EP1767614A1 - Process for the manufacture of a spray dried powder - Google Patents
Process for the manufacture of a spray dried powder Download PDFInfo
- Publication number
- EP1767614A1 EP1767614A1 EP06121132A EP06121132A EP1767614A1 EP 1767614 A1 EP1767614 A1 EP 1767614A1 EP 06121132 A EP06121132 A EP 06121132A EP 06121132 A EP06121132 A EP 06121132A EP 1767614 A1 EP1767614 A1 EP 1767614A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- capsules
- slurry
- perfume
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000843 powder Substances 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000007921 spray Substances 0.000 title claims abstract description 42
- 230000008569 process Effects 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000002775 capsule Substances 0.000 claims abstract description 137
- 239000002304 perfume Substances 0.000 claims abstract description 124
- 239000003599 detergent Substances 0.000 claims abstract description 87
- 239000002002 slurry Substances 0.000 claims abstract description 66
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 51
- 238000001694 spray drying Methods 0.000 claims abstract description 50
- 230000008901 benefit Effects 0.000 claims abstract description 45
- 239000006185 dispersion Substances 0.000 claims abstract description 34
- 150000003839 salts Chemical class 0.000 claims abstract description 28
- 238000012360 testing method Methods 0.000 claims abstract description 14
- 239000011230 binding agent Substances 0.000 claims abstract description 11
- 230000004083 survival effect Effects 0.000 claims abstract description 7
- 238000013019 agitation Methods 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 132
- 239000000463 material Substances 0.000 claims description 60
- 239000004615 ingredient Substances 0.000 claims description 57
- 239000004094 surface-active agent Substances 0.000 claims description 37
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 33
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 31
- 239000003921 oil Substances 0.000 claims description 28
- 239000007787 solid Substances 0.000 claims description 28
- 239000002245 particle Substances 0.000 claims description 26
- 229920000642 polymer Polymers 0.000 claims description 26
- 239000010457 zeolite Substances 0.000 claims description 25
- 229910021536 Zeolite Inorganic materials 0.000 claims description 21
- 150000001299 aldehydes Chemical class 0.000 claims description 19
- 239000011258 core-shell material Substances 0.000 claims description 14
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 12
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 150000003141 primary amines Chemical class 0.000 claims description 6
- 150000003335 secondary amines Chemical class 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 5
- 239000010452 phosphate Substances 0.000 claims description 5
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 4
- 229930003231 vitamin Natural products 0.000 claims description 4
- 239000011782 vitamin Substances 0.000 claims description 4
- 229940088594 vitamin Drugs 0.000 claims description 4
- 235000013343 vitamin Nutrition 0.000 claims description 4
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 claims description 3
- 239000000077 insect repellent Substances 0.000 claims description 3
- 150000005217 methyl ethers Chemical class 0.000 claims description 3
- HANVTCGOAROXMV-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine;urea Chemical compound O=C.NC(N)=O.NC1=NC(N)=NC(N)=N1 HANVTCGOAROXMV-UHFFFAOYSA-N 0.000 claims description 2
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 claims description 2
- 239000000341 volatile oil Substances 0.000 claims description 2
- 239000003205 fragrance Substances 0.000 description 84
- -1 bleaches Substances 0.000 description 55
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 239000011734 sodium Substances 0.000 description 27
- 229910052708 sodium Inorganic materials 0.000 description 23
- 235000019198 oils Nutrition 0.000 description 22
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 21
- 125000004432 carbon atom Chemical group C* 0.000 description 20
- 229920005646 polycarboxylate Polymers 0.000 description 19
- 125000000217 alkyl group Chemical group 0.000 description 17
- 239000002736 nonionic surfactant Substances 0.000 description 16
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 14
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 14
- 239000011162 core material Substances 0.000 description 14
- 235000014113 dietary fatty acids Nutrition 0.000 description 14
- 239000000194 fatty acid Substances 0.000 description 14
- 229930195729 fatty acid Natural products 0.000 description 14
- 239000002585 base Substances 0.000 description 13
- 239000004744 fabric Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 229910000323 aluminium silicate Inorganic materials 0.000 description 12
- 150000001412 amines Chemical class 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 12
- 150000004665 fatty acids Chemical class 0.000 description 12
- 229920000877 Melamine resin Polymers 0.000 description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 11
- 150000008051 alkyl sulfates Chemical class 0.000 description 11
- 238000004140 cleaning Methods 0.000 description 11
- 239000000306 component Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 11
- 239000002253 acid Substances 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 9
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical class [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 9
- 229920002125 Sokalan® Polymers 0.000 description 9
- 239000003945 anionic surfactant Substances 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 9
- 150000002978 peroxides Chemical class 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000002689 soil Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229920003180 amino resin Polymers 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 239000011591 potassium Substances 0.000 description 8
- 150000004760 silicates Chemical class 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 7
- 125000000129 anionic group Chemical group 0.000 description 7
- 239000007844 bleaching agent Substances 0.000 description 7
- 239000004202 carbamide Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 235000019441 ethanol Nutrition 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- 235000011152 sodium sulphate Nutrition 0.000 description 7
- OOCCDEMITAIZTP-QPJJXVBHSA-N (E)-cinnamyl alcohol Chemical compound OC\C=C\C1=CC=CC=C1 OOCCDEMITAIZTP-QPJJXVBHSA-N 0.000 description 6
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 6
- LOKPJYNMYCVCRM-UHFFFAOYSA-N 16-Hexadecanolide Chemical compound O=C1CCCCCCCCCCCCCCCO1 LOKPJYNMYCVCRM-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- YIKYNHJUKRTCJL-UHFFFAOYSA-N Ethyl maltol Chemical compound CCC=1OC=CC(=O)C=1O YIKYNHJUKRTCJL-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 6
- 239000003240 coconut oil Substances 0.000 description 6
- 235000019864 coconut oil Nutrition 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 6
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 6
- 238000004900 laundering Methods 0.000 description 6
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 235000019645 odor Nutrition 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000000344 soap Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 150000003467 sulfuric acid derivatives Chemical group 0.000 description 6
- 229910021653 sulphate ion Inorganic materials 0.000 description 6
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 5
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 239000004115 Sodium Silicate Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical class [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 150000004996 alkyl benzenes Chemical class 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 239000003093 cationic surfactant Substances 0.000 description 5
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- KVWWIYGFBYDJQC-UHFFFAOYSA-N methyl dihydrojasmonate Chemical compound CCCCCC1C(CC(=O)OC)CCC1=O KVWWIYGFBYDJQC-UHFFFAOYSA-N 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 229920000620 organic polymer Polymers 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 235000017550 sodium carbonate Nutrition 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical class [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 4
- 244000060011 Cocos nucifera Species 0.000 description 4
- 235000013162 Cocos nucifera Nutrition 0.000 description 4
- FKUPPRZPSYCDRS-UHFFFAOYSA-N Cyclopentadecanolide Chemical compound O=C1CCCCCCCCCCCCCCO1 FKUPPRZPSYCDRS-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- GUUHFMWKWLOQMM-NTCAYCPXSA-N alpha-hexylcinnamaldehyde Chemical compound CCCCCC\C(C=O)=C/C1=CC=CC=C1 GUUHFMWKWLOQMM-NTCAYCPXSA-N 0.000 description 4
- 239000002280 amphoteric surfactant Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 150000007942 carboxylates Chemical group 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 239000002537 cosmetic Substances 0.000 description 4
- XSNQECSCDATQEL-UHFFFAOYSA-N dihydromyrcenol Chemical compound C=CC(C)CCCC(C)(C)O XSNQECSCDATQEL-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 4
- 239000002979 fabric softener Substances 0.000 description 4
- ONKNPOPIGWHAQC-UHFFFAOYSA-N galaxolide Chemical compound C1OCC(C)C2=C1C=C1C(C)(C)C(C)C(C)(C)C1=C2 ONKNPOPIGWHAQC-UHFFFAOYSA-N 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- SDQFDHOLCGWZPU-UHFFFAOYSA-N lilial Chemical compound O=CC(C)CC1=CC=C(C(C)(C)C)C=C1 SDQFDHOLCGWZPU-UHFFFAOYSA-N 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- NJGBTKGETPDVIK-UHFFFAOYSA-N raspberry ketone Chemical compound CC(=O)CCC1=CC=C(O)C=C1 NJGBTKGETPDVIK-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000003760 tallow Substances 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- NPNUFJAVOOONJE-ZIAGYGMSSA-N β-(E)-Caryophyllene Chemical compound C1CC(C)=CCCC(=C)[C@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-ZIAGYGMSSA-N 0.000 description 4
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 102000013142 Amylases Human genes 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 3
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- JUWUWIGZUVEFQB-UHFFFAOYSA-N Fenchyl acetate Chemical compound C1CC2C(C)(C)C(OC(=O)C)C1(C)C2 JUWUWIGZUVEFQB-UHFFFAOYSA-N 0.000 description 3
- UUGLJVMIFJNVFH-UHFFFAOYSA-N Hexyl benzoate Chemical compound CCCCCCOC(=O)C1=CC=CC=C1 UUGLJVMIFJNVFH-UHFFFAOYSA-N 0.000 description 3
- 102000004882 Lipase Human genes 0.000 description 3
- 239000004367 Lipase Substances 0.000 description 3
- 108090001060 Lipase Proteins 0.000 description 3
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- VYGQUTWHTHXGQB-FFHKNEKCSA-N Retinol Palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C VYGQUTWHTHXGQB-FFHKNEKCSA-N 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- OOCCDEMITAIZTP-UHFFFAOYSA-N allylic benzylic alcohol Natural products OCC=CC1=CC=CC=C1 OOCCDEMITAIZTP-UHFFFAOYSA-N 0.000 description 3
- GUUHFMWKWLOQMM-UHFFFAOYSA-N alpha-n-hexylcinnamic aldehyde Natural products CCCCCCC(C=O)=CC1=CC=CC=C1 GUUHFMWKWLOQMM-UHFFFAOYSA-N 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 235000019418 amylase Nutrition 0.000 description 3
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 3
- 229960003237 betaine Drugs 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- MIZGSAALSYARKU-UHFFFAOYSA-N cashmeran Chemical compound CC1(C)C(C)C(C)(C)C2=C1C(=O)CCC2 MIZGSAALSYARKU-UHFFFAOYSA-N 0.000 description 3
- 239000002752 cationic softener Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 3
- WPFVBOQKRVRMJB-UHFFFAOYSA-N hydroxycitronellal Chemical compound O=CCC(C)CCCC(C)(C)O WPFVBOQKRVRMJB-UHFFFAOYSA-N 0.000 description 3
- 230000000622 irritating effect Effects 0.000 description 3
- 229940087305 limonene Drugs 0.000 description 3
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 3
- 235000019421 lipase Nutrition 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 230000005923 long-lasting effect Effects 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229940067107 phenylethyl alcohol Drugs 0.000 description 3
- 159000000001 potassium salts Chemical class 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910021647 smectite Inorganic materials 0.000 description 3
- 235000019351 sodium silicates Nutrition 0.000 description 3
- 235000019832 sodium triphosphate Nutrition 0.000 description 3
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- ZFNVDHOSLNRHNN-UHFFFAOYSA-N xi-3-(4-Isopropylphenyl)-2-methylpropanal Chemical compound O=CC(C)CC1=CC=C(C(C)C)C=C1 ZFNVDHOSLNRHNN-UHFFFAOYSA-N 0.000 description 3
- GRWFGVWFFZKLTI-UHFFFAOYSA-N α-pinene Chemical compound CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 3
- ULDHMXUKGWMISQ-SECBINFHSA-N (-)-carvone Chemical compound CC(=C)[C@@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-SECBINFHSA-N 0.000 description 2
- XMGQYMWWDOXHJM-SNVBAGLBSA-N (-)-α-limonene Chemical compound CC(=C)[C@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-SNVBAGLBSA-N 0.000 description 2
- CRDAMVZIKSXKFV-YFVJMOTDSA-N (2-trans,6-trans)-farnesol Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO CRDAMVZIKSXKFV-YFVJMOTDSA-N 0.000 description 2
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 2
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 description 2
- NPNUFJAVOOONJE-QWAJQTJBSA-N (E)-2-epi-beta-caryophyllene Chemical compound C1CC(/C)=C/CCC(=C)[C@@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-QWAJQTJBSA-N 0.000 description 2
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 2
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 2
- JZLWSRCQCPAUDP-UHFFFAOYSA-N 1,3,5-triazine-2,4,6-triamine;urea Chemical compound NC(N)=O.NC1=NC(N)=NC(N)=N1 JZLWSRCQCPAUDP-UHFFFAOYSA-N 0.000 description 2
- WNJSKZBEWNVKGU-UHFFFAOYSA-N 2,2-dimethoxyethylbenzene Chemical compound COC(OC)CC1=CC=CC=C1 WNJSKZBEWNVKGU-UHFFFAOYSA-N 0.000 description 2
- DXCHWXWXYPEZKM-UHFFFAOYSA-N 2,4-ditert-butyl-6-[1-(3,5-ditert-butyl-2-hydroxyphenyl)ethyl]phenol Chemical compound C=1C(C(C)(C)C)=CC(C(C)(C)C)=C(O)C=1C(C)C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1O DXCHWXWXYPEZKM-UHFFFAOYSA-N 0.000 description 2
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 2
- FLUWAIIVLCVEKF-UHFFFAOYSA-N 2-Methyl-1-phenyl-2-propanyl acetate Chemical compound CC(=O)OC(C)(C)CC1=CC=CC=C1 FLUWAIIVLCVEKF-UHFFFAOYSA-N 0.000 description 2
- VKZRWSNIWNFCIQ-UHFFFAOYSA-N 2-[2-(1,2-dicarboxyethylamino)ethylamino]butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NCCNC(C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-UHFFFAOYSA-N 0.000 description 2
- XSAYZAUNJMRRIR-UHFFFAOYSA-N 2-acetylnaphthalene Chemical compound C1=CC=CC2=CC(C(=O)C)=CC=C21 XSAYZAUNJMRRIR-UHFFFAOYSA-N 0.000 description 2
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 description 2
- YJHSJERLYWNLQL-UHFFFAOYSA-N 2-hydroxyethyl(dimethyl)azanium;chloride Chemical compound Cl.CN(C)CCO YJHSJERLYWNLQL-UHFFFAOYSA-N 0.000 description 2
- KVKKTLBBYFABAZ-UHFFFAOYSA-N 2-phenylethyl 2-methylbutanoate Chemical compound CCC(C)C(=O)OCCC1=CC=CC=C1 KVKKTLBBYFABAZ-UHFFFAOYSA-N 0.000 description 2
- MBZRJSQZCBXRGK-UHFFFAOYSA-N 4-tert-Butylcyclohexyl acetate Chemical compound CC(=O)OC1CCC(C(C)(C)C)CC1 MBZRJSQZCBXRGK-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 2
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 2
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical class CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 108010059892 Cellulase Proteins 0.000 description 2
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 2
- 241000402754 Erythranthe moschata Species 0.000 description 2
- ZFMSMUAANRJZFM-UHFFFAOYSA-N Estragole Chemical compound COC1=CC=C(CC=C)C=C1 ZFMSMUAANRJZFM-UHFFFAOYSA-N 0.000 description 2
- VZRKEAFHFMSHCD-UHFFFAOYSA-N Ethyl 3-(N-butylacetamido)propionate Chemical compound CCCCN(C(C)=O)CCC(=O)OCC VZRKEAFHFMSHCD-UHFFFAOYSA-N 0.000 description 2
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 2
- 239000005770 Eugenol Substances 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 2
- 241000234269 Liliales Species 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- SUAUILGSCPYJCS-UHFFFAOYSA-N Musk ambrette Chemical compound COC1=C([N+]([O-])=O)C(C)=C([N+]([O-])=O)C=C1C(C)(C)C SUAUILGSCPYJCS-UHFFFAOYSA-N 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- ZYEMGPIYFIJGTP-UHFFFAOYSA-N O-methyleugenol Chemical compound COC1=CC=C(CC=C)C=C1OC ZYEMGPIYFIJGTP-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920000805 Polyaspartic acid Polymers 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- UJNOLBSYLSYIBM-WISYIIOYSA-N [(1r,2s,5r)-5-methyl-2-propan-2-ylcyclohexyl] (2r)-2-hydroxypropanoate Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OC(=O)[C@@H](C)O UJNOLBSYLSYIBM-WISYIIOYSA-N 0.000 description 2
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 230000002009 allergenic effect Effects 0.000 description 2
- 159000000013 aluminium salts Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000000222 aromatherapy Methods 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- NPNUFJAVOOONJE-UHFFFAOYSA-N beta-cariophyllene Natural products C1CC(C)=CCCC(=C)C2CC(C)(C)C21 NPNUFJAVOOONJE-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 description 2
- RECUKUPTGUEGMW-UHFFFAOYSA-N carvacrol Chemical compound CC(C)C1=CC=C(C)C(O)=C1 RECUKUPTGUEGMW-UHFFFAOYSA-N 0.000 description 2
- NPNUFJAVOOONJE-UONOGXRCSA-N caryophyllene Natural products C1CC(C)=CCCC(=C)[C@@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-UONOGXRCSA-N 0.000 description 2
- 229940106157 cellulase Drugs 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 229960000956 coumarin Drugs 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 2
- 229940019836 cyclamen aldehyde Drugs 0.000 description 2
- ZAKOWWREFLAJOT-UHFFFAOYSA-N d-alpha-Tocopheryl acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 229930008394 dihydromyrcenol Natural products 0.000 description 2
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002148 esters Chemical group 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- UZABCLFSICXBCM-UHFFFAOYSA-N ethoxy hydrogen sulfate Chemical class CCOOS(O)(=O)=O UZABCLFSICXBCM-UHFFFAOYSA-N 0.000 description 2
- FMMOOAYVCKXGMF-MURFETPASA-N ethyl linoleate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OCC FMMOOAYVCKXGMF-MURFETPASA-N 0.000 description 2
- 229960002217 eugenol Drugs 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 210000000416 exudates and transudate Anatomy 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- HIGQPQRQIQDZMP-DHZHZOJOSA-N geranyl acetate Chemical compound CC(C)=CCC\C(C)=C\COC(C)=O HIGQPQRQIQDZMP-DHZHZOJOSA-N 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 229940080260 iminodisuccinate Drugs 0.000 description 2
- IUSBVFZKQJGVEP-SNAWJCMRSA-N isoeugenol acetate Chemical compound COC1=CC(\C=C\C)=CC=C1OC(C)=O IUSBVFZKQJGVEP-SNAWJCMRSA-N 0.000 description 2
- ZYTMANIQRDEHIO-KXUCPTDWSA-N isopulegol Chemical compound C[C@@H]1CC[C@@H](C(C)=C)[C@H](O)C1 ZYTMANIQRDEHIO-KXUCPTDWSA-N 0.000 description 2
- 235000001510 limonene Nutrition 0.000 description 2
- 229930007744 linalool Natural products 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- CCRCUPLGCSFEDV-BQYQJAHWSA-N methyl trans-cinnamate Chemical compound COC(=O)\C=C\C1=CC=CC=C1 CCRCUPLGCSFEDV-BQYQJAHWSA-N 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 2
- VWMVAQHMFFZQGD-UHFFFAOYSA-N p-Hydroxybenzyl acetone Natural products CC(=O)CC1=CC=C(O)C=C1 VWMVAQHMFFZQGD-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- LMXFTMYMHGYJEI-UHFFFAOYSA-N p-menthane-3,8-diol Chemical compound CC1CCC(C(C)(C)O)C(O)C1 LMXFTMYMHGYJEI-UHFFFAOYSA-N 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- 239000010773 plant oil Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 229940090181 propyl acetate Drugs 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- ZMQAAUBTXCXRIC-UHFFFAOYSA-N safrole Chemical compound C=CCC1=CC=C2OCOC2=C1 ZMQAAUBTXCXRIC-UHFFFAOYSA-N 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 229940045872 sodium percarbonate Drugs 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010677 tea tree oil Substances 0.000 description 2
- 229940111630 tea tree oil Drugs 0.000 description 2
- LFSYLMRHJKGLDV-UHFFFAOYSA-N tetradecanolide Natural products O=C1CCCCCCCCCCCCCO1 LFSYLMRHJKGLDV-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 229910009112 xH2O Inorganic materials 0.000 description 2
- GAWWVVGZMLGEIW-GNNYBVKZSA-L zinc ricinoleate Chemical compound [Zn+2].CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O.CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O GAWWVVGZMLGEIW-GNNYBVKZSA-L 0.000 description 2
- 239000001563 (1,5,5-trimethyl-6-bicyclo[2.2.1]heptanyl) acetate Substances 0.000 description 1
- 239000001871 (1R,2R,5S)-5-methyl-2-prop-1-en-2-ylcyclohexan-1-ol Substances 0.000 description 1
- 239000000260 (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol Substances 0.000 description 1
- HLCSDJLATUNSSI-JXMROGBWSA-N (2e)-3,7-dimethylocta-2,6-dienenitrile Chemical compound CC(C)=CCC\C(C)=C\C#N HLCSDJLATUNSSI-JXMROGBWSA-N 0.000 description 1
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 1
- NDFKTBCGKNOHPJ-AATRIKPKSA-N (E)-hept-2-enal Chemical compound CCCC\C=C\C=O NDFKTBCGKNOHPJ-AATRIKPKSA-N 0.000 description 1
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- QZFSNJAQFWEXEA-MDZDMXLPSA-N (e)-3,3-dimethyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pent-4-en-2-ol Chemical compound CC(O)C(C)(C)\C=C\C1CC=C(C)C1(C)C QZFSNJAQFWEXEA-MDZDMXLPSA-N 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- FVUGZKDGWGKCFE-UHFFFAOYSA-N 1-(2,3,8,8-tetramethyl-1,3,4,5,6,7-hexahydronaphthalen-2-yl)ethanone Chemical compound CC1(C)CCCC2=C1CC(C(C)=O)(C)C(C)C2 FVUGZKDGWGKCFE-UHFFFAOYSA-N 0.000 description 1
- ILAPVZVYHKSGFM-UHFFFAOYSA-N 1-(carboxymethoxy)ethane-1,1,2-tricarboxylic acid Chemical class OC(=O)COC(C(O)=O)(C(O)=O)CC(O)=O ILAPVZVYHKSGFM-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- GRWFGVWFFZKLTI-IUCAKERBSA-N 1S,5S-(-)-alpha-Pinene Natural products CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 1
- DBRHJJQHHSOXCQ-UHFFFAOYSA-N 2,2-dihydroxyethyl(methyl)azanium;chloride Chemical compound [Cl-].C[NH2+]CC(O)O DBRHJJQHHSOXCQ-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- AOPMHYFEQDBXPZ-UHFFFAOYSA-N 2,4-dihydroxy-3-methylbenzaldehyde Chemical compound CC1=C(O)C=CC(C=O)=C1O AOPMHYFEQDBXPZ-UHFFFAOYSA-N 0.000 description 1
- FACFHHMQICTXFZ-UHFFFAOYSA-N 2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethanamine Chemical compound N1=C2C=CC=CN2C(CCN)=C1C1=CC=CC=C1 FACFHHMQICTXFZ-UHFFFAOYSA-N 0.000 description 1
- VQMHSKWEJGIXGA-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-6-dodecyl-4-methylphenol Chemical compound CCCCCCCCCCCCC1=CC(C)=CC(N2N=C3C=CC=CC3=N2)=C1O VQMHSKWEJGIXGA-UHFFFAOYSA-N 0.000 description 1
- DNRJTBAOUJJKDY-UHFFFAOYSA-N 2-Acetyl-3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalene Chemical compound CC(=O)C1=C(C)C=C2C(C)(C)C(C)CC(C)(C)C2=C1 DNRJTBAOUJJKDY-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical group CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- JPGSFSFMINKKJZ-UHFFFAOYSA-N 2-[1,2-dicarboxyethyl(hydroxy)amino]butanedioic acid Chemical compound OC(=O)CC(C(O)=O)N(O)C(CC(O)=O)C(O)=O JPGSFSFMINKKJZ-UHFFFAOYSA-N 0.000 description 1
- TYYHDKOVFSVWON-UHFFFAOYSA-N 2-butyl-2-methoxy-1,3-diphenylpropane-1,3-dione Chemical compound C=1C=CC=CC=1C(=O)C(OC)(CCCC)C(=O)C1=CC=CC=C1 TYYHDKOVFSVWON-UHFFFAOYSA-N 0.000 description 1
- DLGBEGBHXSAQOC-UHFFFAOYSA-M 2-carboxy-4-methylphenolate Chemical compound CC1=CC=C(O)C(C([O-])=O)=C1 DLGBEGBHXSAQOC-UHFFFAOYSA-M 0.000 description 1
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-UHFFFAOYSA-N 2-dodec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCC=CC(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-UHFFFAOYSA-N 0.000 description 1
- GCVQVCAAUXFNGJ-UHFFFAOYSA-N 2-hexadecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)CC(O)=O GCVQVCAAUXFNGJ-UHFFFAOYSA-N 0.000 description 1
- DXPLEDYRQHTBDJ-UHFFFAOYSA-N 2-pentadec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O DXPLEDYRQHTBDJ-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- MWTDCUHMQIAYDT-UHFFFAOYSA-N 2-tetradecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCC(C(O)=O)CC(O)=O MWTDCUHMQIAYDT-UHFFFAOYSA-N 0.000 description 1
- JRJBVWJSTHECJK-PKNBQFBNSA-N 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one Chemical compound CC(=O)C(\C)=C\C1C(C)=CCCC1(C)C JRJBVWJSTHECJK-PKNBQFBNSA-N 0.000 description 1
- MDVYIGJINBYKOM-UHFFFAOYSA-N 3-[[5-Methyl-2-(1-methylethyl)cyclohexyl]oxy]-1,2-propanediol Chemical compound CC(C)C1CCC(C)CC1OCC(O)CO MDVYIGJINBYKOM-UHFFFAOYSA-N 0.000 description 1
- JDMMQAZDCRHEAS-UHFFFAOYSA-N 3-hydroxy-3-methyl-2-pentylcyclohexene-1-carbaldehyde Chemical compound CCCCCC1=C(C=O)CCCC1(C)O JDMMQAZDCRHEAS-UHFFFAOYSA-N 0.000 description 1
- FBJOKHGHLFMSDS-UHFFFAOYSA-N 3-iodoprop-1-ynyl N-butan-2-ylcarbamate Chemical compound ICC#COC(NC(C)CC)=O FBJOKHGHLFMSDS-UHFFFAOYSA-N 0.000 description 1
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- MSHFRERJPWKJFX-UHFFFAOYSA-N 4-Methoxybenzyl alcohol Chemical compound COC1=CC=C(CO)C=C1 MSHFRERJPWKJFX-UHFFFAOYSA-N 0.000 description 1
- KRFXUBMJBAXOOZ-UHFFFAOYSA-N 4-ethenyl-1-oxidopyridin-1-ium Chemical compound [O-][N+]1=CC=C(C=C)C=C1 KRFXUBMJBAXOOZ-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- WWJLCYHYLZZXBE-UHFFFAOYSA-N 5-chloro-1,3-dihydroindol-2-one Chemical compound ClC1=CC=C2NC(=O)CC2=C1 WWJLCYHYLZZXBE-UHFFFAOYSA-N 0.000 description 1
- YEYMTOQDNGGXRS-UHFFFAOYSA-N 5-ethenyl-2H-1,3-oxazol-2-id-4-one Chemical compound C(=C)C1C(N=[C-]O1)=O YEYMTOQDNGGXRS-UHFFFAOYSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical class OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 1
- 102100032487 Beta-mannosidase Human genes 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- KGEKLUUHTZCSIP-UHFFFAOYSA-N Isobornyl acetate Natural products C1CC2(C)C(OC(=O)C)CC1C2(C)C KGEKLUUHTZCSIP-UHFFFAOYSA-N 0.000 description 1
- 235000010254 Jasminum officinale Nutrition 0.000 description 1
- 240000005385 Jasminum sambac Species 0.000 description 1
- XMLSXPIVAXONDL-PLNGDYQASA-N Jasmone Chemical compound CC\C=C/CC1=C(C)CCC1=O XMLSXPIVAXONDL-PLNGDYQASA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- 241000234435 Lilium Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- YBGZDTIWKVFICR-JLHYYAGUSA-N Octyl 4-methoxycinnamic acid Chemical compound CCCCC(CC)COC(=O)\C=C\C1=CC=C(OC)C=C1 YBGZDTIWKVFICR-JLHYYAGUSA-N 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- AXMVYSVVTMKQSL-UHFFFAOYSA-N UNPD142122 Natural products OC1=CC=C(C=CC=O)C=C1O AXMVYSVVTMKQSL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 244000172533 Viola sororia Species 0.000 description 1
- 239000001940 [(1R,4S,6R)-1,7,7-trimethyl-6-bicyclo[2.2.1]heptanyl] acetate Substances 0.000 description 1
- KGEKLUUHTZCSIP-JFGNBEQYSA-N [(1r,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] acetate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C)C[C@@H]1C2(C)C KGEKLUUHTZCSIP-JFGNBEQYSA-N 0.000 description 1
- ZUBJEHHGZYTRPH-KTKRTIGZSA-N [(z)-octadec-9-enyl] hydrogen sulfate Chemical compound CCCCCCCC\C=C/CCCCCCCCOS(O)(=O)=O ZUBJEHHGZYTRPH-KTKRTIGZSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- HMKKIXGYKWDQSV-KAMYIIQDSA-N alpha-Amylcinnamaldehyde Chemical compound CCCCC\C(C=O)=C\C1=CC=CC=C1 HMKKIXGYKWDQSV-KAMYIIQDSA-N 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229940088601 alpha-terpineol Drugs 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N anhydrous quinoline Natural products N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000012753 anti-shrinkage agent Substances 0.000 description 1
- 230000001153 anti-wrinkle effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229960005193 avobenzone Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- XVAMCHGMPYWHNL-UHFFFAOYSA-N bemotrizinol Chemical compound OC1=CC(OCC(CC)CCCC)=CC=C1C1=NC(C=2C=CC(OC)=CC=2)=NC(C=2C(=CC(OCC(CC)CCCC)=CC=2)O)=N1 XVAMCHGMPYWHNL-UHFFFAOYSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 description 1
- UDEWPOVQBGFNGE-UHFFFAOYSA-N benzoic acid n-propyl ester Natural products CCCOC(=O)C1=CC=CC=C1 UDEWPOVQBGFNGE-UHFFFAOYSA-N 0.000 description 1
- 239000001518 benzyl (E)-3-phenylprop-2-enoate Substances 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- NGHOLYJTSCBCGC-QXMHVHEDSA-N benzyl cinnamate Chemical compound C=1C=CC=CC=1\C=C/C(=O)OCC1=CC=CC=C1 NGHOLYJTSCBCGC-QXMHVHEDSA-N 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 108010055059 beta-Mannosidase Proteins 0.000 description 1
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- QLHULAHOXSSASE-UHFFFAOYSA-N butan-2-yl 2-(2-hydroxyethyl)piperidine-1-carboxylate Chemical compound CCC(C)OC(=O)N1CCCCC1CCO QLHULAHOXSSASE-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-O carboxymethyl-[3-(dodecanoylamino)propyl]-dimethylazanium Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC(O)=O MRUAUOIMASANKQ-UHFFFAOYSA-O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- HHTWOMMSBMNRKP-UHFFFAOYSA-N carvacrol Natural products CC(=C)C1=CC=C(C)C(O)=C1 HHTWOMMSBMNRKP-UHFFFAOYSA-N 0.000 description 1
- 235000007746 carvacrol Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920003118 cationic copolymer Polymers 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- CCRCUPLGCSFEDV-UHFFFAOYSA-N cinnamic acid methyl ester Natural products COC(=O)C=CC1=CC=CC=C1 CCRCUPLGCSFEDV-UHFFFAOYSA-N 0.000 description 1
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 1
- 229940117916 cinnamic aldehyde Drugs 0.000 description 1
- 239000010630 cinnamon oil Substances 0.000 description 1
- IVLCENBZDYVJPA-ARJAWSKDSA-N cis-Jasmone Natural products C\C=C/CC1=C(C)CCC1=O IVLCENBZDYVJPA-ARJAWSKDSA-N 0.000 description 1
- NGHOLYJTSCBCGC-UHFFFAOYSA-N cis-cinnamic acid benzyl ester Natural products C=1C=CC=CC=1C=CC(=O)OCC1=CC=CC=C1 NGHOLYJTSCBCGC-UHFFFAOYSA-N 0.000 description 1
- 229940043350 citral Drugs 0.000 description 1
- 239000010632 citronella oil Substances 0.000 description 1
- 235000000484 citronellol Nutrition 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- PNZXMIKHJXIPEK-UHFFFAOYSA-N cyclohexanecarboxamide Chemical compound NC(=O)C1CCCCC1 PNZXMIKHJXIPEK-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- CDJGWBCMWHSUHR-UHFFFAOYSA-M decyl(triethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCC[N+](CC)(CC)CC CDJGWBCMWHSUHR-UHFFFAOYSA-M 0.000 description 1
- RLGGVUPWOJOQHP-UHFFFAOYSA-M decyl-(2-hydroxyethyl)-dimethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCC[N+](C)(C)CCO RLGGVUPWOJOQHP-UHFFFAOYSA-M 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940095104 dimethyl benzyl carbinyl acetate Drugs 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- PMPJQLCPEQFEJW-HPKCLRQXSA-L disodium;2-[(e)-2-[4-[4-[(e)-2-(2-sulfonatophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC=CC=C1\C=C\C1=CC=C(C=2C=CC(\C=C\C=3C(=CC=CC=3)S([O-])(=O)=O)=CC=2)C=C1 PMPJQLCPEQFEJW-HPKCLRQXSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- IYHOTNRQVUBQHD-UHFFFAOYSA-M dodecyl-ethenoxy-dimethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)OC=C IYHOTNRQVUBQHD-UHFFFAOYSA-M 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940031016 ethyl linoleate Drugs 0.000 description 1
- YSPVHAUJXLGZHP-UHFFFAOYSA-N ethyl piperidine-1-carboxylate Chemical compound CCOC(=O)N1CCCCC1 YSPVHAUJXLGZHP-UHFFFAOYSA-N 0.000 description 1
- 239000010642 eucalyptus oil Substances 0.000 description 1
- 229940044949 eucalyptus oil Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229940043259 farnesol Drugs 0.000 description 1
- 229930002886 farnesol Natural products 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- JPZROSNLRWHSQQ-UHFFFAOYSA-N furan-2,5-dione;prop-2-enoic acid Chemical compound OC(=O)C=C.O=C1OC(=O)C=C1 JPZROSNLRWHSQQ-UHFFFAOYSA-N 0.000 description 1
- FOYKKGHVWRFIBD-UHFFFAOYSA-N gamma-tocopherol acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 FOYKKGHVWRFIBD-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 1
- HIGQPQRQIQDZMP-UHFFFAOYSA-N geranil acetate Natural products CC(C)=CCCC(C)=CCOC(C)=O HIGQPQRQIQDZMP-UHFFFAOYSA-N 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 125000004395 glucoside group Chemical group 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- NDFKTBCGKNOHPJ-UHFFFAOYSA-N hex-2-enal Natural products CCCCC=CC=O NDFKTBCGKNOHPJ-UHFFFAOYSA-N 0.000 description 1
- PMYUVOOOQDGQNW-UHFFFAOYSA-N hexasodium;trioxido(trioxidosilyloxy)silane Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])O[Si]([O-])([O-])[O-] PMYUVOOOQDGQNW-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229910052739 hydrogen Chemical group 0.000 description 1
- 239000001257 hydrogen Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- WYXXLXHHWYNKJF-UHFFFAOYSA-N isocarvacrol Natural products CC(C)C1=CC=C(O)C(C)=C1 WYXXLXHHWYNKJF-UHFFFAOYSA-N 0.000 description 1
- 229940095045 isopulegol Drugs 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- FMMOOAYVCKXGMF-UHFFFAOYSA-N linoleic acid ethyl ester Natural products CCCCCC=CCC=CCCCCCCCC(=O)OCC FMMOOAYVCKXGMF-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 231100000647 material safety data sheet Toxicity 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- VXBSKVAMQMBCCA-UHFFFAOYSA-M methyl sulfate;trimethyl(tetradecyl)azanium Chemical compound COS([O-])(=O)=O.CCCCCCCCCCCCCC[N+](C)(C)C VXBSKVAMQMBCCA-UHFFFAOYSA-M 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229940116837 methyleugenol Drugs 0.000 description 1
- PRHTXAOWJQTLBO-UHFFFAOYSA-N methyleugenol Natural products COC1=CC=C(C(C)=C)C=C1OC PRHTXAOWJQTLBO-UHFFFAOYSA-N 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical class CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 229940067137 musk ketone Drugs 0.000 description 1
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000002018 neem oil Substances 0.000 description 1
- ZYTMANIQRDEHIO-UHFFFAOYSA-N neo-Isopulegol Natural products CC1CCC(C(C)=C)C(O)C1 ZYTMANIQRDEHIO-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000004669 nonionic softener Substances 0.000 description 1
- 229960001679 octinoxate Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- DXGLGDHPHMLXJC-UHFFFAOYSA-N oxybenzone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1 DXGLGDHPHMLXJC-UHFFFAOYSA-N 0.000 description 1
- 229960001173 oxybenzone Drugs 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229930006948 p-menthane-3,8-diol Natural products 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- SUSQOBVLVYHIEX-UHFFFAOYSA-N phenylacetonitrile Chemical compound N#CCC1=CC=CC=C1 SUSQOBVLVYHIEX-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 239000001738 pogostemon cablin oil Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000013966 potassium salts of fatty acid Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229940108325 retinyl palmitate Drugs 0.000 description 1
- 235000019172 retinyl palmitate Nutrition 0.000 description 1
- 239000011769 retinyl palmitate Substances 0.000 description 1
- 239000010671 sandalwood oil Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 235000013875 sodium salts of fatty acid Nutrition 0.000 description 1
- FWFUWXVFYKCSQA-UHFFFAOYSA-M sodium;2-methyl-2-(prop-2-enoylamino)propane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(C)(C)NC(=O)C=C FWFUWXVFYKCSQA-UHFFFAOYSA-M 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000001180 sulfating effect Effects 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000007885 tablet disintegrant Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229940042585 tocopherol acetate Drugs 0.000 description 1
- CRDAMVZIKSXKFV-UHFFFAOYSA-N trans-Farnesol Natural products CC(C)=CCCC(C)=CCCC(C)=CCO CRDAMVZIKSXKFV-UHFFFAOYSA-N 0.000 description 1
- IUSBVFZKQJGVEP-UHFFFAOYSA-N trans-isoeugenol acetate Natural products COC1=CC(C=CC)=CC=C1OC(C)=O IUSBVFZKQJGVEP-UHFFFAOYSA-N 0.000 description 1
- XMLSXPIVAXONDL-UHFFFAOYSA-N trans-jasmone Natural products CCC=CCC1=C(C)CCC1=O XMLSXPIVAXONDL-UHFFFAOYSA-N 0.000 description 1
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical class [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- 231100000925 very toxic Toxicity 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 229940100530 zinc ricinoleate Drugs 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/02—Preparation in the form of powder by spray drying
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
Definitions
- the present invention relates to a process for spray drying an oil or waxy solid containing aminoplast core shell capsule along with inorganic salts and optionally a binding agent or one or more surfactants to form a particulate powder.
- Adding fragrance during later stages of the laundry process is one way to provide fragrance to the laundry e.g. through rinse conditioners or drier sheets as shown in US patent 4,511,495 and ironing products but this involves the cost and inconvenience of purchasing and using an additional product.
- Another method for delivering perfume to laundered fabric is one which increases deposition during the wash and prevents evaporation during drying for example by the use of pro-fragrances. These molecules deposit onto textiles during the wash and later react to release volatile fragrance molecules. The reaction can be triggered by a number of means: under the influence of co-deposited enzymes as in US patent 5,726,345 , of sunlight as in US patent 6,218,355 , or by bacterial or enzymatic decomposition.
- capsules must be sufficiently robust to withstand all the processes involved in manufacture e.g. transporting, handling and packing yet still be sufficiently friable as to rupture under relatively gentle conditions whilst handling the garment.
- certain fragrance components are sensitive to the alkalinity and/or bleach content of detergent powders.
- any capsule intended to provide the benefits stated above could be in a form so as to mix easily and uniformly in a detergent powder and withstand processing and manipulation during manufacture and yet be capable of rupturing on handling the laundry.
- the present invention relates to the process of manufacturing powders containing perfume capsules by spray drying.
- the process involves (a) the preparation of a slurry which contains inorganic salts and optionally a binding agent and between 0.001% and 20% by weight based on the dried powder of the capsules and (b) spray drying the resulting slurry to form a spray dried powder.
- the powder is a laundry detergent powder in which case the slurry may contain at least one detergent active of the type anionic, non-ionic, zwitterionic or cationic surfactant.
- Part of the inorganic salts may function as the builder in the detergent as for example with phosphate or carbonate salts.
- the slurry might include additional inorganic compounds such as aluminosilicate salts which function as a detergent builder.
- Other common ingredients of detergent powders normally added to the slurry include fluorescers, polymers such as maleic anhydride acrylic acid copolymers, sequestrants, silicone antifoams, and anti redeposition agents.
- the invention also covers any subsequent treatment of that powder necessary to prepare particles which can be incorporated directly into a laundry detergent product. So, depending on the design and operation of individual spray drying towers, granulation may be required to form particles of the appropriate size for inclusion into a detergent powder. Such granulation may be part of the same spray drying process or a separate step after the spray drying.
- the powder of the invention could be used directly in laundry cleaning or conditioning, it could be blended with other ingredients typically post-dosed into spray dried detergents such as bleaches, bleach precursors, sequestrants, enzymes, colour protecting agents, further surfactants, inorganics, and fragrance as part of the detergent manufacturing process.
- the capsules of the invention could be added to a detergent powder as a convenient way of adding concentrated encapsulated perfume into another pre-formed detergent powder.
- the powder might be converted into another form of detergent product for example the powder might be compressed or coated to form a detergent tablet which is then used for fabric treatment as part of conventional laundering.
- dispersants are often advantageous for tablets.
- the capsules used in the invention process have an average particle size of less than about 300 microns preferably an average size of not greater than 100 microns and especially a 5-50 micron average size range.
- the capsules used in the invention process are core shell capsules which are thermally stable at 250°C for 15 minutes.
- Capsules based on starches or water soluble polymers are primarily intended to protect the perfume during storage and to release the perfume once mixed with water as exemplified in EP patent 1,388,585 which releases perfume during the laundering process.
- EP patent 1,196,533 which provides an oil or waxy solid encapsulated within a starch capsule will also release it on contact with water. These capsules fail the slurry stability test described below and so are outside the scope of the present invention.
- Capsules based on perfume incorporation into high melting waxes or polymers such as in EP patent 0,469,228 which claims a perfume solid composition having melting points over the range of 35 to 120° C are unlikely to retain perfume through the high temperatures of spray drying.
- capsules of the present invention A specific requirement of capsules of the present invention is that a large proportion of the capsules must survive dispersal in the warm aqueous slurry without excessive leakage of the contents and then remain intact through the exposure to high temperatures encountered during spray drying.
- suitable capsules can be defined by two tests:
- the amount of encapsulated material released being determined by an appropriate analytical method, so for example, perfume release might be determined by trapping the released perfume and measuring it by gas chromatography.
- Spray Dry Test (Test 2): To meet the requirements of the invention more than 30% by weight of the encapsulated material, added to a slurry at room temperature for 15 minutes, the slurry having the following composition:
- the core shell capsules based on formaldehyde and urea, formaldehyde and melamine, or formaldehyde and urea and melamine condensation polymers are particularly well suited although this is not intended to exclude capsules made with other monomers or incorporating other monomers or other amine aldehyde condensation polymers.
- suitable monomers for core shell capsules are for example methyl methacrylate as exemplified in International application WO 01/49817 , and urethanes as exemplified in International application WO 03/099005 . Suitable monomers are well known to those skilled in the art of polymerisation reactions.
- International application WO 92/18601 teaches the use of aminoplast capsules for laundry application, among others, with the capsules having a core which solidifies at ambient temperature to improve the strength of the capsules.
- International application WO 00/05951 describes an aminoplast capsule with a base cleavable ester moiety to trigger release under alkaline conditions.
- US patent 6,849,591 teaches the use of spray drying to dry aminoplast capsules made via addition polymerization in the oil phase preferably with oil soluble initiators; however, this patent does not suggest the addition of capsules to a detergent slurry, nor the addition of any other ingredients during the drying step.
- Particularly preferred core shell capsules suitable for the process of the invention are the core shell capsules containing in the core an oil or waxy solid, said oil or solid waxy having little or no aldehyde or amine containing raw materials. It is also preferable if more than 80% by weight of the oil or waxy solid are in the range ClogP 1.5-4.5, more preferably ClogP 2-4.
- the appropriate core shell capsules contain in the core an oil or waxy solid, said oil or waxy solid comprising by weight:
- the benefit agents other than perfume ingredients are preferably selected among the group consisting of malodour counteracting agents, essential oils, aromatherapeutic materials, chemaesthetic agents vitamins, insect repellents, UV absorbers, antioxidants and agents, which improve the capsule properties such as:
- compositions and processes for manufacturing aminoplast capsules in the form of dispersion such as EP 1,246,693 A1 and US patent 6,261,483 which are incorporated herein by reference.
- a typical condensation polymerization process for preparing a capsule dispersion would include the following steps.
- the first step is the mixing of the above-defined emulsion with melamine-formaldehyde resin (with a melamine: formaldehyde: methanol mixture in the approximate molar ratios 1:3:2 to 1:6:4) and an emulsifier.
- melamine-formaldehyde resin with a melamine: formaldehyde: methanol mixture in the approximate molar ratios 1:3:2 to 1:6:4
- an emulsifier may be precondensed or the monomers may be used directly.
- Some of the melamine can be replaced by urea.
- the formaldehyde may be partially etherified preferably as the methyl ethers.
- the shell is constituted of 50-100% by weight formaldehyde-melamine or formaldehyde-melamine-urea or formaldehyde-urea condensation polymers or partially corresponding etherified formaldehyde condensation polymers, preferably as the methyl ethers.
- the shell may be also constituted of 50-100 % by weight of methacrylate or urethane.
- the capsules are cured by heating to a temperature between 60°C to 100°C for several hours under moderate stirring.
- urea melamine or other amines, or mixtures thereof can be made to reduce the formaldehyde concentration in the finished dispersion, and increase the wall thickness.
- a particularly advantageous ratio is 5:1 to 1:1 melamine:urea.
- the temperature is reduced to around 50°C, and the dispersion is neutralized before being adjusted to a pH around 9.5.
- the final capsule dispersion as shipped should contain less than 0.1% by weight of free formaldehyde or free acetaldehyde measured by GLC or HPLC (standard methods are published by the US Environmental Protection Agency; HPLC requires derivatisation of the formaldehyde), preferably less than 100 ppm (wt/wt) and more preferably less than 10 ppm wt/wt.
- Such materials as cationic polymers or copolymers e.g. polyvinyl imidazole, polysaccharides based on beta 1, 4 linkages such a guar gum, and polyester copolymers such as those sold commercially as soil release polymers for detergents are examples of suitable materials to improve deposition.
- cationic polymers or copolymers e.g. polyvinyl imidazole, polysaccharides based on beta 1, 4 linkages such a guar gum, and polyester copolymers such as those sold commercially as soil release polymers for detergents are examples of suitable materials to improve deposition.
- Capsules of the above process will generally have a particle size within the range from 5-100 ⁇ m, preferably 5-70 ⁇ m, depending on the composition of the core material and emulsifying conditions.
- the capsule wall will have a thickness of 0.025 ⁇ m-1.0 ⁇ m. These parameters are important in the proper functioning of the capsules. If the capsule wall is too thin, the capsules will be too friable for subsequent shipping and handling, if too thick they might not break when required. If capsules are very small the wall material may become an uneconomically large proportion of the capsule. Very large capsules either require thicker walls or the addition of hardeners to the core to prevent breakage in handling both of which reduces the amount of beneficial agent delivered.
- the dispersion of capsules may typically contain, by weight, 2.5%-80% dispersed capsules by weight in water. Preferably the dispersion contains from 5%-70% by weight of capsules and even more preferably from 30% - 70% by weight. In some forms of the process excess water can be removed to form a concentrated wet cake. Since the capsules are introduced to aqueous slurry the presence of water is not deleterious and may protect the capsules during shipping.
- the capsules are introduced in the slurry in the form of an aqueous dispersion of capsules.
- Suitable perfumes for the composition can be composed from a wide range of perfumery raw materials well known to those skilled in the art. Examples of suitable perfume ingredients are described in S. Arctander, Perfume Flavors and Chemicals. Vols. I and II, Aurthor, Montclair, N.J., and the Merck Index, 8th Edition, Merck & Co., Inc. Rahway, N.J., both are being incorporated herein by reference. It is preferable if the perfume has little or no aldehyde or amine containing raw materials. It is also preferable if more than 80% by weight of the perfume is in the range ClogP 1.5-4.5, more preferably ClogP 2-4.
- Particularly preferred suitable perfume compositions are in the form of an oil or waxy solid, which contain at least two perfume ingredients, wherein:
- perfume composition which is also named “fragrance” as defined below is an essential part of the invention.
- the term “perfume composition” means any odoriferous material or any material which acts as a malodor counteractant.
- a wide variety of chemicals are known for perfumery uses, including materials such as alcohols, ketones, esters, ethers, nitriles, and the like.
- the perfume compounds will have molecular weights of less than 400 mass units to ensure sufficient volatility and will not contain strongly ionizing functional groups such as sulphonates, sulphates, or quaternary ammonium ions.
- perfumes Naturally occurring plant and animal oils and exudates or oils and exudates identical to those found in the nature, comprising complex mixtures of various chemical components are also known for use as perfumes, and such materials can be used herein.
- Perfume compositions of the present invention can be relatively simple in their composition with a minimum of two perfume or fragrance ingredients or can comprise highly complex mixtures of natural and synthetic chemical components, chosen to provide any desired odor.
- aldehydes not only react to some extent during the preparation of the capsules but surprisingly they continue reacting over time on storage within the capsule itself to an extent which may make the fragrance olfactively unacceptable.
- aldehydes are reactive species some aldehydes e.g. lilial, cyclamen aldehyde and hexyl cinnamic aldehyde are frequently used at quite high levels in fragrances for laundry products and are stable in these formulations.
- the perfume composition of the present invention preferably restrict the level of total aldehydes including alpha beta unsaturated aldehydes to less than 20% by weight, preferably less than 10% by weight and even more preferably less than 1% by weight of the perfume composition.
- the perfume compositions of the invention preferably contain less than 10% by weight, and more preferably less than 1% by weight of primary and secondary amines.
- a further aspect of the invention is that the capsule should contain more than 50% by weight, and preferably more than 60% and more preferably more than 70% and even more preferably more than 80% by weight of perfumery ingredients.
- capsules Whilst economically it would seem obvious to incorporate as much active ingredients as possible into each capsule, for many practical reasons, associated with emulsion stability, capsule integrity etc., many capsules contain other ingredients e.g. solvents, hardeners which substantially dilute the fragrance and benefit agents.
- fragrance compositions of the invention preferably contain less than 25% by weight of perfume ingredients preferably less than 20% by weight with ClogP>4 and less than 20% by weight with ClogP ⁇ 2.
- ClogP refers to the octanol/water partitioning coefficient (P) of fragrance ingredients.
- the octanol/water partitioning coefficient of a perfume ingredient is the ratio between its equilibrium concentrations in octanol and in water.
- the partitioning coefficients of perfume ingredients are more conveniently given in the form of their logarithm to the base 10, logP.
- the perfume ingredients of this invention have logP of about 1.5 and higher preferably in the range 2.5 to 5.
- the logP of many perfume ingredients has been reported; for example, the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, Calif., contains many, along with citations to the original literature.
- ClogP values reported herein are most conveniently calculated by the "CLOGP" program available within the Chemoffice Ultra Software version 9 available from CambridgeSoft Corporation, 100 CambridgePark Drive, Cambridge, MA 02140 USA or CambridgeSoft Corporation, 8 Signet Court, Swanns Road, Cambridge CB5 8LA UK.
- the ClogP values are preferably used instead of the experimental logP values in the selection of perfume ingredients which are useful in the present invention.
- the composition of such oils can be determined by analysis or using the compositions published in the ESO 2000 database published by BACIS (Boelens Aroma Chemical Information Service, Groen van Prinsterlaan 21, 1272 GB Huizen, The Netherlands).
- the oil or waxy solid contains 0-1 % by weight of perfume ingredients, which are selected among:
- the composition of the capsule core must take into account the less desirable characteristics of some fragrance materials such as persistence in the environment, accumulation in aquatic organisms, and toxic, allergenic or irritant effects with some humans.
- the capsules will deliver fragrance more efficiently to the surface fewer capsules and hence less fragrance is needed to achieve a desired fragrance effect, so the overall environmental load is reduced.
- the greater concentration on skin or in close proximity to the skin requires additional care to formulate the core composition using only ingredients known to be safe in such a context.
- perfume compositions are nitro musks as exemplified by musk ambrette CAS 83-66-9, and musk ketone CAS 81-14-1, polycyclic musks typified by Galaxolide CAS 1222-05-5 and Tonalid CAS1506-02-1, cashmeran, geranyl nitrile, safrole, estragol, methyl eugenol, halogen containing perfumery materials.
- Materials listed in Annex 1 of the Dangerous Substances Directive (67/548/EEC) or any of its amendments or ATPs (Adaptation to Technical Progress), or classified as R43 in their safety data sheet are optionally restricted to less than 1% of the core composition, preferably less than 0.1% by weight, more preferably below 0.001%, and even more preferably below the analytical detection limit.
- any materials classified as very toxic or toxic are preferably excluded from the core composition.
- Those fragrance ingredients alleged to be allergenic substances within the 7th amendment of the Cosmetic Directive, Directive 2003/15/EC (7th amendment to Directive 76/768/EEC) and the Detergent Regulations (2004/648/EEC) are optionally restricted to below 1% by weight, preferably below 100ppm and more preferably below 10ppm of the core composition.
- These Directives are also amended via ATPs, for example the 26 th Commission Directive 2002/34/EC.
- the core composition is preferably formulated so as not to require any form of classification or warning phrase, especially classification Xi or Xn due to for example the presence of amounts of raw materials classified as R43 “sensitisasion by skin contact”, R36 “irritating to eyes”, R38 "irritating to skin” or R21 “Harmful in contact with skin” under the Dangerous Preparations Directive (99/45/EEC).
- the SCCNFP Stemific Committee on Cosmetic Products and Non Food Products for Consumers
- SCCNFP/0392/00 SCCNFP/0392/00, final, give a number of raw materials where there is concern.
- the oil or waxy solid has preferably a peroxide value of 0-20 millimoles peroxide / litre, preferably 0-10 millimoles peroxide / litre, and even more preferably 0-1 millimoles peroxide / litre.
- limonene (d-, I-, and dl-), and natural products containing substantial amounts of limonene, they should have a peroxide value of less than 20 millimole peroxide per litre.
- the methods for measuring peroxide value are well known to those skilled in the art, and a method is published by the FMA (Fragrance Material Association).
- Typical perfume compositions herein can comprise, for example, woody/earthy notes containing as perfume ingredients synthetic materials and natural extracts such as sandalwood oil, or patchouli oil and the like.
- the perfumes herein can be of a light, floral fragrance, e.g., rose, violet, jasmine, lily and the like.
- the perfume compositions herein can be formulated to provide desirable fruity odors, e.g., lime, lemon, orange, berry fruits or peach and the like.
- any chemically compatible material which exudes a pleasant or otherwise desirable odor can be used in the perfumed capsules herein to provide a desirable odor when applied to fabrics.
- Table 1 below lists some perfume ingredients which have ClogP values, calculated using Chemoffice Ultra Version 9, between 2.0 and 5.0 and which comply with the requirements of the present invention. The values were found to be essentially identical to those obtained using Daylight ClogP (version 4.9).
- Table 1 Name ClogP CAS n° Laevo carvone 2.01 6485-40-1 Geraniol 2.97 106-24-1 Cis Jasmone 2.64 588-10-8 Alpha Terpineol 2.63 98-55-5 Eugenol 2.34 97-53-0 Methyl cinnamate 2.46 103-26-4 Methyl dihydrojasmonate 2.91 24851-98-7 Beta methyl naphthyl ketone 2.76 93-08-3 Iso bornyl acetate 4.04 125-12-2 Carvacrol 3.35 499-75-2 Para cymene 4.07 99-87-6 Dihydromyrcenol 3.04 18479-58-8 Geranyl acetate 3.91 105-87-3 Linalyl acetate
- Table 2 below lists examples of materials, widely used in fragrances for household products, the levels of which are restricted within the invention.
- Table 2 Name ClogP CAS n° Hydroxycitronellal 1.54 107-75-5 Linalool 2.75 78-70-6 Phenyl ethyl alcohol 1.33 60-12-8 Coumarin 1.41 91-64-5 Vanillin 1.28 121-33-5 Citronellol 3.25 106-22-9 d-Limonene 4.35 5989-27-5 Isobutyl quinoline 3.98 93-19-6 Hexyl cinnamic aldehyde 5.00 101-86-0 Lilial 4.10 80-54-6 Galaxolide 5.74 1222-05-5 Cyclamen aldehyde 3.83 103-95-7
- the invention also encompasses the use of odiferous materials which also act as malodor counteractants. These materials, although termed “perfume ingredients” hereinafter, may have a weak odor but can conceal or reduce any unpleasant odors. Examples of suitable malodor counteractants are disclosed in US patent. 3,102,101 and in US patent 5,554,588 .
- Olfactively weak or neutral solvents may constitute up to 30% of the capsule core material by weight, preferably less than 20% by weight and more preferably less than 10% by weight. If present they will most likely have been introduced with one or more perfume ingredients. In the perfume industry it is quite common to dissolve solid perfume ingredients in a suitable solvent or to dilute powerful materials, used at low levels, with a solvent to facilitate manufacture.
- Typical solvents include high ClogP materials such as benzyl benzoate, isopropyl myristate, dialkyl adipates, citrate esters such as acetyl triethyl citrate or acetyl tributyl citrate or triethyl citrate or diethyl phthalate or low ClogP materials such as propylene glycol or dipropylene glycol. While these materials could affect fragrance release or emulsion properties during capsule manufacture, at the levels described such effects will be minimal. For the purpose of this patent, when solvent is present, it is considered as an "other benefit agent".
- high ClogP materials such as benzyl benzoate, isopropyl myristate, dialkyl adipates, citrate esters such as acetyl triethyl citrate or acetyl tributyl citrate or triethyl citrate or diethyl phthalate
- low ClogP materials such as propylene glycol or diprop
- other benefit agent means any material capable of being encapsulated in the way described above and which can survive storage to deliver a benefit when used in household, personal care or cosmetic products. It is preferable if the benefit agent contains little or no aldehydes, in particular alpha, beta unsaturated aldehydes or primary or secondary amines; as described previously, i.e. they should satisfy the requirements concerning aldehydes and amines given above for the perfume composition. Benefit agents do not have to conform to the ClogP requirements as outlined for the fragrance ingredients since it is not a necessary feature of the benefit agents that they vapourise to be effective.
- Materials which when added to the emulsion improve the properties of the core emulsion before encapsulation, or the properties of the capsules themselves.
- Materials which provide a warming or cooling effect such as described in Cosmetics and Toiletries Vol. 120 No 5 p105 by M Erman are also benefit agents.
- Such agents include but are not limited to: cyclohexane carboxamide N-ethyl-5-methyl-2-(1-methylethyl) known as WS3 TM (CAS N° 39711-79-0); N 2,3-trimethyl-2-isopropylbutamide known as WS23 TM (CAS 51115-67-4); menthyl lactate (CAS N° 59259-38-0); (-)-menthoxypropane 1,2-diol known as cooling agent 10 TM and isopulegol.
- antioxidants such as butylated hydroxyl toluene or butylated hydroxyanisole or pentaerythrityl tetra- di- t-butyl hydroxyhydrocinnamate, octadecyl di t-butyl-4-hydroxyhydrocinnamate (CAS N° 2082-79-3), tetrabutyl ethylidenebisphenol (CAS N° 35958-30-6) are benefit agents.
- UV absorbers such as octyl methoxycinnamate, benzophenone 3, butylmethoxydibenzoylmethane, or benzotriazolyl dodecyl p cresol (CAS N° 6683-19-8), bis ethylhexyloxyphenolmethoxyphenyltriazine are benefit agents.
- the materials listed above are intended to exemplify the benefit agents but are not intented to limit the benefit agents to this list. Mixtures of the above may also be considered as benefit agents of the invention.
- vitamin E acetate can function as an antioxidant as well as a vitamin precursor.
- the aqueous slurry used in the invention process comprises inorganic salts and at least one binding agent.
- Inorganic salts suitable for spray drying are typically sodium, potassium, magnesium, calcium or aluminium salts of sulphate, carbonate, bicarbonate, citrate and silicate, which can be used alone or in any combination or ratio. Some are discussed below as inorganic builders, and others play roles such as:
- Especially preferred inorganic salts are: sodium carbonate, calcium carbonate, sodium bicarbonate, sodium silicates, layered sodium silicates (especially Na SKS-6), sodium phosphates (especially sodium tripolyphosphate, sodium metaphosphate), sodium aluminosilicates (especially Zeolite 4A, Zeolite A24).
- Binding agents suitable for spray drying include nonionic, anionic, amphoteric and cationic surfactants discussed in detail below.
- Other suitable binding agents are organic polymers such as polycarboxylates and sodium carboxy methyl cellulose. It is particularly preferred that the binding agent has a functional benefit e.g. surfactants are also part of the cleaning system, polycarboxylate is part of the builder system etc.
- Preferred binding organic polymers/polycarboxylates are: poly(acrylic acid), copolymers of acrylic acid (especially copolymer with maleic acid), poly(aspartic acid), poly(lactic acid), citric acid, carboxy methyl cellulose and salts/derivatives thereof, polyethyleneglycol and derivatives thereof.
- Particularly preferred binding surfactants of the present invention are the conventional C 11 -C 18 alkyl benzene sulfonates ("LAS"), the C 10 -C 18 alkyl alkoxy sulfates (AE x Sulfates; especially EO 1-7 ethoxy sulfates), alkyl sulfates (AS), soaps and mono or di-alkyl (C 10 -C 20 ) quaternary ammonium salts.
- LAS C 11 -C 18 alkyl benzene sulfonates
- AE x Sulfates especially EO 1-7 ethoxy sulfates
- AS alkyl sulfates
- soaps and mono or di-alkyl (C 10 -C 20 ) quaternary ammonium salts.
- the slurry is made by mixing the inorganic salts and the binding agents and the capsules with water by the methods well known by the person skilled in the art. As the slurry is very concentrated it is typically a dispersion rather than a solution (even when it contains materials which have good water solubility), and it needs to be well and continuously mixed. Any particulate matter present in the dispersion must be sufficiently small to easily pass through a spray drying nozzle without causing a blockage.
- Spray drying as a processing technique has and continues to find widespread use as a method for producing powders. It creates relatively porous particles which dissolve easily, even at low temperatures.
- Many patents and publications are available on spray drying.
- An overview article for detergent powders can be found in Powdered Detergents vol 71 (Surfactant Science Series) ed M Showell, ISBN 0-8247-9988-7 , which includes a general overview of production methods and includes on page 25, a schematic of slurry preparation and spray drying (courtesy Ballestra SPA), and Formulating Detergents and Personal Care Products. Ho Tan Tai. AOCS Press ISBN 1-893997-10-3 .
- Spray drying processes for forming detergent compositions are well known in the art and typically involve the steps of forming a detergent slurry, often warmed to 60-80°C using at least in part heat of anionic surfactant neutralization (e.g. neutralization of linear alkyl benzene sulphonic acid).
- the slurry has typically a water content of between 30%-60% by weight and commonly comprises a builder, a neutralized or acid-form anionic surfactant, a nonionic surfactant, a neutralizing alkali such as soda ash or sodium carbonate, an inorganic salt or salts such as sodium sulphate, water, processing aids, and organic polymers in a crutcher.
- the detergent slurry is pumped to the top of a spray drying tower, and sprayed from nozzles in the tower to form atomized droplets.
- These compositions could also be prepared by continuous slurry making.
- continuous slurry making is meant a process in which components are fed continuously and substantially simultaneously to a slurry making vessel while mixed slurry is removed to the spray tower at a rate which maintains an essentially constant volume in the vessel.
- Hot air is pumped through the spray drying towers such that when the atomized droplets are sprayed into the hot air, they dry into a powder as the free moisture evaporates.
- the spray-dried granules thus formed are then collected at the bottom of the tower.
- Numerous patents teach specific modifications to this basic protocol in order to better produce powders with specific properties.
- US patent 4,269,722 teaches spray drying especially porous particles to incorporate nonionic surfactant.
- GB patent 1,473,201 teaches spray drying compositions containing zeolite.
- EP patent 1,499,703 describes the manufacture of powders having low anionic surfactant content while US patent 4,900,466 describes the preparation of particles having defined pores by varying the ratio of inorganic salts in a composition with little or no surfactant but using a polymeric binder. However none of these detergent patents describe the incorporation of capsules within the slurry.
- the characteristics of the powder particles will be affected.
- conventional spray dried detergent powders have bulk densities of 200-550 kgm -3 and particle sizes concentrated around 250-700 ⁇ m. In some instances it is possible to produce much finer and denser powders. These may not disperse uniformly within a detergent powder and so it is preferable if the powder is more agglomerated. This may be achieved in the spray drying tower by adding some steam to the powder or separately in a fluid bed mixer.
- composition of a range powders (often termed “blown powder” or “base powder”) which can be prepared by spray drying can be found in International application WO 99/65458 which is incorporated herein by reference. This patent also teaches ingredients which can be post dosed or sprayed on to the base powder.
- the surfactant composition for a detergent powder may contain at least about 0.01% by weight of a surfactant selected from the group consisting of anionic, cationic, nonionic, and zwitterionic surface active agents.
- a surfactant selected from the group consisting of anionic, cationic, nonionic, and zwitterionic surface active agents.
- surfactant is present to the extent of from about 1.0% to 60%, more preferably 1.0% to about 30% by weight of the composition.
- Non-limiting examples of surfactants useful herein typically at levels from about 1% to about 55%, by weight include the conventional C 11 -C 18 alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C 10 -C 20 alkyl sulfates ("AS"), the C 10 -C 18 secondary alkyl sulfates of the formula CH 3 (CH 2 ) x (CHOSO 3 - M + )CH 3 and CH 3 (CH 2 ) y (CHOSO 3 - M + )CH 2 CH 3 where x and (y+1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C 10 -C 18 alkyl alkoxy sulfates (AE x Sulfates; especially EO 1-7 ethoxy sulfates), C 10 -C 18 alkyl al
- the conventional nonionic and amphoteric surfactants such as the C 12 -C 18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C 6 -C 12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C 12 -C 18 betaines and sulfobetaines ("sultaines"), C 10 -C 18 amine oxides, and the like, can also be included in the overall compositions.
- the C 10 -C 18 N-alkyl polyhydroxy fatty acid amides are highly preferred, especially the C 12 -C 18 N-methylglucamides. See International application WO 92/06154 .
- sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C 10 -C 18 N-(3-methoxypropyl) glucamide.
- the N-propyl through N-hexyl C 12 -C 18 glucamides can be used for low sudsing.
- C 10 -C 20 conventional soaps may also be used. If high foaming is desired, the branched-chain C 10 -C 16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful.
- Other conventional useful surfactants are described further herein and are listed in standard texts such as " Surface Active Agents and Detergents" by Schwartz, Perry & Berch incorporated herein by reference.
- Anionic surfactants can be broadly described as the water-soluble salts, particularly the alkali metal salts, of organic sulfuric reaction products having in their molecular structure an alkyl radical containing from about 8 to about 22 carbon atoms and a radical selected from the group consisting of sulfonic acid and sulfuric acid ester radicals.
- alkyl is the alkyl portion of higher acyl radicals.
- tallow or coconut alcohols and about 1 to about 10 moles of ethylene oxide
- the reaction products of fatty acids are derived from coconut oil or waxy solid sodium or potassium salts of fatty acid amides of a methyl tauride in which the fatty acids, for example, are derived from coconut oil or waxy solid and sodium or potassium beta-acetoxy- or beta-acetamido-alkanesulfonates where the alkane has from 8 to 22 carbon atoms.
- secondary alkyl sulfates may be used by the formulator exclusively or in conjunction with other surfactant materials and the following identifies and illustrates the differences between sulfated surfactants and otherwise conventional alkyl sulfate surfactants.
- Non-limiting examples of such ingredients are as follows.
- Conventional primary alkyl sulfates such as those illustrated above, have the general formula ROSO 3 - M + wherein R is typically a linear C 8 -C 22 hydrocarbyl group and M is a water solublizing cation.
- Branched chain primary alkyl sulfate b surfactants i.e. branched-chain "PAS" having 8-20 carbon atoms are also know; see, for example, EP patent application 0,439,316 .
- Conventional secondary alkyl sulfate surfactants are those materials which have the sulfate moiety distributed randomly along the hydrocarbyl "backbone" of the molecule. Such materials may be depicted by the structure CH 3 (CH 2 ) n (CHOSO 3 - M + )(CH 2 ) m CH 3 wherein m and n are integers of 2 of greater and the sum of m+n is typically about 9 to 17, and M is a water-solublizing cation.
- the aforementioned secondary alkyl sulfates are those prepared by the addition of H 2 SO 4 to olefins.
- a typical synthesis using alpha olefins and sulfuric acid is disclosed in US patent 3,234,258 , or in US patent 5,075,041 . See also US patent 5,349,101 and US patent 5,389,277 .
- Water soluble salts of the higher fatty acids ie soaps are useful anionic surfactants in the composition herein.
- the fatty acids may be saturated, often termed hardened, wholly or partially as required. Soaps can be made by direct saponification of fats or oil or waxy solids or by the neutralization of free fatty acids.
- Particularly useful are the sodium and/or potassium salts of the mixtures of fatty acids derived from coconut oil, palm oil and tallow.
- Other useful soaps are described in EP patent 1 282 678 in the section titled "fatty acids”.
- the preferred surfactants of the present invention are anionic surfactants, however, other surfactants useful herein are described below.
- compositions of the present invention can optionally include at least about 0.01% by weight, preferably at least 0.1% by weight, more preferably from about 1% to about 30% by weight, of a nonionic surfactant.
- Preferred nonionic surfactants such as C 12 -C 18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C 6 -C 12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), block alkylene oxide condensate of C 6 -C 12 alkyl phenols, alkylene oxide condensates of C 8 -C 22 alkanols and ethylene oxide/propylene oxide block polymers (Pluronic.TM.-BASF Corp.), as well as semi polar nonionics (e.g., amine oxides and phosphine oxides) can be used in the present compositions.
- AE alkyl ethoxylates
- Alkylpolysaccharides such as disclosed in US patent 4,565,647 (incorporated herein by reference) may also be preferred nonionic surfactants in the compositions of the invention.
- nonionic surfactants comprises alkyl polyglucosides having 8 to 22, preferably 10 to 18 carbon atoms in the alkyl chain such as disclosed in US patent 4,565,647 . These compounds usually contain from 1 to 20, preferably from 1.1 to 5, glucoside units.
- Another class of nonionic surfactants comprises N-alkylglucamides.
- a particularly desirable surfactant of this type for use in the compositions herein is alkyl-N-methyl glucamide.
- sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides.
- Another optional detersive surfactant is a cationic surfactant.
- the cationically charged group is an ammonium group substituted by at least one, preferably only one, hydroxyalkyl group and three alkyl groups of which one is a long alkyl chain having 12 to 20 carbon atoms and the other two alkyl substituents have 1 to 4 carbon atoms.
- the hydroxyalkyl preferably has from 1 to 4 carbon atoms, more preferably 2 or 3 carbon atoms, most preferably 2 carbon atoms.
- Suitable quaternary ammonium compounds for use as detersive surfactants are: coconut trimethyl ammonium chloride or bromide; coconut methyl dihydroxyethyl ammonium chloride or bromide; decyl triethyl ammonium chloride; decyl dimethyl hydroxyethyl ammonium chloride or bromide; C 12 -C 15 dimethyl hydroxyethyl ammonium chloride or bromide; coconut dimethyl hydroxyethyl ammonium chloride or bromide; myristyl trimethyl ammonium methyl sulphate; lauryl dimethyl benzyl ammonium chloride or bromide; lauryl dimethyl (ethenoxy) ammonium chloride or bromide.
- amphoteric surfactants include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds in which the aliphatic moieties can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water-solubilizing group.
- amphoteric surfactants are the betaines which have the general formula: RN + (R 1 )(R 2 )CH 2 ) n X - wherein R is a hydrophobic group selected from the group consisting of alkyl groups containing from about 10 to about 22 carbon atoms, preferably from about 12 to about 18 carbon atoms, alkyl aryl and aryl alkyl groups containing a similar number of carbon atoms with a benzene ring being treated as equivalent to about 2 carbon atoms, and similar structures interrupted by amido or ether linkages; each R 1 and R 2 are alkyl groups containing from 1 to about 3 carbon atoms ; and n is from 1 to 6 and X is a carboxylate group.
- betaines cocoamidopropyl betaine, dodecyl dimethyl betaine, cetyl dimethyl betaine, dodecyl amidopropyl dimethyl betaine, tetradecyldimethyl betaine, and tetradecylamidopropyldimethyl betaine.
- Detergent builders can optionally be included in the slurry for spray drying. They may also be incorporated into laundry detergent compositions to assist in controlling mineral hardness. Inorganic as well as organic builders can be used separately or in admixture. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soil.
- the level of builder can vary widely depending upon the type of builder and the end use of the composition. When present, the compositions will typically comprise at least about 1% by weight of builder. Formulations typically comprise from about 5% to about 80%, more typically about 10% to about 50%, by weight, of detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.
- suitable inorganic builders are aluminosilicates having ion exchange properties, such as zeolites, for example.
- zeolites are suitable, especially zeolite A, X, B, P, MAP and HS in their Na form or in forms in which some of the Na has been replaced by other cations such as Li, K, Ca, Mg, or ammonium.
- Suitable zeolites are described, for example, in EP-A 0 038 591 , EP-A 0 021 491 , EP-A 0 087 035 , US patent 4,604,224 , GB-A 2 013 259 , EP-A 0 522 726 , EP-A 0 384 070 and WO-A-94/24 251 .
- amorphous or crystalline silicates such as amorphous disilicates, crystalline disilicates, such as the sheet silicate SKS-6 (manufacturer: Hoechst).
- the silicates may be used in the form of their alkali metal, alkaline earth metal or ammonium salts. Preference is given to the use of Na, Li and Mg silicates.
- Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates) and aluminosilicates.
- polyphosphates exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates
- phosphonates phosphonates
- phytic acid e.g., silicates, carbonates (including bicarbonates and sesquicarbonates) and aluminosilicates.
- non-phosphate builders are required in some locales.
- silicate builders are the alkali metal silicates, particularly those having a SiO 2 :Na 2 O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in US patent 4,664,839 .
- NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the NaSKS-6 silicate builder does not contain aluminium. NaSKS-6 has the Na 2 SiO 5 morphology form of layered silicate. It can be prepared by methods such as those described in DE-A-3,417,649 and DE-A-3,742,043 .
- SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x O 2x+1 .yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
- Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
- the ⁇ Na 2 SiO 5 (NaSKS-6 form) is most preferred for use herein.
- Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
- carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in DE Patent application 2,321,001 .
- WO 2005/052105 describes formulations which are essentially zeolite free, and which are based around carbonate and co-polymer as builder system.
- EP patent 0 267 043 describes yet another approach to the use of carbonate as a builder via the use of seeded calcite to promote suspended calcium carbonate.
- Aluminosilicate builders are particularly useful in the present invention being of great importance in most currently marketed heavy duty granular detergent compositions.
- Aluminosilicate builders include those having the empirical formula: [M z (zAlO 2 )y].xH 2 O wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
- aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in US patent 3,985,669 . Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula: Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ].
- xH 2 O wherein x is from about 20 to about 30, especially about 27.
- This material is known as Zeolite A.
- the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
- Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
- polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
- Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
- Preferred polycarboxylates are organic polymers with pendant carboxylic acid groups. Typical examples include polymers of acrylic acid and copolymers of acrylic acid and maleic acid (suitable grades of both types of polymers for laundry detergents are commercially available from BASF in the Sokalan PA and CP ranges, eg Sokalan CP5). Further interesting organic polymers are polymers which may be biodegradeable, such as poly(aspartic acid) and poly(lactic acid). These polymers can be added as acids or as salts e.g. sodium, potassium or ammonium salts, and in general, even if added as acids, will be neutralized in the slurry or when post-dosed onto the detergent powder.
- polycarboxylate builders include a variety of categories of useful materials.
- One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in US patent 3,128,287 , US patent 3,635,830 and the "TMS/TDS" builders of US patent 4,663,071 .
- Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in US patents 3,923,679 ; 3,835,163 ; 4,158,635 ; 4,120,874 and 4,102,903 .
- ether hydroxypolycarboxylates copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2,4,6-trisulphonic acid, and carboxymethyloxysuccinic acid
- various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
- polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
- Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance due to their availability from renewable resources and their biodegradability. Citrates can also be used in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
- succinic acid builders include the C 5 -C 20 alkyl and alkenyl succinic acids and salts thereof.
- a particularly preferred compound of this type is dodecenylsuccinic acid.
- succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in EP Patent Application 0 200 263 .
- Fatty acids e.g., C 12 -C 18 monocarboxylic acids
- the aforesaid builders especially citrate and/or the succinate builders, to provide additional builder activity.
- polycarboxylates particularly amino polycarboxylates
- examples would be ethylene diamine tetra acetic acid (EDTA) and especially the biodegradable chelants, such as salts and derivatives of disuccinic acid, such as ethylenediamine-N,N'-disuccinic acid (EDDS); iminodisuccinate (IDS) and hydroxyiminodisuccinate (HIDS).
- EDTA ethylene diamine tetra acetic acid
- biodegradable chelants such as salts and derivatives of disuccinic acid, such as ethylenediamine-N,N'-disuccinic acid (EDDS); iminodisuccinate (IDS) and hydroxyiminodisuccinate (HIDS).
- compositions herein A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, soil release polymers.
- Inorganic salts in addition to those discussed above can also be useful ingredients, in particular sodium, potassium, magnesium, calcium or aluminium salts of sulphate, carbonate, bicarbonate, citrate, silicate, which can be used alone or in any combination or ratio.
- Inorganic salts not used as builders can play roles such as:
- Suitable soil release polymers and/or grayness inhibitors for laundry detergents are the following:
- polyester soil release polymers are supplied by Rhodia under the Repel-O-Tex trade mark, and BASF under the Sokolan SR trade mark.
- soil release polymers are amphiphilic graft polymers or copolymers of vinyl and/or acrylic esters on polyalkylene oxides (see US patents 4,746,456 and 4,846,995 , DE-A 3 711 299 , US patents 4,904,408 , 4,846,994 and 4,849,126 ) or modified celluloses, such as methylcellulose, hydroxypropylcellulose or carboxymethylcellulose, for example.
- Cotton soil release polymers are also beneficial, and modified polyethylene imines are described in US patent 6,121,226 . Ethoxylated polyethylene imines may be particularly useful.
- softening agents which can optionally be added to the detergent powder to formulate a softening in the wash powder are clays especially the smectite clays of US patent 4,062,647 as well as other softener clays known in the art, can optionally be used typically at levels from about 0.5% to about 10% by weight to provide fabric softening concurrent with cleaning from a detergent powder or tablet.
- Clay softeners can be used in combination with amine and cationic softeners as disclosed for example in US patent 4,375,416 and US patent 4,291,071 . They can also be used in conjunction with flocculating agents as taught in US patent 6,881,717 . All the above are incorporated herein by reference.
- color transfer inhibitors used are homopolymers and copolymers of vinylpyrrolidone, of vinylimidazole, of vinyloxazolidone and of 4-vinylpyridine-N-oxide, having molecular masses of from 15 000 to 100 000, and also crosslinked, finely divided polymers based on these monomers. This use of such polymers is known and disclosed for example in DE-B 2 232 353 , DE-A 2 814 287 , DE-A 2 814 329 and DE-A 4 316 023 .
- Natural polymers which can act as deposition aids or have a restoration benefit such as guar gum, locust bean gum, and xanthan gum or their derivatives as described in EP 1 141 195 and EP 1 141 196 .
- Suitable enzymes are proteases, lipases, amylases, and cellulases.
- the enzyme system may be confined to a single one of the enzymes or may comprise a combination of different enzymes.
- foam boosters such as the C 10 -C 16 alkanolamides can be incorporated into the compositions, typically at 1%-10% levels.
- the C 10 -C 14 monoethanol and diethanol amides illustrate a typical class of such foam boosters.
- the detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 11, preferably between about 7.5 and 10.5. Laundry products are typically at pH 9-11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
- the present invention can be used directly in low density powders (typically below 550 kgm -3 ) but may also be incorporated into high density granular compositions in which the density of the granule is at least 550 kgm -3 up to 1200 kgm -3 more particularly from 500 to 950 kgm -3 sometimes known as concentrated detergents or compact powders and also in laundry detergent tablets.
- a typical (heavy duty) powder or granule laundry detergent of the invention, containing perfumes and benefit agents in the capsules, may have the following exemplary composition:
- the process of the invention may also be used to formulate detergent tablets, or tablets with a gel layer which are used in domestic laundry.
- Tablets contain many of the same ingredients of a detergent powder but the need to form the detergent into a tablet which will be mechanically stable yet disperse and dissolve quickly in water impose certain restrictions on the formulation as taught in International application WO 99/41353 and EP application 1 123 381 .
- Many tablets are made from spray dried detergent powder which is mixed with other ingredients then compressed into a tablet and perhaps coated with a water soluble layer as described in US patent 6,358,911 , prior to packaging.
- Compacting powders to make tablets may cause difficulty in retaining sprayed on liquid ingredients such as nonionic surfactant or perfume or adversely affect tablet disintegration and dissolution, so the incorporation of perfume or other liquid ingredients in an encapsulated form may be especially beneficial.
- compositions may include particular forms of smectite clays and cationic agents as described in US patent 6,627,598 and cationic or nonionic softener molecules which may be salts of long chain tertiary amines.
- Also provided herein is a method of delivering perfume to laundry which comprises the steps of taking the spray dried powder and adding it to a powder detergent composition or incorporating the capsules in a detergent slurry which, after spray drying provides a basic detergent powder to which other ingredients may be added either by liquid spray on as for example free fragrance or as solid granules as for example bleaching agents to formulate a commercial detergent powder and then the use of this detergent powder in a domestic clothes washing machine.
- a 2 I cylindrical stirring vessel was fitted with an infinitely adjustable disperser having a standard commercial dispersion disk with a diameter of 50 mm.
- This charge was processed to a capsule dispersion by adjusting the stirring speed to a peripheral speed of approximately 20 ms -1 .
- the temperature was held at about 35°C.
- the dispersion was oil-free; a particle size of about 5 ⁇ m had been established.
- the stirring speed of the dispersion disk was then reduced to a level sufficient for uniform circulation of the vessel contents.
- a cure temperature of 90°C was set, and once reached by injection of hot steam, a feed of a 27% suspension of melamine-urea (ratio 2.5:1, melamine:urea) in formic acid (to adjust pH to pH 4.5) was added to the dispersion of the preformed microcapsules with a constant mass flow rate and was metered in over the course of an hour. A total of 67 g of the suspension of melamine-urea was metered in.
- the dispersion After the dispersion had been cooled to about 55°C, it was neutralized with diethanolamine and adjusted to a pH of 9.5 using ammonia.
- slurry compositions for a zeolite built mixed non-ionic / anionic detergent powder such as is typical of many commercial formulations sold for use in front loading automatic washing machines in Europe.
- the slurry was prepared and continuously agitated, and warmed to 80°C then spray dried in a 7 metre tower using a spinning disk for atomisation with an air inflow temperature of 220°C and outflow temperature of 80-95°C.
- Examples 2 to 4 contain perfume capsules of different fragrance compositions while example A is the base powder to which free fragrance or encapsulated fragrance is added after spray drying. After a suitable storage period washes were carried out with all 3 invention formulations to demonstrate the survival and performance of the spray dried capsules.
- the average particle diameter of the capsules was respectively 16 ⁇ m, 18 ⁇ m and 14 ⁇ m (Malvern Instrument).
- a fresh slurry was made as above example A, and 10 g mixed with 0.06 g of the capsule dispersion of perfume composition n°1.
- the headspace above 10 g of the fragranced slurry was sampled and analysed initially (time zero), and after 60 minutes by GC/MS.
- a fresh slurry was also made as above example A, and 10g mixed with 0.02g of free perfume composition n°1, to provide a control of the headspace measurement, and was analysed in an identical fashion.
- the samples were mixed gently and then stored without further agitation at 70°C, and subsequently analysed at 70°C.
- a further 10 g sample of the slurry A was mixed with a starch capsule containing a mint fragrance provided by Takasago Europe GmbH ("Micronplus” TM ).
- the headspace of that sample is measured by GC/MS initially and after 60 min. The sample was stored and analysed at 70°C.
- Aminoplast capsules show a minimum leakage during slurry survival test while the starch capsules fail the "slurry survival test".
- Example Z The composition of Example Z was made into a slurry by mixing with water at ambient temperature in the ratio 3:7 Composition Example Z: Water, and then spray dried with a Buchi B-290 to give a base powder. An identical procedure was followed with the composition of Example 6.
- Supplier Example Z Wt %
- Example 6 Wt % Sodium sulphate Aldrich 38 38 Nonionic 7EO Shell - Neodol 23-7 1.6
- the base powder from Example 6 had 70% by weight of encapsulated fragrance remaining after the slurry and spray drying process.
- the base powder from Example 6 is highly suitable as an adjunct for addition to many types of detergent powders for example for addition to non tower detergent compositions or to phosphate, carbonate or aluminosilicate based detergent powders.
- Example 7 and comparative examples B and C show the amount of perfume remaining on a line dried cotton towelling glove (bath mitt) after washing.
- the glove is washed in a linitester at 40°C for 45 minutes at a liquor to cloth ratio of 10:1 with a detergent concentration of 6.8 g/l of wash liquor, followed by 2 ambient rinses, and line drying.
- Example B the Free Perfume of composition n°1 was dosed onto the powder of example Z. Perfume was incorporated at 0.64% by weight on the powder.
- Example C is identical to example B except perfume is added via direct addition of the capsule dispersion of perfume composition n°1 to the powder of example Z. Perfume was incorporated at 0.64% by weight on the powder (some unencapsulated fragrance is present in the capsule dispersion). Note that these capsules were not spray dried in a detergent base.
- Example 7 uses the spray dried powder of example 6 comprising 0.42% by weight of fragrance (after spray drying).
- Example C shows that the use of encapsulated fragrance results in higher fragrance delivery to fabric after the wash, relative to the use of free fragrance.
- Example 7 shows that after preparing a slurry and spray drying, despite some fragrance loss, there is still a considerable advantage for the use of encapsulated fragrance.
- Example 8 and comparative examples D and E show the amount of perfume remaining on a line dried cotton towelling glove (bath mitt) after washing.
- the glove is washed in a linitester at 40°C for 45 minutes at a liquor to cloth ratio of 10:1 with a detergent concentration of 6.8 g/l of wash liquor, followed by 2 ambient rinses, and line drying.
- the perfume composition n°1 is dosed onto the powder of example A. Perfume was incorporated at 0.2 % by weight on the powder.
- Example E is similar to example B except perfume is added via direct addition of the capsule dispersion of perfume composition n°1 to the powder of example A. Perfume was incorporated at 0.2 % by weight on the powder (some unencapsulated fragrance is present in the capsule dispersion). Note that these capsules were not spray dried in a detergent base.
- Example 8 uses the spray dried powder of example 3 comprising 0.2 % by weight of fragrance (after spray drying).
- Example D Example E
- Example 8 Perfume composition n°1 available in wash 4 mg 4 mg 4mg (as recovered after spray-drying) % by weight recovered 8 17 25
- Example E shows that the use of encapsulated fragrance results in higher fragrance delivery to fabric after the wash, relative to the use of free fragrance.
- Example 8 shows that after preparing a slurry and spray drying there is a considerable advantage for the use of encapsulated fragrance.
- Examples 9 to 13 demonstrate several detergent powder formulations in which the capsules can be included in the slurry prior to spray drying.
- Examples 9 to 11 are conventional low bulk density powders having different builders whilst example 13 is a high bulk density powder generally known as a concentrated powder.
- a second perfume may be post dosed to the detergent powder, and this may be the same fragrance as in the capsule but it may also have a different composition and odour.
- Example 9 Wt % Example 10 Wt % Example 11 Wt % Example 12 Wt % Example 13 Wt % Ingredients added before spray drying Sodium Linear (C 11 -C 13 ) alkyl benzene sulphonate (Na-LAS) 8.5 11 11 8 3.0 Sodium (C 12 -C 15 ) alkyl 3-ethoxy sulphate (AES) 1.5 Alcohol ethoxylate Neodol 23 7EO (Shell) 6.5 3.5 3.5 5 Cationic Praepagen HY 1.3 1.5 Dequest 2060 (Monsanto) 0.6 Sodium linear (C 12 -C 18 ) Carboxylates 2 1 1.2 0.3 Zeolite A24 19.5 Zeolite A4 22 20 15.0 Sokolan CP5 ex BASF 1.7 3 1 2.0 polyacrylate (mw 5000) 3.5 Sodium citrate/citric acid 2.5 1.5 4 2 Sodium silicate 1.5 4.0 Sodium disilicate (SKS-6) 2.5 3.5 11 Sodium carbonate 18.5 1
- Examples 14 to 17 demonstrate a range of slurry compositions which can be spray dried into detergent powders showing different surfactant types and builder.
- the powder was slurried to give 30-60% by weight water at 80-85°C and spray dried with an air inlet temperatures between 200C- 350°C and outflow temperatures of 90-100°C.
- Example 14 Hand wash powder Wt %
- Example 15 Carbonate built Zero P powder Wt %
- Example 16 Zeolite built powder Wt %
- Example 17 Phosphate built powder Wt %
- Anhydrous sodium sulphate 3.0 42.0 20.3 29.74 Anhydrous sodium carbonate 45.0 33.0 10.0 8.0
- Zeolite A4 32.0 Anhydrous sodium tripolyphosphate 22 Sodium Linear (C 11 -C 13 ) alkyl benzene sulphonate (Na-LAS) 28.0 18.0 9.0 Alcohol ethoxylate Neodol 23- 7EO ex Shell 2.6
- Post addition 4.0 Perfume composition n°1 encapsulated as in example 1 0.26 0.26 0.26 0.26 Moisture and minors to 100% to 88% to 88% to 93% Post dosed ingredients Nil 12% 12% 7%
- bleaches bleach precursors, enzymes, certain surfactants, builders, antifoam agents, anti-redeposition agents, fabric care polymers, fluorescers, photobleaches, and free fragrance can all be added to any of these compositions after spray drying.
- Capsule dispersions of perfume compositions n°1 to n°3 were directly spray dried with a Buchi B-290 to give powders which was essentially 100% dry capsules. A weighed amount of these dry capsules was placed in a temperature controlled oven at 200°C and after 10 minutes the temperature was increased by 10°C. This procedure was repeated to 260°C. The samples were weighed after each temperature increment and in all case the final weight loss was less than 5%.
- fragrance composition (perfume composition n° 4) was encapsulated as per Example 1, then a slurry prepared and spray dried as per Example 6.
- Perfume Composition N° 4 CAS No Wt % Iso amyl alcohol* 123-51-3 10 Butyl acetate* 123-86-4 5 Phenyl ethyl alcohol* 60-12-8 35 Veltol Plus* 4940-11-8 1 Cinnamic Alcohol* 104-54-1 9
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Detergent Compositions (AREA)
- Fats And Perfumes (AREA)
Abstract
1) more than 40% by weight of the benefit agents remain encapsulated 60 minutes after dispersion thereof at 70°C in the slurry as defined in the "slurry survival test" in a sealed vessel without agitation ;
2) more than 30% by weight of the benefit agents added for 15 minutes to an ambient slurry as defined in the "spray dry test" survive spray drying through a laboratory scale spray drier.
Description
- The present invention relates to a process for spray drying an oil or waxy solid containing aminoplast core shell capsule along with inorganic salts and optionally a binding agent or one or more surfactants to form a particulate powder.
- Textile laundering is increasingly concerned with the delivery of benefits as well as cleaning. A long lasting fragrance on the dried laundry is one such benefit others include malodour counteractants as illustrated in
US patent 5,554,588 , aromatherapy agents, chemaesthetic agents etc. Unfortunately it is technically difficult to achieve both a high degree of cleaning and delivery of small organic molecules to a surface simultaneously as can be seen from the various means which have been attempted to deliver a long lasting fragrance from a laundry cleaning process, e.g. inUS patent 5,500,154 . Not only are fragrance ingredients susceptible to reaction with other ingredients in the detergents, they can also be solubilised by surfactant and so lost from the wash. Furthermore volatile materials such as fragrances can evaporate as the laundry dries. Whilst it may be beneficial to generate a noticeable fragrance during the laundering process and while drying, the loss of perfume usually means that comparatively little fragrance remains on the dried laundry. - Adding fragrance during later stages of the laundry process is one way to provide fragrance to the laundry e.g. through rinse conditioners or drier sheets as shown in
US patent 4,511,495 and ironing products but this involves the cost and inconvenience of purchasing and using an additional product. Another method for delivering perfume to laundered fabric is one which increases deposition during the wash and prevents evaporation during drying for example by the use of pro-fragrances. These molecules deposit onto textiles during the wash and later react to release volatile fragrance molecules. The reaction can be triggered by a number of means: under the influence of co-deposited enzymes as inUS patent 5,726,345 , of sunlight as inUS patent 6,218,355 , or by bacterial or enzymatic decomposition. Such technology is successful but is limited to a relatively small range of fragrance materials which can be used to synthesis pro-fragrances and that the resulting odour cannot comprise the mixture of molecules that generally comprise a full fragrance. A more promising approach has been to encapsulate the fragrance.US patent 4,145,184 andUS patent 4,234,627 teach using a capsule with an outer coating which prevents diffusion of the perfume through the capsule wall. The capsules deposit on the fabrics during laundering and open to release their contents as occurs during fabric manipulation. However there are several practical difficulties to be overcome to make this technology work commercially. One of the major difficulties has been to dose the capsules in such a way that they do not separate within the packet of powder because of particle size differences. Also the capsules must be sufficiently robust to withstand all the processes involved in manufacture e.g. transporting, handling and packing yet still be sufficiently friable as to rupture under relatively gentle conditions whilst handling the garment. Thus, it would be desirable to provide a means of protecting a wide range of perfumery materials during prolonged storage in the detergent. For example certain fragrance components are sensitive to the alkalinity and/or bleach content of detergent powders. - It would be desirable to provide a method for delivering a broad range of perfumery ingredients to laundry from a detergent product during the laundry process.
- It would be desirable to provide a long lasting fragrance to dried laundry.
- It would be desirable to reduce the amount of post tower addition of perfume oil for laundry detergents, which can lead to poor powder properties, and sometimes overly intense fragrance.
- It would be even more desirable that any capsule intended to provide the benefits stated above could be in a form so as to mix easily and uniformly in a detergent powder and withstand processing and manipulation during manufacture and yet be capable of rupturing on handling the laundry.
- The present invention relates to the process of manufacturing powders containing perfume capsules by spray drying.
- The process involves (a) the preparation of a slurry which contains inorganic salts and optionally a binding agent and between 0.001% and 20% by weight based on the dried powder of the capsules and (b) spray drying the resulting slurry to form a spray dried powder.
- A preferred form of the invention is that the powder is a laundry detergent powder in which case the slurry may contain at least one detergent active of the type anionic, non-ionic, zwitterionic or cationic surfactant. Part of the inorganic salts may function as the builder in the detergent as for example with phosphate or carbonate salts. Alternatively the slurry might include additional inorganic compounds such as aluminosilicate salts which function as a detergent builder. Other common ingredients of detergent powders normally added to the slurry include fluorescers, polymers such as maleic anhydride acrylic acid copolymers, sequestrants, silicone antifoams, and anti redeposition agents.
- The invention also covers any subsequent treatment of that powder necessary to prepare particles which can be incorporated directly into a laundry detergent product. So, depending on the design and operation of individual spray drying towers, granulation may be required to form particles of the appropriate size for inclusion into a detergent powder. Such granulation may be part of the same spray drying process or a separate step after the spray drying.
- Whilst it is envisaged that the powder of the invention could be used directly in laundry cleaning or conditioning, it could be blended with other ingredients typically post-dosed into spray dried detergents such as bleaches, bleach precursors, sequestrants, enzymes, colour protecting agents, further surfactants, inorganics, and fragrance as part of the detergent manufacturing process. Furthermore the capsules of the invention could be added to a detergent powder as a convenient way of adding concentrated encapsulated perfume into another pre-formed detergent powder. Alternatively the powder might be converted into another form of detergent product for example the powder might be compressed or coated to form a detergent tablet which is then used for fabric treatment as part of conventional laundering.
- The use of dispersants is often advantageous for tablets.
- Preferably, the capsules used in the invention process have an average particle size of less than about 300 microns preferably an average size of not greater than 100 microns and especially a 5-50 micron average size range.
- Advantageously, the capsules used in the invention process are core shell capsules which are thermally stable at 250°C for 15 minutes.
- The majority of laundry detergent and cleaning product compositions contain a perfume in order to give the compositions themselves or textiles treated with them a pleasant fragrance. Some perfumes include compounds which are more or less sensitive to the other chemical constituents. Moreover much of the perfume is solubilised by the surfactant and discarded without depositing onto the laundry. Yet more perfume is lost by evaporation as the laundry dries. To overcome these several problems it has already been proposed to incorporate the fragrances or perfumes in encapsulated form into the laundry detergents or cleaning products. As there are several different problems to be overcome many different types of capsules are proposed as solutions.
- Capsules based on starches or water soluble polymers are primarily intended to protect the perfume during storage and to release the perfume once mixed with water as exemplified in
EP patent 1,388,585 which releases perfume during the laundering process. SimilarlyEP patent 1,196,533 which provides an oil or waxy solid encapsulated within a starch capsule will also release it on contact with water. These capsules fail the slurry stability test described below and so are outside the scope of the present invention. Capsules based on perfume incorporation into high melting waxes or polymers such as inEP patent 0,469,228 which claims a perfume solid composition having melting points over the range of 35 to 120° C are unlikely to retain perfume through the high temperatures of spray drying. - A specific requirement of capsules of the present invention is that a large proportion of the capsules must survive dispersal in the warm aqueous slurry without excessive leakage of the contents and then remain intact through the exposure to high temperatures encountered during spray drying.
- Thus, suitable capsules can be defined by two tests:
- Slurry Survival Test (Test 1): More than 40% by weight of the encapsulated material must remain encapsulated after 60 minutes once dispersed in the slurry at 70°C in a sealed vessel without further agitation, the slurry having the following composition :
- about 0.8% by weight of 7EO C12-C13 non-ionic, for example Neodol 23-7 (Shell);
- about 19.7% by weight of Molecular sieve, 4 Å, powder, activated (of the type Zeolite 4 Å);
- about 20.5% by weight of sodium sulphate;
- about 3.0% by weight of random acrylic acid / maleic acid copolymer with a molecular weight around 70000, for example the copolymer CP5 Sokalan (BASF);
- about 7.4% by weight of sodium dodecyl benzene sulphonate;
- about 0.6% by weight of dispersion of encapsulated fragrance and benefit agent;
- about 48% by weight of water.
- The amount of encapsulated material released being determined by an appropriate analytical method, so for example, perfume release might be determined by trapping the released perfume and measuring it by gas chromatography.
- Spray Dry Test (Test 2): To meet the requirements of the invention more than 30% by weight of the encapsulated material, added to a slurry at room temperature for 15 minutes, the slurry having the following composition:
- about 0.48% by weight of 7EO C12-C13 non-ionic, for example Neodol 23-7 (Shell);
- about 11.4% by weight of Molecular sieve, 4A, powder, activated (of the type Zeolite 4A);
- about 11.4% by weight of sodium sulphate;
- about 2.0% by weight of a 40% by weight aqueous solution of random acrylic acid / maleic acid copolymer with a molecular weight around 70000, for example the copolymer CP5 Sokalan (BASF);
- about 4.2% by weight of sodium dodecyl benzene sulphonate;
- about 0.5% by weight of aqueous dispersion of encapsulated fragrance and benefit agent, containing approximately 45% by weight capsules;
- about 70.0% by weight of water.
- For the purpose of the invention the core shell capsules based on formaldehyde and urea, formaldehyde and melamine, or formaldehyde and urea and melamine condensation polymers are particularly well suited although this is not intended to exclude capsules made with other monomers or incorporating other monomers or other amine aldehyde condensation polymers. Other suitable monomers for core shell capsules are for example methyl methacrylate as exemplified in
International application WO 01/49817 WO 03/099005 - There are numerous patents teaching the application of such capsules to encapsulate water insoluble materials often perfume and to deliver these from laundry powders such as
US patent 5,188,753 which discloses a detergent composition comprising surface-active substances and perfume particles containing a perfume dispersed in a solid core of polyethylene, polyamide, polystyrene or the like, the particles being encapsulated within a friable coating made, for example, of ureaformaldehyde resins. When exposed to mechanical force, the capsules fracture and release the enclosed perfume.International application WO 02/74430 International application WO 92/18601 International application WO 00/05951 US patent 6,849,591 teaches the use of spray drying to dry aminoplast capsules made via addition polymerization in the oil phase preferably with oil soluble initiators; however, this patent does not suggest the addition of capsules to a detergent slurry, nor the addition of any other ingredients during the drying step. - Particularly preferred core shell capsules suitable for the process of the invention are the core shell capsules containing in the core an oil or waxy solid, said oil or solid waxy having little or no aldehyde or amine containing raw materials. It is also preferable if more than 80% by weight of the oil or waxy solid are in the range ClogP 1.5-4.5, more preferably ClogP 2-4.
- More preferably, the appropriate core shell capsules contain in the core an oil or waxy solid, said oil or waxy solid comprising by weight:
- 50-100%, preferably 60-100%, more preferably 70-100%, and even more preferably 80-100% of a perfume composition , which is a mixture of at least two perfume ingredients, wherein:
- aldehydes, including alpha beta unsaturated aldehydes, constitute 0-20%, preferably 0-10%, more preferably 0-5%, and even more preferably 0-1% by weight of the perfume composition;
- primary or secondary amines constitute 0-10%, preferably 0-1% by weight of the perfume composition;
- 0-25%, preferably 0-20% by weight of the perfume composition has a ClogP >4.0;
- 0-20%, preferably 0-15% by weight of the perfume composition has a ClogP >5.0;
- 0-20% and preferably 0-10% by weight of the perfume composition has a ClogP <2.0;
- 0-50%, preferably 0-40%, more preferably 0-30% and even more preferably 0-20% by weight of benefit agents other than perfume ingredients.
- The benefit agents other than perfume ingredients, which should also satisfy the two first above conditions concerning aldehydes and amines, are preferably selected among the group consisting of malodour counteracting agents, essential oils, aromatherapeutic materials, chemaesthetic agents vitamins, insect repellents, UV absorbers, antioxidants and agents, which improve the capsule properties such as:
- a) by stabilising the emulsion during capsule manufacture,
- b) by reducing leakage from the capsule,
- c) by improving capsule hardness.
- Various patents describe compositions and processes for manufacturing aminoplast capsules in the form of dispersion such as
EP 1,246,693 A1 andUS patent 6,261,483 which are incorporated herein by reference. Without wishing to limit the patent in any way a typical condensation polymerization process for preparing a capsule dispersion would include the following steps. - The preparation of an emulsion of perfume ingredients and any benefit agents or modifiers which may include emulsifying agents or emulsion stabilizers takes place under vigorous agitation.
- The first step is the mixing of the above-defined emulsion with melamine-formaldehyde resin (with a melamine: formaldehyde: methanol mixture in the approximate molar ratios 1:3:2 to 1:6:4) and an emulsifier. These monomers may be precondensed or the monomers may be used directly. Some of the melamine can be replaced by urea. In these polymers, the formaldehyde may be partially etherified preferably as the methyl ethers.
- Preferably, the shell is constituted of 50-100% by weight formaldehyde-melamine or formaldehyde-melamine-urea or formaldehyde-urea condensation polymers or partially corresponding etherified formaldehyde condensation polymers, preferably as the methyl ethers.
- The shell may be also constituted of 50-100 % by weight of methacrylate or urethane.
- Then, acid is added to the above mixture to adjust to a pH of 3.5 to 6.5 and the temperature is raised to 30-45°C. Stirring is allowed to proceed until the dispersion is oil free. Any acid which has no adverse properties may be used in this process, such as for example formic acid or acetic acid.
- It is particularly advantageous if the capsules are cured by heating to a temperature between 60°C to 100°C for several hours under moderate stirring.
- It is particularly advantageous if during the early phase of curing a further addition of urea, melamine or other amines, or mixtures thereof can be made to reduce the formaldehyde concentration in the finished dispersion, and increase the wall thickness. Typically 10-30% by weight of additional melamine and/or urea can be added at this stage, and a particularly advantageous ratio is 5:1 to 1:1 melamine:urea.
- Once curing is complete, the temperature is reduced to around 50°C, and the dispersion is neutralized before being adjusted to a pH around 9.5.
- The final capsule dispersion as shipped should contain less than 0.1% by weight of free formaldehyde or free acetaldehyde measured by GLC or HPLC (standard methods are published by the US Environmental Protection Agency; HPLC requires derivatisation of the formaldehyde), preferably less than 100 ppm (wt/wt) and more preferably less than 10 ppm wt/wt.
- It may also be advantageous to incorporate physically or chemically further materials to improve capsule deposition to substrates or to improve deposition selectivity during application or to improve the stability of the dispersion over time during storage. Such materials as cationic polymers or copolymers e.g. polyvinyl imidazole, polysaccharides based on beta 1, 4 linkages such a guar gum, and polyester copolymers such as those sold commercially as soil release polymers for detergents are examples of suitable materials to improve deposition.
- Capsules of the above process will generally have a particle size within the range from 5-100 µm, preferably 5-70 µm, depending on the composition of the core material and emulsifying conditions. The capsule wall will have a thickness of 0.025 µm-1.0 µm. These parameters are important in the proper functioning of the capsules. If the capsule wall is too thin, the capsules will be too friable for subsequent shipping and handling, if too thick they might not break when required. If capsules are very small the wall material may become an uneconomically large proportion of the capsule. Very large capsules either require thicker walls or the addition of hardeners to the core to prevent breakage in handling both of which reduces the amount of beneficial agent delivered.
- The dispersion of capsules may typically contain, by weight, 2.5%-80% dispersed capsules by weight in water. Preferably the dispersion contains from 5%-70% by weight of capsules and even more preferably from 30% - 70% by weight. In some forms of the process excess water can be removed to form a concentrated wet cake. Since the capsules are introduced to aqueous slurry the presence of water is not deleterious and may protect the capsules during shipping.
- Advantageously, the capsules are introduced in the slurry in the form of an aqueous dispersion of capsules.
- Suitable perfumes for the composition can be composed from a wide range of perfumery raw materials well known to those skilled in the art. Examples of suitable perfume ingredients are described in S. Arctander, Perfume Flavors and Chemicals. Vols. I and II, Aurthor, Montclair, N.J., and the Merck Index, 8th Edition, Merck & Co., Inc. Rahway, N.J., both are being incorporated herein by reference. It is preferable if the perfume has little or no aldehyde or amine containing raw materials. It is also preferable if more than 80% by weight of the perfume is in the range ClogP 1.5-4.5, more preferably ClogP 2-4.
- It is also preferable that materials with a low olfactive threshold are used. A method for determing the olfactive threshold of perfume materials is given in
WO 02/089862 - Particularly preferred suitable perfume compositions are in the form of an oil or waxy solid, which contain at least two perfume ingredients, wherein:
- a) aldehydes, including alpha beta unsaturated aldehydes constitute 0-20% by weight of the perfume composition;
- b) primary or secondary amines constitute 0-10% by weight of the perfume composition;
- c) 0-25% by weight of the perfume composition has ClogP >4.0
- d) 0-20% by weight of the perfume composition has ClogP >5.0
- e) 0-20% by weight of the perfume composition has ClogP <2.0
- In the context of this specification a "perfume composition", which is also named "fragrance" as defined below is an essential part of the invention. The term "perfume composition" means any odoriferous material or any material which acts as a malodor counteractant. A wide variety of chemicals are known for perfumery uses, including materials such as alcohols, ketones, esters, ethers, nitriles, and the like. Without wishing to be limited, normally in most cases, the perfume compounds will have molecular weights of less than 400 mass units to ensure sufficient volatility and will not contain strongly ionizing functional groups such as sulphonates, sulphates, or quaternary ammonium ions.
- Naturally occurring plant and animal oils and exudates or oils and exudates identical to those found in the nature, comprising complex mixtures of various chemical components are also known for use as perfumes, and such materials can be used herein. Perfume compositions of the present invention can be relatively simple in their composition with a minimum of two perfume or fragrance ingredients or can comprise highly complex mixtures of natural and synthetic chemical components, chosen to provide any desired odor.
- According to one aspect of the invention it has been found that aldehydes not only react to some extent during the preparation of the capsules but surprisingly they continue reacting over time on storage within the capsule itself to an extent which may make the fragrance olfactively unacceptable. Despite the general view that aldehydes are reactive species some aldehydes e.g. lilial, cyclamen aldehyde and hexyl cinnamic aldehyde are frequently used at quite high levels in fragrances for laundry products and are stable in these formulations. The perfume composition of the present invention preferably restrict the level of total aldehydes including alpha beta unsaturated aldehydes to less than 20% by weight, preferably less than 10% by weight and even more preferably less than 1% by weight of the perfume composition.
- It has also been found that although an excess of water soluble amines is added at the end of the capsule manufacture to remove formaldehyde, the amines present as core components show a surprising degree of instability with the capsule. Thus, the perfume compositions of the invention preferably contain less than 10% by weight, and more preferably less than 1% by weight of primary and secondary amines.
- A further aspect of the invention is that the capsule should contain more than 50% by weight, and preferably more than 60% and more preferably more than 70% and even more preferably more than 80% by weight of perfumery ingredients.
- Whilst economically it would seem obvious to incorporate as much active ingredients as possible into each capsule, for many practical reasons, associated with emulsion stability, capsule integrity etc., many capsules contain other ingredients e.g. solvents, hardeners which substantially dilute the fragrance and benefit agents.
- Related to the above is the realization that the fragrance no longer plays a role in deposition so the need to choose a proportion of high ClogP (Calculated logP) materials as taught in
US patents 5,652,206 and5,500,138 for improved delivery and fragrance longevity is no longer required. Indeed, it is preferable if more volatile ingredients are selected for the fragrance to give maximum perfume impact. Thus fragrance compositions of the invention preferably contain less than 25% by weight of perfume ingredients preferably less than 20% by weight with ClogP>4 and less than 20% by weight with ClogP <2. - ClogP refers to the octanol/water partitioning coefficient (P) of fragrance ingredients. The octanol/water partitioning coefficient of a perfume ingredient is the ratio between its equilibrium concentrations in octanol and in water. The partitioning coefficients of perfume ingredients are more conveniently given in the form of their logarithm to the base 10, logP. Thus the perfume ingredients of this invention have logP of about 1.5 and higher preferably in the range 2.5 to 5. The logP of many perfume ingredients has been reported; for example, the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, Calif., contains many, along with citations to the original literature. However, the ClogP values reported herein are most conveniently calculated by the "CLOGP" program available within the Chemoffice Ultra Software version 9 available from CambridgeSoft Corporation, 100 CambridgePark Drive, Cambridge, MA 02140 USA or CambridgeSoft Corporation, 8 Signet Court, Swanns Road, Cambridge CB5 8LA UK. The ClogP values are preferably used instead of the experimental logP values in the selection of perfume ingredients which are useful in the present invention. For natural oils or extracts the composition of such oils can be determined by analysis or using the compositions published in the ESO 2000 database published by BACIS (Boelens Aroma Chemical Information Service, Groen van Prinsterlaan 21, 1272 GB Huizen, The Netherlands).
- Preferably, the oil or waxy solid contains 0-1 % by weight of perfume ingredients, which are selected among:
- i. the aldehydes selected among the group consisting of of amyl cinnamic aldehyde; citral (CAS 005392-40-5); hydroxy-citronellal; cinnamic aldehyde; hydroxymethylpentyl-cyclohexenecarboxaldehyde; 2-(4-tert-butylbenzyl) propionaldehyde; hexyl cinnamic aldehyde; phenyl acetaldehyde; trans-2-heptenal; 2,4-dihydroxy-3-methyl benzaldehyde; Benzaldehyde; Crotonaldehyde E (CAS 123-73-9); and furfural (CAS 98-01-1);
- ii. the perfume ingredients having a ClogP > 4 selected among the group consisting of of Benzyl salicylate, Benzyl cinnamate, Farnesol (CAS 4602-84-0), d-Limonene, I-Limonene, D, L-Limonene (racemic), 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one, Cyclowood (CAS 13019-04-0), Polysantol (CAS 107898-54-4),
- iii. the perfume ingredients having a ClogP < 2 selected among the group consisting of by benzyl alcohol, Cinnamyl alcohol, Coumarin; Anisyl alcohol; Acetal E71 (CAS 105-57-7), acetophenone; Sec-Butyl acetate; tert-Butyl acetate; n-Butyl acetate; iso-Butyl acetate, p-Cresol; Ethyl acetate; Ethyl propionate; Propyl acetate; Ethyl propionate; Propyl acetate; Benzyl cyanide.
- Since it is inherent in the success of this invention that more fragrance will be deposited on surfaces and that the local concentration around ruptured capsules will be quite high, the composition of the capsule core must take into account the less desirable characteristics of some fragrance materials such as persistence in the environment, accumulation in aquatic organisms, and toxic, allergenic or irritant effects with some humans.
- In general, since the capsules will deliver fragrance more efficiently to the surface fewer capsules and hence less fragrance is needed to achieve a desired fragrance effect, so the overall environmental load is reduced. However the greater concentration on skin or in close proximity to the skin requires additional care to formulate the core composition using only ingredients known to be safe in such a context. Among the materials known to have undesirable characteristics and therefore preferably excluded from the invention perfume compositions are nitro musks as exemplified by musk ambrette CAS 83-66-9, and musk ketone CAS 81-14-1, polycyclic musks typified by Galaxolide CAS 1222-05-5 and Tonalid CAS1506-02-1, cashmeran, geranyl nitrile, safrole, estragol, methyl eugenol, halogen containing perfumery materials. Solvents especially the phthalate esters and carbitol ethers defined as R-(OCH2CH2)n-OR1 where n= 1,2 or 3 R= (C1-C7) alkyl or phenyl or alkyl substituted phenyl and R1 is H or (C1-C7)alkyl.
- Materials listed in Annex 1 of the Dangerous Substances Directive (67/548/EEC) or any of its amendments or ATPs (Adaptation to Technical Progress), or classified as R43 in their safety data sheet are optionally restricted to less than 1% of the core composition, preferably less than 0.1% by weight, more preferably below 0.001%, and even more preferably below the analytical detection limit.
- In addition any materials classified as very toxic or toxic are preferably excluded from the core composition. Those fragrance ingredients alleged to be allergenic substances within the 7th amendment of the Cosmetic Directive, Directive 2003/15/EC (7th amendment to Directive 76/768/EEC) and the Detergent Regulations (2004/648/EEC) are optionally restricted to below 1% by weight, preferably below 100ppm and more preferably below 10ppm of the core composition. These Directives are also amended via ATPs, for example the 26th Commission Directive 2002/34/EC. The core composition is preferably formulated so as not to require any form of classification or warning phrase, especially classification Xi or Xn due to for example the presence of amounts of raw materials classified as R43 "sensitisasion by skin contact", R36 "irritating to eyes", R38 "irritating to skin" or R21 "Harmful in contact with skin" under the Dangerous Preparations Directive (99/45/EEC).
- It is sometimes found that oxidation of certain raw materials can lead to the formation of peroxides, and that these peroxides have some health concerns. The SCCNFP (Scientific Committee on Cosmetic Products and Non Food Products for Consumers) in their opinion SCCNFP/0392/00, final, give a number of raw materials where there is concern. The oil or waxy solid has preferably a peroxide value of 0-20 millimoles peroxide / litre, preferably 0-10 millimoles peroxide / litre, and even more preferably 0-1 millimoles peroxide / litre. In particular it is desirable that if limonene (d-, I-, and dl-), and natural products containing substantial amounts of limonene, are used, they should have a peroxide value of less than 20 millimole peroxide per litre. The methods for measuring peroxide value are well known to those skilled in the art, and a method is published by the FMA (Fragrance Material Association).
- Typical perfume compositions herein can comprise, for example, woody/earthy notes containing as perfume ingredients synthetic materials and natural extracts such as sandalwood oil, or patchouli oil and the like. The perfumes herein can be of a light, floral fragrance, e.g., rose, violet, jasmine, lily and the like. The perfume compositions herein can be formulated to provide desirable fruity odors, e.g., lime, lemon, orange, berry fruits or peach and the like.
- In short, any chemically compatible material which exudes a pleasant or otherwise desirable odor can be used in the perfumed capsules herein to provide a desirable odor when applied to fabrics.
- Table 1 below lists some perfume ingredients which have ClogP values, calculated using Chemoffice Ultra Version 9, between 2.0 and 5.0 and which comply with the requirements of the present invention. The values were found to be essentially identical to those obtained using Daylight ClogP (version 4.9).
Table 1 Name ClogP CAS n° Laevo carvone 2.01 6485-40-1 Geraniol 2.97 106-24-1 Cis Jasmone 2.64 588-10-8 Alpha Terpineol 2.63 98-55-5 Eugenol 2.34 97-53-0 Methyl cinnamate 2.46 103-26-4 Methyl dihydrojasmonate 2.91 24851-98-7 Beta methyl naphthyl ketone 2.76 93-08-3 Iso bornyl acetate 4.04 125-12-2 Carvacrol 3.35 499-75-2 Para cymene 4.07 99-87-6 Dihydromyrcenol 3.04 18479-58-8 Geranyl acetate 3.91 105-87-3 Linalyl acetate 3.70 115-95-7 Vertenex 4.06 32210-23-4 - Table 2 below lists examples of materials, widely used in fragrances for household products, the levels of which are restricted within the invention.
Table 2 Name ClogP CAS n° Hydroxycitronellal 1.54 107-75-5 Linalool 2.75 78-70-6 Phenyl ethyl alcohol 1.33 60-12-8 Coumarin 1.41 91-64-5 Vanillin 1.28 121-33-5 Citronellol 3.25 106-22-9 d-Limonene 4.35 5989-27-5 Isobutyl quinoline 3.98 93-19-6 Hexyl cinnamic aldehyde 5.00 101-86-0 Lilial 4.10 80-54-6 Galaxolide 5.74 1222-05-5 Cyclamen aldehyde 3.83 103-95-7 - In both tables the lists are not intended to be exhaustive but are included merely to clarify the definitions.
- The invention also encompasses the use of odiferous materials which also act as malodor counteractants. These materials, although termed "perfume ingredients" hereinafter, may have a weak odor but can conceal or reduce any unpleasant odors. Examples of suitable malodor counteractants are disclosed in
US patent. 3,102,101 and inUS patent 5,554,588 . - Olfactively weak or neutral solvents may constitute up to 30% of the capsule core material by weight, preferably less than 20% by weight and more preferably less than 10% by weight. If present they will most likely have been introduced with one or more perfume ingredients. In the perfume industry it is quite common to dissolve solid perfume ingredients in a suitable solvent or to dilute powerful materials, used at low levels, with a solvent to facilitate manufacture. Typical solvents include high ClogP materials such as benzyl benzoate, isopropyl myristate, dialkyl adipates, citrate esters such as acetyl triethyl citrate or acetyl tributyl citrate or triethyl citrate or diethyl phthalate or low ClogP materials such as propylene glycol or dipropylene glycol. While these materials could affect fragrance release or emulsion properties during capsule manufacture, at the levels described such effects will be minimal. For the purpose of this patent, when solvent is present, it is considered as an "other benefit agent".
- In the context of this specification, "other benefit agent" means any material capable of being encapsulated in the way described above and which can survive storage to deliver a benefit when used in household, personal care or cosmetic products. It is preferable if the benefit agent contains little or no aldehydes, in particular alpha, beta unsaturated aldehydes or primary or secondary amines; as described previously, i.e. they should satisfy the requirements concerning aldehydes and amines given above for the perfume composition. Benefit agents do not have to conform to the ClogP requirements as outlined for the fragrance ingredients since it is not a necessary feature of the benefit agents that they vapourise to be effective.
- Benefit agents include natural extracts or materials which have therapeutic effects as relaxants or stimulants, e.g. aromatherapy oils, whether odiferous or not. Natural oils or plant extracts which are beneficial to skin such as jojoba oil or almond oil are also benefit agents. Vitamins or vitamin derivatives such as ascorbyl palmitate (CAS 137-66-6) tocopheryl acetate (CAS 58-95-7) or retinyl palmitate (CAS 79-81-2) are also benefit agents within this definition. Materials which suppress or reduce malodour and its perception by any of the many mechanisms proposed are benefit agents such as zinc ricinoleate (CAS 13040-19-2). Materials which when added to the emulsion improve the properties of the core emulsion before encapsulation, or the properties of the capsules themselves. Materials which provide a warming or cooling effect such as described in Cosmetics and Toiletries Vol. 120 No 5 p105 by M Erman are also benefit agents. Examples of such agents include but are not limited to: cyclohexane carboxamide N-ethyl-5-methyl-2-(1-methylethyl) known as WS3™ (CAS N° 39711-79-0); N 2,3-trimethyl-2-isopropylbutamide known as WS23™ (CAS 51115-67-4); menthyl lactate (CAS N° 59259-38-0); (-)-menthoxypropane 1,2-diol known as cooling agent 10™ and isopulegol. Materials which act as insect repellents exemplified by ethylbutylacetylaminopropionate known as Merck's IR3535™ (CAS N° 52304-36-6); or N,N- diethyl touamide (CAS N° 134-62-3); or 1-piperidinecarboxylic acid; 2-(2-hydroxyethyl)-1-methylpropyl ester known as Bayrepel™ (CAS N° 119515-38-7); or p-menthane-3,8-diol (CAS N° 42822-86-6) or natural plant oils such as Tea Tree oil, neem oil, citronella oil, or eucalyptus oil are benefit agents. Materials which act as antimicrobial agents as exemplified by triclosan™ (CAS N° 3380-34-5), the methyl-ethyl, propyl and butyl para hydroxy benzoate esters (CAS N° 4247-02-3, 94-26-8, 94-13-3, 120-47-8, 99-76-3), 2-phenoxyethanol, 3-iodopropynyl-2-butylcarbamate (CAS N° 55406-53-6), 2-bromo-2-nitropropane-1,3 diol (CAS N° 52-51-7) and natural oils such as clove oil, pine oil, cinnamon oil, and tea tree oil are benefit agents. Materials which act as antioxidants such as butylated hydroxyl toluene or butylated hydroxyanisole or pentaerythrityl tetra- di- t-butyl hydroxyhydrocinnamate, octadecyl di t-butyl-4-hydroxyhydrocinnamate (CAS N° 2082-79-3), tetrabutyl ethylidenebisphenol (CAS N° 35958-30-6) are benefit agents. Materials which act as UV absorbers such as octyl methoxycinnamate, benzophenone 3, butylmethoxydibenzoylmethane, or benzotriazolyl dodecyl p cresol (CAS N° 6683-19-8), bis ethylhexyloxyphenolmethoxyphenyltriazine are benefit agents. The materials listed above are intended to exemplify the benefit agents but are not intented to limit the benefit agents to this list. Mixtures of the above may also be considered as benefit agents of the invention. Thus it may be advantageous to combine UV absorbers with antioxidants to protect the fragrance ingredients or to combine an anti-fungal agent with a bacteriocide for broader antimicrobial protection. Moreover it is recognized that some materials may exhibit more than one benefit. Thus vitamin E acetate can function as an antioxidant as well as a vitamin precursor.
- The aqueous slurry used in the invention process comprises inorganic salts and at least one binding agent.
- Inorganic salts suitable for spray drying are typically sodium, potassium, magnesium, calcium or aluminium salts of sulphate, carbonate, bicarbonate, citrate and silicate, which can be used alone or in any combination or ratio. Some are discussed below as inorganic builders, and others play roles such as:
- ensuring excellent powder properties and porosity (liquid carrying capacity for oily materials such as free fragrance, or nonionic surfactants) of the spray dried powder particles ;
- alkalinity (e.g. carbonates) ;
- providing ionic strength (e.g. sulphates) to enhance performance of surfactant cleaning system.
- Especially preferred inorganic salts are: sodium carbonate, calcium carbonate, sodium bicarbonate, sodium silicates, layered sodium silicates (especially Na SKS-6), sodium phosphates (especially sodium tripolyphosphate, sodium metaphosphate), sodium aluminosilicates (especially Zeolite 4A, Zeolite A24).
- Binding agents suitable for spray drying include nonionic, anionic, amphoteric and cationic surfactants discussed in detail below. Other suitable binding agents are organic polymers such as polycarboxylates and sodium carboxy methyl cellulose. It is particularly preferred that the binding agent has a functional benefit e.g. surfactants are also part of the cleaning system, polycarboxylate is part of the builder system etc.
- Preferred binding organic polymers/polycarboxylates (polycarboxylates may be added in the acid form, but in the detergent will be neutralized to the carboxylate salt) are: poly(acrylic acid), copolymers of acrylic acid (especially copolymer with maleic acid), poly(aspartic acid), poly(lactic acid), citric acid, carboxy methyl cellulose and salts/derivatives thereof, polyethyleneglycol and derivatives thereof.
- Particularly preferred binding surfactants of the present invention are the conventional C11-C18 alkyl benzene sulfonates ("LAS"), the C10-C18 alkyl alkoxy sulfates (AEx Sulfates; especially EO 1-7 ethoxy sulfates), alkyl sulfates (AS), soaps and mono or di-alkyl (C10-C20) quaternary ammonium salts.
- The slurry is made by mixing the inorganic salts and the binding agents and the capsules with water by the methods well known by the person skilled in the art. As the slurry is very concentrated it is typically a dispersion rather than a solution (even when it contains materials which have good water solubility), and it needs to be well and continuously mixed. Any particulate matter present in the dispersion must be sufficiently small to easily pass through a spray drying nozzle without causing a blockage.
- Spray drying as a processing technique has and continues to find widespread use as a method for producing powders. It creates relatively porous particles which dissolve easily, even at low temperatures. Many patents and publications are available on spray drying. An overview article for detergent powders can be found in Powdered Detergents vol 71 (Surfactant Science Series) ed M Showell, ISBN 0-8247-9988-7, which includes a general overview of production methods and includes on page 25, a schematic of slurry preparation and spray drying (courtesy Ballestra SPA), and Formulating Detergents and Personal Care Products. Ho Tan Tai. AOCS Press ISBN 1-893997-10-3.
- Spray drying processes for forming detergent compositions are well known in the art and typically involve the steps of forming a detergent slurry, often warmed to 60-80°C using at least in part heat of anionic surfactant neutralization (e.g. neutralization of linear alkyl benzene sulphonic acid). The slurry has typically a water content of between 30%-60% by weight and commonly comprises a builder, a neutralized or acid-form anionic surfactant, a nonionic surfactant, a neutralizing alkali such as soda ash or sodium carbonate, an inorganic salt or salts such as sodium sulphate, water, processing aids, and organic polymers in a crutcher. The detergent slurry is pumped to the top of a spray drying tower, and sprayed from nozzles in the tower to form atomized droplets. These compositions could also be prepared by continuous slurry making. By continuous slurry making is meant a process in which components are fed continuously and substantially simultaneously to a slurry making vessel while mixed slurry is removed to the spray tower at a rate which maintains an essentially constant volume in the vessel.
- Hot air is pumped through the spray drying towers such that when the atomized droplets are sprayed into the hot air, they dry into a powder as the free moisture evaporates. The spray-dried granules thus formed are then collected at the bottom of the tower. Numerous patents teach specific modifications to this basic protocol in order to better produce powders with specific properties.
US patent 4,269,722 teaches spray drying especially porous particles to incorporate nonionic surfactant.GB patent 1,473,201 EP patent 1,499,703 describes the manufacture of powders having low anionic surfactant content whileUS patent 4,900,466 describes the preparation of particles having defined pores by varying the ratio of inorganic salts in a composition with little or no surfactant but using a polymeric binder. However none of these detergent patents describe the incorporation of capsules within the slurry. - Many patents also teach spray drying for a variety of materials e.g. foodstuffs, flavourings and pharmaceutical preparations, either as a convenient means of drying these particles including aminoplast capsules or to produce highly porous particles. However none describe mixing a fragrance containing capsule with inorganic salts for spray drying to produce larger particles.
- The benefits of adding the capsule dispersion to the slurry rather than by post addition are:
- there is no drying step required, as the wet capsule dispersion is added directly to the slurry ;
- no additional agglomeration step is needed to create a sufficiently large particle to remain mixed in a range of detergent powders;
- the capsule is protected within the larger detergent granule and is less liable to breakage in the subsequent processing of the detergent.
- Depending on the design and operating parameters of specific spray drying towers, the characteristics of the powder particles will be affected. Typically conventional spray dried detergent powders have bulk densities of 200-550 kgm-3 and particle sizes concentrated around 250-700 µm. In some instances it is possible to produce much finer and denser powders. These may not disperse uniformly within a detergent powder and so it is preferable if the powder is more agglomerated. This may be achieved in the spray drying tower by adding some steam to the powder or separately in a fluid bed mixer.
- Examples of the composition of a range powders (often termed "blown powder" or "base powder") which can be prepared by spray drying can be found in
International application WO 99/65458 - There are various designs and scale of spray drying equipment and accessory equipment, for example co-current, counter current air flow etc. For those skilled in the art, the selection of appropriate operating conditions and equipment will allow powders of acceptable quality to be produced using this invention on a particular spray drying tower.
- The surfactant composition for a detergent powder, some components of which may optionally be incorporated in the slurry prior to spray drying, may contain at least about 0.01% by weight of a surfactant selected from the group consisting of anionic, cationic, nonionic, and zwitterionic surface active agents. Preferably surfactant is present to the extent of from about 1.0% to 60%, more preferably 1.0% to about 30% by weight of the composition.
- Non-limiting examples of surfactants useful herein typically at levels from about 1% to about 55%, by weight, include the conventional C11-C18 alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C10-C20 alkyl sulfates ("AS"), the C10-C18 secondary alkyl sulfates of the formula CH3(CH2)x(CHOSO3 -M+)CH3 and CH3(CH2)y(CHOSO3 -M+)CH2CH3 where x and (y+1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C10-C18 alkyl alkoxy sulfates (AEx Sulfates; especially EO 1-7 ethoxy sulfates), C10-C18 alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C10-C18 glycerol ethers, the C10-C18 alkyl polyglycosides and their corresponding sulfated polyglycosides, and C12-C18 alpha-sulfonated fatty acid esters. If desired, the conventional nonionic and amphoteric surfactants such as the C12-C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C12-C18 betaines and sulfobetaines ("sultaines"), C10-C18 amine oxides, and the like, can also be included in the overall compositions. The C10-C18 N-alkyl polyhydroxy fatty acid amides are highly preferred, especially the C12-C18 N-methylglucamides. See
International application WO 92/06154 - Anionic surfactants can be broadly described as the water-soluble salts, particularly the alkali metal salts, of organic sulfuric reaction products having in their molecular structure an alkyl radical containing from about 8 to about 22 carbon atoms and a radical selected from the group consisting of sulfonic acid and sulfuric acid ester radicals. (Included in the term alkyl is the alkyl portion of higher acyl radicals.) Important examples of the anionic synthetic detergents which can form the surfactant component of the compositions of the present invention are the sodium or potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C8-C18 carbon atoms) produced by reducing the glycerides of tallow or coconut oil or waxy solid; sodium or potassium alkyl benzene sulfonates, in which the alkyl group contains from about 9 to about 15 carbon atoms, the alkyl radical can be a straight or branched aliphatic chain; sodium alkyl glyceryl ether sulfonates, especially those ethers of the higher alcohols derived from tallow and coconut oil or waxy solid; sodium coconut oil or waxy solid fatty acid monoglyceride sulfates and sulfonates; sodium or potassium salts of sulfuric acid ester of the reaction product of one mole of a higher fatty alcohol (e.g. tallow or coconut alcohols) and about 1 to about 10 moles of ethylene oxide; sodium or potassium salts of alkyl phenol ethylene oxide ether sulfates with about 1 to about 10 units of ethylene oxide per molecule and in which the alkyl radicals contain from 8 to 12 carbon atoms; the reaction products of fatty acids are derived from coconut oil or waxy solid sodium or potassium salts of fatty acid amides of a methyl tauride in which the fatty acids, for example, are derived from coconut oil or waxy solid and sodium or potassium beta-acetoxy- or beta-acetamido-alkanesulfonates where the alkane has from 8 to 22 carbon atoms.
- Additionally, secondary alkyl sulfates may be used by the formulator exclusively or in conjunction with other surfactant materials and the following identifies and illustrates the differences between sulfated surfactants and otherwise conventional alkyl sulfate surfactants. Non-limiting examples of such ingredients are as follows.
- Conventional primary alkyl sulfates (AS), such as those illustrated above, have the general formula ROSO3 -M+ wherein R is typically a linear C8-C22 hydrocarbyl group and M is a water solublizing cation. Branched chain primary alkyl sulfate b surfactants (i.e. branched-chain "PAS") having 8-20 carbon atoms are also know; see, for example,
EP patent application 0,439,316 . - Conventional secondary alkyl sulfate surfactants are those materials which have the sulfate moiety distributed randomly along the hydrocarbyl "backbone" of the molecule. Such materials may be depicted by the structure CH3(CH2)n(CHOSO3 -M+)(CH2)mCH3 wherein m and n are integers of 2 of greater and the sum of m+n is typically about 9 to 17, and M is a water-solublizing cation.
- The aforementioned secondary alkyl sulfates are those prepared by the addition of H2SO4 to olefins. A typical synthesis using alpha olefins and sulfuric acid is disclosed in
US patent 3,234,258 , or inUS patent 5,075,041 . See alsoUS patent 5,349,101 andUS patent 5,389,277 . - Water soluble salts of the higher fatty acids ie soaps are useful anionic surfactants in the composition herein. This includes alkali metal and amine or quaternary ammonium salts of higher fatty acids such as the sodium, potassium, ammonium, or alkylolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms and preferably from about 12 to about 18 carbon atoms. The fatty acids may be saturated, often termed hardened, wholly or partially as required. Soaps can be made by direct saponification of fats or oil or waxy solids or by the neutralization of free fatty acids. Particularly useful are the sodium and/or potassium salts of the mixtures of fatty acids derived from coconut oil, palm oil and tallow. Other useful soaps are described in
EP patent 1 282 678 in the section titled "fatty acids". - The preferred surfactants of the present invention are anionic surfactants, however, other surfactants useful herein are described below.
- The compositions of the present invention can optionally include at least about 0.01% by weight, preferably at least 0.1% by weight, more preferably from about 1% to about 30% by weight, of a nonionic surfactant. Preferred nonionic surfactants such as C12-C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), block alkylene oxide condensate of C6-C12 alkyl phenols, alkylene oxide condensates of C8-C22 alkanols and ethylene oxide/propylene oxide block polymers (Pluronic.TM.-BASF Corp.), as well as semi polar nonionics (e.g., amine oxides and phosphine oxides) can be used in the present compositions. An extensive disclosure of these types of surfactants is found in
US patent 3,929,678 , incorporated herein by reference. - Alkylpolysaccharides such as disclosed in
US patent 4,565,647 (incorporated herein by reference) may also be preferred nonionic surfactants in the compositions of the invention. - Another class of nonionic surfactants comprises alkyl polyglucosides having 8 to 22, preferably 10 to 18 carbon atoms in the alkyl chain such as disclosed in
US patent 4,565,647 . These compounds usually contain from 1 to 20, preferably from 1.1 to 5, glucoside units. Another class of nonionic surfactants comprises N-alkylglucamides. - A particularly desirable surfactant of this type for use in the compositions herein is alkyl-N-methyl glucamide.
- Other sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides.
- Another optional detersive surfactant is a cationic surfactant. The cationically charged group is an ammonium group substituted by at least one, preferably only one, hydroxyalkyl group and three alkyl groups of which one is a long alkyl chain having 12 to 20 carbon atoms and the other two alkyl substituents have 1 to 4 carbon atoms. The hydroxyalkyl preferably has from 1 to 4 carbon atoms, more preferably 2 or 3 carbon atoms, most preferably 2 carbon atoms.
- Examples of suitable quaternary ammonium compounds for use as detersive surfactants are: coconut trimethyl ammonium chloride or bromide; coconut methyl dihydroxyethyl ammonium chloride or bromide; decyl triethyl ammonium chloride; decyl dimethyl hydroxyethyl ammonium chloride or bromide; C12-C15 dimethyl hydroxyethyl ammonium chloride or bromide; coconut dimethyl hydroxyethyl ammonium chloride or bromide; myristyl trimethyl ammonium methyl sulphate; lauryl dimethyl benzyl ammonium chloride or bromide; lauryl dimethyl (ethenoxy) ammonium chloride or bromide.
- Other cationic surfactants useful herein are also described in
US patent 4,228,044 , and inEP Patent Applications 0 000 224 and1 254 201 . Commercial examples are available as "Praepagen HY" supplied by Clariant (France), 92058 La Defense, Paris, France. - Another category of surfactants are amphoteric surfactants. These include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds in which the aliphatic moieties can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water-solubilizing group. One common sub-group of amphoteric surfactants are the betaines which have the general formula: RN+(R1)(R2)CH2)nX- wherein R is a hydrophobic group selected from the group consisting of alkyl groups containing from about 10 to about 22 carbon atoms, preferably from about 12 to about 18 carbon atoms, alkyl aryl and aryl alkyl groups containing a similar number of carbon atoms with a benzene ring being treated as equivalent to about 2 carbon atoms, and similar structures interrupted by amido or ether linkages; each R1 and R2 are alkyl groups containing from 1 to about 3 carbon atoms ; and n is from 1 to 6 and X is a carboxylate group.
- Examples of preferred betaines are cocoamidopropyl betaine, dodecyl dimethyl betaine, cetyl dimethyl betaine, dodecyl amidopropyl dimethyl betaine, tetradecyldimethyl betaine, and tetradecylamidopropyldimethyl betaine.
- Detergent builders can optionally be included in the slurry for spray drying. They may also be incorporated into laundry detergent compositions to assist in controlling mineral hardness. Inorganic as well as organic builders can be used separately or in admixture. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soil.
- The level of builder can vary widely depending upon the type of builder and the end use of the composition. When present, the compositions will typically comprise at least about 1% by weight of builder. Formulations typically comprise from about 5% to about 80%, more typically about 10% to about 50%, by weight, of detergent builder. Lower or higher levels of builder, however, are not meant to be excluded. Examples of suitable inorganic builders are aluminosilicates having ion exchange properties, such as zeolites, for example. Various types of zeolites are suitable, especially zeolite A, X, B, P, MAP and HS in their Na form or in forms in which some of the Na has been replaced by other cations such as Li, K, Ca, Mg, or ammonium. Suitable zeolites are described, for example, in
EP-A 0 038 591 ,EP-A 0 021 491 ,EP-A 0 087 035 ,US patent 4,604,224 ,GB-A 2 013 259 EP-A 0 522 726 ,EP-A 0 384 070 andWO-A-94/24 251 - Examples of further suitable inorganic builders are amorphous or crystalline silicates, such as amorphous disilicates, crystalline disilicates, such as the sheet silicate SKS-6 (manufacturer: Hoechst). The silicates may be used in the form of their alkali metal, alkaline earth metal or ammonium salts. Preference is given to the use of Na, Li and Mg silicates.
- Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates) and aluminosilicates. However, non-phosphate builders are required in some locales.
- Examples of silicate builders are the alkali metal silicates, particularly those having a SiO2:Na2O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in
US patent 4,664,839 . NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the NaSKS-6 silicate builder does not contain aluminium. NaSKS-6 has the Na2SiO5 morphology form of layered silicate. It can be prepared by methods such as those described inDE-A-3,417,649 andDE-A-3,742,043 . SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSixO2x+1.yH2O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms. As noted above, the ΔNa2SiO5 (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems. - Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in
DE Patent application 2,321,001 . -
WO 2005/052105 describes formulations which are essentially zeolite free, and which are based around carbonate and co-polymer as builder system.EP patent 0 267 043 describes yet another approach to the use of carbonate as a builder via the use of seeded calcite to promote suspended calcium carbonate. - Aluminosilicate builders are particularly useful in the present invention being of great importance in most currently marketed heavy duty granular detergent compositions. Aluminosilicate builders include those having the empirical formula:
[Mz(zAlO2)y].xH2O
wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264. - Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in
US patent 3,985,669 . Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:
Na12[(AlO2)12(SiO2)12]. xH2O
wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (x=0-10) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter. - Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
- Preferred polycarboxylates are organic polymers with pendant carboxylic acid groups. Typical examples include polymers of acrylic acid and copolymers of acrylic acid and maleic acid (suitable grades of both types of polymers for laundry detergents are commercially available from BASF in the Sokalan PA and CP ranges, eg Sokalan CP5). Further interesting organic polymers are polymers which may be biodegradeable, such as poly(aspartic acid) and poly(lactic acid). These polymers can be added as acids or as salts e.g. sodium, potassium or ammonium salts, and in general, even if added as acids, will be neutralized in the slurry or when post-dosed onto the detergent powder.
- Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in
US patent 3,128,287 ,US patent 3,635,830 and the "TMS/TDS" builders ofUS patent 4,663,071 . Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described inUS patents 3,923,679 ;3,835,163 ;4,158,635 ;4,120,874 and4,102,903 . - Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2,4,6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
- Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance due to their availability from renewable resources and their biodegradability. Citrates can also be used in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
- Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in
US patent 4,566,984 . Useful succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described inEP Patent Application 0 200 263 . - Other suitable polycarboxylates are disclosed in
US patent 4,144,226 , inUS patent 3,308,067 and inUS patent 3,723,322 . - Fatty acids, e.g., C12-C18 monocarboxylic acids, can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity.
- Certain polycarboxylates, particularly amino polycarboxylates, are mainly used as heavy metal chelants, but are also capable of binding calcium, and so could be considered as builders. Examples would be ethylene diamine tetra acetic acid (EDTA) and especially the biodegradable chelants, such as salts and derivatives of disuccinic acid, such as ethylenediamine-N,N'-disuccinic acid (EDDS); iminodisuccinate (IDS) and hydroxyiminodisuccinate (HIDS).
- A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, soil release polymers.
- Inorganic salts in addition to those discussed above can also be useful ingredients, in particular sodium, potassium, magnesium, calcium or aluminium salts of sulphate, carbonate, bicarbonate, citrate, silicate, which can be used alone or in any combination or ratio.
- Inorganic salts not used as builders can play roles such as:
- ensuring excellent powder properties and porosity (liquid carrying capacity for oily materials such as free fragrance, or nonionic surfactants) of the spray dried powder particles ;
- - alkalinity (e.g. carbonates) ;
- - providing ionic strength (e.g. sulphates) to enhance performance of surfactant cleaning system ;
- - modifying the density of the final powder (eg post tower addition of "dense" sodium carbonate).
- Examples of suitable soil release polymers and/or grayness inhibitors for laundry detergents are the following:
- polyesters made from polyethylene oxides with ethylene glycol and/or propylene glycol and aromatic dicarboxylic acids or aromatic and aliphatic dicarboxylic acids;
- polyesters made from polyethylene oxides which are end group-capped at one end and dihydric and/or polyhydric alcohols and dicarboxylic acid. Polyesters of this kind are known, for example, from
US patent 3,557,039 ,GB-A 1 154 730 EP-A 0 185 427 ,EP-A 0 241 984 ,EP-A 0 241 985 ,EP-A 0 272 033 andUS patent 5,142,020 . - water dispersable sulphonated polyesters described in
GB patent 2 307 696 - Commercially available polyester soil release polymers are supplied by Rhodia under the Repel-O-Tex trade mark, and BASF under the Sokolan SR trade mark.
- Further suitable soil release polymers are amphiphilic graft polymers or copolymers of vinyl and/or acrylic esters on polyalkylene oxides (see
US patents 4,746,456 and4,846,995 ,DE-A 3 711 299 ,US patents 4,904,408 ,4,846,994 and4,849,126 ) or modified celluloses, such as methylcellulose, hydroxypropylcellulose or carboxymethylcellulose, for example. - Cotton soil release polymers are also beneficial, and modified polyethylene imines are described in
US patent 6,121,226 . Ethoxylated polyethylene imines may be particularly useful. - Examples of softening agents which can optionally be added to the detergent powder to formulate a softening in the wash powder are clays especially the smectite clays of
US patent 4,062,647 as well as other softener clays known in the art, can optionally be used typically at levels from about 0.5% to about 10% by weight to provide fabric softening concurrent with cleaning from a detergent powder or tablet. Clay softeners can be used in combination with amine and cationic softeners as disclosed for example inUS patent 4,375,416 andUS patent 4,291,071 . They can also be used in conjunction with flocculating agents as taught inUS patent 6,881,717 . All the above are incorporated herein by reference. - Examples of color transfer inhibitors used are homopolymers and copolymers of vinylpyrrolidone, of vinylimidazole, of vinyloxazolidone and of 4-vinylpyridine-N-oxide, having molecular masses of from 15 000 to 100 000, and also crosslinked, finely divided polymers based on these monomers. This use of such polymers is known and disclosed for example in
DE-B 2 232 353 ,DE-A 2 814 287 ,DE-A 2 814 329 andDE-A 4 316 023 . - Natural polymers which can act as deposition aids or have a restoration benefit such as guar gum, locust bean gum, and xanthan gum or their derivatives as described in
EP 1 141 195 andEP 1 141 196 . - Suitable enzymes are proteases, lipases, amylases, and cellulases. The enzyme system may be confined to a single one of the enzymes or may comprise a combination of different enzymes.
- Other optional ingredients which may be added to the spray dried base powder include enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners, clays, hydrolyzable surfactants, optical brighteners, preservatives, anti-oxidants, chelants, stabilizers, anti-shrinkage agents, anti-wrinkle agents, dispersion aids, tablet disintegrants, germicides, fungicides, anti corrosion agents and if high foaming is desired, foam boosters such as the C10-C16 alkanolamides can be incorporated into the compositions, typically at 1%-10% levels. The C10-C14 monoethanol and diethanol amides illustrate a typical class of such foam boosters.
- The detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 11, preferably between about 7.5 and 10.5. Laundry products are typically at pH 9-11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
- The present invention can be used directly in low density powders (typically below 550 kgm-3) but may also be incorporated into high density granular compositions in which the density of the granule is at least 550 kgm-3 up to 1200 kgm-3 more particularly from 500 to 950 kgm-3 sometimes known as concentrated detergents or compact powders and also in laundry detergent tablets.
- A typical (heavy duty) powder or granule laundry detergent of the invention, containing perfumes and benefit agents in the capsules, may have the following exemplary composition:
- from 0.5 to 50% by weight, preferably from 5 to 30% by weight, of at least one anionic and/or nonionic and cationic surfactant,
- from 0.5 to 60% by weight, preferably from 15 to 40% by weight, of at least one inorganic builder. Most typically this would be a polyphosphate, zeolite or carbonate,
- from 0 to 20% by weight, preferably from 0.5 to 10% by weight, of at least one organic co-builder. Examples of co-builders are polycarboxylates, e.g. sodium citrate or polycarboxylate polymers such as the copolymer commercially named Sokalan CP5 (BASF) which is advantageously used with a zeolite.
- from 0.001 to 2% by weight, preferably from 0.01 to 0.5% by weight, of capsules of the invention.
- optionally from 0 to 60% by weight of at least one soluble inorganic salt. Most typically this would be a sulphate and/or carbonate (if not used as a builder).
- The following ingredients may be added to a tower base powder although this is not intended to be limiting in any way to the invention. It is merely intended to describe the process of manufacturing a detergent powder and exemplify the ways in which the invention may be employed. It is also common practice to post dose nonionic surfactant(s) and builders to achieve particular powder properties or manufacturing flexibility.
- Thus, the following compounds may be added to a tower base powder:
- optionally from 0 to 60% by weight of at least one soluble inorganic salt. Most typically this would be a sulphate and/or carbonate, especially the sodium salts;
- optionally from 0 to 35% by weight, preferably from 5 to 20% by weight, of sodium perborate or sodium percarbonate bleach and optionally a peracid or peracid precursor and stabilizing adjuncts ;
- optionally from 0 to 5% by weight, preferably from 0 to 1.5% by weight, of a polymeric color transfer inhibitor ;
- optionally from 0 to 1% by weight, preferably from 0.01 to 1.0% by weight, of protease ;
- optionally from 0 to 1% by weight, preferably from 0.01 to 1.0% by weight, of other laundry detergent enzymes such as lipase, cellulase, amylase, mannanase, oxidase, and peroxidase. Typically such enzymes are added as a commercially available granular cocktail of enzymes.
- from 0 to 1.0% perfume which may be the same as the encapsulated fragrance but may also have a different note ;
- optionally from 0 to 1.5% by weight, preferably from 0.2 to 1.0% by weight, of a soil release polymer and/or grayness inhibitor or other garment care ingredients and customary auxiliaries and residual moisture to 100% by weight.
- optionally various through the wash fabric softeners especially the smectite clays which may be used in combination with amine and cationic softeners or flocculating agents.
- Detergent powder compositions which exemplify many of the aspects of formulation for low and high bulk density powders and for use in different wash regimes are taught in
International application WO 99/65458 - The process of the invention may also be used to formulate detergent tablets, or tablets with a gel layer which are used in domestic laundry. Tablets contain many of the same ingredients of a detergent powder but the need to form the detergent into a tablet which will be mechanically stable yet disperse and dissolve quickly in water impose certain restrictions on the formulation as taught in
International application WO 99/41353 EP application 1 123 381 . Many tablets are made from spray dried detergent powder which is mixed with other ingredients then compressed into a tablet and perhaps coated with a water soluble layer as described inUS patent 6,358,911 , prior to packaging. Compacting powders to make tablets may cause difficulty in retaining sprayed on liquid ingredients such as nonionic surfactant or perfume or adversely affect tablet disintegration and dissolution, so the incorporation of perfume or other liquid ingredients in an encapsulated form may be especially beneficial. - Another variation in detergent compositions are fabric softeners either used as components in softening in the wash formulations or in powdered or tablet forms of fabric softeners. Compositions may include particular forms of smectite clays and cationic agents as described in
US patent 6,627,598 and cationic or nonionic softener molecules which may be salts of long chain tertiary amines. - Also provided herein is a method of delivering perfume to laundry which comprises the steps of taking the spray dried powder and adding it to a powder detergent composition or incorporating the capsules in a detergent slurry which, after spray drying provides a basic detergent powder to which other ingredients may be added either by liquid spray on as for example free fragrance or as solid granules as for example bleaching agents to formulate a commercial detergent powder and then the use of this detergent powder in a domestic clothes washing machine.
- The present invention will now be illustrated with the following examples.
- A 2 I cylindrical stirring vessel was fitted with an infinitely adjustable disperser having a standard commercial dispersion disk with a diameter of 50 mm.
- It was charged in succession with:
- 400 g of Fragrance (Perfume Composition n° 1 - see Table 3 below),
- 69 g of a 70% solution of a methylated melamine-formaldehyde resin (molar ratio melamine: formaldehyde: methanol 1:3.9:2.4) with a Brookfield viscosity of 275 mPas and a pH of 8.5,
- 64 g of a 20% solution of poly-2-acrylamido-2-methylpropanesulfonic acid sodium salt (K value 123, Brookfield viscosity 770 mPas),
- 350 g of water,
- 15 g of 10% strength formic acid.
- This charge was processed to a capsule dispersion by adjusting the stirring speed to a peripheral speed of approximately 20 ms-1. The temperature was held at about 35°C.
- After 60 minutes, the dispersion was oil-free; a particle size of about 5 µm had been established. The stirring speed of the dispersion disk was then reduced to a level sufficient for uniform circulation of the vessel contents.
- A cure temperature of 90°C was set, and once reached by injection of hot steam, a feed of a 27% suspension of melamine-urea (ratio 2.5:1, melamine:urea) in formic acid (to adjust pH to pH 4.5) was added to the dispersion of the preformed microcapsules with a constant mass flow rate and was metered in over the course of an hour. A total of 67 g of the suspension of melamine-urea was metered in.
- A cure phase of 120 min ensues at 90°C.
- After the dispersion had been cooled to about 55°C, it was neutralized with diethanolamine and adjusted to a pH of 9.5 using ammonia.
- This gave a uniform aqueous capsule dispersion with a solid content of 45% capsules by weight and a viscosity of 83 mPas. Of the capsule weight around 85% is fragrance oil.
- Following the same procedure, capsules were made with the perfume ingredients and optionally the other benefit agents mentioned in Tables 4 and 5, which had 45% and 40% capsules by weight respectively.
Table 3: Perfume composition n°1 Compound CAS No. Wt % Alpha pinene 80-56-8 1.0 Eucalyptol 470-82-6 1.0 Dihydromyrcenol 18479-58-8 9.0 Linalool 78-70-6 40.0 Benzyl acetate 140-11-4 20.0 Ethyl benzoate 93-89-0 1.0 Fenchyl acetate 13851-11-1 1.0 Alcohol C10 112-30-1 6.0 Dimethylbenzylcarbinyl acetate 151-05-3 10.0 Phenylethyl-2-methyl butyrate 24817-51-4 1.0 Hexyl benzoate 6789-88-4 5.0 Acetyl iso eugenol 93-29-8 5.0 Table 4: Perfume composition n°2 Compound CAS No Wt % Acetophenone 98-86-2 5 Methyl salicylate 119-36-8 2 Veltol Plus 4940-11-8 3 Koavone 81786-73-4 10 Phenyl acetaldehyde dimethyl acetal 101-48-4 5 Eugenol 97-53-0 5 Cashmeran 33704-61-9 5 Hedione 24851-98-7 30 Orbitone 54464-57-2 25 Ambretone 37609-25-9 10 Table 5: Perfume composition n°3 Compound CAS No Wt % Iso amyl alcohol 123-51-3 10 Butyl acetate 123-86-4 5 Phenyl ethyl alcohol 60-12-8 30 Veltol Plus 4940-11-8 1 Cinnamic Alcohol 104-54-1 9 Beta Caryophyllene 87-44-5 20 Raspberry Ketone 5471-51-2 5 Exaltolide 106-02-5 10 Hexadecanolide 109-29-5 5 Ethyl Linoleate 544-35-4 5 - These examples describe slurry compositions for a zeolite built mixed non-ionic / anionic detergent powder such as is typical of many commercial formulations sold for use in front loading automatic washing machines in Europe. The slurry was prepared and continuously agitated, and warmed to 80°C then spray dried in a 7 metre tower using a spinning disk for atomisation with an air inflow temperature of 220°C and outflow temperature of 80-95°C. Examples 2 to 4 contain perfume capsules of different fragrance compositions while example A is the base powder to which free fragrance or encapsulated fragrance is added after spray drying. After a suitable storage period washes were carried out with all 3 invention formulations to demonstrate the survival and performance of the spray dried capsules.
Supplier Example 2 Wt% Example 3 Wt% Example 4 Wt% Example A Wt% 7 EO nonionic Neodol 23-7 EO Shell 0.8 0.8 0.8 0.8 Zeolite A Zeolith 19.3 19.3 19.3 19.3 Sodium sulphate Aldrich 20.1 20.1 20.1 20.1 CP5 Sokalan BASF 2.9 2.9 2.9 2.9 Sodium dodecyl benzene sulphonate Aldrich 7.3 7.3 7.3 7.3 Perfume composition n°3* 0.6 n/a Perfume composition n°1* 0.6 n/a Perfume composition n°2* 0.6 n/a Water 49 49 49 49.6 % by weight of encapsulated perfume present after spray drying as determined by "spray dry test" 48 45 80 *(added as a capsule dispersion; % water given in Example 1)
n/a: not applicable - The average particle diameter of the capsules was respectively 16 µm, 18 µm and 14 µm (Malvern Instrument).
- As shown above, a substantial proportion of the fragrance remains encapsulated in the powder, following slurry preparation and spray drying. Examples 2, 3, and 4 all pass the "spray dry test".
- A fresh slurry was made as above example A, and 10 g mixed with 0.06 g of the capsule dispersion of perfume composition n°1. The headspace above 10 g of the fragranced slurry was sampled and analysed initially (time zero), and after 60 minutes by GC/MS.
- A fresh slurry was also made as above example A, and 10g mixed with 0.02g of free perfume composition n°1, to provide a control of the headspace measurement, and was analysed in an identical fashion. The samples were mixed gently and then stored without further agitation at 70°C, and subsequently analysed at 70°C.
- After 60 min, only 5% by weight of the available encapsulated fragrance has been released from the capsules when compared with the free fragrance.
- A further 10 g sample of the slurry A was mixed with a starch capsule containing a mint fragrance provided by Takasago Europe GmbH ("Micronplus"™).
- The headspace of that sample is measured by GC/MS initially and after 60 min. The sample was stored and analysed at 70°C.
- At Time zero there was substantial free fragrance measured, after 60 min, 70% by weight of the total fragrance was released.
- Aminoplast capsules show a minimum leakage during slurry survival test while the starch capsules fail the "slurry survival test".
- The following example demonstrates that a simple slurry can be spray dried to incorporate fragrance capsule particles for subsequent dosing into a variety of powder and solid products.
- The composition of Example Z was made into a slurry by mixing with water at ambient temperature in the ratio 3:7 Composition Example Z: Water, and then spray dried with a Buchi B-290 to give a base powder. An identical procedure was followed with the composition of Example 6.
Supplier Example Z Wt % Example 6 Wt % Sodium sulphate Aldrich 38 38 Nonionic 7EO Shell - Neodol 23-7 1.6 1.6 Zeolite 4A Aldrich 38 38 CP5 - Sokalan (40% solids) BASF 6.8 6.8 Sodium LAS Aldrich 14 14 Perfume composition n°1* Encapsulated as in example 1 1.6 Water 1.6 *(added as a capsule dispersion; % water given in Example 1) - The base powder from Example 6 had 70% by weight of encapsulated fragrance remaining after the slurry and spray drying process. The base powder from Example 6 is highly suitable as an adjunct for addition to many types of detergent powders for example for addition to non tower detergent compositions or to phosphate, carbonate or aluminosilicate based detergent powders.
- Example 7 and comparative examples B and C show the amount of perfume remaining on a line dried cotton towelling glove (bath mitt) after washing. The glove is washed in a linitester at 40°C for 45 minutes at a liquor to cloth ratio of 10:1 with a detergent concentration of 6.8 g/l of wash liquor, followed by 2 ambient rinses, and line drying.
- In Example B the Free Perfume of composition n°1 was dosed onto the powder of example Z. Perfume was incorporated at 0.64% by weight on the powder.
- Example C is identical to example B except perfume is added via direct addition of the capsule dispersion of perfume composition n°1 to the powder of example Z. Perfume was incorporated at 0.64% by weight on the powder (some unencapsulated fragrance is present in the capsule dispersion). Note that these capsules were not spray dried in a detergent base.
- Example 7 uses the spray dried powder of example 6 comprising 0.42% by weight of fragrance (after spray drying).
- The table below compares the recovery of fragrance, summed for all components, as a percentage of fragrance available
Example B Example C Example 7 Perfume composition n°1 available in wash 13 mg 13 mg 8.6 mg (as recovered after spray drying) % by weight recovered 3 13 15 - Example C shows that the use of encapsulated fragrance results in higher fragrance delivery to fabric after the wash, relative to the use of free fragrance. Example 7 shows that after preparing a slurry and spray drying, despite some fragrance loss, there is still a considerable advantage for the use of encapsulated fragrance.
- Example 8 and comparative examples D and E show the amount of perfume remaining on a line dried cotton towelling glove (bath mitt) after washing. The glove is washed in a linitester at 40°C for 45 minutes at a liquor to cloth ratio of 10:1 with a detergent concentration of 6.8 g/l of wash liquor, followed by 2 ambient rinses, and line drying.
- In example D, the perfume composition n°1 is dosed onto the powder of example A. Perfume was incorporated at 0.2 % by weight on the powder.
- Example E is similar to example B except perfume is added via direct addition of the capsule dispersion of perfume composition n°1 to the powder of example A. Perfume was incorporated at 0.2 % by weight on the powder (some unencapsulated fragrance is present in the capsule dispersion). Note that these capsules were not spray dried in a detergent base.
- Example 8 uses the spray dried powder of example 3 comprising 0.2 % by weight of fragrance (after spray drying).
- The table below compares the recovery of fragrance, summed for all components, as a percentage of fragrance available
Example D Example E Example 8 Perfume composition n°1 available in wash 4 mg 4 mg 4mg (as recovered after spray-drying) % by weight recovered 8 17 25 - Example E shows that the use of encapsulated fragrance results in higher fragrance delivery to fabric after the wash, relative to the use of free fragrance. Example 8 shows that after preparing a slurry and spray drying there is a considerable advantage for the use of encapsulated fragrance.
- Examples 9 to 13 demonstrate several detergent powder formulations in which the capsules can be included in the slurry prior to spray drying. Examples 9 to 11 are conventional low bulk density powders having different builders whilst example 13 is a high bulk density powder generally known as a concentrated powder. A second perfume may be post dosed to the detergent powder, and this may be the same fragrance as in the capsule but it may also have a different composition and odour.
Example 9 Wt % Example 10 Wt % Example 11 Wt % Example 12 Wt % Example 13 Wt % Ingredients added before spray drying Sodium Linear (C11-C13) alkyl benzene sulphonate (Na-LAS) 8.5 11 11 8 3.0 Sodium (C12-C15) alkyl 3-ethoxy sulphate (AES) 1.5 Alcohol ethoxylate Neodol 23 7EO (Shell) 6.5 3.5 3.5 5 Cationic Praepagen HY 1.3 1.5 Dequest 2060 (Monsanto) 0.6 Sodium linear (C12-C18) Carboxylates 2 1 1.2 0.3 Zeolite A24 19.5 Zeolite A4 22 20 15.0 Sokolan CP5 ex BASF 1.7 3 1 2.0 polyacrylate (mw 5000) 3.5 Sodium citrate/citric acid 2.5 1.5 4 2 Sodium silicate 1.5 4.0 Sodium disilicate (SKS-6) 2.5 3.5 11 Sodium carbonate 18.5 18.5 28 14 14.0 Sodium sulphate 27.5 10 23 4 Sodium Carboxymethyl Cellulose 0.15 0.15 0.4 Perfume composition n°1 encapsulated as in example 1 0.26 0.26 0.26 0.39 Minors Post dosed Ingredients* Na LAS 3.0 Sodium linear C16-C18 primary alcohol sulphate (Na-PAS) 3.5 5.5 1.0 Alcohol ethoxylate 2.0 Zeolite A 8.0 Silicone antifoam (15% active) 1 0.7 0.7 1 5 Perfume 2 0.15 0.15 0.15 0.25 0.3 Sodium Percarbonate 7 13 13 Tetra-acetylethylene diamine (83%) 1 4 3.5 5 6.0 Sodium perborate tetra hydrate 19 12.0 Fluorescer Tinopal CBS-X ex Ciba (15% active) 1 0.7 0.7 0.7 Dequest 2047 and 2016 ex Monsanto 0.8 0.8 1.5 1.5 Enzymes (protease, lipase, cellulase, amylase) 0.3 1 1 1.5 2.6 Speckles (coloured carbonate) 1.5 Fabric care polymers (soil or waxy solid release, dye transfer etc) 0.2 0.4 0.5 1 Bentonite clay 10.0 Moisture + minors to 100 to 100 to 100 to 100 to 100 * Other ingredients included in the spray dried powder may also be post dosed as suits a particular manufacturing process or to achieve particular powder properties. - Examples 14 to 17 demonstrate a range of slurry compositions which can be spray dried into detergent powders showing different surfactant types and builder. In each case the powder was slurried to give 30-60% by weight water at 80-85°C and spray dried with an air inlet temperatures between 200C- 350°C and outflow temperatures of 90-100°C.
Example 14 Hand wash powder Wt % Example 15 Carbonate built Zero P powder Wt % Example 16 Zeolite built powder Wt % Example 17 Phosphate built powder Wt % Anhydrous sodium sulphate 3.0 42.0 20.3 29.74 Anhydrous sodium carbonate 45.0 33.0 10.0 8.0 Sodium silicate 12.0 10.0 5.0 10.0 Zeolite A4 32.0 Anhydrous sodium tripolyphosphate 22 Sodium Linear (C11-C13) alkyl benzene sulphonate (Na-LAS) 28.0 18.0 9.0 Alcohol ethoxylate Neodol 23- 7EO ex Shell 2.6 Post addition 4.0 Perfume composition n°1 encapsulated as in example 1 0.26 0.26 0.26 0.26 Moisture and minors to 100% to 88% to 88% to 93% Post dosed ingredients Nil 12% 12% 7% - Again bleaches, bleach precursors, enzymes, certain surfactants, builders, antifoam agents, anti-redeposition agents, fabric care polymers, fluorescers, photobleaches, and free fragrance can all be added to any of these compositions after spray drying.
- The Capsule dispersions of perfume compositions n°1 to n°3 were directly spray dried with a Buchi B-290 to give powders which was essentially 100% dry capsules. A weighed amount of these dry capsules was placed in a temperature controlled oven at 200°C and after 10 minutes the temperature was increased by 10°C. This procedure was repeated to 260°C. The samples were weighed after each temperature increment and in all case the final weight loss was less than 5%.
- The following fragrance composition (perfume composition n° 4) was encapsulated as per Example 1, then a slurry prepared and spray dried as per Example 6.
Perfume Composition N° 4 CAS No Wt % Iso amyl alcohol* 123-51-3 10 Butyl acetate* 123-86-4 5 Phenyl ethyl alcohol* 60-12-8 35 Veltol Plus* 4940-11-8 1 Cinnamic Alcohol* 104-54-1 9 Beta Caryophyllene 87-44-5 20 Raspberry Ketone* 5471-51-2 5 Exaltolide 106-02-5 10 Hexadecanolide 109-29-5 5 - After spray drying and analysing the resultant powder, it was found that more than 70% by weight of the fragrance components with a ClogP below 2 were lost (materials signaled with an * in the above table).
Claims (12)
- A process for the manufacture of a spray dried powder comprising the steps of:(a) forming a warm, stirred aqueous slurry comprising: inorganic salts, at least one binding agent and from 0.001 to 20% by weight of capsules, based on the weight of spray dried powder, containing benefit agents including at least perfume,(b) spray drying the resultant slurry to form a spray dried powder, said capsules being such that :1) more than 40% by weight of the benefit agents remain encapsulated 60 minutes after dispersion thereof at 70°C in the slurry as defined in the "slurry survival test" in a sealed vessel without agitation;2) more than 30% by weight of the benefit agents added for 15 minutes to an ambient slurry as defined in the "spray dry test" survive spray drying through a laboratory scale spray drier.
- Process according to claim 1, in which the slurry is a slurry for detergent powder, said slurry containing at least one builder as inorganic salt and at least one surfactant as binding agent and optionally other detergent powder ingredients.
- Process according to claim 2, in which the detergent slurry also contains a zeolite, phosphate or carbonate builder, or any combination thereof.
- Process according to anyone of claims 1 to 3, wherein the capsules are core shell capsules containing in the core an oil or waxy solid, containing less than 20% by weight of aldehydes.
- Process according to anyone of claims 1 to 3, wherein the capsules are core shell capsules containing in the core an oil or waxy solid, containing less than 10% by weight of primary or secondary amines.
- Process according to any one of claims 1 to 5, wherein the capsules are core shell capsules containing in the core an oil or waxy solid, more than 80% by weight of said oil or waxy solid being in the range of ClogP 1.5-4.5, preferably ClogP 2-4.
- Process according to any one of claims 1 to 6, wherein the capsules are core shell capsules containing in the core an oil or waxy solid, said oil or solid waxy comprising by weight:- 50-100%, preferably 60-100%, more preferably 70-100%, and even more preferably 80-100% of a perfume composition , which is a mixture of at least two perfume ingredients, wherein:• aldehydes, including alpha beta unsaturated aldehydes, constitute 0-20% preferably 0-10% more preferably 0-5% and even more preferably 0-1% by weight of the perfume composition;• primary or secondary amines constitute 0-10% preferably 0-1% by weight of the perfume composition;• 0-25%, preferably 0-20% by weight of the perfume composition has a ClogP >4.0;• 0-20%, preferably 0-15% by weight of the perfume composition has a ClogP >5.0;• 0-20% and preferably 0-10% by weight of the perfume composition has a ClogP <2.0;- 0-50%, preferably 0-40%, more preferably 0-30% and even more preferably 0-20% by weight of benefit agents other than perfume ingredients.
- Process according to any one of claims 1 to 7, in which the capsule is a core shell capsule where the shell is made of formaldehyde-melamine or formaldehyde-melamine-urea or formaldehyde-urea condensation polymer or partially etherified formaldehyde condensation polymers, preferably as the methyl ethers.
- Process according to any one of claims 1 to 8, wherein the capsule is a core shell capsule which is thermally stable at 250°C for 15 minutes and contains perfume ingredients and optionally other benefit agents such as malodour counteracting agents, essential oils, aromatherapeutic materials, chemaesthetic agents vitamins, insect repellents.
- Process according to any one of claims 1 to 9, wherein the capsules have a particle size of less than 300 µm preferably less than 100 µm and most preferably between 5 and 50 µm.
- Process according to any one of claims 1 to 10, wherein the benefit agent contains between 0 and 20% by weight materials with a CIopP equal or less than 2.
- The use of the manufactured product obtained by the process of any one of claims 1 to 11 for the treatment of laundry.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06121132A EP1767614A1 (en) | 2005-09-23 | 2006-09-22 | Process for the manufacture of a spray dried powder |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05291975A EP1767613A1 (en) | 2005-09-23 | 2005-09-23 | Process for the manufacture of a spray dried powder |
EP06121132A EP1767614A1 (en) | 2005-09-23 | 2006-09-22 | Process for the manufacture of a spray dried powder |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1767614A1 true EP1767614A1 (en) | 2007-03-28 |
Family
ID=37946424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06121132A Withdrawn EP1767614A1 (en) | 2005-09-23 | 2006-09-22 | Process for the manufacture of a spray dried powder |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1767614A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2301517A1 (en) * | 2006-08-01 | 2011-03-30 | The Procter & Gamble Company | Benefit agent containing delivery particle |
WO2018030431A1 (en) | 2016-08-09 | 2018-02-15 | Takasago International Corporation | Solid composition comprising free and encapsulated fragrances |
CN110785481A (en) * | 2017-06-20 | 2020-02-11 | 荷兰联合利华有限公司 | Granular detergent composition comprising perfume |
CN113631695A (en) * | 2019-04-17 | 2021-11-09 | 宝洁公司 | Capsule |
US11912961B2 (en) | 2020-10-16 | 2024-02-27 | The Procter & Gamble Company | Liquid fabric care compositions comprising capsules |
US11938349B2 (en) | 2020-10-16 | 2024-03-26 | The Procter & Gamble Company | Antiperspirant and deodorant compositions comprising capsules |
US12077728B2 (en) | 2020-10-16 | 2024-09-03 | The Procter & Gamble Company | Laundry care additive particles |
US12129448B2 (en) | 2020-10-16 | 2024-10-29 | The Procter & Gamble Company | Water-soluble unit dose article containing a core/shell capsule |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4234627A (en) * | 1977-02-04 | 1980-11-18 | The Procter & Gamble Company | Fabric conditioning compositions |
WO1993013195A1 (en) * | 1991-12-20 | 1993-07-08 | The Procter & Gamble Company | A process for preparing a perfume capsule composition |
US6849591B1 (en) * | 1999-07-09 | 2005-02-01 | Basf Aktiengesellschaft | Microcapsule preparations and detergents and cleaning agents containing microcapsules |
WO2005059083A1 (en) * | 2003-12-19 | 2005-06-30 | Unilever N.V. | Detergent granules and process for their manufacture |
-
2006
- 2006-09-22 EP EP06121132A patent/EP1767614A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4234627A (en) * | 1977-02-04 | 1980-11-18 | The Procter & Gamble Company | Fabric conditioning compositions |
WO1993013195A1 (en) * | 1991-12-20 | 1993-07-08 | The Procter & Gamble Company | A process for preparing a perfume capsule composition |
US6849591B1 (en) * | 1999-07-09 | 2005-02-01 | Basf Aktiengesellschaft | Microcapsule preparations and detergents and cleaning agents containing microcapsules |
WO2005059083A1 (en) * | 2003-12-19 | 2005-06-30 | Unilever N.V. | Detergent granules and process for their manufacture |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2301517A1 (en) * | 2006-08-01 | 2011-03-30 | The Procter & Gamble Company | Benefit agent containing delivery particle |
WO2018030431A1 (en) | 2016-08-09 | 2018-02-15 | Takasago International Corporation | Solid composition comprising free and encapsulated fragrances |
CN110785481A (en) * | 2017-06-20 | 2020-02-11 | 荷兰联合利华有限公司 | Granular detergent composition comprising perfume |
CN110785481B (en) * | 2017-06-20 | 2021-04-13 | 荷兰联合利华有限公司 | Granular detergent composition comprising perfume |
CN113631695A (en) * | 2019-04-17 | 2021-11-09 | 宝洁公司 | Capsule |
US11904287B2 (en) | 2019-04-17 | 2024-02-20 | The Procter & Gamble Company | Capsules |
US11912961B2 (en) | 2020-10-16 | 2024-02-27 | The Procter & Gamble Company | Liquid fabric care compositions comprising capsules |
US11938349B2 (en) | 2020-10-16 | 2024-03-26 | The Procter & Gamble Company | Antiperspirant and deodorant compositions comprising capsules |
US12077728B2 (en) | 2020-10-16 | 2024-09-03 | The Procter & Gamble Company | Laundry care additive particles |
US12129448B2 (en) | 2020-10-16 | 2024-10-29 | The Procter & Gamble Company | Water-soluble unit dose article containing a core/shell capsule |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7538079B2 (en) | Spray dried powdered detergents with perfume-containing capsules | |
US5691303A (en) | Perfume delivery system comprising zeolites | |
US4145184A (en) | Detergent composition containing encapsulated perfume | |
EP0397245B1 (en) | Perfume particles for use in cleaning and conditioning compositions | |
EP1767614A1 (en) | Process for the manufacture of a spray dried powder | |
US20030045446A1 (en) | Delivery system having encapsulated porous carrier loaded with additives | |
JP4926316B2 (en) | Fragrance composition | |
US20160304817A1 (en) | Encapsulates | |
KR101950052B1 (en) | Process for controlling malodors using oxazolidines | |
US20050176599A1 (en) | Controlled delivery system for household products | |
IE910567A1 (en) | Coated perfume particles | |
US11732222B2 (en) | Consumer product compositions with perfume encapsulates | |
US11970676B2 (en) | Compositions with perfume encapsulates | |
WO1992018601A1 (en) | Improvements in coated perfume particles | |
CN1276829A (en) | Process for the preparation of perfumed detergent or cleaning agent | |
JP2022539003A (en) | Perfumed consumer products | |
FR2774389A1 (en) | WATER-DISPERSABLE GRANULES COMPRISING A FRAGRANCE IN A WATER-SOLUBLE OR WATER-DISPERSABLE MATRIX AND METHOD FOR PREPARING THEM | |
CA2327968A1 (en) | Nonionic surfactant granules by prilling | |
JP4102989B2 (en) | Coated particles and detergent composition | |
JP4110393B2 (en) | Detergent builder particles and detergent composition | |
JP2020012016A (en) | Granular detergent | |
MXPA00012501A (en) | Perfume compositions | |
AU2002245426A1 (en) | Delivery system having encapsulated porous carrier loaded with additives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20070921 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080228 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TAKASAGO INTERNATIONAL CORPORATION |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120927 |