EP1872116B1 - Method using an electrochemical sensor and electrodes forming said sensor - Google Patents
Method using an electrochemical sensor and electrodes forming said sensor Download PDFInfo
- Publication number
- EP1872116B1 EP1872116B1 EP06743351A EP06743351A EP1872116B1 EP 1872116 B1 EP1872116 B1 EP 1872116B1 EP 06743351 A EP06743351 A EP 06743351A EP 06743351 A EP06743351 A EP 06743351A EP 1872116 B1 EP1872116 B1 EP 1872116B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- self
- current
- working
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/4163—Systems checking the operation of, or calibrating, the measuring apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
Definitions
- the present invention relates to electrochemical sensors for measuring the concentration of a chemical substance in an aqueous medium.
- Such devices find a particularly interesting, but not exclusive, application to the detection of the amount of oxygen dissolved in water, particularly in the basins of the treatment plants.
- the invention relates to a method of self-cleaning an electrochemical sensor.
- Electrochemical sensors of the type mentioned above necessarily include a working electrode, a reference electrode and a counter-electrode.
- Another type of such sensors is also known which further comprises an electrode, called generator, and its counter-electrode.
- generator an electrode
- counter-electrode an electrode that is to create changes in the concentration of species present in solution
- the pH of the solution can be modified locally by applying a current to the generator electrode.
- Cathodic current will lead to the production of OH- ions (the pH will then become more basic) and, conversely, an anode current will lead to the production of H + ions (the pH then becomes more acidic).
- a counter-electrode associated with the generating electrode, a counter-electrode associated with the working electrode and a reference electrode are necessary for producing a complete sensor.
- Electrodes of very small dimensions, not only because this makes it possible to reduce the space between the generating electrode and the working electrode, but also because the effects of fluid turbulence at the cell level are minimized.
- Such small electrodes are called indifferently, in the remainder of the description, "micro-electrodes” or “micro-disks”, the latter name being due to the fact that the microelectrodes are most often circular.
- the document WO 02/095387 discloses a sensor as mentioned above and shown in FIG. figure 1 . It uses an electrically conductive substrate 10, advantageously made of doped silicon and whose lower face is covered with a metallization layer 11. Its upper face is covered with a passivation layer 12 formed of a stack of two sub-layers of SiO 2 and Si 3 N 4 , known to have excellent stability in aqueous medium.
- the passivation layer 12 is provided with circular openings 13. Its upper face and the openings 13 are covered with a conducting layer 14 bearing the reference 16 when it is on the layer 12 and the reference 18 when it forms a micro -disque resting in one of the circular openings 13.
- the layer 14 is pierced with a network of annular openings 19 each surrounding one of the micro-discs 18.
- the layer 16 forms the generating electrode while all the micro-discs 18, electrically connected in parallel to each other, together constitute the working electrode of the system.
- Electrochemical sensors find an interesting application in the measurement of the concentration of dissolved oxygen in the treatment plant basins.
- the wastewater is treated with bacteria that are very sensitive to this dissolved oxygen concentration.
- the information provided by the sensors makes it possible to regulate a system of aeration of the basin so that the conditions are favorable to the bacteria.
- the sensors on the market do not give satisfactory results, in particular because of various contaminations and organic matter which is deposited on the electrode, thus modifying its sensitivity.
- conventional sensors it is generally used to combat contamination, mechanical methods such as forced air, pressurized water jet, abrasion; methods that all have a lot of disadvantages.
- One of the aims of the present invention is therefore to solve the aforementioned problem by proposing a sensor whose accuracy is not dependent on the phenomena of contamination.
- the invention relates to a method for self-cleaning a working electrode of an electrochemical sensor comprising, on the one hand, a working electrode of the micro-disk type and its counter-electrode, and a reference electrode connected to a potentiostat, and, secondly, a boron-doped diamond generating electrode and its counter-electrode connected to a current source. All of these electrodes are, in addition, connected to a control and measurement electronics.
- the self-cleaning process may precede a method of measuring at least one species dissolved in an aqueous medium.
- Working and reference electrodes are disconnected from their power supply during the self-cleaning step.
- a negative voltage refers to a cathode potential and a positive voltage refers to an anode potential.
- the Figures 2 and 3 represent a chip 21. It has an electrically conductive substrate 20 which is in the form of a plate, for example square, typically 2 to 10 mm side and 0.5 mm thick. This plate is advantageously made of silicon made conductive by doping according to techniques well known to those skilled in the art. It is placed on a support 35, made of insulating polymer.
- the substrate 20 is pierced on its upper face with a regular network of substantially cylindrical cavities 22, with an axis perpendicular to the plane of the substrate.
- these cavities have a diameter of 2 to 20 microns, a depth of 2 to 20 microns and are spaced from each other by about 40 to 400 microns.
- each cavity 22 is partially covered by a metallization 23 which has a diameter 0.5 to 5 ⁇ m smaller than that of the cavity 22.
- the set of metallizations 23 constitutes the working electrode of the system.
- a metal deposit can be made on the metallizations 23 by galvanic growth.
- the upper face of the substrate 20 is covered with an insulating layer 25, called passivation, which is formed, for example, of a stack of two sublayers of SiO 2 and Si 3 N 4 and has a thickness of about 0.1 to 1 ⁇ m.
- This layer is pierced with a regular network of circular through openings 27 centered on the cavities 22, of smaller diameter than the cavities.
- a generating electrode 30, which may be made of diamond, arranged around the measurement electrodes according to the teaching of the document WO 02/095387 and demand EP 04 405039.1 .
- the electrode 30 is formed of a thin layer of diamond made conductive by doping, which is pierced with circular openings 26 of diameter greater than that of the cavities 22 and arranged so that each opening 26 is concentric to a micro-electrode.
- the diamond used to form the electrode is doped with boron.
- the working and generating electrodes may be made according to the structure represented on the figure 1 .
- the electrode 30 When the electrode 30 is energized, it makes it possible to generate strongly oxidizing species such as hydroxyl radicals. As explained in the introduction, these may have a detrimental effect on polymer coatings 34, for example silicone, generally deposited on the electrical contacts of the generating electrode, more precisely at the interface between the coating 34 and the diamond layer 30 in contact with the medium.
- strongly oxidizing species such as hydroxyl radicals.
- these may have a detrimental effect on polymer coatings 34, for example silicone, generally deposited on the electrical contacts of the generating electrode, more precisely at the interface between the coating 34 and the diamond layer 30 in contact with the medium.
- a protective layer 31 is deposited on the diamond generating electrode 30 prior to the coating 34, so that there is no longer a direct interface between the coating 34 and the diamond layer 30.
- protective layer is made of a material inorganic electrically insulating, such as SiO 2 or Si 3 N 4 , which, moreover, have excellent stability in aqueous medium.
- the layer 31 has a thickness of between 0.1 and 0.5 ⁇ m. It is deposited and shaped according to the techniques known to those skilled in the art.
- the protective layer 31 is located at the periphery of the electrode 30 and forms a frame so as to cover the elements to be protected. It comprises openings 32 necessary for the electrical connection with the generating electrode 30.
- a metal contact frame not shown, can be deposited, by evaporation, on the protective layer 31 which is provided with several openings 32.
- the contact frame can also be made separately and then bonded to the electrode 30, at the openings 32, by a conductive adhesive.
- the polymer coating 34 is then deposited on the electrical contacts and, if there is one, on the contact frame. As can be seen on the figure 3 the coating overflows over the protective layer 31 and also covers the lateral surfaces of the chip 21.
- the chip 21 described above therefore comprises a working electrode (set of metallizations 23) and a generating electrode 30. It is integrated in a measuring head 38 shown, in section, at the figure 4 .
- the measuring head 38 further comprises a counter-electrode for the working electrode 40 and a reference electrode 42.
- the head 38 is made of a non-metallic material of the non-conductive polymer type.
- the head 38 may also include a counter-electrode for the generating electrode, but it will be understood hereinafter why it does not appear in the embodiment described.
- the areas of the electrodes intended to be in contact with the medium to be analyzed are flush with the surface of the measuring head 38 and are located at a short distance from one another.
- Connector elements 44 pass through the measuring head to connect the electrodes to the electronics 46 control, measurement and interface with the outside (display, recording, etc.).
- the generator electrode and its counter-electrode are connected to a current source, while the working electrode and its counterelectrode, on the one hand, and the reference electrode, on the other hand, are connected to a potentiostat which makes it possible to impose a voltage between the electrodes and thus to measure, at a determined voltage, the current flowing between the working electrode and its counter-electrode.
- the counter-electrode of the working electrode 40 is advantageously made of a conductive and chemically stable material, such as stainless steel, gold or platinum. Its surface is typically 100 times greater than that of the micro-disks of the working electrode 23.
- the reference electrode 42 is chosen according to the intended application. For a measurement of the oxygen concentration in an aqueous medium, an Ag / AgCl electrode is generally preferred.
- a layer of polymer material 34 is deposited on the edges of the electrode substrates.
- the measuring head 38 is sealingly mounted at the end of a probe body 48, generally tubular in shape, visible on the figure 5 .
- the head 38 is provided with positioning holes 50 which cooperate with lugs arranged in the body 48. It is thus very easy, in case of need, to replace the measuring head 38.
- the measurement head is then fixed to the body of the probe by means of a ring 49, which is screwed on the body of the probe. the probe so as to seal the assembly.
- the probe body 48 is made of a metallic material, such as stainless steel, and serves as a counter electrode for the generator electrode.
- the body 48 serves as a counter electrode for the generator electrode and / or the working electrode.
- the body 48 may also comprise a non-metallic part and a metal part, the latter being used as a counter-electrode.
- the end of the probe body 48 which receives the measuring head 38 is inclined at an angle between 0 and 90 °, preferably between 30 and 60 °, preferably of the order of 45 °, relative to the rest of the 48.
- the latter being immersed vertically in the liquid to be analyzed, the angle that has its end improves the hydrodynamic conditions around the measuring head 38, particularly when the medium is agitated.
- the amperometric measurement of the dissolved oxygen concentration in an aqueous medium is performed by applying an adequate reduction potential between the working electrode and the reference electrode. A reduction current is then created proportional to the concentration of dissolved oxygen in the liquid circulating between the working electrode and its counter-electrode. The current can then be measured in the working electrode, this current being representative of the oxygen concentration of the medium.
- a self-calibration procedure (not claimed), an example of which will be given below, makes it possible to effectively compensate the drifts due to loss of sensitivity of the working electrode.
- This in situ procedure is based on a change in the local concentration of dissolved oxygen, obtained by means of variations of the polarization of the generating electrode which lead to the electrolysis of the water according to the reaction: 2H 2 O ⁇ O 2 + 4H + + 4th -
- This reaction locally changes the concentration of dissolved oxygen precisely and independently of the oxygen content of the surrounding environment. Indeed, the density and duration of application of the current received by the generating electrode can control the production of oxygen.
- the difference between the response of the working electrode before and after the oxygen production by the generating electrode makes it possible to deduce a calibration factor.
- the latter represents the sensitivity of the sensor and provides, for a given sensor, a coefficient of proportionality between the oxygen concentration of the medium to be analyzed and the actual current measured between the working electrode and its counter-electrode.
- the time during which the dissolved oxygen concentration is locally increased depends on the stirring conditions of the medium.
- the electric field generated by the generating electrode can disturb the behavior of the reference electrode during the self-calibration if, during this procedure, the measurement is done simultaneously with the operation of the generator electrode.
- the self-calibration measurement is performed just after stopping the supply of the generator electrode, on a point or by averaging the values obtained over a certain range, as will be seen below. .
- a measurement can be made during the application of a current to the generator electrode.
- Self-cleaning is achieved by the conjunction of several effects caused by the application to the diamond electrode of currents of different polarity and density.
- an anode current causes H + ion production, which acidifies the aqueous medium close to the electrode.
- scale deposits calcium carbonate, magnesium oxides
- this type of current applied to a boron-doped diamond electrode results in the production of highly active species, such as hydroxyl radicals, which degrade organic deposits such as bio-films, and possess a biocidal activity.
- the self-cleaning step is applied at defined intervals, so that the oxygen produced during the application of an anode current does not disturb the subsequent measurements.
- control electronics 46 are perfectly accessible to those skilled in the art and are therefore not described here in detail.
- Such a measurement procedure is repeated at a frequency typically of 0.5 to 5 times per minute according to the values of the parameters defined above, more particularly of 2 measurements per minute.
- Such a self-calibration procedure is repeated at a frequency of 0.1 to 48 times per day, typically 1 time per day.
- Such a self-cleaning procedure is repeated at a frequency of 10 to 200 times a day, typically 100 times a day.
- an electrochemical sensor can allow self-cleaning, by preventing the oxidizing species from attacking the constituent elements of the sensor.
- the present invention is not limited to an electrochemical sensor measuring the concentration of dissolved oxygen in a medium. Indeed, it is possible to correlate the currents measured for different species analyzed other than oxygen, for example, chlorine or ozone.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
La présente invention se rapporte aux capteurs électrochimiques destinés à mesurer la concentration d'une substance chimique dans un milieu aqueux. De tels dispositifs trouvent une application particulièrement intéressante, mais non exclusive, à la détection de la quantité d'oxygène dissous dans de l'eau, particulièrement dans les bassins des stations d'épuration.The present invention relates to electrochemical sensors for measuring the concentration of a chemical substance in an aqueous medium. Such devices find a particularly interesting, but not exclusive, application to the detection of the amount of oxygen dissolved in water, particularly in the basins of the treatment plants.
L'invention concerne, plus particulièrement, un procédé d'auto-nettoyage d'un capteur électrochimique.More particularly, the invention relates to a method of self-cleaning an electrochemical sensor.
Les capteurs électrochimiques du type mentionné ci-dessus comportent nécessairement une électrode de travail, une électrode de référence et une contre-électrode. On connaît également un autre type de tels capteurs qui comportent, en outre, une électrode, dite génératrice, et sa contre-électrode. L'ajout de ces deux dernières électrodes, dont l'effet est de créer des modifications de concentration d'espèces présentes en solution, permet de contrôler localement l'environnement de l'électrode de travail.Electrochemical sensors of the type mentioned above necessarily include a working electrode, a reference electrode and a counter-electrode. Another type of such sensors is also known which further comprises an electrode, called generator, and its counter-electrode. The addition of these last two electrodes, whose effect is to create changes in the concentration of species present in solution, makes it possible to locally control the environment of the working electrode.
Par exemple, le pH de la solution peut être modifié localement par l'application d'un courant à l'électrode génératrice. Un courant cathodique entraînera la production d'ions OH- (le pH devenant alors plus basique) et, inversement, un courant anodique entraînera la production de ions H+ (le pH devenant alors plus acide). Une contre-électrode associée à l'électrode génératrice, une contre-électrode associée à l'électrode de travail et une électrode de référence sont nécessaires à la réalisation d'un capteur complet.For example, the pH of the solution can be modified locally by applying a current to the generator electrode. Cathodic current will lead to the production of OH- ions (the pH will then become more basic) and, conversely, an anode current will lead to the production of H + ions (the pH then becomes more acidic). A counter-electrode associated with the generating electrode, a counter-electrode associated with the working electrode and a reference electrode are necessary for producing a complete sensor.
On comprendra aisément qu'il est particulièrement avantageux d'utiliser, comme électrode de travail, des électrodes de très petites dimensions, non seulement parce que cela permet de réduire l'espace entre l'électrode génératrice et l'électrode de travail, mais aussi parce que les effets de la turbulence du liquide au niveau de la cellule s'en trouvent minimisés. De telles électrodes de petites dimensions sont appelées indifféremment, dans la suite de la description, "micro-électrodes" ou "micro-disques", cette dernière appellation étant due au fait que les micro-électrodes sont le plus souvent de forme circulaire.It will be readily understood that it is particularly advantageous to use, as a working electrode, electrodes of very small dimensions, not only because this makes it possible to reduce the space between the generating electrode and the working electrode, but also because the effects of fluid turbulence at the cell level are minimized. Such small electrodes are called indifferently, in the remainder of the description, "micro-electrodes" or "micro-disks", the latter name being due to the fact that the microelectrodes are most often circular.
Le document
La couche de passivation 12 est dotée d'ouvertures circulaires 13. Sa face supérieure et les ouvertures 13 sont recouvertes d'une couche conductrice 14 portant la référence 16 lorsqu'elle est sur la couche 12 et la référence 18 lorsqu'elle forme un micro-disque reposant dans l'une des ouvertures circulaires 13. La couche 14 est percée d'un réseau d'ouvertures annulaires 19 entourant chacune l'un des micro-disques 18.The
La couche 16 forme l'électrode génératrice tandis que tous les micro-disques 18, électriquement connectés en parallèle les uns aux autres, constituent, ensemble, l'électrode de travail du système.The
Les capteurs électrochimiques trouvent une application intéressante dans la mesure de la concentration en oxygène dissous dans les bassins de station d'épuration. En effet, les eaux usées sont traitées au moyen de bactéries qui sont très sensibles à cette concentration en oxygène dissous. L'information fournie par les capteurs permet de réguler un système d'aération du bassin pour que les conditions soient favorables aux bactéries. Cependant, les capteurs présents sur le marché ne donnent pas des résultats satisfaisants, notamment à cause de diverses contaminations et des matières organiques qui se déposent sur l'électrode, modifiant ainsi sa sensibilité. Avec les capteurs classiques, on a généralement recours, pour combattre la contamination, à des méthodes mécaniques du type air pulsé, jet d'eau sous pression, abrasion; méthodes qui présentent toutes beaucoup d'inconvénients.Electrochemical sensors find an interesting application in the measurement of the concentration of dissolved oxygen in the treatment plant basins. In fact, the wastewater is treated with bacteria that are very sensitive to this dissolved oxygen concentration. The information provided by the sensors makes it possible to regulate a system of aeration of the basin so that the conditions are favorable to the bacteria. However, the sensors on the market do not give satisfactory results, in particular because of various contaminations and organic matter which is deposited on the electrode, thus modifying its sensitivity. With conventional sensors, it is generally used to combat contamination, mechanical methods such as forced air, pressurized water jet, abrasion; methods that all have a lot of disadvantages.
Afin d'éliminer la contamination de la surface du capteur, la demande déposée sous le numéro
Cependant, l'effet obtenu par ces espèces oxydantes ne permet pas d'empêcher totalement toute contamination. Avec le temps, le capteur est progressivement affecté, ce qui détériore la précision de la mesure.However, the effect obtained by these oxidizing species does not completely prevent any contamination. Over time, the sensor is progressively affected, which deteriorates the accuracy of the measurement.
L'un des buts de la présente invention est donc de résoudre le problème susmentionné, en proposant un capteur dont la précision n'est pas tributaire des phénomènes de contamination.One of the aims of the present invention is therefore to solve the aforementioned problem by proposing a sensor whose accuracy is not dependent on the phenomena of contamination.
De façon plus précise, l'invention concerne un procédé d'auto-nettoyage d'une électrode de travail d'un capteur électrochimique comportant, d'une part, une électrode de travail de type micro-disques et sa contre-électrode, et une électrode de référence reliées à un potentiostat, et, d'autre part, une électrode génératrice en diamant dopé au bore et sa contre-électrode reliées à une source de courant. L'ensemble de ces électrodes est, en outre, connecté à une électronique de contrôle et de mesure.More specifically, the invention relates to a method for self-cleaning a working electrode of an electrochemical sensor comprising, on the one hand, a working electrode of the micro-disk type and its counter-electrode, and a reference electrode connected to a potentiostat, and, secondly, a boron-doped diamond generating electrode and its counter-electrode connected to a current source. All of these electrodes are, in addition, connected to a control and measurement electronics.
Avantageusement, le procédé comprend les étapes suivantes :
- application d'un courant anodique à l'électrode génératrice, et
- application d'un courant cathodique à l'électrode génératrice.
- applying an anode current to the generator electrode, and
- application of a cathode current to the generator electrode.
Le procédé d'auto-nettoyage peut précéder un procédé de mesure d'au moins une espèce dissoute dans un milieu aqueux. Dans ce cas, les électrodes de travail et de référence sont déconnectées de leur alimentation pendant l'étape d'auto-nettoyage.The self-cleaning process may precede a method of measuring at least one species dissolved in an aqueous medium. In this case, Working and reference electrodes are disconnected from their power supply during the self-cleaning step.
D'autres détails de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite en référence au dessin annexé dans lequel :
- les
figures 2 et 3 sont, respectivement, des vues de dessus et en coupe d'un système d'électrodes selon l'invention, - les
figures 4 et 5 illustrent la mise en ceuvre du système d'électrodes dans un dispositif de mesure selon l'invention, et - la
figure 6 représente l'évolution de la concentration en oxygène dissous en fonction du temps lors de la production d'oxygène par l'électrode génératrice, pour différentes conditions hydrodynamiques.
- the
Figures 2 and 3 are, respectively, top views and sectional views of an electrode system according to the invention, - the
Figures 4 and 5 illustrate the implementation of the electrode system in a measuring device according to the invention, and - the
figure 6 represents the evolution of the concentration of dissolved oxygen as a function of time during the oxygen production by the generating electrode, for different hydrodynamic conditions.
Dans la description ci-dessous, une tension négative se réfère à un potentiel cathodique et une tension positive se réfère à un potentiel anodique.In the description below, a negative voltage refers to a cathode potential and a positive voltage refers to an anode potential.
Les
Le substrat 20 est percé, sur sa face supérieure, d'un réseau régulier de cavités sensiblement cylindriques 22, d'axe perpendiculaire au plan du substrat. Typiquement, ces cavités ont un diamètre de 2 à 20 µm, une profondeur de 2 à 20 µm et sont espacées les unes des autres d'environ 40 à 400 µm.The
Le fond de chaque cavité 22 est partiellement recouvert d'une métallisation 23 qui présente un diamètre inférieur de 0.5 à 5 µm à celui de la cavité 22. L'ensemble des métallisations 23 constitue l'électrode de travail du système. Avantageusement, un dépôt métallique peut être réalisé sur les métallisations 23 par croissance galvanique.The bottom of each
La face supérieure du substrat 20 est recouverte d'une couche isolante 25, dite de passivation, qui est formée, par exemple, d'un empilement de deux sous-couches de SiO2 et Si3N4 et a une épaisseur d'environ 0.1 à 1 µm. Cette couche est percée d'un réseau régulier d'ouvertures traversantes circulaires 27 centrées sur les cavités 22, de diamètre inférieur à celui des cavités.The upper face of the
La structure qui vient d'être décrite est complétée par une électrode génératrice 30, qui peut être en diamant, disposée autour des électrodes de mesure selon l'enseignement du document
Plus particulièrement, l'électrode 30 est formée d'une mince couche de diamant rendu conducteur par dopage, qui est percée d'ouvertures circulaires 26 de diamètre supérieur à celui des cavités 22 et disposée de manière à ce que chaque ouverture 26 soit concentrique à une micro-électrode. Avantageusement, le diamant utilisé pour former l'électrode est dopé au bore.More particularly, the
En variante, les électrodes de travail et génératrice peuvent être réalisées selon la structure représentée sur la
Lorsque l'électrode 30 est mise sous tension, elle permet de générer des espèces fortement oxydantes telles que des radicaux hydroxyles. Comme expliqué dans l'introduction, ceux-ci peuvent avoir une action néfaste sur des revêtements en polymère 34, par exemple en silicone, généralement déposés sur les contacts électriques de l'électrode génératrice, plus précisément à l'interface entre le revêtement 34 et la couche de diamant 30 au contact du milieu.When the
Pour éviter ces effets, une couche de protection 31 est déposée sur l'électrode génératrice en diamant 30 préalablement au revêtement 34, de sorte qu'il n'existe plus d'interface directe entre le revêtement 34 et la couche de diamant 30. Cette couche de protection est réalisée en un matériau inorganique électriquement isolant, tel que du SiO2 ou du Si3N4, qui, de plus, présentent une excellente stabilité en milieu aqueux. La couche 31 a une épaisseur comprise entre 0.1 et 0.5 µm. Elle est déposée et conformée selon les techniques connues de l'homme du métier.To avoid these effects, a
Avantageusement, la couche de protection 31 est située à la périphérie de l'électrode 30 et forme un cadre de manière à recouvrir les éléments à protéger. Elle comprend des ouvertures 32 nécessaires à la connexion électrique avec l'électrode génératrice 30. Pour améliorer le contact électrique avec l'électrode 30, un cadre de contact métallique, non représenté, peut être déposé, par évaporation, sur la couche de protection 31 qui est munie de plusieurs ouvertures 32. Le cadre de contact peut aussi être réalisé séparément et ensuite collé à l'électrode 30, au niveau des ouvertures 32, par une colle conductrice.Advantageously, the
Le revêtement en polymère 34 est ensuite déposé sur les contacts électriques et, s'il y en a un, sur le cadre de contact. Comme on peut le voir sur la
La puce 21 décrite ci-dessus comprend donc une électrode de travail (ensemble des métallisations 23) et une électrode génératrice 30. Elle est intégrée dans une tête de mesure 38 représentée, en coupe, à la
Les zones des électrodes destinées à être en contact avec le milieu à analyser affleurent à la surface de la tête de mesure 38 et sont situées à faible distance les unes des autres. Des éléments de connectique 44 traversent la tête de mesure pour relier les électrodes à l'électronique 46 de contrôle, de mesure et d'interface avec l'extérieur (affichage, enregistrement, etc.).The areas of the electrodes intended to be in contact with the medium to be analyzed are flush with the surface of the measuring
En résumé, on retiendra que l'électrode génératrice et sa contre-électrode sont branchées à une source de courant, tandis que l'électrode de travail et sa contre-électrode, d'une part, et l'électrode de référence, d'autre part, sont branchées à un potentiostat qui permet d'imposer une tension entre les électrodes et, ainsi, de mesurer, à une tension déterminée, le courant circulant entre l'électrode de travail et sa contre-électrode.In summary, it will be remembered that the generator electrode and its counter-electrode are connected to a current source, while the working electrode and its counterelectrode, on the one hand, and the reference electrode, on the other hand, are connected to a potentiostat which makes it possible to impose a voltage between the electrodes and thus to measure, at a determined voltage, the current flowing between the working electrode and its counter-electrode.
La contre-électrode de l'électrode de travail 40 est avantageusement réalisée en un matériau conducteur et chimiquement stable, tel que de l'acier inox, de l'or ou du platine. Sa surface est typiquement 100 fois supérieure à celle des micro-disques de l'électrode de travail 23. L'électrode de référence 42 est choisie en fonction de l'application visée. Pour une mesure de la concentration d'oxygène dans un milieu aqueux, une électrode du type Ag/AgCl est généralement préférée.The counter-electrode of the working
Comme indiqué ci-dessus pour la puce 21, une couche en matériau polymère 34 est déposée sur les bords des substrats des électrodes.As indicated above for the
La tête de mesure 38 est montée de manière étanche à l'extrémité d'un corps de sonde 48, généralement de forme tubulaire, visible sur la
Dans une variante avantageuse illustrée, le corps de sonde 48 est réalisé en un matériau métallique, tel que de l'acier inox, et sert de contre-électrode pour l'électrode génératrice. Eventuellement, le corps 48 sert de contre-électrode pour l'électrode génératrice et/ou pour l'électrode de travail. Le corps 48 peut également comporter une partie non-métallique et une partie métallique, cette dernière étant utilisée comme contre-électrode.In an advantageous variant illustrated, the
L'extrémité du corps de sonde 48 qui reçoit la tête de mesure 38 est inclinée d'un angle compris entre 0 et 90°, préférablement compris entre 30 et 60°, préférablement de l'ordre de 45°, par rapport au reste du corps 48. Ce dernier étant plongé verticalement dans le liquide à analyser, l'angle que présente son extrémité permet d'améliorer les conditions hydrodynamiques autour de la tête de mesure 38, particulièrement lorsque le milieu est agité.The end of the
Un procédé d'utilisation du capteur électrochimique qui vient d'être décrit est expliqué ci-après, particulièrement en référence à une application à la mesure d'oxygène dissous dans un milieu aqueux.A method of using the electrochemical sensor which has just been described is explained below, particularly with reference to an application to the measurement of dissolved oxygen in an aqueous medium.
La mesure ampérométrique de la concentration en oxygène dissous dans un milieu aqueux est réalisée en appliquant un potentiel de réduction adéquat entre l'électrode de travail et l'électrode de référence. Il se créé alors un courant de réduction proportionnel à la concentration d'oxygène dissous dans le liquide circulant entre l'électrode de travail et sa contre-électrode. On peut alors mesurer le courant dans l'électrode de travail, ce courant étant représentatif de la concentration en oxygène du milieu.The amperometric measurement of the dissolved oxygen concentration in an aqueous medium is performed by applying an adequate reduction potential between the working electrode and the reference electrode. A reduction current is then created proportional to the concentration of dissolved oxygen in the liquid circulating between the working electrode and its counter-electrode. The current can then be measured in the working electrode, this current being representative of the oxygen concentration of the medium.
Une procédure d'auto-calibration, (non revendiquée) dont un exemple sera donné ci-dessous, permet de compenser efficacement les dérives dues à des pertes de sensibilité de l'électrode de travail. Cette procédure in situ est basée sur un changement de la concentration locale en oxygène dissous, obtenu au moyen de variations adaptées de la polarisation de l'électrode génératrice qui entraînent l'électrolyse de l'eau selon la réaction :
2H2O → O2 + 4H+ + 4e-
A self-calibration procedure (not claimed), an example of which will be given below, makes it possible to effectively compensate the drifts due to loss of sensitivity of the working electrode. This in situ procedure is based on a change in the local concentration of dissolved oxygen, obtained by means of variations of the polarization of the generating electrode which lead to the electrolysis of the water according to the reaction:
2H 2 O → O 2 + 4H + + 4th -
Cette réaction modifie localement la concentration en oxygène dissous de manière précise et indépendante de la teneur en oxygène du milieu environnant. En effet, la densité et la durée d'application du courant reçu par l'électrode génératrice permettent de contrôler la production d'oxygène.This reaction locally changes the concentration of dissolved oxygen precisely and independently of the oxygen content of the surrounding environment. Indeed, the density and duration of application of the current received by the generating electrode can control the production of oxygen.
La différence entre la réponse de l'électrode de travail avant et après la production d'oxygène par l'électrode génératrice permet de déduire un facteur de calibration. Ce dernier représente la sensibilité du capteur et fournit, pour un capteur donné, un coefficient de proportionnalité entre la concentration en oxygène du milieu à analyser et le courant effectivement mesuré entre l'électrode de travail et sa contre-électrode.The difference between the response of the working electrode before and after the oxygen production by the generating electrode makes it possible to deduce a calibration factor. The latter represents the sensitivity of the sensor and provides, for a given sensor, a coefficient of proportionality between the oxygen concentration of the medium to be analyzed and the actual current measured between the working electrode and its counter-electrode.
De manière générale, le temps pendant lequel la concentration en oxygène dissous est localement augmentée dépend des conditions d'agitation du milieu.In general, the time during which the dissolved oxygen concentration is locally increased depends on the stirring conditions of the medium.
Comme le montre la
Dans un milieu de faible conductivité, le champ électrique engendré par l'électrode génératrice peut perturber le comportement de l'électrode de référence au cours de l'auto-calibration si, lors de cette procédure, la mesure se fait simultanément avec le fonctionnement de l'électrode génératrice. Pour pallier cet inconvénient, le mesure d'auto-calibration est réalisée juste après l'arrêt de l'alimentation de l'électrode génératrice, sur un point ou en moyennant les valeurs obtenue sur une certaine plage, comme on le verra ci-dessous. Toutefois, une mesure peut être effectuée pendant l'application d'un courant à l'électrode génératrice.In a medium of low conductivity, the electric field generated by the generating electrode can disturb the behavior of the reference electrode during the self-calibration if, during this procedure, the measurement is done simultaneously with the operation of the generator electrode. To overcome this drawback, the self-calibration measurement is performed just after stopping the supply of the generator electrode, on a point or by averaging the values obtained over a certain range, as will be seen below. . However, a measurement can be made during the application of a current to the generator electrode.
Bien qu'une procédure d'auto-calibration permette de compenser les éventuelles dérives dues à l'encrassement des micro-électrodes, il est néanmoins intéressant de pouvoir conserver une bonne sensibilité de l'électrode de travail. Ceci est obtenu par une opération d'auto-nettoyage, réalisée in situ, et rendue possible grâce aux propriétés du diamant dopé au bore de l'électrode génératrice. Cette opération peut également être réalisée à titre préventif.Although a self-calibration procedure makes it possible to compensate for any drifts due to fouling of the micro-electrodes, it is nevertheless advantageous to be able to maintain a good sensitivity of the working electrode. This is achieved by a self-cleaning operation, performed in situ, and made possible by the properties of the diamond doped with boron of the generator electrode. This operation can also be carried out as a preventive measure.
L'auto-nettoyage est obtenu par la conjonction de plusieurs effets causés par l'application à l'électrode de diamant de courants de polarité et de densité différentes. Tout d'abord, un courant anodique entraîne une production d'ion H+, ce qui acidifie le milieu aqueux proche de l'électrode. Ainsi, les dépôts de type tartre (carbonate de calcium, oxydes de magnésium) sont dissous. En outre, ce type de courant appliqué sur une électrode de diamant dopé au bore entraîne une production d'espèces fortement actives, telles que des radicaux hydroxyles, qui dégradent les dépôts organiques comme les bio-films, et possèdent une activité biocide.Self-cleaning is achieved by the conjunction of several effects caused by the application to the diamond electrode of currents of different polarity and density. Firstly, an anode current causes H + ion production, which acidifies the aqueous medium close to the electrode. Thus scale deposits (calcium carbonate, magnesium oxides) are dissolved. In addition, this type of current applied to a boron-doped diamond electrode results in the production of highly active species, such as hydroxyl radicals, which degrade organic deposits such as bio-films, and possess a biocidal activity.
De plus, l'application d'un courant cathodique entraîne la production d'ions OH-, ce qui rend basique le milieu aqueux proche de l'électrode. Ainsi, une alternance de courants anodique/cathodique fait fortement varier le pH à proximité de l'électrode de diamant, empêchant ainsi la formation d'un bio-film.In addition, the application of a cathode current results in the production of OH - ions, which makes basic the aqueous medium close to the electrode. Thus, an alternation of anodic / cathodic currents causes the pH to vary greatly in the vicinity of the diamond electrode, thus preventing the formation of a bio-film.
L'étape d'auto-nettoyage est appliquée à intervalles définis, de manière à ce que l'oxygène produit lors de l'application d'un courant anodique ne perturbe pas les mesures ultérieures.The self-cleaning step is applied at defined intervals, so that the oxygen produced during the application of an anode current does not disturb the subsequent measurements.
Différentes procédures sont définies, comprenant chacune une suite détaillée de séquences faites dans un ordre déterminé de manière à réaliser les étapes d'auto-nettoyage, d'auto-calibration (non revendiquée) et de mesure (non revendiquée).Different procedures are defined, each comprising a detailed sequence of sequences made in a determined order so as to perform the steps of self-cleaning, self-calibration (unclaimed) and measurement (unclaimed).
L'électronique de contrôle 46 mentionnée ci-dessus comprend, en outre, un microprocesseur programmé pour gérer :
- la durée des différentes étapes,
- les différences de potentiel entre l'électrode de travail et de référence,
- mesurer, sous une différence de potentiel déterminée et imposée par le potentiostat, le courant qui passe entre l'électrode de travail et sa contre-électrode,
- le courant appliqué entre l'électrode génératrice et sa contre-électrode, et
- la déconnexion des électrodes de travail et de référence au cours de la production d'oxygène de la phase d'auto-nettoyage.
- the duration of the different stages,
- the potential differences between the working and reference electrode,
- measuring, under a determined potential difference and imposed by the potentiostat, the current flowing between the working electrode and its counterelectrode,
- the current applied between the generator electrode and its counter-electrode, and
- the disconnection of the working and reference electrodes during oxygen production from the self-cleaning phase.
Les autres éléments de l'électronique de contrôle 46 sont parfaitement accessibles à l'homme du métier et ne sont donc pas décrits ici en détail.The other elements of the
A intervalles définis, le courant circulant entre l'électrode de travail et sa contre-électrode est mesuré et la concentration en oxygène dissous est calculée au moyen du facteur de calibration déterminé préalablement. A titre d'exemple, une procédure type de mesure (non revendiquée), comprenant à titre facultatif une étape d'auto-nettoyage doux, comporte les séquences suivantes.
- Attente et auto-nettoyage doux :
- i. Les électrodes de travail et de référence sont déconnectées de leur alimentation, pendant une durée typiquement comprise entre 0 et 60s, plus particulièrement de 15s.
- ii. Un auto-nettoyage doux est obtenu en appliquant un courant anodique de densité typiquement comprise entre 0.5 et 2 mA/cm2, plus particulièrement de 1 mA/cm2, pendant une période variant de 0.5 à 5s, typiquement 1 s, débutant immédiatement après la déconnexion mentionnée au point i. La durée restant pour cette étape permet à l'oxygène produit au niveau de l'électrode génératrice de se disperser par diffusion dans le milieu.
- Activation de l'électrode de travail :
- i. Une activation anodique est obtenue en appliquant une tension typiquement comprise entre 200 et 1500mV, plus particulièrement de 500mV pendant une durée typiquement comprise entre 0.1 et 30s, plus particulièrement de 3s.
- ii. Une activation cathodique est obtenue en appliquant une tension typiquement comprise entre -200 et -1500mV, plus particulièrement de -1100mV pendant une durée typiquement comprise entre 0.1 et 10s, plus particulièrement de 1s.
- Mesure et calcul
- i. Une stabilisation est obtenue en appliquant à l'électrode de travail une tension typiquement comprise entre -500 et - 1200mV, plus particulièrement de -900mV pendant une durée typiquement comprise entre 0.1 et 60s, plus particulièrement de 8s.
- ii. Une mesure et une détermination du courant moyen circulant entre l'électrode de travail et sa contre-électrode sont réalisées sous une tension typiquement comprise entre -500 et -1300mV, plus particulièrement de -900mV, pendant une durée typiquement comprise entre 0.1 et 30s, plus particulièrement de 2s.
- iii. La concentration en oxygène dissous est calculée à partir du courant déterminé à l'étape précédente et au moyen du facteur de calibration prédéterminé selon la procédure donnée ci-dessous.
- Waiting and self-cleaning soft:
- i. The working and reference electrodes are disconnected from their power supply for a period of typically between 0 and 60 seconds, more particularly 15 seconds.
- ii. A mild self-cleaning is obtained by applying an anodic current density typically between 0.5 and 2 mA / cm 2 , more particularly 1 mA / cm 2 , for a period ranging from 0.5 to 5s, typically 1 s, starting immediately after the disconnection mentioned in point i. The remaining time for this step allows the oxygen produced at the generating electrode to disperse by diffusion in the medium.
- Activation of the working electrode:
- i. Anodic activation is obtained by applying a voltage typically between 200 and 1500mV, more particularly 500mV for a duration typically between 0.1 and 30s, more particularly 3s.
- ii. Cathodic activation is obtained by applying a voltage typically between -200 and -1500mV, more particularly -1100mV for a duration typically between 0.1 and 10s, more particularly 1s.
- Measurement and calculation
- i. A stabilization is obtained by applying to the working electrode a voltage typically between -500 and-1200mV, more particularly -900mV for a period typically between 0.1 and 60s, more particularly 8s.
- ii. A measurement and a determination of the average current flowing between the working electrode and its counterelectrode are carried out at a voltage typically between -500 and -1300mV, more particularly -900mV, for a duration typically between 0.1 and 30s, more particularly 2s.
- iii. The dissolved oxygen concentration is calculated from the current determined in the previous step and by means of the predetermined calibration factor according to the procedure given below.
Une telle procédure de mesure est répétée à une fréquence typiquement de 0.5 à 5 fois par minute selon les valeurs des paramètres définis ci-dessus, plus particulièrement de 2 mesures par minutes.Such a measurement procedure is repeated at a frequency typically of 0.5 to 5 times per minute according to the values of the parameters defined above, more particularly of 2 measurements per minute.
Une procédure d'auto-calibration (non revendiquée) comprend, typiquement, les étapes suivantes :
- Attente :
- i. Les électrodes de travail et de référence sont déconnectées de leur alimentation, pendant une durée typiquement comprise entre 0 et 60s, plus particulièrement de 15s.
- Activation de l'électrode de travail :
- i. Une activation anodique est obtenue en appliquant une tension typiquement comprise entre 200 et 1500mV, plus particulièrement de 500mV pendant une durée typiquement comprise entre 0.1 et 30s, plus particulièrement de 3s.
- ii. Une activation cathodique est obtenue en appliquant une tension typiquement comprise entre -200 et -1500mV, plus particulièrement de -1100mV pendant une durée typiquement comprise entre 0.1 et 10s, plus particulièrement de 1 s.
- Mesure de la concentration en oxygène avant l'application d'un courant à l'électrode génératrice :
- i. Une stabilisation est obtenue en appliquant à l'électrode de travail une tension typiquement comprise entre -500 et - 1300mV, plus particulièrement de -900mV pendant une durée typiquement comprise entre 0.1 et 60s, plus particulièrement de 8s.
- ii. Une mesure et une détermination du courant moyen circulant entre l'électrode de travail et sa contre-électrode sont réalisées sous une tension typiquement comprise entre -500 et -1300mV, plus particulièrement de -900mV, pendant une durée typiquement comprise entre 0.1 et 30s, plus particulièrement de 2s.
- Application d'un courant d'auto-calibration à l'électrode génératrice de manière à produire une augmentation définie de la concentration locale en oxygène dissous:
- i. Un courant anodique d'une densité typiquement comprise entre 0.1 et 10 mA/cm2, plus particulièrement de 1 mA/cm2 est appliqué pendant une durée typiquement comprise entre 0.1 et 1 s plus particulièrement de 0.4s.
- Mesure de la concentration en oxygène après l'application d'un courant à l'électrode génératrice :
- i. Une stabilisation est obtenue en appliquant à l'électrode de travail une tension typiquement comprise entre -500 et - 1300mV, plus particulièrement de -900mV pendant une durée typiquement comprise entre 0.01 et 0.1 s, plus particulièrement de 0.04s.
- ii. Une mesure et une détermination du courant moyen circulant entre l'électrode de travail et sa contre-électrode sont réalisées sous une tension typiquement comprise entre -500 et -1300mV, plus particulièrement de -900mV, pendant une durée typiquement comprise entre 0.01 et 0.2s, plus particulièrement de 0.08s.
- iii. Un nouveau facteur de calibration de l'électrode de travail est calculé à partir de la différence des mesures avant et après application du courant d'auto-calibration sur l'électrode auxiliaire
- Waiting:
- i. The working and reference electrodes are disconnected from their power supply for a period of typically between 0 and 60 seconds, more particularly 15 seconds.
- Activation of the working electrode:
- i. Anodic activation is obtained by applying a voltage typically between 200 and 1500mV, more particularly 500mV for a duration typically between 0.1 and 30s, more particularly 3s.
- ii. Cathodic activation is obtained by applying a voltage typically between -200 and -1500mV, more particularly -1100mV for a period typically between 0.1 and 10s, more particularly 1 s.
- Measuring the oxygen concentration before applying a current to the generator electrode:
- i. A stabilization is obtained by applying to the working electrode a voltage typically between -500 and-1300mV, more particularly -900mV for a period typically between 0.1 and 60s, more particularly 8s.
- ii. A measurement and a determination of the average current flowing between the working electrode and its counterelectrode are carried out at a voltage typically between -500 and -1300mV, more particularly -900mV, for a duration typically between 0.1 and 30s, more particularly 2s.
- Applying a self-calibration current to the generator electrode so as to produce a defined increase in the local dissolved oxygen concentration:
- i. An anode current of a density typically between 0.1 and 10 mA / cm 2 , more particularly 1 mA / cm 2 is applied for a duration typically between 0.1 and 1 s, more particularly 0.4 s.
- Measuring the oxygen concentration after applying a current to the generator electrode:
- i. Stabilization is obtained by applying to the working electrode a voltage typically between -500 and -1300mV, more particularly -900mV for a duration typically between 0.01 and 0.1 s, more particularly 0.04s.
- ii. A measurement and a determination of the average current flowing between the working electrode and its counter-electrode are made at a voltage typically between -500 and -1300mV, more particularly -900mV, during a typically between 0.01 and 0.2s, more particularly 0.08s.
- iii. A new calibration factor of the working electrode is calculated from the difference of measurements before and after application of the auto-calibration current on the auxiliary electrode
Une telle procédure d'auto-calibration est répétée à une fréquence de 0.1 à 48 fois par jour, typiquement de 1 fois par jour.Such a self-calibration procedure is repeated at a frequency of 0.1 to 48 times per day, typically 1 time per day.
Une procédure d'auto-nettoyage comprend, typiquement, les étapes suivantes :
- i. application d'un courant anodique à l'électrode génératrice d'une densité typiquement comprise entre 0.5 et 100 mA/cm2, plus particulièrement de 2 mA/cm2 pendant une durée typiquement comprise entre 0.5 et 60s, plus particulièrement de 3s,
- ii. application d'un courant cathodique à l'électrode génératrice d'une densité typiquement comprise entre 0.5 et 100 mA/cm2, plus particulièrement de 2 mA/cm2 pendant une durée typiquement comprise entre 0.5 et 60s, plus particulièrement de 3s, et
- iii. répétition des deux étapes précédentes de 1 à 30 fois, plus particulièrement de 3 fois.
- i. applying an anode current to the generating electrode with a density typically between 0.5 and 100 mA / cm 2 , more particularly 2 mA / cm 2 for a duration typically between 0.5 and 60 s, more particularly 3 s,
- ii. applying a cathode current to the generating electrode with a density typically between 0.5 and 100 mA / cm 2 , more particularly 2 mA / cm 2 for a duration typically between 0.5 and 60 s, more particularly 3 s, and
- iii. repetition of the two preceding steps from 1 to 30 times, more particularly 3 times.
Une telle procédure d'auto-nettoyage est répétée à une fréquence de 10 à 200 fois par jour, typiquement de 100 fois par jour.Such a self-cleaning procedure is repeated at a frequency of 10 to 200 times a day, typically 100 times a day.
Ainsi sont proposées différentes procédures in situ particulièrement avantageuses d'auto-calibration (non revendiquée), d'auto-nettoyage et de mesure (non revendiquée) qui permettent de conserver une bonne précision d'un capteur électrochimique en évitant l'influence de toute contamination due au milieu de mesure. Par ailleurs, un capteur électrochimique peut permettre un auto-nettoyage, en évitant que les espèces oxydantes ne s'attaquent aux éléments constitutifs du capteur.Thus are proposed various particularly advantageous in-situ procedures of auto-calibration (not claimed), self-cleaning and measurement (not claimed) which make it possible to maintain a good accuracy of an electrochemical sensor while avoiding the influence of any contamination due to the measuring medium. Moreover, an electrochemical sensor can allow self-cleaning, by preventing the oxidizing species from attacking the constituent elements of the sensor.
La présente invention ne se limite pas à un capteur électrochimique mesurant la concentration en oxygène dissous dans un milieu. En effet, il est possible d'établir une corrélation entre les courants mesurés pour différentes espèces analysées autre que l'oxygène, par exemple, du chlore ou de l'ozone.The present invention is not limited to an electrochemical sensor measuring the concentration of dissolved oxygen in a medium. Indeed, it is possible to correlate the currents measured for different species analyzed other than oxygen, for example, chlorine or ozone.
Claims (7)
- A self-cleaning method for a working electrode of an electrochemical sensor including a working electrode of the micro-disc type (23) and its counter electrode (40) and a reference electrode (42) connected to a potentiostat, on the one hand, and a generating electrode (30) in diamond doped with boron and its counter electrode (48) connected to a current source on the other hand, the set of these electrodes being further connected to an electronic control and measuring unit (46), said method comprising the following steps:- applying an anode current to the generating electrode, and- applying a cathode current to the generating electrode.
- The self cleaning method according to claim 1, characterized in that said anode and cathode currents are applied with a density between 0.5 and 100 mA/cm2, more particularly 2 mA/cm2, for a time between 0.5 and 60 s, more particularly 3 s.
- The self-cleaning method according to any of claims 1 and 2, characterized in that the steps for applying an anode current and a cathode current are repeated from 1 to 30 times, more particularly 3 times.
- The self-cleaning method according to any of claims 1 to 3, characterized that said sensor is intended to measure the concentration of dissolved oxygen in an aqueous medium.
- The self-cleaning method according to any of claims 1 to 4, intended to precede a step for measuring at least one dissolved species in an aqueous medium with a sensor as defined in claim 1, characterized in that the working and reference electrodes are disconnected from their power supply during the self-cleaning step.
- The self-cleaning method according to claim 5, characterized in that:- the working and reference electrodes are disconnected from their power supply, for a time between 0 and 60 s, more particularly 15 s,- self-cleaning is obtained by applying an anode current with a density between 0.5 and 2 mA/cm2, more particularly 1 mA/cm2, for a period ranging from 0.5 to 5 s, more particularly 1 s, starting immediately after said disconnection.
- The self-cleaning method according to any of claims 5 and 6, characterized in that said dissolved species is oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06743351A EP1872116B1 (en) | 2005-04-22 | 2006-04-19 | Method using an electrochemical sensor and electrodes forming said sensor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05103304A EP1715334A1 (en) | 2005-04-22 | 2005-04-22 | Procedure utilising an electrochemical sensor and electrodes forming the sensor |
PCT/EP2006/061681 WO2006111550A2 (en) | 2005-04-22 | 2006-04-19 | Method using an electrochemical sensor and electrodes forming said sensor |
EP06743351A EP1872116B1 (en) | 2005-04-22 | 2006-04-19 | Method using an electrochemical sensor and electrodes forming said sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1872116A2 EP1872116A2 (en) | 2008-01-02 |
EP1872116B1 true EP1872116B1 (en) | 2011-10-12 |
Family
ID=34939469
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05103304A Withdrawn EP1715334A1 (en) | 2005-04-22 | 2005-04-22 | Procedure utilising an electrochemical sensor and electrodes forming the sensor |
EP06743351A Not-in-force EP1872116B1 (en) | 2005-04-22 | 2006-04-19 | Method using an electrochemical sensor and electrodes forming said sensor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05103304A Withdrawn EP1715334A1 (en) | 2005-04-22 | 2005-04-22 | Procedure utilising an electrochemical sensor and electrodes forming the sensor |
Country Status (6)
Country | Link |
---|---|
US (1) | US7875164B2 (en) |
EP (2) | EP1715334A1 (en) |
KR (1) | KR20080002964A (en) |
CN (1) | CN101163966B (en) |
AT (1) | ATE528641T1 (en) |
WO (1) | WO2006111550A2 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2241882A1 (en) * | 2009-04-15 | 2010-10-20 | Neroxis SA | Amperometric electrochemical sensor and manufacturing method |
US9322801B2 (en) * | 2009-05-14 | 2016-04-26 | Honeywell International Inc. | Apparatus and method of regenerating electrochemical gas sensors |
GB201216859D0 (en) * | 2012-09-20 | 2012-11-07 | Univ Southampton | Apparatus for sensing at least one parameter in water |
GB201216867D0 (en) * | 2012-09-20 | 2012-11-07 | Univ Southampton | Apparatus for sensing at least one parameter in water |
GB201603680D0 (en) | 2016-03-03 | 2016-04-20 | Ucl Business Plc | Device |
TWI718284B (en) | 2016-04-07 | 2021-02-11 | 美商零質量純水股份有限公司 | Solar thermal unit |
US10357739B2 (en) | 2016-05-20 | 2019-07-23 | Zero Mass Water Inc. | Systems and methods for water extraction control |
EP3507597B1 (en) | 2016-08-31 | 2024-05-08 | Honeywell International Inc. | System and method for identifying and cleaning contamination of an electrochemical sensor |
AU2018300250B2 (en) | 2017-07-14 | 2024-04-18 | Source Global, PBC | Systems for controlled treatment of water with ozone and related methods therefor |
US11359356B2 (en) | 2017-09-05 | 2022-06-14 | Source Global, PBC | Systems and methods for managing production and distribution of liquid water extracted from air |
AU2018329660B2 (en) | 2017-09-05 | 2023-11-09 | Source Global, PBC | Systems and methods to produce liquid water extracted from air |
MX2020004213A (en) | 2017-10-06 | 2021-01-15 | Zero Mass Water Inc | Systems for generating water with waste heat and related methods therefor. |
AU2018380168B2 (en) | 2017-12-06 | 2023-11-02 | Source Global, PBC | Systems for constructing hierarchical training data sets for use with machine-learning and related methods therefor |
WO2019161339A1 (en) | 2018-02-18 | 2019-08-22 | Zero Mass Water, Inc. | Systems for generating water for a container farm and related methods therefor |
AU2019265024B2 (en) | 2018-05-11 | 2024-09-26 | Source Global, PBC | Systems for generating water using exogenously generated heat, exogenously generated electricity, and exhaust process fluids and related methods therefor |
BR112021007178A2 (en) | 2018-10-19 | 2021-07-20 | Source Global, PBC | systems and methods to generate liquid water using highly efficient techniques that optimize production |
US20200124566A1 (en) | 2018-10-22 | 2020-04-23 | Zero Mass Water, Inc. | Systems and methods for detecting and measuring oxidizing compounds in test fluids |
CN113747962A (en) | 2019-04-22 | 2021-12-03 | 环球源公司 | Water vapor adsorption air drying system and method for producing liquid water from air |
TW202202840A (en) * | 2020-02-21 | 2022-01-16 | 美商半導體組件工業公司 | Potentiostat with offset calibration |
US12007358B2 (en) * | 2020-02-21 | 2024-06-11 | Semiconductor Components Industries, Llc | Potentiostat with offset calibration |
US11814820B2 (en) | 2021-01-19 | 2023-11-14 | Source Global, PBC | Systems and methods for generating water from air |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4457808A (en) * | 1983-05-16 | 1984-07-03 | General Signal Corporation | Method and means for recalibrating electrochemical cells in situ |
US4762594A (en) * | 1987-01-29 | 1988-08-09 | Medtest Systems, Inc. | Apparatus and methods for sensing fluid components |
US5098547A (en) * | 1988-10-11 | 1992-03-24 | Bryan Avron I | Dissolved oxygen sensor calibration, monitoring and reporting system |
US5001124A (en) | 1990-02-02 | 1991-03-19 | Syntex (U.S.A.) Inc. | 4-isoxazolecarboxamide derivatives |
US5230785A (en) * | 1991-05-31 | 1993-07-27 | Poolchem, Inc. | Method and apparatus for analysis of swimming pool water and analytical cell utilized therein |
DE69306542T2 (en) * | 1993-01-08 | 1997-05-15 | Nippon Electric Co | Method and device for wet treatment of solid surfaces |
GB9412820D0 (en) * | 1994-06-25 | 1994-08-17 | Siemens Plessey Controls Ltd | Water quality measuring apparatus |
GB9413525D0 (en) * | 1994-07-05 | 1994-08-24 | Unilever Plc | Improvements in or relating to electrochemical instruments |
RO117948B1 (en) * | 1995-12-19 | 2002-09-30 | Institutul De Cercetare Şi Proiectare Pentru Electrotehnică | Electrochemical probe with zirconia-type ceramic electrolyte for oxygen analyzer |
GB9609301D0 (en) * | 1996-05-03 | 1996-07-10 | Wallace & Tiernan Ltd | Measuring chlorine concentration |
DE19621997C1 (en) * | 1996-05-31 | 1997-07-31 | Siemens Ag | Electrochemical sensor e.g. for gas determination |
FR2779523B1 (en) * | 1998-06-09 | 2000-08-11 | Grp Pour L Evaluation Des Mesu | MULTI-PARAMETER SENSOR FOR METAL DETECTION, PARTICULARLY IN RELEASE WATER OR IN FILTERED WATER, IN A SANITATION SYSTEM, AND METHOD USING THE SAME |
JP2000093907A (en) * | 1998-09-21 | 2000-04-04 | Dainippon Screen Mfg Co Ltd | Cleaning apparatus using electrolytic ion water |
US6402689B1 (en) * | 1998-09-30 | 2002-06-11 | Sicel Technologies, Inc. | Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors |
RU2207558C2 (en) * | 1999-01-29 | 2003-06-27 | Государственное унитарное предприятие "Уральский научно-исследовательский химический институт с опытным заводом" | Procedure to clean measurement electrode |
US20010001441A1 (en) * | 2000-06-19 | 2001-05-24 | Zdunek Alan D. | Method and apparatus for measuring coating quality |
CH697478B1 (en) * | 2001-05-22 | 2008-11-14 | Adamant Technologies Sa | electrode for electrochemical sensor system and method for determining the pH of a chlorinated water. |
US7201831B2 (en) * | 2002-02-22 | 2007-04-10 | Water Security And Technology, Inc. | Impurity detection device |
US20040132825A1 (en) * | 2002-03-04 | 2004-07-08 | Bacopoulos Nicholas G. | Methods of treating cancer with HDAC inhibitors |
US7456219B2 (en) * | 2002-03-04 | 2008-11-25 | Merck Hdac Research, Llc | Polymorphs of suberoylanilide hydroxamic acid |
EP2322160A1 (en) * | 2002-03-04 | 2011-05-18 | Merck HDAC Research, LLC | Methods of inducing terminal differentiation |
US7148257B2 (en) * | 2002-03-04 | 2006-12-12 | Merck Hdac Research, Llc | Methods of treating mesothelioma with suberoylanilide hydroxamic acid |
GB0205347D0 (en) * | 2002-03-07 | 2002-04-24 | Svanborg Catharina | Biologically active complex |
GB0210464D0 (en) * | 2002-05-08 | 2002-06-12 | Svanborg Catharina | Therapeutic treatment |
CA2529840A1 (en) * | 2003-06-27 | 2005-01-06 | Astellas Pharma Inc. | Therapeutic agent for soft tissue sarcoma |
EP1557665A1 (en) | 2004-01-21 | 2005-07-27 | CSEM Centre Suisse d'Electronique et de Microtechnique SA | Electrode system for an electrochemical sensor |
US20050187148A1 (en) * | 2004-02-25 | 2005-08-25 | Yoshinori Naoe | Antitumor agent |
-
2005
- 2005-04-22 EP EP05103304A patent/EP1715334A1/en not_active Withdrawn
-
2006
- 2006-04-19 AT AT06743351T patent/ATE528641T1/en not_active IP Right Cessation
- 2006-04-19 CN CN2006800135500A patent/CN101163966B/en not_active Expired - Fee Related
- 2006-04-19 US US11/911,926 patent/US7875164B2/en not_active Expired - Fee Related
- 2006-04-19 WO PCT/EP2006/061681 patent/WO2006111550A2/en not_active Application Discontinuation
- 2006-04-19 KR KR1020077026536A patent/KR20080002964A/en not_active Application Discontinuation
- 2006-04-19 EP EP06743351A patent/EP1872116B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
WO2006111550A2 (en) | 2006-10-26 |
EP1872116A2 (en) | 2008-01-02 |
US7875164B2 (en) | 2011-01-25 |
US20080202944A1 (en) | 2008-08-28 |
KR20080002964A (en) | 2008-01-04 |
ATE528641T1 (en) | 2011-10-15 |
CN101163966A (en) | 2008-04-16 |
CN101163966B (en) | 2012-01-11 |
WO2006111550A3 (en) | 2007-01-25 |
EP1715334A1 (en) | 2006-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1872116B1 (en) | Method using an electrochemical sensor and electrodes forming said sensor | |
Belmont et al. | Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability | |
US6144871A (en) | Current detecting sensor and method of fabricating the same | |
CN101189507B (en) | Electrochemical sensor | |
JP5659222B2 (en) | Amperometric electrochemical sensor and manufacturing method thereof | |
Berduque et al. | Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions | |
US6478950B1 (en) | Sensing liquids in oil well using electrochemical sensor | |
EP2737308B1 (en) | Device for measuring the free chloride content of water | |
EP2675941B1 (en) | Method for activating a doped diamond electrode | |
WO2009083482A1 (en) | Method for detecting changes in water quality | |
CA2377947A1 (en) | Micro reference electrode | |
Pinto et al. | Antibiofouling strategy for optical sensors by chlorine generation using low-cost, transparent and highly efficient electrodes based on platinum nanoparticles coated oxide | |
Ivanovskaya et al. | Electrochemical roughening of thin-film platinum for neural probe arrays and biosensing applications | |
EP3224607B1 (en) | Electrochemical sensor comprising boron doped diamond electrode | |
EP0780684A1 (en) | Reliable integrated electrochemical microsensors and microsystems for the direct chemical analysis of compounds in complex aqueous media | |
WO2011064265A1 (en) | Electrochemical device for determining antioxidant properties of the skin | |
WO2002095387A1 (en) | Electrode system for electrochemical sensor | |
WO2008012197A1 (en) | Electrochemical system for assaying a biological compound by an enzyme | |
EP1557665A1 (en) | Electrode system for an electrochemical sensor | |
EP2502059B1 (en) | Method of dosing nitrates and/or nitrites in neutral environment | |
WO2006108759A1 (en) | Method for voltametric electrochemical analysis and implementing device therefor | |
FR2567268A1 (en) | METHOD AND ELECTRODE FOR MEASURING ENZYMATIC CONCENTRATIONS AND METHOD FOR PREPARING SUCH AN ELECTRODE | |
JP2012047691A (en) | Method for manufacturing biosensor | |
FR2975493A1 (en) | METHOD FOR DETERMINING NITRATES AND / OR NITRITES IN A NEUTRAL ENVIRONMENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071031 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006025061 Country of ref document: DE Effective date: 20111208 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20111012 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: HACH LANGE SARL Owner name: ADAMANT TECHNOLOGIES SA |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111012 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 528641 Country of ref document: AT Kind code of ref document: T Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120212 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120113 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120213 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120112 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
26N | No opposition filed |
Effective date: 20120713 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006025061 Country of ref document: DE Effective date: 20120713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20130429 Year of fee payment: 8 Ref country code: GB Payment date: 20130429 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130506 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060419 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140419 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20141231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140419 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20141008 Year of fee payment: 9 Ref country code: DE Payment date: 20141015 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006025061 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151103 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |