EP1719947B1 - Method and device for flame monitoring - Google Patents
Method and device for flame monitoring Download PDFInfo
- Publication number
- EP1719947B1 EP1719947B1 EP05009937A EP05009937A EP1719947B1 EP 1719947 B1 EP1719947 B1 EP 1719947B1 EP 05009937 A EP05009937 A EP 05009937A EP 05009937 A EP05009937 A EP 05009937A EP 1719947 B1 EP1719947 B1 EP 1719947B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- capacitor
- flame
- charging
- discharging
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 15
- 239000003990 capacitor Substances 0.000 claims description 63
- 238000007599 discharging Methods 0.000 claims description 14
- 238000011156 evaluation Methods 0.000 claims description 14
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 230000001419 dependent effect Effects 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 2
- 230000003139 buffering effect Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/24—Preventing development of abnormal or undesired conditions, i.e. safety arrangements
- F23N5/242—Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2227/00—Ignition or checking
- F23N2227/12—Burner simulation or checking
- F23N2227/16—Checking components, e.g. electronic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2229/00—Flame sensors
- F23N2229/12—Flame sensors with flame rectification current detecting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2231/00—Fail safe
- F23N2231/06—Fail safe for flame failures
Definitions
- the invention relates to a method and a device for flame monitoring according to the subject matter of claims 1 and 5.
- a method and a device for flame monitoring for example, from EP 617 234 A1 known.
- This document discloses a Ionisationsflammenwumbleter with a capacitor which is connected to a reference voltage source and a coupling element with the secondary circuit of a Zündübertragers. As long as there is no flame between the ignition electrode and the ground line, the capacitor is charged via a resistor to an operating voltage. As soon as an ionization current flows as a result of the formation of flames, the capacitor is discharged. The capacitor is connected to a monitoring circuit which, when falling below a predetermined threshold value, generates an output signal which indicates the presence of a flame.
- the EP 1 256 763 A2 discloses a flame monitoring method in which the radiation generated by the flame is detected by a photoresistor and the sensor signal is evaluated in two channels. The first channel is used to detect the average brightness and the second channel is used to detect alternating parts resulting from the flickering of the flame. The flame is only recognized as burning if the signal is within a specified range at both channel outputs.
- the document JP-62255729 discloses a circuit and method for flame monitoring in which a reference voltage source is connected via a switch to a capacitor which is closed to charge the capacitor or to discharge the capacitor (18) is opened, wherein the capacitor is charged during the charging phase with a reference voltage and the Capacitor is discharged via a during the discharge phase connected to a flame sensor coupling member. In this case, the time duration is evaluated until falling below a threshold value provided for the discharge phase of the capacitor.
- the invention has for its object to provide a method and a device for flame monitoring, which is versatile and allows a simple signal evaluation.
- a capacitor connected to a voltage source during a charging phase is charged to a voltage value, and during a discharge phase the capacitor is discharged via a coupling member connected to the flame sensor.
- the period of time for the charging and discharging phase of the capacitor is chosen as a function of the characteristic, in particular the impedance of the flame sensor.
- the charging or discharging of the capacitor is repeated cyclically and the resulting voltage signal is evaluated for flame monitoring single-channel, the evaluation of the voltage signal on the capacitor is synchronous with the mains frequency.
- a threshold value which is uniform for different sensor impedances is preferably used.
- various flames for. B. pilot flame or flame at maximum load of an oil, gas, or solid fuel burner are monitored, with a variety of different flame sensors, eg. As photoresistor, ionization current electrode, UV tubes, etc. can be used for flame monitoring.
- the invention does not require active signal amplification for evaluation.
- the monitoring circuit can be constructed with a small number of components.
- the capacitor provided for flame monitoring also performs the function of signal filtering with a low-pass character.
- the method according to the invention can be used in continuous operation or in the intermittent operation of a burner, wherein different fault scenarios can be taken into account in the signal evaluation.
- the impedance of the flame sensor can assume a static value in the event of a fault or when exposed to daylight. This can be detected at the end of the charging phase by evaluating the voltage signal obtained at the capacitor.
- Also may be component failure of the circuit or the sensor For example, a short circuit of the flame sensor or a line break are detected to the flame sensor.
- extraneous light can be detected. If the flame sensor is irradiated with a fluorescent lamp or light bulb, this changes the impedance of the flame sensor in the rhythm of the mains frequency or their multiples.
- the network-harmonic changes of the sensor impedance caused by the extraneous light source lead to no signal dynamics in a network-synchronous evaluation of the voltage signal.
- the z. B. in the frequency range of 8-30 Hertz be monitored and evaluated.
- Fig. 1 shows the basic structure of a non-inventive circuit for flame monitoring, which can be adapted with little modification to different flame sensors for detecting the flame and flame existence of oil, gas and solid fuel burners.
- the flame sensor is z. B. a photoresistor 1, which has a radiation sensitivity in the spectral range to be monitored.
- the radiation sensitivity manifests itself by different impedance values upon irradiation of the flame sensor, with an increase in the intensity of the flame radiation resulting in a decrease in the impedance value of the photoresistor.
- the photoresistor 1 is connected via a coupling member 19 to a capacitor 18 provided for evaluation.
- the capacitor 18 is connected via a switch 12 to a reference voltage source 13, which has an internal resistance 11.
- the capacitor 18 is connected via the internal resistance 11 by means of the switch 12 to the reference voltage source 13. Characterized the capacitor 18 is charged to a voltage value which is dependent on the internal resistance 11 of the reference voltage 13, the impedance of the coupling member 19 and the photoresistor 1. After a defined charging time, a measured value dependent on the impedance of the flame sensor 1 is obtained by an A / D converter 20.
- the A / D converter 20 can be connected to the capacitor 18 via a switch 17 and a resistor 16. However, the A / D converter 20 may also be directly connected to the capacitor 18.
- the switches 12 and 17 may, for. B. field effect transistors.
- the connection to the reference voltage source 13 is interrupted by means of the switch 12 and the capacitor 18 is discharged via the coupling impedance 19 through the photoresistor 1.
- the A / D converter 20 supplies a measured value which is dependent on the impedance of the flame sensor 1 and filtered by the capacitor 18.
- the control of the charging and / or discharge phase is carried out by a control unit 21, which z. B. is designed as a microprocessor or logic device with comparator.
- FIG. 2 shows the waveform for the voltage Uc obtained at the capacitor as a function of the impedance of the flame sensor and the time.
- the increase in impedance is shown by an arrow 33.
- the voltage Uc obtained at the end of the charge phase 31 or discharge phase 32 at the capacitor assumes a higher value.
- a uniform threshold value 34 is preferably used for evaluation of the sensor impedance-dependent voltage signal 30 for evaluation of the sensor impedance-dependent voltage signal 30, preferably used.
- the definition of the threshold value 34 and the time duration for charging or discharging phase can be carried out by a control unit.
- the period of time for the charging or discharging phase is selected as a function of the respective impedance or characteristic of the flame sensor.
- FIG. 3 shows an inventive development of in FIG. 1 shown monitoring circuit, which additionally has a voltage divider 27, which serves to return the network phase to the control unit 21.
- the voltage across the capacitor 18 is thereby detected synchronously with the mains frequency.
- the charging phase is preferably chosen so long that after charging of the capacitor 18, the switch 12 remains closed for at least one network period. During this time, by monitoring the mains phase and closing the switch 17, the voltage obtained at the capacitor 18 is detected by the A / D converter 20 cyclically and synchronously with the mains frequency. If the flame sensor is irradiated by a fluorescent lamp, for example, then the sensor impedance changes in the rhythm of the mains frequency or its multiples.
- Fig. 4 the voltage Uc obtained at the capacitor is shown together with a mains-synchronous extraneous light signal 50 as a function of time.
- a voltage signal 40 characteristic of the respective sensor impedance, is obtained, which can be detected and evaluated in a network-synchronous manner at the times t1, t2, t3, etc.
- identical voltage values Uc are obtained for one and the same sensor impedance in this exemplary embodiment. From these voltages z. B. an average can be formed, which is evaluated for extraneous light detection. If the mean value lies below a defined threshold value 34, then this is recognized as extraneous light error.
- FIG. 5 shows a circuit in which the sampling can be done at arbitrary times.
- the samples supplied by a sample-and-hold device 28 in synchronism with the line frequency are buffered in a capacitor 30.
- a pulse shaper 29 generates from the mains frequency a control pulse which, for a short time, closes the sample-and-hold circuit 28, thereby causing the capacitor 30 to be charged with the samples.
- FIG. 6 shows a circuit that is used for two different flame sensors 1 and 2.
- a chemical reaction takes place during combustion, as a result of which free ions occur. These cause the flame 3 to become conductive and a current to flow when a voltage is applied. The ions move only in the direction of the flame.
- a serial link 22 shows a simplified equivalent circuit for the rectification effect by flame ionization. An alternating voltage is applied to the ionization electrode 2 via a capacitor 25 and a resistor 26.
- Fig. 7 shows a further education in FIG. 6 shown circuit which additionally has a voltage divider 27, which serves to return the network phase to the control unit 21.
- the detection of the voltage across the capacitor 18 is thereby synchronous to the mains frequency.
- the evaluation can be done in the same manner as described above in connection with a photoresistor.
- FIG. 8 shows a monitoring circuit for a UV sensor.
- a pulsating voltage is applied to a UV sensor 4 via a capacitor 25, a resistor 26 and a diode 5.
- the W tube When irradiated with UV light, the W tube is then ignited.
- the cyclic firing of the W-tube drives a pulsed current through the diode 5 and leads to a potential shift at the capacitor 25.
- Via a coupling resistor 23 and a low-pass filter 24 the charge transfer at the capacitor 25 is coupled to the capacitor 18.
- the charge transfer at the capacitor 25 is polarized such that this leads to a discharge of the capacitor 18 during the discharge phase.
- the evaluation of the voltage signal on the capacitor 18 for flame monitoring can be carried out in the same manner as has been described in connection with a photoresistor or ionization.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Flammenüberwachung gemäss dem Gegenstand der Ansprüche 1 und 5.The invention relates to a method and a device for flame monitoring according to the subject matter of
Ein Verfahren und eine Vorrichtung zur Flammenüberwachung sind beispielsweise aus der
Die
Das Dokument
Der Erfindung liegt die Aufgabe zugrunde ein Verfahren beziehungsweise eine Vorrichtung zur Flammenüberwachung vorzuschlagen, das vielseitig einsetzbar ist und eine einfache Signalauswertung ermöglicht.The invention has for its object to provide a method and a device for flame monitoring, which is versatile and allows a simple signal evaluation.
Diese Aufgabe wird durch die in den Ansprüchen 1 und 5 angegebenen Merkmale gelöst.This object is achieved by the features specified in
Bei dem erfindungsgemässen Verfahren wird ein während einer Ladephase mit einer Spannungsquelle verbundener Kondensator auf einen Spannungswert aufgeladen und während einer Entladungsphase wird der Kondensator über ein mit dem Flammensensor verbundenes Kopplungsglied entladen. Die Zeitdauer für die Lade- und Entladungsphase des Kondensators wird dabei in Abhängigkeit von der Charakteristik insbesondere der Impedanz des Flammensensors gewählt. Das Laden beziehungsweise Entladen des Kondensators wird zyklisch wiederholt und das dadurch erhaltene Spannungssignal wird zur Flammenüberwachung einkanalig ausgewertet, wobei die Auswertung des Spannungssignals am Kondensator synchron mit der Netzfrequenz erfolgt.
Zur Signalauswertung wird vorzugsweise ein für verschiedene Sensorimpedanzen einheitlicher Schwellenwert verwendet.In the method according to the invention, a capacitor connected to a voltage source during a charging phase is charged to a voltage value, and during a discharge phase the capacitor is discharged via a coupling member connected to the flame sensor. The period of time for the charging and discharging phase of the capacitor is chosen as a function of the characteristic, in particular the impedance of the flame sensor. The charging or discharging of the capacitor is repeated cyclically and the resulting voltage signal is evaluated for flame monitoring single-channel, the evaluation of the voltage signal on the capacitor is synchronous with the mains frequency.
For signal evaluation, a threshold value which is uniform for different sensor impedances is preferably used.
Durch die Erfindung können verschiedene Flammen, z. B. Pilotflamme oder Flamme bei Maximallast eines Öl-, Gas-, oder Feststoffbrenners überwacht werden, wobei eine Vielzahl unterschiedlicher Flammensensoren, z. B. Photowiderstand, Ionisationsstromelektrode, UV-Röhren, etc. zur Flammenüberwachung eingesetzt werden können.By the invention, various flames, for. B. pilot flame or flame at maximum load of an oil, gas, or solid fuel burner are monitored, with a variety of different flame sensors, eg. As photoresistor, ionization current electrode, UV tubes, etc. can be used for flame monitoring.
Die Erfindung benötigt keine aktive Signalverstärkung zur Auswertung. Dadurch kann die Überwachungsschaltung mit einer geringen Anzahl von Bauelementen aufgebaut werden. Beispielsweise übernimmt der zur Flammenüberwachung vorgesehene Kondensator auch die Funktion einer Signalfilterung mit Tiefpasscharakter.The invention does not require active signal amplification for evaluation. As a result, the monitoring circuit can be constructed with a small number of components. For example, the capacitor provided for flame monitoring also performs the function of signal filtering with a low-pass character.
Das erfindungsgemässe Verfahren kann im Dauerbetrieb oder im intermittierenden Betrieb eines Brenners zum Einsatz kommen, wobei bei der Signalauswertung unterschiedliche Fehlerszenarien berücksichtigt werden können. Beispielsweise kann die Impedanz des Flammensensors im Fehlerfall oder bei Bestrahlung mit Tageslicht einen statischen Wert annehmen. Dies kann am Ende der Ladephase durch Auswertung des am Kondensator erhaltenen Spannungssignals erkannt werden. Auch können Bauteilfehler der Schaltung oder des Sensors beispielsweise ein Kurzschluss des Flammensensors oder ein Leitungsunterbruch zum Flammensensor festgestellt werden.The method according to the invention can be used in continuous operation or in the intermittent operation of a burner, wherein different fault scenarios can be taken into account in the signal evaluation. For example, the impedance of the flame sensor can assume a static value in the event of a fault or when exposed to daylight. This can be detected at the end of the charging phase by evaluating the voltage signal obtained at the capacitor. Also may be component failure of the circuit or the sensor For example, a short circuit of the flame sensor or a line break are detected to the flame sensor.
Durch das erfindungsgemässe Verfahren kann auch Fremdlicht erkannt werden. Wird der Flammensensor mit einer Leuchtstofflampe oder Glühbirne bestrahlt, so ändert sich dadurch die Impedanz des Flammensensors im Rhythmus der Netzfrequenz oder deren Vielfache. Die durch die Fremdlichtquelle bedingten netzharmonischen Änderungen der Sensorimpedanz führen bei einer netzsynchronen Auswertung des Spannungssignals zu keiner Signaldynamik. Für eine Erkennung von Fremdlicht im Dauerbetrieb, kann auch der Flackeranteil der Flamme, der z. B. im Frequenzbereich von 8-30 Hertz liegt, überwacht und ausgewertet werden.By the inventive method, extraneous light can be detected. If the flame sensor is irradiated with a fluorescent lamp or light bulb, this changes the impedance of the flame sensor in the rhythm of the mains frequency or their multiples. The network-harmonic changes of the sensor impedance caused by the extraneous light source lead to no signal dynamics in a network-synchronous evaluation of the voltage signal. For detection of extraneous light in continuous operation, and the Flackeranteil the flame, the z. B. in the frequency range of 8-30 Hertz, be monitored and evaluated.
Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung der Erfindung anhand der Ausführungsbeispiele und den Figuren. Es zeigen:
- Fig.1
- ein prinzipielles Blockschaltbild einer nicht erfindungsgemässen Überwachungsschaltung
- Fig. 2
- Spannungssignalverlauf in Abhängigkeit von der Sensorimpedanz
- Fig.3
- eine gemäss der Erfindung dargestellte Schaltung zur Erkennung von Fremdlicht
- Fig.4
- Spannungssignalverlauf mit Fremdlichtsignal
- Fig.5
- bis 8 jeweils eine weitere Ausführungsform der erfindungsgemässen Überwachungsschaltung
- Fig.1
- a schematic block diagram of a non-inventive monitoring circuit
- Fig. 2
- Voltage waveform as a function of the sensor impedance
- Figure 3
- a circuit according to the invention for detecting extraneous light
- Figure 4
- Voltage waveform with extraneous light signal
- Figure 5
- to 8 each show a further embodiment of the inventive monitoring circuit
Der Flammensensor ist z. B. ein Photowiderstand 1, der eine Strahlungsempfindlichkeit in dem zu überwachenden Spektralbereich aufweist. Die Strahlungsempfindlichkeit äußert sich durch unterschiedliche Impedanzwerte bei Bestrahlung des Flammensensors, wobei eine Zunahme der Intensität der Flammenstrahlung eine Abnahme des Impedanzwertes des Photowiderstandes zur Folge hat.The flame sensor is z. B. a
Der Photowiderstand 1 ist über ein Kopplungsglied 19 mit einem zur Auswertung vorgesehenen Kondensator 18 verbunden. Der Kondensator 18 ist über einen Schalter 12 mit einer Referenzspannungsquelle 13 verbunden, welche einen Innenwiderstand 11 aufweist.The
Zur Aufladung ist der Kondensator 18 über den Innenwiderstand 11 mittels des Schalters 12 mit der Referenzspannungsquelle 13 verbunden. Dadurch wird der Kondensator 18 auf einen Spannungswert aufgeladen, der abhängig von dem Innenwiderstand 11 der Referenzspannung 13, der Impedanz des Kopplungsgliedes 19 und des Photowiderstandes 1 ist. Nach einer definierten Ladezeit wird ein von der Impedanz des Flammensensors 1 abhängiger Messwert durch einen A/D-Wandler 20 erhalten. Der A/D-Wandler 20 kann über einen Schalter 17 und einen Widerstand 16 mit dem Kondensator 18 verbunden. Der A/D- Wandler 20 kann jedoch auch direkt mit dem Kondensator 18 verbunden werden. Die Schalter 12 und 17 können z. B. Feldeffekttransistoren sein.For charging, the
In der Entladungsphase ist die Verbindung zur Referenzspannungsquelle 13 mittels des Schalters 12 unterbrochen und der Kondensator 18 wird über die Kopplungsimpedanz 19 durch den Photowiderstand 1 entladen. Nach einer definierten Entladungszeit liefert der A/D-Wandler 20 einen von der Impedanz des Flammensensors 1 abhängigen durch den Kondensator 18 gefilterten Messwert. Die Steuerung der Lade- und/oder Entladungsphase erfolgt durch eine Steuereinheit 21, welche z. B. als Mikroprozessor oder Logikbaustein mit Komparator ausgeführt ist.In the discharge phase, the connection to the
In
Ein Serienglied 22 zeigt eine vereinfachte Ersatzschaltung für den Gleichrichteffekt durch Flammenionisation. Eine Wechselspannung wird über einen Kondensator 25 und einen Widerstand 26 an die Ionisationselektrode 2 gelegt. Durch die Flammenionisation findet eine Gleichrichtung des Ionisationsstromes statt, welcher zu einer Potentialverschiebung an dem Kondensator 25 führt. Über einen Kopplungswiderstand 23 und einen Tiefpassfilter 24 wird die Ladungsverschiebung vom Kondensator 25 zum Kondensator 18 eingekoppelt. Während der Entladungsphase wird dann der Kondensator 18 in Abhängigkeit vom Ionisationsstrom entladen.
A
Claims (7)
- Method for flame monitoring in which a capacitor (18) is charged with a reference voltage (13) during a charging phase (31) and the capacitor is discharged via a coupling element (19) connected to a flame sensor (1) during a discharging phase (32), characterised in that the duration for the respective charging or discharging phase (31, 32) of the capacitor (18) is selected as a function of the characteristic of the flame sensor used (1) and that, for flame monitoring, the respective charging or discharging of the capacitor is repeated cyclically, whereby a voltage signal (30, 40) is received at the capacitor (18) which is subject to single-channel evaluation with the aid of a threshold value (34), with the evaluation of the voltage signal at the capacitor (30, 40) being undertaken synchronously with the ac mains frequency.
- Method according to claim 1, characterised in that the duration of the respective charging or discharging phase (31, 32) is dependent on the impedance of the flame sensor (1).
- Method according to claim 2, characterised in that the voltage signal (30, 40) at the capacitor (18) is evaluated with a uniform threshold value (34) for different impedances of the flame sensor (1).
- Method according to claim 2 or 3, characterised in that evaluation of the voltage signal (30, 40) at the capacitor (18) at the end of the charging and/or discharging phase (31, 32) detects component faults or flame sensor faults.
- Device for flame monitoring with a capacitor (18) which is connected for charging to a reference voltage source (13) and for discharging via a coupling element (19) to a flame sensor (1), with the reference voltage source (13) being connected via a switch (12) to the capacitor which, at the instigation of a control unit (21) is closed for charging the capacitor or opened for discharging the capacitor (18), characterised in that the control unit (21) features an A/D converter (20) that is connected via a switch (17) or directly to the capacitor (18), with the time for respectively charging or discharging (31, 32) the capacitor (18) being determined by the control unit (21) as a function of the characteristics of the flame sensor (1) used and that, at the instigation of the control unit for flame monitoring (21), the respective charging or discharging of the capacitor is repeated cyclically, whereby a voltage signal (30, 40) which is subject to single-channel evaluation by means of a threshold value (34) is received at the capacitor (18), with a voltage divider (27) being provided for feeding back the ac mains phase to the control unit (21).
- Method according to claim 5, characterised in that a sample-and-hold element (28) is provided for grid-synchronous sampling of the voltage signal (30, 40).
- Method according to claim 6, characterised in that a pulse shaper stage (29) creates a control pulse for buffering the sample values in a capacitor (30).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE502005009411T DE502005009411D1 (en) | 2005-05-06 | 2005-05-06 | Method and device for flame monitoring |
EP05009937A EP1719947B1 (en) | 2005-05-06 | 2005-05-06 | Method and device for flame monitoring |
US11/429,285 US7382140B2 (en) | 2005-05-06 | 2006-05-08 | Method and device for flame monitoring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05009937A EP1719947B1 (en) | 2005-05-06 | 2005-05-06 | Method and device for flame monitoring |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1719947A1 EP1719947A1 (en) | 2006-11-08 |
EP1719947B1 true EP1719947B1 (en) | 2010-04-14 |
Family
ID=35044758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05009937A Active EP1719947B1 (en) | 2005-05-06 | 2005-05-06 | Method and device for flame monitoring |
Country Status (3)
Country | Link |
---|---|
US (1) | US7382140B2 (en) |
EP (1) | EP1719947B1 (en) |
DE (1) | DE502005009411D1 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007018122B4 (en) * | 2007-04-16 | 2013-10-17 | Viessmann Werke Gmbh & Co Kg | Flame monitoring device with a voltage generating and measuring arrangement and method for monitoring a burner by means of the flame monitoring device |
US7646005B2 (en) * | 2008-01-28 | 2010-01-12 | Alstom Technology Ltd | Variable length adjustable flame scanner |
NL1035791C2 (en) * | 2008-08-05 | 2009-06-10 | Philip Emanuel Bosma | Flame ionization method for gas-fired equipment, involves measuring sum and difference between time periods required for positive charging and negative discharging of capacitor to measure degree of ionization of flame |
DE102009057121A1 (en) | 2009-12-08 | 2011-06-09 | Scheer Heizsysteme & Produktionstechnik Gmbh | Method for qualitative monitoring of combustion status of boiler system in e.g. industrial combustion, involves determining exhaust gas value of combustion of fuel-air-mixture by boiler-isothermal current and/or voltage characteristic curve |
WO2012078403A1 (en) | 2010-12-07 | 2012-06-14 | 3M Innovative Properties Company | Ionization balance device with shielded capacitor circuit for ion balance measurements and adjustments |
US9467141B2 (en) | 2011-10-07 | 2016-10-11 | Microchip Technology Incorporated | Measuring capacitance of a capacitive sensor with a microcontroller having an analog output for driving a guard ring |
US9437093B2 (en) | 2011-10-06 | 2016-09-06 | Microchip Technology Incorporated | Differential current measurements to determine ION current in the presence of leakage current |
US9071264B2 (en) | 2011-10-06 | 2015-06-30 | Microchip Technology Incorporated | Microcontroller with sequencer driven analog-to-digital converter |
US8847802B2 (en) | 2011-10-06 | 2014-09-30 | Microchip Technology Incorporated | Microcontroller ADC with a variable sample and hold capacitor |
US9257980B2 (en) | 2011-10-06 | 2016-02-09 | Microchip Technology Incorporated | Measuring capacitance of a capacitive sensor with a microcontroller having digital outputs for driving a guard ring |
US9252769B2 (en) | 2011-10-07 | 2016-02-02 | Microchip Technology Incorporated | Microcontroller with optimized ADC controller |
US9404945B2 (en) * | 2011-12-08 | 2016-08-02 | Desco Industries, Inc. | Ionization monitoring device |
US9189940B2 (en) | 2011-12-14 | 2015-11-17 | Microchip Technology Incorporated | Method and apparatus for detecting smoke in an ion chamber |
US9176088B2 (en) * | 2011-12-14 | 2015-11-03 | Microchip Technology Incorporated | Method and apparatus for detecting smoke in an ion chamber |
US9207209B2 (en) | 2011-12-14 | 2015-12-08 | Microchip Technology Incorporated | Method and apparatus for detecting smoke in an ion chamber |
US9823280B2 (en) | 2011-12-21 | 2017-11-21 | Microchip Technology Incorporated | Current sensing with internal ADC capacitor |
US8884771B2 (en) | 2012-08-01 | 2014-11-11 | Microchip Technology Incorporated | Smoke detection using change in permittivity of capacitor air dielectric |
US10508807B2 (en) * | 2014-05-02 | 2019-12-17 | Air Products And Chemicals, Inc. | Remote burner monitoring system and method |
CN105091024A (en) * | 2015-03-17 | 2015-11-25 | 霍尼韦尔环境自控产品(天津)有限公司 | Flame detection system |
US9417124B1 (en) * | 2015-05-13 | 2016-08-16 | Honeywell International Inc. | Utilizing a quench time to deionize an ultraviolet (UV) sensor tube |
US10648857B2 (en) | 2018-04-10 | 2020-05-12 | Honeywell International Inc. | Ultraviolet flame sensor with programmable sensitivity offset |
US10739192B1 (en) | 2019-04-02 | 2020-08-11 | Honeywell International Inc. | Ultraviolet flame sensor with dynamic excitation voltage generation |
ES2958287T3 (en) * | 2019-04-17 | 2024-02-06 | Copreci S Coop | Gas cooking appliance and associated method |
DE102022111802A1 (en) | 2022-05-11 | 2023-11-16 | Viessmann Climate Solutions Se | Method for operating a burner device |
DE102023111435A1 (en) | 2023-05-03 | 2024-11-07 | Vaillant Gmbh | Method for preventing critical operating conditions of a heating device with pneumatic gas-air connection, heating device, computer program and computer-readable storage medium |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4538137A (en) * | 1983-01-20 | 1985-08-27 | Nittan Company, Limited | Fire detector |
US4591725A (en) * | 1983-10-26 | 1986-05-27 | Bryant Jack A | System for amplifying all frequencies detected from a flame detector |
NL8401173A (en) * | 1984-04-12 | 1985-11-01 | Philips Nv | FLAME PROTECTION CIRCUIT. |
FI854809A (en) * | 1984-12-18 | 1986-06-19 | Hochiki Co | BRAND DETECTOR SOM BASERAR SIG PAO MINSKAT LJUS. |
JPS62255729A (en) * | 1986-04-30 | 1987-11-07 | Matsushita Electric Ind Co Ltd | Circuit to detect condition of combustion |
DE4309454C2 (en) | 1993-03-24 | 1997-03-06 | Dungs Karl Gmbh & Co | Ionization flame monitor |
US5899684A (en) * | 1997-07-11 | 1999-05-04 | Desa International, Inc. | Power phase regulator circuit improvement, motor start switch, self-adjusting preheat and ignition trial improvement, and series-type voltage regulator improvement to hot surface ignition control for fuel oil burner |
EP0908679A1 (en) * | 1997-10-10 | 1999-04-14 | Electrowatt Technology Innovation AG | Circuit for flame monitoring |
DK0953805T3 (en) * | 1998-04-24 | 2003-03-10 | Siemens Building Tech Ag | flame Detector |
DE19841475C1 (en) * | 1998-09-10 | 2000-02-03 | Electrowatt Tech Innovat Corp | Flame monitoring system for gas-, oil- or coal-fired burner |
DE10123214A1 (en) | 2001-05-12 | 2002-11-28 | Dungs Karl Gmbh & Co | Long-term safe flame monitoring method and monitoring device |
DE10247168B4 (en) * | 2002-10-10 | 2004-09-09 | Karl Dungs Gmbh & Co. Kg | Flame detector with self-test function and process for operational monitoring |
US7221260B2 (en) * | 2003-11-21 | 2007-05-22 | Honeywell International, Inc. | Multi-sensor fire detectors with audio sensors and systems thereof |
EP1769473B1 (en) * | 2004-07-09 | 2012-10-03 | Tyco Safety Products Canada Ltd. | Smoke detector calibration |
US7202794B2 (en) * | 2004-07-20 | 2007-04-10 | General Monitors, Inc. | Flame detection system |
GB0424934D0 (en) * | 2004-11-12 | 2004-12-15 | Qinetiq Ltd | Infrared detector |
US7289032B2 (en) * | 2005-02-24 | 2007-10-30 | Alstom Technology Ltd | Intelligent flame scanner |
US7242310B2 (en) * | 2005-04-28 | 2007-07-10 | Rheem Manufacturing Company | Control techniques for shut-off sensors in fuel-fired heating appliances |
-
2005
- 2005-05-06 EP EP05009937A patent/EP1719947B1/en active Active
- 2005-05-06 DE DE502005009411T patent/DE502005009411D1/en active Active
-
2006
- 2006-05-08 US US11/429,285 patent/US7382140B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP1719947A1 (en) | 2006-11-08 |
DE502005009411D1 (en) | 2010-05-27 |
US7382140B2 (en) | 2008-06-03 |
US20070019361A1 (en) | 2007-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1719947B1 (en) | Method and device for flame monitoring | |
EP1154203B1 (en) | Measuring device for a flame | |
DE4309454C2 (en) | Ionization flame monitor | |
DE19821921B4 (en) | Circuit arrangement for operating a discharge lamp | |
EP1256763B1 (en) | Method and device for long-term safe flame monitoring | |
DE19841475C1 (en) | Flame monitoring system for gas-, oil- or coal-fired burner | |
EP1021684B1 (en) | Method and device for monitoring a flame | |
DE1766440B2 (en) | Fire alarm system | |
DE4233224C2 (en) | Device for detecting the combustion of the mixture in a cylinder of an internal combustion engine | |
EP2439451B1 (en) | Device for recognising the presence of a flame | |
WO2000072642A1 (en) | Electronic ballast for at least one low-pressure discharge lamp | |
DE10247977A1 (en) | Method and system for checking the functionality of a particle detector | |
DE4122636C2 (en) | Device and method for monitoring a flame | |
DE3023784C2 (en) | Photoelectric detector | |
DE102004043455B4 (en) | Method for the diagnosis of an open secondary winding of an ignition coil using the signal for the ionization current | |
DE10229848B4 (en) | Combustion status determination system for internal combustion engines | |
DE102005012388B4 (en) | Method for detecting the presence of a flame in the combustion chamber of a burner and igniter for a burner | |
WO2006081797A1 (en) | Method for operating a high-pressure discharge lamp, operating appliance for a high-pressure discharge lamp, and illumination device | |
DE3401603C1 (en) | Self-monitoring flame guard | |
DE4027090C2 (en) | Arrangement for monitoring a burner flame | |
EP2127498B1 (en) | Evaluation device for the ignition energy of a discharge lamp | |
DE10209620A1 (en) | EOL detection with integrated helix interrogation | |
DE2707120A1 (en) | CIRCUIT ARRANGEMENT FOR AN INTRINSICALLY SAFE FLAME GUARD | |
DE10247168B4 (en) | Flame detector with self-test function and process for operational monitoring | |
DE10209619A1 (en) | Operating circuit for discharge lamp with EOL early detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20070222 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20090312 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502005009411 Country of ref document: DE Date of ref document: 20100527 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100414 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20100603 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100528 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100414 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110117 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240603 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240522 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 20 |