the first flap through the first Fluid part inlet is closed and closed by the second flap of the second Fluidteilauslass, the flaps open and close parallel to each other. By means of such an arrangement, the flow-through cross-section is divided by three when the first fluid part inlet is closed, and at the same time the cooling section is tripled so that a very good cooling effect is achieved with even lower throughputs or fluid mass flows due to the long existing cooling section and the small cross section. At the same time, with the first fluid part inlet open, the pressure loss across the cooler can be kept low.
Insbesondere bei einer Anwendung einer derartigen Wärmeübertragungseinheit in einer Brennkraftmaschine zur Abgaskühlung werden hohe Kühlerwirkungsgrade unabhängig vom Durchsatz beziehungsweise vorhandenen Temperaturbereich des die Wärmeübertragungseinheit durchströmenden Abgases beziehungsweise Fluides erreicht. Bei hohen vorhandenen Durchsätzen und hohen Temperaturen kann eine hohe Kühlleistung bei geringen Druckverlusten gewährleistet werden. Es vergrößert sich somit der Arbeitsbereich eines derartigen Kühlers.Particularly when such a heat transfer unit is used in an internal combustion engine for exhaust gas cooling, high radiator efficiencies are achieved independently of the throughput or existing temperature range of the exhaust gas or fluid flowing through the heat transfer unit. At high existing throughputs and high temperatures, a high cooling capacity can be ensured with low pressure losses. It thus increases the working range of such a cooler.
in den Figuren sind drei alternative Ausführungsformen erfindungsgemäßer Wärmeübertragungseinheiten dargestellt und werden nachfolgend beschrieben.
-
zeigt eine Draufsicht einer ersten Ausführung einer erfindungsgemäßen Wärmeübertragungseinheit in geschnittener Darstellung.Figur 1 -
zeigt einen Schnitt durch die Wärmeübertragungseinheit gemäß derFigur 2Fig.1 entlang der Linie A-A -
zeigt eine Draufsicht einer alternativen erfindungsgemäßen Wärmeübertragungseinheit.Figur 3 -
zeigt eine weitere alternative Ausführung einer erfindungsgemäßen Wärmeübertragungseinheit wiederum in Draufsicht und geschnittener Darstellung.Figur 4
-
FIG. 1 shows a plan view of a first embodiment of a heat transfer unit according to the invention in a sectional view. -
FIG. 2 shows a section through the heat transfer unit according to theFig.1 along the line AA -
FIG. 3 shows a plan view of an alternative heat transfer unit according to the invention. -
FIG. 4 shows a further alternative embodiment of a heat transfer unit according to the invention again in plan view and a sectional view.
Für funktional gleiche Bauteile der verschiedenen Ausführungsformen der erfindungsgemäßen Wärmeübertragungseinheiten werden im Folgenden gleiche Bezugszeichen verwendet.For functionally identical components of the various embodiments of the heat transfer units according to the invention, the same reference numerals are used below.
In den
Um eine derartige U-förmige Durchströmung zu erreichen, ist es notwendig, zwischen dem Fluideinlass 8 und dem Fluidauslass 9 eine sich in Strömungsrichtung in den vom zu kühlenden Fluid durchströmten Kanal 4 erstreckende Wand 13 vorzusehen, welche in einem Abstand vom zum Einlass 8 entgegengesetzten Ende 10 der Wärmeübertragungseinheit 1 endet, der in etwa der Breite des Fluideinlasses 8 beziehungsweise des Fluidauslasses 9 entspricht, so dass keine Strömungsverluste auftreten, sondern lediglich eine Richtungsumkehr des Fluids an diesem Ende 10 erfolgt. Diese Wand 13 ist in ihrer Höhe so ausgestaltet, dass sie bis zum Außengehäuse 2 reicht, wodurch eine Querströmung und ein Überströmen unmittelbar vom Einlass 8 zum Ausiass 9 verhindert wird.In order to achieve such a U-shaped flow, it is necessary to provide between the
Wie insbesondere in
Erfindungsgemäß weist die Wärmeübertragungseinheit zusätzlich eine erste Trennwand 14 auf, welche sich U-förmig vom Fluideinlass 8 über das Ende 10 zum Fluidauslass 9 erstreckt. Diese Trennwand 14 teilt im vorliegenden Ausführungsbeispiel den Kanal 4 in zwei Teilkanäle 15 und 16 und somit auch den Fluideinlass 8 und den Fluidauslass 9 in zwei in etwa gleich große Fluidteileinlässe 17, 18 und zwei Fluidteilauslässe 19, 20. Der erste Fluidteileinlass 17 wird von einer Absperreinrichtung 21 in Form einer Klappe beherrscht, deren Drehachse 22 im vorliegenden Ausführungsbeispiel in Verlängerung zum Außengehäuse 2 angeordnet ist. Sowohl die Absperreinrichtung 21 als auch die Trennwand 14 erstrecken sich selbstverständlich über die gesamte Höhe der Wärmeübertragungseinheit 1.According to the invention, the heat transfer unit additionally has a
Bei Verwendung einer derartigen Wärmeübertragungseinheit 1 als Abgaskühler ist üblicherweise vor der Wärmeübertragungseinheit 1 ein Abgasrückführventil ausgebildet, so dass unterschiedliche Fluidmassenströme beziehungsweise Abgasmassenströme der Wärmeübertragungseinheit 1 zugeführt werden. Insbesondere bei geringen Abgasmassenströmen und kleineren Temperaturdifferenzen zwischen dem Abgas und dem Kühlmittel ist die Kühlleistung einer Wärmeübertragungseinheit ohne Trennwand 14 und Absperreinrichtung 21 nur sehr gering. Bei der vorliegenden erfindungsgemäßen Ausführung der Wärmeübertragungseinheit 1 wird der erste Fluideinlass 17 durch die Absperreinrichtung 21 verschlossen, so dass der gesamte Massenstrom über den zweiten Fluideinlass 18 zum zweiten Fluidauslass 20 strömt. Hierzu steht im Vergleich zu einer Wärmeübertragungseinheit 1 ohne abschaltbaren Kanal lediglich der halbe Querschnitt zu Verfügung. Hierdurch entstehen zwar etwas höher Druckverluste, weiche durch den geringen Durchsatz jedoch kleiner sind als bei geöffneter Absperreinrichtung 21 und vollem Durchsatz. Des weiteren wird die Kühlleistung und somit der Wirkungsgrad der Wärmeübertragungseinheit 1 im Vergleich zu bekannten Ausführungen bei geringem Durchsatz und verringertem Querschnitt deutlich erhöht. Bei entsprechend großem Fluidmassenstrom wird die Absperreinrichtung 21 geöffnet, so dass der gesamte Querschnitt des Kanals 4 zur Kühlung zur Verfügung steht, so dass keine zu hohen Druckverluste entstehen und gleichzeitig die bekannt gute Kühlwirkung erzielt wird.When using such a
Eine hierzu weiterführende Ausführungsform ist in der
Zwischen den jeweiligen Enden der beiden Trennwände 23, 24 in Verlängerung zur Wand 13 sind Drehachsen 25, 26 angeordnet, auf denen jeweils eine Absperreinrichtung in Form einer Klappe 27, 28 gelagert ist. Die Breite der Klappen 27, 28 entspricht dabei dem Abstand zwischen den beiden Trennwänden 23, 24. Gleichzeitig entspricht der Abstand des Endes der Wand 13 von den Drehachsen 25, 26 jeweils der halben Breite einer solchen Klappe 27, 28, so dass die erste Klappe 27 in ihrer ersten Stellung den ersten Fluidteileinlass 17 sowie den ersten Fluidteilauslass 19 absperrt, während die zweite Klappe 28 in ihrer ersten Endlage um 90° versetzt zur ersten Klappe 27 angeordnet ist und somit in ihrer Breite mit dem einen Ende gegen die Wand 13 anliegt und mit ihrem anderen Ende gegen das Außengehäuse 2 anliegt. In ihrer zweiten Stellung stößt die erste Klappe 27 mit ihren beiden Enden gegen die Trennwände 23 und 24 an.Between the respective ends of the two
ist nun die erste Absperreinrichtung 27 in einer Stellung in der sie gegen die beiden Trennwände 23, 24 anliegt, ist der erste Fluidteileinlass 17 geschlossen. Der Fluidmassenstrom tritt somit über den zweiten Fluidteileinlass 18 in den Teilkanal 16 ein und gelangt von hier zum entgegengesetzten Ende 10 der Wärmeübertragungseinheit 1. Die zweite Absperreinrichtung 28 verhindert nun durch ihre oben erwähnte erste Stellung einen Fluidmassenstrom über die Verlängerung der Wand 13 hinaus. Folglich erfährt der Fluidmassenstrom eine 180° Wendung und gelangt hinter der Trennwand 23 in den Teilkanal 15, durchströmt diesen jedoch in entgegengesetzter Richtung also in Richtung zum ersten Fluidteileinlass 10 führt. Ein Ausströmen wird hier durch die Schließstellung der ersten Absperreinrichtung 27 verhindert, so dass erneut eine Umkehr des Fluidmassenstromes in den Bereich des ersten Teilkanals 15 hinter dem ersten Fluidteilauslass 19 erfolgt, so dass erneut die übliche Strömungsrichtung im Vergleich zur ersten Ausführung oder zur entgegengesetzten Stellung der Klappen 27, 28 geändert wird. Das Fluid strömt nun erneut zum entgegengesetzten Ende 10, wo wiederum eine Umkehr in Richtung zum zweiten Fluidteilauslass 20 erfolgt, wo das Fluid ausströmen kann.is now the first shut-off
Es entsteht somit bei dieser Stellung der Klappen 27, 28 eine Verdopplung des insgesamt zurückgelegten Strömungsweges bei Halbierung des zur Verfügung stehenden Strömungsquerschnitts. Hierdurch wird die Kühlwirkung deutlich erhöht, da in jedem Zustand die gesamte zur Verfügung stehende Wärmetauscherfläche genutzt wird.Thus, with this position of the
In der entgegengesetzten Stellung der beiden Absperreinrichtungen 27, 28 liegt somit die Außenfläche der ersten Klappe 27 in Verlängerung zur Wand 13, so dass beide Fluidteileinlässe 17, 18 geöffnet sind. Somit strömt das Fluid vom Fluideinlass 8 in beide Teilkanäle 15, 16. Die zweite Klappe 28 verhindert eine Strömung vom Teilkanal 15 zum Teilkanal 16, so dass beide Teilkanäle 15, 16 U- förmig und parallel durchströmt werden. Vom ersten Fluidteileinlass 17 erfolgt die Strömung somit zum ersten Fluidteilauslass 19 und vom zweiten Fluidteileinlass 18 strömt das Fluid zum zweiten Fluidteilauslass 20. Eine derartige Schaltstellung wird bei großen Massendurchsätzen gewählt.In the opposite position of the two shut-off
Allerdings verläuft hier die erste Trennwand 29 vom Fluideinlass 8 U-förmig zum Fluidauslass 9 und endet in einem Abstand vor dem Fluidauslass 9, der der halben Breite der Absperreinrichtung 32 entspricht. Parallel U-förmig verläuft die zweite Trennwand 30 jedoch vom Fluidauslass 9 in Richtung zum Fluideinlass 8 wo sie wiederum in einem Abstand vom Fluideinlass 8 endet, welcher der halben Breite der Absperreinrichtung 31 entspricht. Diese beiden Trennwände 29, 30 sind so angeordnet, dass der Fluideinlass 8 und der Fluidauslass 9 in etwa in ihrem Querschnitt bzw. in ihrer Breite gedrittelt werden.However, here runs the
Die Absperreinrichtungen 31, 32 sind auf Drehachsen 33, 34 angeordnet, die in Verlängerung zu den Enden der Trennwände 29, 30 im Bereich der Fluidteileinlässe 17, 18 beziehungsweise Fluidteilauslässe 19, 20 angeordnet sind.The shut-off
In geschlossener Stellung der beiden Klappen 31, 32 also bei Anliegen der Klappe 31 an der Trennwand 29 sowie der Wand 13 und Anliegen der Klappe 32 an der Trennwand 30 sowie dem Außengehäuse 2 gelangt der Fluidmassenstrom über den zweiten Fluidteileinlass 18 in die Wärmetauschereinheit 1 und strömt zwischen dem Außengehäuse 2 und der ersten Trennwand 29 U-förmig bis zur zweiten Absperreinrichtung 32, wo er hinter der ersten Trennwand 29 umgelenkt wird und nun erneut in entgegengesetzter Richtung U-förmig in Richtung zum ersten Fluidteileinlass 17 zwischen den Trennwänden 29 und 30 strömt. Bei Erreichen des ersten Fluidteileinlasses 17 wird der Weg durch die Absperreinrichtung 31 erneut versperrt, so dass eine Umkehr hinter der Trennwand 30 erfolgt und der Fluidmassenstrom nun zwischen der Wand 13 und der Trennwand 30 wiederum U-förmig in Richtung zum freien ersten Fluidteilauslass 19 strömt. Somit entsteht eine Verdreifachung der Kühlstrecke bei Drittelung des zur Verfügung stehenden Querschnitts.In the closed position of the two
Bei geöffneten Absperreinrichtungen 31, 32 also bei Lage der Klappenausdehnung in Verlängerung zur den Trennwänden 29, 30 erfolgt der übliche Fluidmassenstrom U-förmig durch den gesamten Querschnitt vom Fluideinlass 8 zum Fluidauslass 9, wodurch zu hohe Druckverluste bei großen Durchsätzen zuverlässig vermieden werden.With the shut-off
Es sollte deutlich sein, dass eine derartige Ausführung nicht auf die vorhandenen Ausführungsbeispiele beschränkt ist, sondern die Bauform des Kühlers weitestgehend frei wählbar ist. So wäre es selbstverständlich auch möglich, den Fluideinlass und den Fluidauslass an entgegengesetzten Enden der Wärmeübertragungseinheit anzuordnen. Auch ist selbstverständlich eine Umströmung der Wärmeübertragungseinheit mit Kühlmittel anstatt der inneren Durchströmung denkbar. Wesentlich ist die Möglichkeit zur Absperrung eines Teils der zur Verfügung stehenden Querschnittsfläche, wobei möglichst dennoch die gesamte zur Verfügung stehende Wärmetauscherfläche genutzt werden sollte. Als Absperreinrichtungen können sowohl Klappen als auch andere Elemente genutzt werden. Auch sollte deutlich sein, dass eine Wärmeübertragungseinheit nicht auf eine in Druckguss herzustellende Wärmeübertragungseinheit beschränkt ist, sondern derartige in ihrem Querschnitt schaltbare Wärmeübertragungseinheiten auch in anders aufgebauten Wärmeübertragungseinheiten genutzt werden können.It should be clear that such an embodiment is not limited to the existing embodiments, but the design of the radiator is largely arbitrary. Thus, it would of course also be possible to arrange the fluid inlet and the fluid outlet at opposite ends of the heat transfer unit. Of course, a flow around the heat transfer unit with coolant instead of the internal flow is conceivable. Essential is the possibility to shut off a part of the available cross-sectional area, wherein as possible nevertheless the entire available heat exchanger surface should be used. As shut-off devices both flaps and other elements can be used. It should also be clear that a heat transfer unit is not limited to a heat transfer unit to be produced by die casting, but such heat transfer units which can be switched in their cross section can also be used in heat transfer units of a different design.
Die dargestellten Ausführungen der Wärmeübertragungseinheit ermöglichen einen Einsatz mit sehr guten Kühlleistungen und Kühlerwirkungsgraden über einen großen Durchsatz- und Temperaturbereich. Dabei wird gleichzeitig der Druckverlust über den Kühler möglichst klein gehalten.The illustrated embodiments of the heat transfer unit allow use with very good cooling performance and cooler efficiencies over a wide range of throughput and temperature. At the same time, the pressure loss across the cooler is kept as small as possible.
Claims (6)
- A heat transmission unit comprising a channel (5) conducting a coolant, and a channel (4) conducting a fluid to be cooled, said two channels (4,5) being separated from each other by a wall (11) provided with ribs (12) extending therefrom into at least one of said two channels (4,5), wherein said channel (4) conducting the fluid to be cooled comprises a fluid inlet (8) and a fluid outlet (9) and the heat transmission unit (1) further comprises a wall (13) separating the fluid inlet (8) from the fluid outlet (9) and extending to a position before an end (10) of the heat transmission unit (1) opposite to the fluid inlet (8) and respectively the fluid outlet (9),
characterized in that
said channel (4) is separated by a partition wall (14;23,24;29,30) arranged in flow direction, into a first and a second partial channel (15,16) having a first partial inlet (17) for fluid and a second partial inlet (18) for fluid as well as a first partial outlet (19) for fluid and a second partial outlet (20) for fluid, at least said first partial inlet (17) for fluid being adapted to be shut off by a first shut-off means (21;27;31) so that, in the opened condition of said first shut-off means (21;27;31), the heat transmission unit (1) is conducting a U-shaped flow and, in the closed condition of said first shut-off means (21;27;31), the heat transmission unit (1) is at least partially conducting a U-shaped flow. - The heat transmission unit of claim 1, wherein the heat transmission unit (1) is provided with two shut-off means (27,28;31,32) arranged internally thereof and wherein, in the closed condition of the first partial inlet (17) for fluid as effected by the first shut-off means (27;31), the second shut-off means (28;32) is switched in such a manner that the cooling path for the fluid in the heat transmission unit (1) is lengthened.
- The heat transmission unit of claim 2, wherein the heat transmission unit (1) comprises two partition walls (23,24;29,30) cooperating with the shut-off means (27,28;31,32) in such a manner that the whole channel (4) is in its flow-conducting state in both switch positions of the shut-off means (27,28;31,32), the cooling path being lengthened and the cross section being narrowed.
- The heat transmission unit of claim 3, wherein the cooling path is lengthened substantially to the same extent to which the flow-conducting cross section is reduced.
- The heat transmission unit of claim 3 or 4, wherein the first partition wall (23) extends, in the main flow direction and between the first and second partial inlets (17,18) for fluid, from the fluid inlet (8) into the heat transmission unit (1) to a position before the end (10) opposite to the fluid inlet (8), and the second partition wall (24) extends, in the main flow direction and between the first and second partial outlets (19,20) for fluid, from the fluid outlet (9) into the heat transmission unit (1) to a position before the end (10) opposite to the fluid outlet (9), wherein the first and second shut-off means (27,28) are formed as flaps and the flaps (27,28) are arranged on the opposite ends of the heat transmission unit (1) respectively between the first and second partition walls (23,24), the flaps (27,28) being arranged vertically relative to each other in both switch directions.
- The heat transmission unit of claim 3 or 4, wherein the first partition wall (29) extends, in the main flow direction and between the first and second partial inlets (17,18) for fluid, along a U-shaped path from the fluid inlet (8) to a position before the second partial outlet (20) for fluid, and the second partition wall (30) extends, in the main flow direction, along a U-shaped path from the fluid outlet (9) between the first and second partial outlets (19,20) for fluid, all the way to a position before the first partial inlet (17) for fluid, wherein the first and second shut-off means (31,32) are formed as flaps, the first flap (31) being adapted to close the first partial inlet (17) for fluid and the second flap (32) being adapted to close the second partial outlet (20) for fluid, and the processes of opening and closing the flaps (31,32) being performed in parallel to each other.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006012219.4A DE102006012219B4 (en) | 2006-03-16 | 2006-03-16 | Heat transfer unit with a closable fluid part inlet |
PCT/EP2007/050720 WO2007104595A1 (en) | 2006-03-16 | 2007-01-25 | Heat transfer unit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1994349A1 EP1994349A1 (en) | 2008-11-26 |
EP1994349B1 true EP1994349B1 (en) | 2011-10-26 |
Family
ID=37944189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07712105A Not-in-force EP1994349B1 (en) | 2006-03-16 | 2007-01-25 | Heat transfer unit |
Country Status (7)
Country | Link |
---|---|
US (1) | US8403031B2 (en) |
EP (1) | EP1994349B1 (en) |
JP (1) | JP5039065B2 (en) |
AT (1) | ATE530868T1 (en) |
DE (1) | DE102006012219B4 (en) |
ES (1) | ES2373064T3 (en) |
WO (1) | WO2007104595A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0863646A (en) * | 1994-08-26 | 1996-03-08 | Fuji Electric Co Ltd | Display device for automatic vending machine |
DE102008024569A1 (en) | 2008-05-21 | 2009-12-10 | Benteler Automobiltechnik Gmbh | exhaust gas cooler |
DE102008033823B4 (en) | 2008-07-19 | 2013-03-07 | Pierburg Gmbh | Exhaust gas recirculation device for an internal combustion engine |
JP5191877B2 (en) * | 2008-12-24 | 2013-05-08 | 株式会社テクノフロンティア | Total heat exchanger |
FR2946132B1 (en) * | 2009-06-02 | 2014-04-04 | Valeo Systemes Thermiques | THERMAL EXCHANGE UNIT AND CORRESPONDING HEAT EXCHANGER, METHOD OF MAKING A THERMAL EXCHANGE UNIT. |
DE102009035723B3 (en) * | 2009-07-31 | 2011-02-03 | Pierburg Gmbh | Cooling device for an internal combustion engine |
JP5559088B2 (en) * | 2010-05-18 | 2014-07-23 | 株式会社ワイ・ジェー・エス. | Heat exchanger |
DE102011001462A1 (en) | 2011-03-22 | 2012-09-27 | Pierburg Gmbh | Heat exchanger used for internal combustion engine of motor vehicle, has U-shaped partition plate that is clamped between ribs of housing portion, so that inlet from which fluid flows into sub-channels of coolant channel is closed |
DE102011085194B3 (en) * | 2011-09-08 | 2013-03-07 | Cooper-Standard Automotive (Deutschland) Gmbh | Exhaust gas cooler for an exhaust gas recirculation system and an exhaust gas recirculation system with such an exhaust gas cooler |
JP2016130625A (en) * | 2015-01-08 | 2016-07-21 | 大日本印刷株式会社 | Heat exchanger and metal thin plate for the same |
AU2018267568A1 (en) * | 2017-11-22 | 2019-09-12 | Transportation Ip Holdings, Llc | Thermal management system and method |
DE102021116217A1 (en) | 2021-06-23 | 2022-03-24 | Audi Aktiengesellschaft | Exhaust gas cooler for cooling exhaust gas from an internal combustion engine and a drive device with an internal combustion engine and a method for operating a drive device |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2261579A (en) * | 1938-12-05 | 1941-11-04 | Noblitt Sparks Ind Inc | Automobile heater |
DE941033C (en) * | 1951-12-01 | 1956-03-29 | Austin Motor Co Ltd | Internal combustion turbine system |
JPS5027653B1 (en) * | 1970-08-13 | 1975-09-09 | ||
US3990504A (en) * | 1975-09-29 | 1976-11-09 | International Harvester Company | Two stage operation for radiator |
US4217953A (en) * | 1976-03-09 | 1980-08-19 | Nihon Radiator Co. Ltd. (Nihon Rajiecta Kabushiki Kaisha) | Parallel flow type evaporator |
DE2941721A1 (en) * | 1979-10-15 | 1981-04-23 | Rolf 8502 Zirndorf Helms | Cross-flow heat exchanger - has chambers with shutters deflecting fresh air to=and=fro several times |
US4415024A (en) | 1980-11-05 | 1983-11-15 | Joy Manufacturing Company | Heat exchanger assembly |
DE3103198A1 (en) * | 1981-01-30 | 1982-08-26 | Oskar Dr.-Ing. 8031 Stockdorf Schatz | Heat exchanger for operating with exhaust gases from reciprocating engines, in particular for heating motor vehicles |
JPS5835397A (en) * | 1981-08-27 | 1983-03-02 | Sakushiyon Gas Kikan Seisakusho:Kk | Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger |
JPS58137280U (en) * | 1982-03-08 | 1983-09-14 | 住友金属工業株式会社 | heat exchange equipment |
JPS6050225A (en) | 1983-08-27 | 1985-03-19 | Hino Motors Ltd | Turbosupercharged engine with intercooler |
JPS61101294U (en) * | 1985-02-27 | 1986-06-27 | ||
DE3508240A1 (en) * | 1985-03-08 | 1986-09-11 | Klöckner-Humboldt-Deutz AG, 5000 Köln | Heat exchanger, in particular charge air cooler with optimised flow resistances for all heat-exchanging media |
US4971137A (en) | 1989-11-09 | 1990-11-20 | American Energy Exchange, Inc. | Air-to-air heat exchanger with frost preventing means |
JP2930486B2 (en) * | 1992-10-09 | 1999-08-03 | 三菱重工業株式会社 | Stacked heat exchanger |
KR0143540B1 (en) * | 1992-08-27 | 1998-08-01 | 코오노 미찌아끼 | Stacked heat exchanger and method of manufacturing the same |
DE9405062U1 (en) * | 1994-03-24 | 1994-05-26 | Hoval Interliz Ag, Vaduz-Neugut | Heat exchanger tube for boilers |
US5732688A (en) * | 1996-12-11 | 1998-03-31 | Cummins Engine Company, Inc. | System for controlling recirculated exhaust gas temperature in an internal combustion engine |
DE10247264A1 (en) * | 2002-10-10 | 2004-04-29 | Behr Gmbh & Co. | Plate heat exchanger in stack construction |
DE102004019554C5 (en) | 2004-04-22 | 2014-03-27 | Pierburg Gmbh | Exhaust gas recirculation system for an internal combustion engine |
DE102004025187B3 (en) | 2004-05-21 | 2005-11-03 | Pierburg Gmbh | Cooling system for induction manifold of internal combustion engine has tube with fins inside manifold carrying cooling fluid controlled by bimetallic spring valve |
EP1626238B1 (en) * | 2004-08-14 | 2006-12-20 | Modine Manufacturing Company | Heat exchanger having flat tubes |
-
2006
- 2006-03-16 DE DE102006012219.4A patent/DE102006012219B4/en active Active
-
2007
- 2007-01-25 AT AT07712105T patent/ATE530868T1/en active
- 2007-01-25 ES ES07712105T patent/ES2373064T3/en active Active
- 2007-01-25 JP JP2008558739A patent/JP5039065B2/en not_active Expired - Fee Related
- 2007-01-25 WO PCT/EP2007/050720 patent/WO2007104595A1/en active Application Filing
- 2007-01-25 EP EP07712105A patent/EP1994349B1/en not_active Not-in-force
- 2007-01-25 US US12/293,156 patent/US8403031B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2007104595A1 (en) | 2007-09-20 |
DE102006012219A1 (en) | 2007-09-27 |
ES2373064T3 (en) | 2012-01-31 |
JP5039065B2 (en) | 2012-10-03 |
JP2009529650A (en) | 2009-08-20 |
US20090183861A1 (en) | 2009-07-23 |
US8403031B2 (en) | 2013-03-26 |
EP1994349A1 (en) | 2008-11-26 |
ATE530868T1 (en) | 2011-11-15 |
DE102006012219B4 (en) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1994349B1 (en) | Heat transfer unit | |
EP1999423B1 (en) | Exhaust gas cooler for a motor vehicle | |
DE102008036222B3 (en) | Heat transfer unit for an internal combustion engine | |
EP1996888B1 (en) | Heat exchanger for a motor vehicle | |
EP3169964B1 (en) | Heat exchanger | |
DE102012006346B4 (en) | heat exchangers | |
EP2025911B1 (en) | Exhaust gas cooling device for a combustion engine | |
EP1132609A2 (en) | Heat exchanger in an EGR arrangement | |
WO2008006604A1 (en) | Device for cooling a gas flow of an internal combustion engine | |
EP1857761A2 (en) | Heat exchange device for combustion engines | |
EP2863157B1 (en) | Heat exchanger | |
DE69416037T2 (en) | Heat exchanger | |
WO2008028658A1 (en) | Heat exchanger | |
WO2012126654A1 (en) | Exhaust-gas recirculation module for an internal combustion engine | |
DE102008033823B4 (en) | Exhaust gas recirculation device for an internal combustion engine | |
DE102005006055A1 (en) | Heat exchanger for exhaust gas of water-cooled combustion engine has part of inner heat jacket formed so that second volume is composed of at least two pockets | |
DE2306426A1 (en) | HEAT EXCHANGER | |
DE10144827A1 (en) | Exhaust gas heat exchanger | |
EP3066407B1 (en) | Heat exchanger | |
DE102007041338B3 (en) | Heat transfer unit for an internal combustion engine | |
DE102011001432B4 (en) | Control valve for secondary air | |
EP3161402B1 (en) | Heat exchanger | |
DE102008040293B4 (en) | Exhaust system for an internal combustion engine | |
DE102012111928A1 (en) | Heat exchanger for an internal combustion engine | |
DE102017130094B4 (en) | Exhaust gas heat exchanger and method for operating the exhaust gas heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080811 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: THOENNESSEN, DIETER Inventor name: HEUER, PETER Inventor name: JELINEK, DIETER Inventor name: KUEHNEL, HANS-ULRICH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007008520 Country of ref document: DE Effective date: 20120119 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2373064 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120131 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20111026 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120226 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120127 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120227 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120126 Year of fee payment: 6 |
|
BERE | Be: lapsed |
Owner name: PIERBURG G.M.B.H. Effective date: 20120131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007008520 Country of ref document: DE Effective date: 20120727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 530868 Country of ref document: AT Kind code of ref document: T Effective date: 20120125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20130122 Year of fee payment: 7 Ref country code: GB Payment date: 20130122 Year of fee payment: 7 Ref country code: FR Payment date: 20130207 Year of fee payment: 7 Ref country code: SE Payment date: 20130122 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120125 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070125 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140125 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140126 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140125 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160119 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140125 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007008520 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170801 |