Nothing Special   »   [go: up one dir, main page]

EP1719947B1 - Method and device for flame monitoring - Google Patents

Method and device for flame monitoring Download PDF

Info

Publication number
EP1719947B1
EP1719947B1 EP05009937A EP05009937A EP1719947B1 EP 1719947 B1 EP1719947 B1 EP 1719947B1 EP 05009937 A EP05009937 A EP 05009937A EP 05009937 A EP05009937 A EP 05009937A EP 1719947 B1 EP1719947 B1 EP 1719947B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
flame
charging
discharging
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05009937A
Other languages
German (de)
French (fr)
Other versions
EP1719947A1 (en
Inventor
Klaus Obrecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies HVAC Products GmbH
Original Assignee
Siemens Building Technologies HVAC Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies HVAC Products GmbH filed Critical Siemens Building Technologies HVAC Products GmbH
Priority to DE502005009411T priority Critical patent/DE502005009411D1/en
Priority to EP05009937A priority patent/EP1719947B1/en
Priority to US11/429,285 priority patent/US7382140B2/en
Publication of EP1719947A1 publication Critical patent/EP1719947A1/en
Application granted granted Critical
Publication of EP1719947B1 publication Critical patent/EP1719947B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/12Burner simulation or checking
    • F23N2227/16Checking components, e.g. electronic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/06Fail safe for flame failures

Definitions

  • the invention relates to a method and a device for flame monitoring according to the subject matter of claims 1 and 5.
  • a method and a device for flame monitoring for example, from EP 617 234 A1 known.
  • This document discloses a Ionisationsflammenwumbleter with a capacitor which is connected to a reference voltage source and a coupling element with the secondary circuit of a Zündübertragers. As long as there is no flame between the ignition electrode and the ground line, the capacitor is charged via a resistor to an operating voltage. As soon as an ionization current flows as a result of the formation of flames, the capacitor is discharged. The capacitor is connected to a monitoring circuit which, when falling below a predetermined threshold value, generates an output signal which indicates the presence of a flame.
  • the EP 1 256 763 A2 discloses a flame monitoring method in which the radiation generated by the flame is detected by a photoresistor and the sensor signal is evaluated in two channels. The first channel is used to detect the average brightness and the second channel is used to detect alternating parts resulting from the flickering of the flame. The flame is only recognized as burning if the signal is within a specified range at both channel outputs.
  • the document JP-62255729 discloses a circuit and method for flame monitoring in which a reference voltage source is connected via a switch to a capacitor which is closed to charge the capacitor or to discharge the capacitor (18) is opened, wherein the capacitor is charged during the charging phase with a reference voltage and the Capacitor is discharged via a during the discharge phase connected to a flame sensor coupling member. In this case, the time duration is evaluated until falling below a threshold value provided for the discharge phase of the capacitor.
  • the invention has for its object to provide a method and a device for flame monitoring, which is versatile and allows a simple signal evaluation.
  • a capacitor connected to a voltage source during a charging phase is charged to a voltage value, and during a discharge phase the capacitor is discharged via a coupling member connected to the flame sensor.
  • the period of time for the charging and discharging phase of the capacitor is chosen as a function of the characteristic, in particular the impedance of the flame sensor.
  • the charging or discharging of the capacitor is repeated cyclically and the resulting voltage signal is evaluated for flame monitoring single-channel, the evaluation of the voltage signal on the capacitor is synchronous with the mains frequency.
  • a threshold value which is uniform for different sensor impedances is preferably used.
  • various flames for. B. pilot flame or flame at maximum load of an oil, gas, or solid fuel burner are monitored, with a variety of different flame sensors, eg. As photoresistor, ionization current electrode, UV tubes, etc. can be used for flame monitoring.
  • the invention does not require active signal amplification for evaluation.
  • the monitoring circuit can be constructed with a small number of components.
  • the capacitor provided for flame monitoring also performs the function of signal filtering with a low-pass character.
  • the method according to the invention can be used in continuous operation or in the intermittent operation of a burner, wherein different fault scenarios can be taken into account in the signal evaluation.
  • the impedance of the flame sensor can assume a static value in the event of a fault or when exposed to daylight. This can be detected at the end of the charging phase by evaluating the voltage signal obtained at the capacitor.
  • Also may be component failure of the circuit or the sensor For example, a short circuit of the flame sensor or a line break are detected to the flame sensor.
  • extraneous light can be detected. If the flame sensor is irradiated with a fluorescent lamp or light bulb, this changes the impedance of the flame sensor in the rhythm of the mains frequency or their multiples.
  • the network-harmonic changes of the sensor impedance caused by the extraneous light source lead to no signal dynamics in a network-synchronous evaluation of the voltage signal.
  • the z. B. in the frequency range of 8-30 Hertz be monitored and evaluated.
  • Fig. 1 shows the basic structure of a non-inventive circuit for flame monitoring, which can be adapted with little modification to different flame sensors for detecting the flame and flame existence of oil, gas and solid fuel burners.
  • the flame sensor is z. B. a photoresistor 1, which has a radiation sensitivity in the spectral range to be monitored.
  • the radiation sensitivity manifests itself by different impedance values upon irradiation of the flame sensor, with an increase in the intensity of the flame radiation resulting in a decrease in the impedance value of the photoresistor.
  • the photoresistor 1 is connected via a coupling member 19 to a capacitor 18 provided for evaluation.
  • the capacitor 18 is connected via a switch 12 to a reference voltage source 13, which has an internal resistance 11.
  • the capacitor 18 is connected via the internal resistance 11 by means of the switch 12 to the reference voltage source 13. Characterized the capacitor 18 is charged to a voltage value which is dependent on the internal resistance 11 of the reference voltage 13, the impedance of the coupling member 19 and the photoresistor 1. After a defined charging time, a measured value dependent on the impedance of the flame sensor 1 is obtained by an A / D converter 20.
  • the A / D converter 20 can be connected to the capacitor 18 via a switch 17 and a resistor 16. However, the A / D converter 20 may also be directly connected to the capacitor 18.
  • the switches 12 and 17 may, for. B. field effect transistors.
  • the connection to the reference voltage source 13 is interrupted by means of the switch 12 and the capacitor 18 is discharged via the coupling impedance 19 through the photoresistor 1.
  • the A / D converter 20 supplies a measured value which is dependent on the impedance of the flame sensor 1 and filtered by the capacitor 18.
  • the control of the charging and / or discharge phase is carried out by a control unit 21, which z. B. is designed as a microprocessor or logic device with comparator.
  • FIG. 2 shows the waveform for the voltage Uc obtained at the capacitor as a function of the impedance of the flame sensor and the time.
  • the increase in impedance is shown by an arrow 33.
  • the voltage Uc obtained at the end of the charge phase 31 or discharge phase 32 at the capacitor assumes a higher value.
  • a uniform threshold value 34 is preferably used for evaluation of the sensor impedance-dependent voltage signal 30 for evaluation of the sensor impedance-dependent voltage signal 30, preferably used.
  • the definition of the threshold value 34 and the time duration for charging or discharging phase can be carried out by a control unit.
  • the period of time for the charging or discharging phase is selected as a function of the respective impedance or characteristic of the flame sensor.
  • FIG. 3 shows an inventive development of in FIG. 1 shown monitoring circuit, which additionally has a voltage divider 27, which serves to return the network phase to the control unit 21.
  • the voltage across the capacitor 18 is thereby detected synchronously with the mains frequency.
  • the charging phase is preferably chosen so long that after charging of the capacitor 18, the switch 12 remains closed for at least one network period. During this time, by monitoring the mains phase and closing the switch 17, the voltage obtained at the capacitor 18 is detected by the A / D converter 20 cyclically and synchronously with the mains frequency. If the flame sensor is irradiated by a fluorescent lamp, for example, then the sensor impedance changes in the rhythm of the mains frequency or its multiples.
  • Fig. 4 the voltage Uc obtained at the capacitor is shown together with a mains-synchronous extraneous light signal 50 as a function of time.
  • a voltage signal 40 characteristic of the respective sensor impedance, is obtained, which can be detected and evaluated in a network-synchronous manner at the times t1, t2, t3, etc.
  • identical voltage values Uc are obtained for one and the same sensor impedance in this exemplary embodiment. From these voltages z. B. an average can be formed, which is evaluated for extraneous light detection. If the mean value lies below a defined threshold value 34, then this is recognized as extraneous light error.
  • FIG. 5 shows a circuit in which the sampling can be done at arbitrary times.
  • the samples supplied by a sample-and-hold device 28 in synchronism with the line frequency are buffered in a capacitor 30.
  • a pulse shaper 29 generates from the mains frequency a control pulse which, for a short time, closes the sample-and-hold circuit 28, thereby causing the capacitor 30 to be charged with the samples.
  • FIG. 6 shows a circuit that is used for two different flame sensors 1 and 2.
  • a chemical reaction takes place during combustion, as a result of which free ions occur. These cause the flame 3 to become conductive and a current to flow when a voltage is applied. The ions move only in the direction of the flame.
  • a serial link 22 shows a simplified equivalent circuit for the rectification effect by flame ionization. An alternating voltage is applied to the ionization electrode 2 via a capacitor 25 and a resistor 26.
  • Fig. 7 shows a further education in FIG. 6 shown circuit which additionally has a voltage divider 27, which serves to return the network phase to the control unit 21.
  • the detection of the voltage across the capacitor 18 is thereby synchronous to the mains frequency.
  • the evaluation can be done in the same manner as described above in connection with a photoresistor.
  • FIG. 8 shows a monitoring circuit for a UV sensor.
  • a pulsating voltage is applied to a UV sensor 4 via a capacitor 25, a resistor 26 and a diode 5.
  • the W tube When irradiated with UV light, the W tube is then ignited.
  • the cyclic firing of the W-tube drives a pulsed current through the diode 5 and leads to a potential shift at the capacitor 25.
  • Via a coupling resistor 23 and a low-pass filter 24 the charge transfer at the capacitor 25 is coupled to the capacitor 18.
  • the charge transfer at the capacitor 25 is polarized such that this leads to a discharge of the capacitor 18 during the discharge phase.
  • the evaluation of the voltage signal on the capacitor 18 for flame monitoring can be carried out in the same manner as has been described in connection with a photoresistor or ionization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Flammenüberwachung gemäss dem Gegenstand der Ansprüche 1 und 5.The invention relates to a method and a device for flame monitoring according to the subject matter of claims 1 and 5.

Ein Verfahren und eine Vorrichtung zur Flammenüberwachung sind beispielsweise aus der EP 617 234 A1 bekannt. Diese Druckschrift offenbart einen Ionisationsflammenwächter mit einem Kondensator, der mit einer Referenzspannungsquelle und über ein Koppelglied mit dem Sekundärkreis eines Zündübertragers verbunden ist. Solange zwischen der Zündelektrode und der Masseleitung keine Flamme vorhanden ist, wird der Kondensator über einen Widerstand auf eine Betriebsspannung aufgeladen. Sobald infolge der Flammenbildung ein Ionisationsstrom fliesst, wird der Kondensator entladen. Der Kondensator ist mit einer Überwachungsschaltung verbunden, welche bei Unterschreiten eines vorbestimmten Schwellenwertes ein Ausgangssignal erzeugt, welches das Vorhandensein einer Flamme anzeigt.A method and a device for flame monitoring, for example, from EP 617 234 A1 known. This document discloses a Ionisationsflammenwächter with a capacitor which is connected to a reference voltage source and a coupling element with the secondary circuit of a Zündübertragers. As long as there is no flame between the ignition electrode and the ground line, the capacitor is charged via a resistor to an operating voltage. As soon as an ionization current flows as a result of the formation of flames, the capacitor is discharged. The capacitor is connected to a monitoring circuit which, when falling below a predetermined threshold value, generates an output signal which indicates the presence of a flame.

Die EP 1 256 763 A2 offenbart ein Flammenüberwachungsverfahren, bei dem die von der Flamme erzeugte Strahlung von einem Photowiderstand erfasst und das Sensorsignal zweikanalig ausgewertet wird. Der erste Kanal dient zur Erfassung der mittleren Helligkeit und der zweite Kanal dient zur Erfassung von Wechselanteilen, die vom Flackern der Flamme herrühren. Die Flamme wird nur dann als ordnungsgemäss brennend anerkannt, wenn an beiden Kanalausgängen das Signal jeweils in einem vorgegebenen Bereich liegt.The EP 1 256 763 A2 discloses a flame monitoring method in which the radiation generated by the flame is detected by a photoresistor and the sensor signal is evaluated in two channels. The first channel is used to detect the average brightness and the second channel is used to detect alternating parts resulting from the flickering of the flame. The flame is only recognized as burning if the signal is within a specified range at both channel outputs.

Das Dokument JP-62255729 offenbart eine Schaltung und ein Verfahren zur Flammenüberwachung, bei dem eine Referenzspannungsquelle über einen Schalter mit einem Kondensator verbunden ist, der zum Aufladen des Kondensators geschlossen beziehungsweise zum Entladen des Kondensators (18) geöffnet wird, wobei der Kondensator während der Ladephase mit einer Referenzspannung aufgeladen wird und der Kondensator über ein während der Entladungsphase mit einem Flammensensor verbundenes Kopplungsglied entladen wird. Dabei wird die Zeitdauer bis zum Unterschreiten eines für die Entladungsphase des Kondensators vorgesehenen Schwellenwertes ausgewertet.The document JP-62255729 discloses a circuit and method for flame monitoring in which a reference voltage source is connected via a switch to a capacitor which is closed to charge the capacitor or to discharge the capacitor (18) is opened, wherein the capacitor is charged during the charging phase with a reference voltage and the Capacitor is discharged via a during the discharge phase connected to a flame sensor coupling member. In this case, the time duration is evaluated until falling below a threshold value provided for the discharge phase of the capacitor.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren beziehungsweise eine Vorrichtung zur Flammenüberwachung vorzuschlagen, das vielseitig einsetzbar ist und eine einfache Signalauswertung ermöglicht.The invention has for its object to provide a method and a device for flame monitoring, which is versatile and allows a simple signal evaluation.

Diese Aufgabe wird durch die in den Ansprüchen 1 und 5 angegebenen Merkmale gelöst.This object is achieved by the features specified in claims 1 and 5.

Bei dem erfindungsgemässen Verfahren wird ein während einer Ladephase mit einer Spannungsquelle verbundener Kondensator auf einen Spannungswert aufgeladen und während einer Entladungsphase wird der Kondensator über ein mit dem Flammensensor verbundenes Kopplungsglied entladen. Die Zeitdauer für die Lade- und Entladungsphase des Kondensators wird dabei in Abhängigkeit von der Charakteristik insbesondere der Impedanz des Flammensensors gewählt. Das Laden beziehungsweise Entladen des Kondensators wird zyklisch wiederholt und das dadurch erhaltene Spannungssignal wird zur Flammenüberwachung einkanalig ausgewertet, wobei die Auswertung des Spannungssignals am Kondensator synchron mit der Netzfrequenz erfolgt.
Zur Signalauswertung wird vorzugsweise ein für verschiedene Sensorimpedanzen einheitlicher Schwellenwert verwendet.
In the method according to the invention, a capacitor connected to a voltage source during a charging phase is charged to a voltage value, and during a discharge phase the capacitor is discharged via a coupling member connected to the flame sensor. The period of time for the charging and discharging phase of the capacitor is chosen as a function of the characteristic, in particular the impedance of the flame sensor. The charging or discharging of the capacitor is repeated cyclically and the resulting voltage signal is evaluated for flame monitoring single-channel, the evaluation of the voltage signal on the capacitor is synchronous with the mains frequency.
For signal evaluation, a threshold value which is uniform for different sensor impedances is preferably used.

Durch die Erfindung können verschiedene Flammen, z. B. Pilotflamme oder Flamme bei Maximallast eines Öl-, Gas-, oder Feststoffbrenners überwacht werden, wobei eine Vielzahl unterschiedlicher Flammensensoren, z. B. Photowiderstand, Ionisationsstromelektrode, UV-Röhren, etc. zur Flammenüberwachung eingesetzt werden können.By the invention, various flames, for. B. pilot flame or flame at maximum load of an oil, gas, or solid fuel burner are monitored, with a variety of different flame sensors, eg. As photoresistor, ionization current electrode, UV tubes, etc. can be used for flame monitoring.

Die Erfindung benötigt keine aktive Signalverstärkung zur Auswertung. Dadurch kann die Überwachungsschaltung mit einer geringen Anzahl von Bauelementen aufgebaut werden. Beispielsweise übernimmt der zur Flammenüberwachung vorgesehene Kondensator auch die Funktion einer Signalfilterung mit Tiefpasscharakter.The invention does not require active signal amplification for evaluation. As a result, the monitoring circuit can be constructed with a small number of components. For example, the capacitor provided for flame monitoring also performs the function of signal filtering with a low-pass character.

Das erfindungsgemässe Verfahren kann im Dauerbetrieb oder im intermittierenden Betrieb eines Brenners zum Einsatz kommen, wobei bei der Signalauswertung unterschiedliche Fehlerszenarien berücksichtigt werden können. Beispielsweise kann die Impedanz des Flammensensors im Fehlerfall oder bei Bestrahlung mit Tageslicht einen statischen Wert annehmen. Dies kann am Ende der Ladephase durch Auswertung des am Kondensator erhaltenen Spannungssignals erkannt werden. Auch können Bauteilfehler der Schaltung oder des Sensors beispielsweise ein Kurzschluss des Flammensensors oder ein Leitungsunterbruch zum Flammensensor festgestellt werden.The method according to the invention can be used in continuous operation or in the intermittent operation of a burner, wherein different fault scenarios can be taken into account in the signal evaluation. For example, the impedance of the flame sensor can assume a static value in the event of a fault or when exposed to daylight. This can be detected at the end of the charging phase by evaluating the voltage signal obtained at the capacitor. Also may be component failure of the circuit or the sensor For example, a short circuit of the flame sensor or a line break are detected to the flame sensor.

Durch das erfindungsgemässe Verfahren kann auch Fremdlicht erkannt werden. Wird der Flammensensor mit einer Leuchtstofflampe oder Glühbirne bestrahlt, so ändert sich dadurch die Impedanz des Flammensensors im Rhythmus der Netzfrequenz oder deren Vielfache. Die durch die Fremdlichtquelle bedingten netzharmonischen Änderungen der Sensorimpedanz führen bei einer netzsynchronen Auswertung des Spannungssignals zu keiner Signaldynamik. Für eine Erkennung von Fremdlicht im Dauerbetrieb, kann auch der Flackeranteil der Flamme, der z. B. im Frequenzbereich von 8-30 Hertz liegt, überwacht und ausgewertet werden.By the inventive method, extraneous light can be detected. If the flame sensor is irradiated with a fluorescent lamp or light bulb, this changes the impedance of the flame sensor in the rhythm of the mains frequency or their multiples. The network-harmonic changes of the sensor impedance caused by the extraneous light source lead to no signal dynamics in a network-synchronous evaluation of the voltage signal. For detection of extraneous light in continuous operation, and the Flackeranteil the flame, the z. B. in the frequency range of 8-30 Hertz, be monitored and evaluated.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung der Erfindung anhand der Ausführungsbeispiele und den Figuren. Es zeigen:

Fig.1
ein prinzipielles Blockschaltbild einer nicht erfindungsgemässen Überwachungsschaltung
Fig. 2
Spannungssignalverlauf in Abhängigkeit von der Sensorimpedanz
Fig.3
eine gemäss der Erfindung dargestellte Schaltung zur Erkennung von Fremdlicht
Fig.4
Spannungssignalverlauf mit Fremdlichtsignal
Fig.5
bis 8 jeweils eine weitere Ausführungsform der erfindungsgemässen Überwachungsschaltung
Further advantages will become apparent from the following description of the invention with reference to the embodiments and the figures. Show it:
Fig.1
a schematic block diagram of a non-inventive monitoring circuit
Fig. 2
Voltage waveform as a function of the sensor impedance
Figure 3
a circuit according to the invention for detecting extraneous light
Figure 4
Voltage waveform with extraneous light signal
Figure 5
to 8 each show a further embodiment of the inventive monitoring circuit

Fig. 1 zeigt den prinzipiellen Aufbau einer nicht erfindungsgemässen Schaltung zur Flammenüberwachung, die mit geringer Modifikation an unterschiedliche Flammensensoren zur Erfassung der Flammenbildung und Flammenexistenz von Öl-, Gas und Feststoffbrennern angepasst werden kann. Fig. 1 shows the basic structure of a non-inventive circuit for flame monitoring, which can be adapted with little modification to different flame sensors for detecting the flame and flame existence of oil, gas and solid fuel burners.

Der Flammensensor ist z. B. ein Photowiderstand 1, der eine Strahlungsempfindlichkeit in dem zu überwachenden Spektralbereich aufweist. Die Strahlungsempfindlichkeit äußert sich durch unterschiedliche Impedanzwerte bei Bestrahlung des Flammensensors, wobei eine Zunahme der Intensität der Flammenstrahlung eine Abnahme des Impedanzwertes des Photowiderstandes zur Folge hat.The flame sensor is z. B. a photoresistor 1, which has a radiation sensitivity in the spectral range to be monitored. The radiation sensitivity manifests itself by different impedance values upon irradiation of the flame sensor, with an increase in the intensity of the flame radiation resulting in a decrease in the impedance value of the photoresistor.

Der Photowiderstand 1 ist über ein Kopplungsglied 19 mit einem zur Auswertung vorgesehenen Kondensator 18 verbunden. Der Kondensator 18 ist über einen Schalter 12 mit einer Referenzspannungsquelle 13 verbunden, welche einen Innenwiderstand 11 aufweist.The photoresistor 1 is connected via a coupling member 19 to a capacitor 18 provided for evaluation. The capacitor 18 is connected via a switch 12 to a reference voltage source 13, which has an internal resistance 11.

Zur Aufladung ist der Kondensator 18 über den Innenwiderstand 11 mittels des Schalters 12 mit der Referenzspannungsquelle 13 verbunden. Dadurch wird der Kondensator 18 auf einen Spannungswert aufgeladen, der abhängig von dem Innenwiderstand 11 der Referenzspannung 13, der Impedanz des Kopplungsgliedes 19 und des Photowiderstandes 1 ist. Nach einer definierten Ladezeit wird ein von der Impedanz des Flammensensors 1 abhängiger Messwert durch einen A/D-Wandler 20 erhalten. Der A/D-Wandler 20 kann über einen Schalter 17 und einen Widerstand 16 mit dem Kondensator 18 verbunden. Der A/D- Wandler 20 kann jedoch auch direkt mit dem Kondensator 18 verbunden werden. Die Schalter 12 und 17 können z. B. Feldeffekttransistoren sein.For charging, the capacitor 18 is connected via the internal resistance 11 by means of the switch 12 to the reference voltage source 13. Characterized the capacitor 18 is charged to a voltage value which is dependent on the internal resistance 11 of the reference voltage 13, the impedance of the coupling member 19 and the photoresistor 1. After a defined charging time, a measured value dependent on the impedance of the flame sensor 1 is obtained by an A / D converter 20. The A / D converter 20 can be connected to the capacitor 18 via a switch 17 and a resistor 16. However, the A / D converter 20 may also be directly connected to the capacitor 18. The switches 12 and 17 may, for. B. field effect transistors.

In der Entladungsphase ist die Verbindung zur Referenzspannungsquelle 13 mittels des Schalters 12 unterbrochen und der Kondensator 18 wird über die Kopplungsimpedanz 19 durch den Photowiderstand 1 entladen. Nach einer definierten Entladungszeit liefert der A/D-Wandler 20 einen von der Impedanz des Flammensensors 1 abhängigen durch den Kondensator 18 gefilterten Messwert. Die Steuerung der Lade- und/oder Entladungsphase erfolgt durch eine Steuereinheit 21, welche z. B. als Mikroprozessor oder Logikbaustein mit Komparator ausgeführt ist.In the discharge phase, the connection to the reference voltage source 13 is interrupted by means of the switch 12 and the capacitor 18 is discharged via the coupling impedance 19 through the photoresistor 1. After a defined discharge time, the A / D converter 20 supplies a measured value which is dependent on the impedance of the flame sensor 1 and filtered by the capacitor 18. The control of the charging and / or discharge phase is carried out by a control unit 21, which z. B. is designed as a microprocessor or logic device with comparator.

Figur 2 zeigt den Signalverlauf für die am Kondensator erhaltene Spannung Uc in Abhängigkeit von der Impedanz des Flammensensors und der Zeit. Die Zunahme der Impedanz ist durch einen Pfeil 33 dargestellt. Mit zunehmender Impedanz nimmt die am Ende der Ladungsphase 31 beziehungsweise Entladungsphase 32 am Kondensator erhaltene Spannung Uc einen höheren Wert an. Durch eine zyklische Wiederholung von Ladebeziehungsweise Entladungsphase wird ein für die jeweilige Sensorimpedanz charakteristisches Spannungssignal 30 erhalten, welches zur Flammenüberwachung ausgewertet wird. Zur Auswertung des von der Sensorimpedanz abhängigen Spannungssignals 30 wird vorzugsweise ein einheitlicher Schwellenwert 34 verwendet. Die Definition des Schwellenwertes 34 und der Zeitdauer für Ladebeziehungsweise Entladungsphase kann durch eine Steuereinheit erfolgen. Die Zeitdauer für die Lade- beziehungsweise Entladungsphase wird dabei in Abhängigkeit von der jeweiligen Impedanz beziehungsweise Charakteristik des Flammensensors gewählt. Durch eine Auswertung des Spannungssignals 30 am Ende der Ladephase 31 und/oder am Ende der Entladungsphase 32, können z. B. Bauteilfehler der Überwachungsschaltung oder Fehler des Flammensensors erkannt werden. FIG. 2 shows the waveform for the voltage Uc obtained at the capacitor as a function of the impedance of the flame sensor and the time. The increase in impedance is shown by an arrow 33. With increasing impedance, the voltage Uc obtained at the end of the charge phase 31 or discharge phase 32 at the capacitor assumes a higher value. By a cyclic repetition of charging or discharge phase, a characteristic of the respective sensor impedance voltage signal 30 is obtained, which is evaluated for flame monitoring. For evaluation of the sensor impedance-dependent voltage signal 30, a uniform threshold value 34 is preferably used. The definition of the threshold value 34 and the time duration for charging or discharging phase can be carried out by a control unit. The period of time for the charging or discharging phase is selected as a function of the respective impedance or characteristic of the flame sensor. By evaluating the voltage signal 30 at the end of the charging phase 31 and / or at the end of the discharge phase 32, z. B. component failure of the monitoring circuit or error of the flame sensor can be detected.

Figur 3 zeigt eine erfindungsgemässe Weiterbildung der in Figur 1 gezeigten Überwachungsschaltung, welche zusätzlich einen Spannungsteiler 27 aufweist, der zur Rückführung der Netzphase an die Steuereinheit 21 dient. Die Spannung am Kondensator 18 wird dadurch synchron zur Netzfrequenz erfasst. Die Ladephase wird hierbei vorzugsweise so lang gewählt, dass nach Aufladung des Kondensators 18 der Schalter 12 noch für mindestens eine Netzperiode geschlossen bleibt. In dieser Zeit wird durch Überwachung der Netzphase und durch Schließen des Schalters 17 die am Kondensator 18 erhaltene Spannung durch den A/D-Wandler 20 zyklisch und synchron zur Netzfrequenz erfasst. Wird der Flammensensor beispielsweise durch eine Leuchtstofflampe bestrahlt, so ändert sich dadurch die Sensorimpedanz im Rhythmus der Netzfrequenz oder deren Vielfache. FIG. 3 shows an inventive development of in FIG. 1 shown monitoring circuit, which additionally has a voltage divider 27, which serves to return the network phase to the control unit 21. The voltage across the capacitor 18 is thereby detected synchronously with the mains frequency. The charging phase is preferably chosen so long that after charging of the capacitor 18, the switch 12 remains closed for at least one network period. During this time, by monitoring the mains phase and closing the switch 17, the voltage obtained at the capacitor 18 is detected by the A / D converter 20 cyclically and synchronously with the mains frequency. If the flame sensor is irradiated by a fluorescent lamp, for example, then the sensor impedance changes in the rhythm of the mains frequency or its multiples.

In Fig. 4 ist die am Kondensator erhaltene Spannung Uc zusammen mit einem netzsynchronen Fremdlichtsignal 50 in Abhängigkeit von der Zeit dargestellt. Durch eine zyklische Wiederholung von Lade- beziehungsweise Entladungsphase wird ein für die jeweilige Sensorimpedanz charakteristisches Spannungssignal 40, erhalten, welches netzsynchron zu den Zeitpunkten t1, t2, t3, etc. erfasst und ausgewertet werden kann. Dabei werden in diesem Ausführungsbeispiel für ein und dieselbe Sensorimpedanz gleiche Spannungswerte Uc erhalten. Aus diesen Spannungswerten kann z. B. ein Mittelwert gebildet werden, der zur Fremdlichterkennung ausgewertet wird. Liegt der Mittelwert unterhalb eines definierten Schwellenwertes 34, so wird dies als Fremdlichtfehler erkannt.In Fig. 4 the voltage Uc obtained at the capacitor is shown together with a mains-synchronous extraneous light signal 50 as a function of time. Through a cyclic repetition of the charging or discharging phase, a voltage signal 40, characteristic of the respective sensor impedance, is obtained, which can be detected and evaluated in a network-synchronous manner at the times t1, t2, t3, etc. In this case, identical voltage values Uc are obtained for one and the same sensor impedance in this exemplary embodiment. From these voltages z. B. an average can be formed, which is evaluated for extraneous light detection. If the mean value lies below a defined threshold value 34, then this is recognized as extraneous light error.

Figur 5 zeigt eine Schaltung bei der die Abtastung zu beliebigen Zeitpunkten erfolgen kann. Die von einem Abtast-Halteglied 28 synchron zur Netzfrequenz gelieferten Abtastwerte werden dabei in einem Kondensator 30 zwischengespeichert. Eine Impulsformerstufe 29 erzeugt aus der Netzfrequenz einen Steuerimpuls, der für eine kurze Zeit das Abtast-Halteglied 28 schliesst und dadurch eine Aufladung des Kondensators 30 mit den Abtastwerten bewirkt. FIG. 5 shows a circuit in which the sampling can be done at arbitrary times. The samples supplied by a sample-and-hold device 28 in synchronism with the line frequency are buffered in a capacitor 30. A pulse shaper 29 generates from the mains frequency a control pulse which, for a short time, closes the sample-and-hold circuit 28, thereby causing the capacitor 30 to be charged with the samples.

Figur 6 zeigt eine Schaltung die für zwei unterschiedliche Flammensensoren 1 und 2 verwendet wird. Bei einer Gasflamme 3 findet während der Verbrennung eine chemische Reaktion statt, wodurch freie Ionen auftreten. Diese führen dazu, dass die Flamme 3 leitfähig wird und beim Anlegen einer Spannung ein Strom fließen kann. Die Ionen bewegen sich dabei nur in Flammenrichtung. Legt man eine Wechselspannung zwischen Brennermasse und Ionisationselektrode 2, so erfolgt durch die Ionisation ein Gleichrichteffekt.
Ein Serienglied 22 zeigt eine vereinfachte Ersatzschaltung für den Gleichrichteffekt durch Flammenionisation. Eine Wechselspannung wird über einen Kondensator 25 und einen Widerstand 26 an die Ionisationselektrode 2 gelegt. Durch die Flammenionisation findet eine Gleichrichtung des Ionisationsstromes statt, welcher zu einer Potentialverschiebung an dem Kondensator 25 führt. Über einen Kopplungswiderstand 23 und einen Tiefpassfilter 24 wird die Ladungsverschiebung vom Kondensator 25 zum Kondensator 18 eingekoppelt. Während der Entladungsphase wird dann der Kondensator 18 in Abhängigkeit vom Ionisationsstrom entladen.
FIG. 6 shows a circuit that is used for two different flame sensors 1 and 2. In the case of a gas flame 3, a chemical reaction takes place during combustion, as a result of which free ions occur. These cause the flame 3 to become conductive and a current to flow when a voltage is applied. The ions move only in the direction of the flame. If an AC voltage is applied between the burner mass and the ionization electrode 2, then a rectification effect occurs due to the ionization.
A serial link 22 shows a simplified equivalent circuit for the rectification effect by flame ionization. An alternating voltage is applied to the ionization electrode 2 via a capacitor 25 and a resistor 26. Due to the flame ionization, a rectification of the ionization current takes place, which leads to a Potential shift on the capacitor 25 leads. Via a coupling resistor 23 and a low-pass filter 24, the charge transfer from the capacitor 25 to the capacitor 18 is coupled. During the discharge phase, the capacitor 18 is then discharged in dependence on the ionization current.

Fig. 7 zeigt eine Weiterbildung der in Figur 6 gezeigten Schaltung, welche zusätzlich einen Spannungsteiler 27 aufweist, der zur Rückführung der Netzphase an die Steuereinheit 21 dient. Die Erfassung der Spannung am Kondensator 18 erfolgt dadurch synchron zur Netzfrequenz. Die Auswertung kann in der gleichen Art und Weise erfolgen, wie dies eingangs in Verbindung mit einem Photowiderstand beschrieben worden ist. Fig. 7 shows a further education in FIG. 6 shown circuit which additionally has a voltage divider 27, which serves to return the network phase to the control unit 21. The detection of the voltage across the capacitor 18 is thereby synchronous to the mains frequency. The evaluation can be done in the same manner as described above in connection with a photoresistor.

Figur 8 zeigt eine Überwachungsschaltung für einen UV-Sensor. Bei dieser Schaltung wird über einen Kondensator 25, einen Widerstand 26 und eine Diode 5 eine pulsierende Spannung an einen UV-Sensor 4 gelegt. Bei Bestrahlung mit UV-Licht erfolgt dann ein Durchzünden der W-Röhre. Das zyklische Zünden der W-Röhre treibt einen Impulsstrom durch die Diode 5 und führt zu einer Potentialverschiebung am Kondensator 25. Über einen Kopplungswiderstand 23 und einen Tiefpassfilter 24 wird die Ladungsverschiebung am Kondensator 25 zu dem Kondensator 18 eingekoppelt. Die Ladungsverschiebung am Kondensator 25 ist dabei so polarisiert, dass diese zu einer Entladung des Kondensators 18 während der Entladungsphase führt. Die Auswertung des Spannungssignals am Kondensator 18 zur Flammenüberwachung kann dabei in gleicher Art und Weise erfolgen wie dies in Verbindung mit einem Photowiderstand oder Ionisationselektrode beschrieben worden ist. FIG. 8 shows a monitoring circuit for a UV sensor. In this circuit, a pulsating voltage is applied to a UV sensor 4 via a capacitor 25, a resistor 26 and a diode 5. When irradiated with UV light, the W tube is then ignited. The cyclic firing of the W-tube drives a pulsed current through the diode 5 and leads to a potential shift at the capacitor 25. Via a coupling resistor 23 and a low-pass filter 24, the charge transfer at the capacitor 25 is coupled to the capacitor 18. The charge transfer at the capacitor 25 is polarized such that this leads to a discharge of the capacitor 18 during the discharge phase. The evaluation of the voltage signal on the capacitor 18 for flame monitoring can be carried out in the same manner as has been described in connection with a photoresistor or ionization.

Claims (7)

  1. Method for flame monitoring in which a capacitor (18) is charged with a reference voltage (13) during a charging phase (31) and the capacitor is discharged via a coupling element (19) connected to a flame sensor (1) during a discharging phase (32), characterised in that the duration for the respective charging or discharging phase (31, 32) of the capacitor (18) is selected as a function of the characteristic of the flame sensor used (1) and that, for flame monitoring, the respective charging or discharging of the capacitor is repeated cyclically, whereby a voltage signal (30, 40) is received at the capacitor (18) which is subject to single-channel evaluation with the aid of a threshold value (34), with the evaluation of the voltage signal at the capacitor (30, 40) being undertaken synchronously with the ac mains frequency.
  2. Method according to claim 1, characterised in that the duration of the respective charging or discharging phase (31, 32) is dependent on the impedance of the flame sensor (1).
  3. Method according to claim 2, characterised in that the voltage signal (30, 40) at the capacitor (18) is evaluated with a uniform threshold value (34) for different impedances of the flame sensor (1).
  4. Method according to claim 2 or 3, characterised in that evaluation of the voltage signal (30, 40) at the capacitor (18) at the end of the charging and/or discharging phase (31, 32) detects component faults or flame sensor faults.
  5. Device for flame monitoring with a capacitor (18) which is connected for charging to a reference voltage source (13) and for discharging via a coupling element (19) to a flame sensor (1), with the reference voltage source (13) being connected via a switch (12) to the capacitor which, at the instigation of a control unit (21) is closed for charging the capacitor or opened for discharging the capacitor (18), characterised in that the control unit (21) features an A/D converter (20) that is connected via a switch (17) or directly to the capacitor (18), with the time for respectively charging or discharging (31, 32) the capacitor (18) being determined by the control unit (21) as a function of the characteristics of the flame sensor (1) used and that, at the instigation of the control unit for flame monitoring (21), the respective charging or discharging of the capacitor is repeated cyclically, whereby a voltage signal (30, 40) which is subject to single-channel evaluation by means of a threshold value (34) is received at the capacitor (18), with a voltage divider (27) being provided for feeding back the ac mains phase to the control unit (21).
  6. Method according to claim 5, characterised in that a sample-and-hold element (28) is provided for grid-synchronous sampling of the voltage signal (30, 40).
  7. Method according to claim 6, characterised in that a pulse shaper stage (29) creates a control pulse for buffering the sample values in a capacitor (30).
EP05009937A 2005-05-06 2005-05-06 Method and device for flame monitoring Active EP1719947B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502005009411T DE502005009411D1 (en) 2005-05-06 2005-05-06 Method and device for flame monitoring
EP05009937A EP1719947B1 (en) 2005-05-06 2005-05-06 Method and device for flame monitoring
US11/429,285 US7382140B2 (en) 2005-05-06 2006-05-08 Method and device for flame monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05009937A EP1719947B1 (en) 2005-05-06 2005-05-06 Method and device for flame monitoring

Publications (2)

Publication Number Publication Date
EP1719947A1 EP1719947A1 (en) 2006-11-08
EP1719947B1 true EP1719947B1 (en) 2010-04-14

Family

ID=35044758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05009937A Active EP1719947B1 (en) 2005-05-06 2005-05-06 Method and device for flame monitoring

Country Status (3)

Country Link
US (1) US7382140B2 (en)
EP (1) EP1719947B1 (en)
DE (1) DE502005009411D1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018122B4 (en) * 2007-04-16 2013-10-17 Viessmann Werke Gmbh & Co Kg Flame monitoring device with a voltage generating and measuring arrangement and method for monitoring a burner by means of the flame monitoring device
US7646005B2 (en) * 2008-01-28 2010-01-12 Alstom Technology Ltd Variable length adjustable flame scanner
NL1035791C2 (en) * 2008-08-05 2009-06-10 Philip Emanuel Bosma Flame ionization method for gas-fired equipment, involves measuring sum and difference between time periods required for positive charging and negative discharging of capacitor to measure degree of ionization of flame
DE102009057121A1 (en) 2009-12-08 2011-06-09 Scheer Heizsysteme & Produktionstechnik Gmbh Method for qualitative monitoring of combustion status of boiler system in e.g. industrial combustion, involves determining exhaust gas value of combustion of fuel-air-mixture by boiler-isothermal current and/or voltage characteristic curve
WO2012078403A1 (en) 2010-12-07 2012-06-14 3M Innovative Properties Company Ionization balance device with shielded capacitor circuit for ion balance measurements and adjustments
US9467141B2 (en) 2011-10-07 2016-10-11 Microchip Technology Incorporated Measuring capacitance of a capacitive sensor with a microcontroller having an analog output for driving a guard ring
US9437093B2 (en) 2011-10-06 2016-09-06 Microchip Technology Incorporated Differential current measurements to determine ION current in the presence of leakage current
US9071264B2 (en) 2011-10-06 2015-06-30 Microchip Technology Incorporated Microcontroller with sequencer driven analog-to-digital converter
US8847802B2 (en) 2011-10-06 2014-09-30 Microchip Technology Incorporated Microcontroller ADC with a variable sample and hold capacitor
US9257980B2 (en) 2011-10-06 2016-02-09 Microchip Technology Incorporated Measuring capacitance of a capacitive sensor with a microcontroller having digital outputs for driving a guard ring
US9252769B2 (en) 2011-10-07 2016-02-02 Microchip Technology Incorporated Microcontroller with optimized ADC controller
US9404945B2 (en) * 2011-12-08 2016-08-02 Desco Industries, Inc. Ionization monitoring device
US9189940B2 (en) 2011-12-14 2015-11-17 Microchip Technology Incorporated Method and apparatus for detecting smoke in an ion chamber
US9176088B2 (en) * 2011-12-14 2015-11-03 Microchip Technology Incorporated Method and apparatus for detecting smoke in an ion chamber
US9207209B2 (en) 2011-12-14 2015-12-08 Microchip Technology Incorporated Method and apparatus for detecting smoke in an ion chamber
US9823280B2 (en) 2011-12-21 2017-11-21 Microchip Technology Incorporated Current sensing with internal ADC capacitor
US8884771B2 (en) 2012-08-01 2014-11-11 Microchip Technology Incorporated Smoke detection using change in permittivity of capacitor air dielectric
US10508807B2 (en) * 2014-05-02 2019-12-17 Air Products And Chemicals, Inc. Remote burner monitoring system and method
CN105091024A (en) * 2015-03-17 2015-11-25 霍尼韦尔环境自控产品(天津)有限公司 Flame detection system
US9417124B1 (en) * 2015-05-13 2016-08-16 Honeywell International Inc. Utilizing a quench time to deionize an ultraviolet (UV) sensor tube
US10648857B2 (en) 2018-04-10 2020-05-12 Honeywell International Inc. Ultraviolet flame sensor with programmable sensitivity offset
US10739192B1 (en) 2019-04-02 2020-08-11 Honeywell International Inc. Ultraviolet flame sensor with dynamic excitation voltage generation
ES2958287T3 (en) * 2019-04-17 2024-02-06 Copreci S Coop Gas cooking appliance and associated method
DE102022111802A1 (en) 2022-05-11 2023-11-16 Viessmann Climate Solutions Se Method for operating a burner device
DE102023111435A1 (en) 2023-05-03 2024-11-07 Vaillant Gmbh Method for preventing critical operating conditions of a heating device with pneumatic gas-air connection, heating device, computer program and computer-readable storage medium

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538137A (en) * 1983-01-20 1985-08-27 Nittan Company, Limited Fire detector
US4591725A (en) * 1983-10-26 1986-05-27 Bryant Jack A System for amplifying all frequencies detected from a flame detector
NL8401173A (en) * 1984-04-12 1985-11-01 Philips Nv FLAME PROTECTION CIRCUIT.
FI854809A (en) * 1984-12-18 1986-06-19 Hochiki Co BRAND DETECTOR SOM BASERAR SIG PAO MINSKAT LJUS.
JPS62255729A (en) * 1986-04-30 1987-11-07 Matsushita Electric Ind Co Ltd Circuit to detect condition of combustion
DE4309454C2 (en) 1993-03-24 1997-03-06 Dungs Karl Gmbh & Co Ionization flame monitor
US5899684A (en) * 1997-07-11 1999-05-04 Desa International, Inc. Power phase regulator circuit improvement, motor start switch, self-adjusting preheat and ignition trial improvement, and series-type voltage regulator improvement to hot surface ignition control for fuel oil burner
EP0908679A1 (en) * 1997-10-10 1999-04-14 Electrowatt Technology Innovation AG Circuit for flame monitoring
DK0953805T3 (en) * 1998-04-24 2003-03-10 Siemens Building Tech Ag flame Detector
DE19841475C1 (en) * 1998-09-10 2000-02-03 Electrowatt Tech Innovat Corp Flame monitoring system for gas-, oil- or coal-fired burner
DE10123214A1 (en) 2001-05-12 2002-11-28 Dungs Karl Gmbh & Co Long-term safe flame monitoring method and monitoring device
DE10247168B4 (en) * 2002-10-10 2004-09-09 Karl Dungs Gmbh & Co. Kg Flame detector with self-test function and process for operational monitoring
US7221260B2 (en) * 2003-11-21 2007-05-22 Honeywell International, Inc. Multi-sensor fire detectors with audio sensors and systems thereof
EP1769473B1 (en) * 2004-07-09 2012-10-03 Tyco Safety Products Canada Ltd. Smoke detector calibration
US7202794B2 (en) * 2004-07-20 2007-04-10 General Monitors, Inc. Flame detection system
GB0424934D0 (en) * 2004-11-12 2004-12-15 Qinetiq Ltd Infrared detector
US7289032B2 (en) * 2005-02-24 2007-10-30 Alstom Technology Ltd Intelligent flame scanner
US7242310B2 (en) * 2005-04-28 2007-07-10 Rheem Manufacturing Company Control techniques for shut-off sensors in fuel-fired heating appliances

Also Published As

Publication number Publication date
EP1719947A1 (en) 2006-11-08
DE502005009411D1 (en) 2010-05-27
US7382140B2 (en) 2008-06-03
US20070019361A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
EP1719947B1 (en) Method and device for flame monitoring
EP1154203B1 (en) Measuring device for a flame
DE4309454C2 (en) Ionization flame monitor
DE19821921B4 (en) Circuit arrangement for operating a discharge lamp
EP1256763B1 (en) Method and device for long-term safe flame monitoring
DE19841475C1 (en) Flame monitoring system for gas-, oil- or coal-fired burner
EP1021684B1 (en) Method and device for monitoring a flame
DE1766440B2 (en) Fire alarm system
DE4233224C2 (en) Device for detecting the combustion of the mixture in a cylinder of an internal combustion engine
EP2439451B1 (en) Device for recognising the presence of a flame
WO2000072642A1 (en) Electronic ballast for at least one low-pressure discharge lamp
DE10247977A1 (en) Method and system for checking the functionality of a particle detector
DE4122636C2 (en) Device and method for monitoring a flame
DE3023784C2 (en) Photoelectric detector
DE102004043455B4 (en) Method for the diagnosis of an open secondary winding of an ignition coil using the signal for the ionization current
DE10229848B4 (en) Combustion status determination system for internal combustion engines
DE102005012388B4 (en) Method for detecting the presence of a flame in the combustion chamber of a burner and igniter for a burner
WO2006081797A1 (en) Method for operating a high-pressure discharge lamp, operating appliance for a high-pressure discharge lamp, and illumination device
DE3401603C1 (en) Self-monitoring flame guard
DE4027090C2 (en) Arrangement for monitoring a burner flame
EP2127498B1 (en) Evaluation device for the ignition energy of a discharge lamp
DE10209620A1 (en) EOL detection with integrated helix interrogation
DE2707120A1 (en) CIRCUIT ARRANGEMENT FOR AN INTRINSICALLY SAFE FLAME GUARD
DE10247168B4 (en) Flame detector with self-test function and process for operational monitoring
DE10209619A1 (en) Operating circuit for discharge lamp with EOL early detection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20070222

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 20090312

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005009411

Country of ref document: DE

Date of ref document: 20100527

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100603

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100528

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110117

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240603

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 20