EP1614538A2 - Procédé pour la fabrication d'un précurseur de type négatif d'une plaque d'impression lithographique thermosensible - Google Patents
Procédé pour la fabrication d'un précurseur de type négatif d'une plaque d'impression lithographique thermosensible Download PDFInfo
- Publication number
- EP1614538A2 EP1614538A2 EP05105726A EP05105726A EP1614538A2 EP 1614538 A2 EP1614538 A2 EP 1614538A2 EP 05105726 A EP05105726 A EP 05105726A EP 05105726 A EP05105726 A EP 05105726A EP 1614538 A2 EP1614538 A2 EP 1614538A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- image
- recording layer
- polymer particles
- thermoplastic polymer
- hydrophobic thermoplastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1008—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
- B41C1/1025—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials using materials comprising a polymeric matrix containing a polymeric particulate material, e.g. hydrophobic heat coalescing particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2201/00—Location, type or constituents of the non-imaging layers in lithographic printing formes
- B41C2201/02—Cover layers; Protective layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2201/00—Location, type or constituents of the non-imaging layers in lithographic printing formes
- B41C2201/14—Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by macromolecular organic compounds, e.g. binder, adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/04—Negative working, i.e. the non-exposed (non-imaged) areas are removed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/06—Developable by an alkaline solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/22—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/24—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/36—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties
- B41M5/366—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties using materials comprising a polymeric matrix containing a polymeric particulate material, e.g. hydrophobic heat coalescing particles
Definitions
- the present invention relates to a method for making a heat-sensitive, negative working lithographic printing plate precursor.
- Lithographic printing presses use a so-called printing master such as a printing plate which is mounted on a cylinder of the printing press.
- the master carries a lithographic image on its surface and a print is obtained by applying ink to said image and then transferring the ink from the master onto a receiver material, which is typically paper.
- ink as well as an aqueous fountain solution (also called dampening liquid) are supplied to the lithographic image which consists of oleophilic (or hydrophobic, i.e. ink-accepting, water-repelling) areas as well as hydrophilic (or oleophobic, i.e. water-accepting, ink-repelling) areas.
- driographic printing the lithographic image consists of ink-accepting and ink-abhesive (ink-repelling) areas and during driographic printing, only ink is supplied to the master.
- Printing masters are generally obtained by the image-wise exposure and processing of an imaging material called plate precursor.
- plate precursor an imaging material
- heat-sensitive printing plate precursors have become very popular in the late 1990s.
- thermal materials offer the advantage of daylight stability and are especially used in the so-called computer-to-plate method wherein the plate precursor is directly exposed, i.e. without the use of a film mask.
- the material is exposed to heat or to infrared light and the generated heat triggers a (physico-)chemical process, such as ablation, polymerization, insolubilization by crosslinking of a polymer, heat-induced solubilization, or by particle coagulation of a thermoplastic polymer latex.
- a (physico-)chemical process such as ablation, polymerization, insolubilization by crosslinking of a polymer, heat-induced solubilization, or by particle coagulation of a thermoplastic polymer latex.
- the most popular thermal plates form an image by a heat-induced solubility difference in an alkaline developer between exposed and non-exposed areas of the coating.
- the coating typically comprises an oleophilic binder, e.g. a phenolic resin, of which the rate of dissolution in the developer is either reduced (negative working) or increased (positive working) by the image-wise exposure.
- the solubility differential leads to the removal of the non-image (non-printing) areas of the coating, thereby revealing the hydrophilic support, while the image (printing) areas of the coating remain on the support.
- Typical examples of such plates are described in e.g.
- Negative working plate precursors which do not require a pre-heat step may contain an image-recording layer that works by heat-induced particle coalescence of a thermoplastic polymer latex, as described in e.g. EP-As 770 494, 770 495, 770 496 and 770 497.
- EP-As 770 494, 770 495, 770 496 and 770 497 disclose a method for making a lithographic printing plate comprising the steps of (1) image-wise exposing an imaging element comprising hydrophobic thermoplastic polymer particles dispersed in a hydrophilic binder and a compound capable of converting light into heat, (2) and developing the image-wise exposed element by applying fountain and/or ink.
- EP-A 800,928 discloses a heat-sensitive imaging element comprising on a hydrophilic support an image-recording layer comprising an infrared absorbing compound and hydrophobic thermoplastic particles dispersed in an alkali soluble or swellable resin which contains phenolic hydroxyl groups.
- EP-A 514,145 and EP-A 599,510 disclose a method for forming images by direct exposure of a radiation sensitive plate comprising a coating comprising core-shell particles having a water insoluble heat softenable core compound and a shell compound which is soluble or swellable in an aqueous alkaline medium.
- Image-wise exposing with infrared light causes the particles to coalesce, at least partially, to form an image, and the non-coalesced particles are then selectively removed by means of an aqueous alkaline developer. Afterwards, a baking step is performed.
- US 6,692,890 discloses a radiation-imageable element comprising a hydrophilic anodized aluminium base with a surface comprising pores and an image forming layer comprising polymer particles coated on the base wherein the ratio of said pores to the average diameter of the polymer particles ranges from about 0.4:1 to 10:1.
- EP-A 1,243,413 discloses a method for making a negative-working heat-sensitive lithographic printing plate precursor comprising the steps of (i) applying on a lithographic base having a hydrophilic surface an aqueous dispersion comprising hydrophobic thermoplastic particles and particles of a polymer B which have a softening point lower than the glass transition temperature of said hydrophobic thermoplastic particles and (ii) heating the image-recording layer at a temperature which is higher than the softening point of polymer B and lower than the glass temperature of the hydrophobic thermoplastic particles.
- US 5,948,591 discloses a heat sensitive element for making a lithographic printing plate comprising on a base having a hydrophilic surface an image-recording layer including an infrared absorbing agent, hydrophobic thermoplastic particles and a copolymer containing acetal groups and hydroxyl groups which have at least partially reacted with a compound with at least two carboxyl groups.
- a problem associated with negative-working printing plates that work according to the mechanism of heat-induced latex coalescence is to provide both a high run-length during printing and a high sensitivity during exposure.
- a high run-length can be obtained by exposing the printing plate with a high heat (infrared light) dose - i.e. a high energy density - so that the latex particles in the exposed areas coalesce to a high extent, adhere firmly to the support and are thereby rendered resistant to the development where the non-exposed areas are removed from the support.
- a high energy dose implies a low speed plate which requires a long exposure time and/or a high power laser.
- a low heat dose is applied, the extent of coalescence is low and the exposed areas degrade rapidly during the press run and as a result, a low run-length is obtained.
- a printing plate precursor comprising latex particles with an average particle size ranging from 45 nm to 63 nm in an amount of at least 70% by weight, provides a printing plate with a substantially increased press life and an improved sensitivity. Furthermore, the printing plate used in the present invention provides prints with an excellent image quality and no toning.
- the hydrophobic thermoplastic particles are present in an image-recording layer of the coating of the lithographic printing plate precursor used in the present invention.
- the average particle size is comprised between 45 nm and 63 nm, more preferably between 45 nm and 60 nm, more preferably between 45 nm and 59 nm, even more preferably between 45 nm and 55 nm and most preferably between 48 nm and 52 nm.
- the particle size is defined as the particle diameter, measured by Photon Correlation Spectrometry, also known as Quasi-Elastic or Dynamic Light-Scattering.
- This technique is a convenient method for measuring the particle size and the values of the measured particle size match well with the particle size measured with transmission electronic microscopy (TEM) as disclosed by Stanley D. Duke et al. in Calibration of Spherical Particles by Light Scattering, in Technical Note-002B, May 15, 2000 (revised 1/3/2000 from a paper published in Particulate Science and Technology 7, p. 223-228 (1989).
- TEM transmission electronic microscopy
- the amount of hydrophobic thermoplastic polymer particles present in the image-recording layer of the coating is at least 70% by weight, preferably at least 75% by weight and more preferably at least 80% by weight.
- the amount of hydrophobic thermoplastic polymer particles in the image-recording layer of the coating is preferably between 70% by weight and 85% by weight and more preferably between 75% by weight and 85% by weight.
- the weight percentage of the hydrophobic thermoplastic polymer particles is determined relative to the weight of all the components in the image-recording layer.
- the hydrophobic thermoplastic polymer particles are preferably selected from polyethylene, poly(vinyl)chloride, polymethyl(meth)acrylate , polyethyl (meth)acrylate, poyvinylidene chloride, poly(meth)acrylonitrile, polyvinylcarbazole, polystyrene or copolymers thereof.
- the thermoplastic polymer particles comprise polystyrene or derivatives thereof, mixtures comprising polystyrene and poly(meth)acrylonitrile or derivatives thereof, or copolymers comprising polystyrene and poly(meth)acrylonitrile or derivatives thereof.
- the latter copolymers may comprise at least 50% by weight of polystyrene, and more preferably at least 65% by weight of polystyrene.
- the thermoplastic polymer particles preferably comprise at least 5% by weight of nitrogen containing units as described in EP 1,219,416 , more preferably at least 30% by weight of nitrogen containing units, such as (meth)acrylonitrile.
- the thermoplastic polymer particles consist essentially of styrene and acrylonitrile units in a weight ratio between 1:1 and 5:1 (styrene:acrylonitrile), e.g. in a 2:1 ratio.
- the weight average molecular weight of the thermoplastic polymer particles may range from 5,000 to 1,000,000 g/mol.
- thermoplastic polymer particles present in the image-recording layer can be applied onto the lithographic base in the form of a dispersion in an aqueous coating liquid and may be prepared by the methods disclosed in US 3,476,937 or EP 1,217,010.
- Another method especially suitable for preparing an aqueous dispersion of the thermoplastic polymer particles comprises:
- the image-recording layer further comprises a hydrophilic binder which is preferably soluble in an aqueous developer having a pH ⁇ 10.
- a hydrophilic binder which is preferably soluble in an aqueous developer having a pH ⁇ 10.
- suitable hydrophilic binders are homopolymers and copolymers of vinyl alcohol, acrylamide, methylol acrylamide, methylol methacrylamide, acrylic acid, methacrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate and maleic anhydride/vinylmethylether copolymers.
- the support of the lithographic printing plate precursor has a hydrophilic surface or is provided with a hydrophilic layer.
- the support may be a sheet-like material such as a plate or it may be a cylindrical element such as a sleeve which can be slid around a print cylinder of a printing press.
- the support is a metal support such as aluminum or stainless steel.
- the support can also be a laminate comprising an aluminum foil and a plastic layer, e.g. polyester film.
- a particularly preferred lithographic support is an electrochemically grained and anodized aluminum support.
- the aluminium is preferably grained by electrochemical graining, and anodized by means of anodizing techniques employing phosphoric acid or a sulphuric acid/phosphoric acid mixture. Methods of both graining and anodization of aluminum are very well known in the art.
- both the adhesion of the printing image and the wetting characteristics of the non-image areas are improved.
- different type of grains can be obtained.
- the aluminium support By anodising the aluminium support, its abrasion resistance and hydrophilic nature are improved.
- the microstructure as well as the thickness of the Al 2 O 3 layer are determined by the anodising step, the anodic weight (g/m 2 Al 2 O 3 formed on the aluminium surface) varies between 1 and 8 g/m 2 .
- the grained and anodized aluminum support may be post-treated to improve the hydrophilic properties of its surface.
- the aluminum oxide surface may be silicated by treating its surface with a sodium silicate solution at elevated temperature, e.g. 95°C.
- a phosphate treatment may be applied which involves treating the aluminum oxide surface with a phosphate solution that may further contain an inorganic fluoride.
- the aluminum oxide surface may be rinsed with an organic acid and/or salt thereof, e.g. carboxylic acids, hydrocarboxylic acids, sulphonic acids or phosphonic acids, or their salts, e.g. succinates, phosphates, phosphonates, sulphates, and sulphonates.
- a citric acid or citrate solution is preferred. This treatment may be carried out at room temperature or may be carried out at a slightly elevated temperature of about 30°C to 50°C.
- a further interesting treatment involves rinsing the aluminum oxide surface with a bicarbonate solution. Still further, the aluminum oxide surface may be treated with polyvinylphosphonic acid, polyvinylmethylphosphonic acid, phosphoric acid esters of polyvinyl alcohol, polyvinylsulfonic acid, polyvinylbenzenesulfonic acid, sulfuric acid esters of polyvinyl alcohol, and acetals of polyvinyl alcohols formed by reaction with a sulfonated aliphatic aldehyde.
- the support can also be a flexible support, which is provided with a hydrophilic layer, hereinafter called 'base layer'.
- the flexible support is e.g. paper, plastic film, thin aluminum or a laminate thereof.
- Preferred examples of plastic film are polyethylene terephthalate film, polyethylene naphthalate film, cellulose acetate film, polystyrene film, polycarbonate film, etc.
- the plastic film support may be opaque or transparent.
- the base layer is preferably a cross-linked hydrophilic layer obtained from a hydrophilic binder cross-linked with a hardening agent such as formaldehyde, glyoxal, polyisocyanate or a hydrolyzed tetra-alkylorthosilicate.
- a hardening agent such as formaldehyde, glyoxal, polyisocyanate or a hydrolyzed tetra-alkylorthosilicate.
- the thickness of the hydrophilic base layer may vary in the range of 0.2 to 25 ⁇ m and is preferably 1 to 10 ⁇ m.
- the hydrophilic binder for use in the base layer is e.g.
- hydrophilic (co)polymer such as homopolymers and copolymers of vinyl alcohol, acrylamide, methylol acrylamide, methylol methacrylamide, acrylate acid, methacrylate acid, hydroxyethyl acrylate, hydroxyethyl methacrylate or maleic anhydride/vinylmethylether copolymers.
- the hydrophilicity of the (co)polymer or (co)polymer mixture used is preferably the same as or higher than the hydrophilicity of polyvinyl acetate hydrolyzed to at least an extent of 60% by weight, preferably 80% by weight.
- the amount of hardening agent, in particular tetra-alkyl orthosilicate, is preferably at least 0.2 parts per part by weight of hydrophilic binder, more preferably between 0.5 and 5 parts by weight, most preferably between 1 parts and 3 parts by weight.
- the base layer may also comprise Al 2 O 3 and an optional binder.
- Deposition methods for the Al 2 O 3 onto the flexible support may be (i) physical vapor deposition including reactive sputtering, RF-sputtering, pulsed laser PVD and evaporation of aluminium, (ii) chemical vapor deposition under both vacuum and non-vacuum condition, (iii) chemical solution deposition including spray coating, dipcoating, spincoating, chemical bath deposition, selective ion layer adsorption and reaction, liquid phase deposition and electroless deposition.
- the Al 2 O 3 powder can be prepared using different techniques including flame pyrolisis, ball milling, precipitation, hydrothermal synthesis, aerosol synthesis, emulsion synthesis, sol-gel synthesis (solvent based), solution-gel synthesis (water based) and gas phase synthesis.
- the particle size of the Al 2 O 3 powders can vary between 2 nm and 30 ⁇ m; more preferably between 100 nm and 2 ⁇ m.
- the hydrophilic base layer may also contain substances that increase the mechanical strength and the porosity of the layer.
- colloidal silica may be used.
- the colloidal silica employed may be in the form of any commercially available water dispersion of colloidal silica for example having a particle size up to 40 nm, e.g. 20 nm.
- inert particles of larger size than the colloidal silica may be added e.g. silica prepared according to Stöber as described in J. Colloid and Interface Sci., Vol. 26, 1968, pages 62 to 69 or alumina particles or particles having an average diameter of at least 100 nm which are particles of titanium dioxide or other heavy metal oxides.
- hydrophilic base layers for use in accordance with the present invention are disclosed in EP 601240, GB 1419512, FR 2300354, US 3971660, and US 4284705.
- An optimal ratio between pore diameter of the surface of the aluminium support (if present) and the average particle size of the hydrophobic thermoplastic particles may enhance the press life of the printing plate and may improve the toning behaviour of the prints.
- This ratio of the average pore diameter of the surface of the aluminium support to the average particle size of the thermoplastic particles present in the image-recording layer of the coating preferably ranges from 0.05:1 to 0.8:1, more preferably from 0.10:1 to 0.35:1.
- the coating preferably also contains a compound which absorbs infrared light and converts the absorbed energy into heat.
- the amount of infrared absorbing agent in the coating is preferably between 0.25 and 25.0 % by weight, more preferably between 0.5 and 20.0 % by weight.
- the infrared absorbing compound can be present in the image-recording layer and/or an optional other layer.
- the infrared absorbing agent is present in the image-recording layer of the coating, its concentration is preferably at least 6 % by weight, more preferably at least 8 % by weight, relative to the weight of all the components in the image-recording layer.
- IR absorbing compounds are dyes such as cyanine, merocyanine, indoaniline, oxonol, pyrilium and squarilium dyes or pigments such as carbon black.
- suitable IR absorbers are described in e.g. EP-As 823327, 978376, 1029667, 1053868, 1093934; WO 97/39894 and 00/29214.
- a preferred compound is the following cyanine dye IR-1:
- the protective layer generally comprises at least one water-soluble polymeric binder, such as polyvinyl alcohol, polyvinylpyrrolidone, partially hydrolyzed polyvinyl acetates, gelatin, carbohydrates or hydroxyethylcellulose, and can be produced in any known manner such as from an aqueous solution or dispersion which may, if required, contain small amounts, i.e. less than 5% by weight, based on the total weight of the coating solvents for the protective layer, of organic solvents.
- the thickness of the protective layer can suitably be any amount, advantageously up to 5.0 ⁇ m, preferably from 0.05 to 3.0 ⁇ m, particularly preferably from 0.10 to 1.0 ⁇ m.
- the coating may in addition to the image-recording layer also contain one or more additional layer(s). Besides the additional layers already discussed above - i.e. an optional light-absorbing layer comprising one or more compounds that are capable of converting infrared light into heat and/or a protective layer such as e.g. a covering layer which is removed during processing - the coating may further for example comprise an adhesion-improving layer between the image-recording layer and the support.
- the coating may further contain additional ingredients.
- additional ingredients may be present in the image-recording layer or in on optional other layer.
- additional binders polymer particles such as matting agents and spacers, surfactants such as perfluoro surfactants, silicon or titanium dioxide particles, development inhibitors, development accelerators or colorants are well-known components of lithographic coatings.
- colorants such as dyes or pigments which provide a visible color to the coating and remain in the exposed areas of the coating after the processing step, are advantageous.
- the image-areas which are not removed during the processing step form a visible image on the printing plate and examination of the developed printing plate already at this stage becomes feasible.
- contrast dyes are the amino-substituted tri- or diarylmethane dyes, e.g. crystal violet, methyl violet, victoria pure blue, flexoblau 630, basonylblau 640, auramine and malachite green. Also the dyes which are discussed in depth in the detailed description of EP-A 400,706 are suitable contrast dyes. Dyes which, combined with specific additives, only slightly color the coating but which become intensively colored after exposure, are also of interest.
- a coating solution comprising the above described hydrophobic thermoplastic polymer particles and hydrophilic binder is prepared, said coating solution is than applied on a support (as descibed above) thereby obtaining an image-recording layer, and than said image-recording layer is dried.
- the printing plate precursor used in the present invention can be image-wise exposed directly with heat, e.g. by means of a thermal head, or indirectly by infrared light, preferably near infrared light.
- the infrared light is preferably converted into heat by an IR light absorbing compound as discussed above.
- the heat-sensitive lithographic printing plate precursor used in the present invention is preferably not sensitive to visible light.
- the coating is not sensitive to ambient daylight, i.e. visible (400-750 nm) and near UV light (300-400 nm) at an intensity and exposure time corresponding to normal working conditions so that the material can be handled without the need for a safe light environment.
- the printing plate precursors used in the present invention can be exposed to infrared light by means of e.g. LEDs or an infrared laser.
- the light used for the exposure is a laser emitting near infrared light having a wavelength in the range from about 700 to about 1500 nm, e.g. a semiconductor laser diode, a Nd:YAG or a Nd:YLF laser.
- the required laser power depends on the sensitivity of the image-recording layer, the pixel dwell time of the laser beam, which is determined by the spot diameter (typical value of modern plate-setters at 1/e 2 of maximum intensity : 10-25 ⁇ m), the scan speed and the resolution of the exposure apparatus (i.e. the number of addressable pixels per unit of linear distance, often expressed in dots per inch or dpi; typical value : 1000-4000 dpi).
- ITD plate-setters for thermal plates are typically characterized by a very high scan speed up to 1500 m/sec and may require a laser power of several Watts.
- the Agfa Galileo T (trademark of Agfa Gevaert N.V.) is a typical example of a plate-setter using the ITD-technology.
- XTD plate-setters for thermal plates having a typical laser power from about 20 mW to about 500 mW operate at a lower scan speed, e.g. from 0.1 to 20 m/sec.
- the Creo Trendsetter plate-setter family (trademark of Creo) and the Agfa Xcalibur plate-setter family (trademark of Agfa Gevaert N.V.) both make use of the XTD-technology.
- the hydrophobic thermoplastic polymer particles fuse or coagulate so as to form a hydrophobic phase which corresponds to the printing areas of the printing plate. Coagulation may result from heat-induced coalescence, softening or melting of the thermoplastic polymer particles.
- the coagulation temperature of the thermoplastic hydrophobic polymer particles there is no specific upper limit to the coagulation temperature of the thermoplastic hydrophobic polymer particles, however the temperature should be sufficiently below the decomposition temperature of the polymer particles.
- the coagulation temperature is at least 10°C below the temperature at which the decomposition of the polymer particles occurs.
- the coagulation temperature is preferably higher than 50°C, more preferably above 100°C.
- the material can be developed by supplying to the coating an aqueous alkaline solution whereby the non-image areas of the coating are removed.
- This developing step with an aqueous alkaline developer solution may be combined with mechanical rubbing, e.g. by a rotating brush.
- any water-soluble protective layer present is preferably also removed.
- a preferred developer solution is a developer with a pH of at least 10, more preferably at least 11, most preferably at least 12.
- Preferred developer solutions are buffer solutions such as for example silicate-based developers or developer solutions comprising phosphate buffers.
- Silicate-based developers which have a ratio of silicon dioxide to alkali metal oxide of at least 1 are advantageous because they ensure that the alumina layer (if present) of the substrate is not damaged.
- Preferred alkali metal oxides include Na 2 O and K 2 O, and mixtures thereof.
- a particularly preferred silicate-based developer solution is a developer solution comprising sodium or potassium metasilicate, i.e. a silicate where the ratio of silicon dioxide to alkali metal oxide is 1.
- the developer may optionally contain further components, such as buffer substances, complexing agents, antifoams, organic solvents in small amounts, corrosion inhibitors, dyes, surfactants and/or hydrotropic agents as known in the art.
- buffer substances such as complexing agents, antifoams, organic solvents in small amounts, corrosion inhibitors, dyes, surfactants and/or hydrotropic agents as known in the art.
- the development is preferably carried out at temperatures from 20 to 40°C in automated processing units as customary in the art.
- alkali metal silicate solutions having alkali metal contents of from 0.6 to 2.0 mol/l can suitably be used. These solutions may have the same silica/alkali metal oxide ratio as the developer (generally, however, it is lower) and likewise optionally contain further additives.
- the required amounts of regenerated material must be tailored to the developing apparatuses used, daily plate throughputs, image areas, etc. and are in general from 1 to 50 ml per square meter of plate precursor.
- the addition of replenisher can be regulated, for example, by measuring the conductivity of the developer as described in EP-A 0,556,690.
- the development step may be followed by a rinsing step and/or a gumming step.
- the gumming step involves post-treatment of the lithographic printing plate with a gum solution.
- a gum solution is typically an aqueous liquid which comprises one or more surface protective compounds that are capable of protecting the lithographic image of a printing plate against contamination or damaging. Suitable examples of such compounds are film-forming hydrophilic polymers or surfactants.
- the plate precursor can, if required, be post-treated with a suitable correcting agent or preservative as known in the art.
- the layer can be briefly heated to elevated temperatures ("baking").
- the plate can be dried before baking or is dried during the baking process itself.
- the plate can be heated at a temperature which is higher than the glass transition temperature of the thermoplastic particles, e.g. between 100°C and 230°C for a period of 40 minutes to 5 minutes.
- a preferred baking temperature is above 60°C.
- the exposed and developed plates can be baked at a temperature of 230°C for 5 minutes, at a temperature of 150°C for 10 minutes or at a temperature of 120°C for 30 minutes.
- Baking can be done in conventional hot air ovens or by irradiation with lamps emitting in the infrared or ultraviolet spectrum. As a result of this baking step, the resistance of the printing plate to plate cleaners, correction agents and UV-curable printing inks increases. Such a thermal post-treatment is described, inter alia, in DE 1,447,963 and GB 1,154,749.
- the printing plate thus obtained can be used for conventional, so-called wet offset printing, in which ink and an aqueous dampening liquid is supplied to the plate.
- Another suitable printing method uses so-called single-fluid ink without a dampening liquid.
- Suitable single-fluid inks have been described in US 4,045,232; US 4,981,517 and US 6,140,392.
- the single-fluid ink comprises an ink phase, also called the hydrophobic or oleophilic phase, and a polyol phase as described in WO 00/32705.
- a 0.30 mm thick aluminum foil was degreased by immersing the foil in an aqueous solution containing 40 g/l of sodium hydroxide at 60°C for 8 seconds and rinsed with demineralized water for 2 seconds.
- the foil was then electrochemically grained during 15 seconds using an alternating current in an aqueous solution containing 12 g/l of hydrochloric acid and 38 g/l of aluminum sulfate (18-hydrate) at a temperature of 33°C and a current density of 130 A/dm 2 .
- the aluminum foil was then desmutted by etching with an aqueous solution containing 155 g/l of sulfuric acid at 70°C for 4 seconds and rinsed with demineralized water at 25°C for 2 seconds.
- the foil was subsequently subjected to anodic oxidation during 13 seconds in an aqueous solution containing 155 g/l of sulfuric acid at a temperature of 45°C and a current density of 22 A/dm 2 , then washed with demineralized water for 2 seconds and post-treated for 10 seconds with a solution containing 4 g/l of polyvinylphosphonic acid at 40°C, rinsed with demineralized water at 20°C during 2 seconds and dried.
- the support thus obtained has a surface roughness Ra of 0.21 ⁇ m and an anodic weight of 4 g/m 2 of Al 2 O 3 .
- Printing plate precursors 1 to 6 were produced by applying a coating solution onto the above described lithographic substrate.
- the composition of the coating is defined in Table 1.
- the average particle sizes of the styrene/acrylonitrile copolymers were measured with a Brookhaven BI-90 analyzer, commercially available from Brookhaven Instrument Company, Holtsville, NY, USA, and are indicated in Table 2.
- the coating was applied from an aqueous coating solution and a dry coating weight of 0.84 g/m 2 was obtained.
- the plate precursors 1 - 6 were exposed with a Creo Trendsetter 2344T (40W) (plate-setter, trademark from Creo, Burnaby, Canada), operating at 200 mJ/cm 2 and 150 rpm.
- a Creo Trendsetter 2344T 40W
- plate-setter trademark from Creo, Burnaby, Canada
- the plate precursors were processed in an Agfa VA88 processor (trademark from Agfa), operating at a speed of 1 m/min and at 22°C, using Agfa PD91 (trademark from Agfa) as developer solution (silicate based).
- the plates were mounted on a GTO46 printing press (available from Heidelberger Druckmaschinen AG), and a print job was started using K + E Novavit 800 Skinnex ink (trademark of BASF Drucksysteme GmbH) and 3% FS101 (trademark of Agfa) in 10% isopropanol as a fountain liquid.
- the lithographic properties of the plates were determined by visual inspection of the appearance of toning in the non-image areas of the plates and the quality of the coating was determined in terms of run-length (Table 2).
- An excellent run lenght resistance (++) means that after 100,000 prints the 1% highlight of a 200 lpi screen was still rendered on the print and a good run lenght resistance (+) means that after 100,000 prints the 2% highlight of a 200 lpi screen was still rendered on the print.
- An insufficient run lenght resistance (-) means that after 1,000 prints breakdown of the highlight of a 200 lpi screen occured.
- Table 2 results of run-length and appearance of toning in the non-image areas of the plate.
- No toning - * ++ indicates that after 100,000 prints the 1% highlight of a 200 lpi screen was still rendered on the print; + indicates that after 100,000 prints the 2% highlight of a 200 lpi screen was still rendered on the print; - indicates that already after 1000 prints breakdown of the highlight of a 200 lpi screen occurred.
- Table 2 demonstrate that the plates comprising a latex with an average particle size below 45 nm shows toning on the non-printing areas of the plate, and plates comprising a latex with an average particle size of 77 nm or higher have a reduced run length.
- the plates comprising a latex with an average particle size of 45 nm shows only a slight tendency of toning and no toning is observed for plates with particles of 50 nm or 61 nm.
- the preparation of the lithographic substrate was done according to Example 1.
- the printing plate precursors 7 to 10 were produced by applying a coating onto the above described lithographic substrate.
- the composition of the coating is defined in Table 3.
- the average particle sizes of the styrene/acrylonitrile copolymers were measured with a Brookhaven BI-90 analyzer, commercially available from Brookhaven Instrument Company, Holtsville, NY, USA, and are indicated in Table 4.
- the coating was applied from an aqueous coating solution and a dry coating weight of 0.84 g/m 2 was obtained.
- the plate precursors 7 - 10 were exposed with a Creo Trendsetter 2344T (40W) (plate-setter available from Creo, Burnaby, Canada), operating at 150 rpm and varying energy densities upto 250 mJ/cm 2 .
- the plates were processed in an Agfa VA88 processor, operating at a speed of 1 m/min and at 25°C, and using Agfa PD91 (trademark from Agfa) as developer solution (silicate based).
- the plates were mounted on a GTO46 printing press (available from Heidelberger Druckmaschinen AG) and a print job was started using K + E Novavit 800 Skinnex ink (trademark of BASF Drucksysteme GmbH) and 4% Combifix XL with 10% isopropanol as a fountain liquid.
- the preparation of the lithographic substrate was done according to Example 1.
- the printing plate precursors 11 to 16 were produced by applying a coating onto the above described lithographic substrate.
- the composition of the coating is defined in Table 5.
- the coating was applied from an aqueous coating solution and a dry coating weight of 0.84 g/m 2 was obtained.
- Table 5 Composition of the dry coating (%wt) Styrene/acrylonitrile copolymer (1) IR-2 (2) Binder (3) Cab O Jet 200 (4) Precursor 11 Comp. Ex. 65% 6% 26% 3% Precursor 12 Comparative Ex. 65% 16% 16% 3% Precursor 13 Invention Ex. 75% 16% 6% 3% Precursor 14 Invention Ex. 79% 8% 6% 7% Precursor 15 Invention Ex. 83% 8% 6% 3% Precursor 16 Invention Ex.
- the plate precursors 11 - 16 were exposed with a Creo Trendsetter 2344T (40W) (plate-setter available from Creo, Burnaby, Canada), operating at 260 mJ/m 2 and 150 rpm.
- the plates were processed in an Agfa VA88 processor, operating at a speed of 1 m/min and at 25°C, and using Agfa PD91 (trademark from Agfa) as developer solution (silicate based).
- the plates were mounted on a GTO46 printing press (available from Heidelberger Druckmaschinen AG) and a print job was started using K + E Novavit 800 Skinnex ink (trademark of BASF Drucksysteme GmbH) and 3% FS101 (trademark from Agfa) with 10% isopropanol as a fountain liquid.
- the results show that a latex concentration of 65% wt in the coating does not provide a good image quality.
- the plates with a latex concentration higher than 65% wt show no stain or toning.
- the preparation of the lithographic substrate was done according to Example 1.
- the printing plate precursors 17 to 20 were produced by applying a coating onto the above described lithographic substrate.
- the composition of the coating is defined in Table 7.
- the coating was applied from an aqueous coating solution and a dry coating weight of 0.84 g/m 2 was obtained.
- Table 7 composition of the dry coating (%wt) Styrene/acrylonitrile copolymer (1) IR-2 (2) Binder (3) Cab O jet 250 (4) Plate 17 (Precursor 17) Comparative Example 65% 6% 26% 3% Plate 18 (Precursor 18) Comparative Example 65% 16% 16% 3% Plate 19 (Precursor 19) Invention Example 75% 16% 6% 3% Plate 20 Precursor (20) Invention Example 83% 8% 6% 3% (1)weight ratio 60/40, stabilized with an anionic wetting agent, average particle size of 52nm, measured with a Brookhaven BI-90 analyzer, commercially available from Brookhaven Instrument Company, Holtsville, NY, USA; (2)Triethylammonium salt of IR-1
- the plate precursors 17 - 20 were exposed with a Creo Trendsetter 2344T (40W) (plate-setter available from Creo, Burnaby, Canada), operating at 150 rpm.
- the plates were processed in an Agfa VA88 processor, operating at a speed of 1 m/min and at 25°C, and using Agfa PD91 (trademark from Agfa) as developer solution (silicate based).
- the plates were mounted on a GTO46 printing press (available from Heidelberger Druckmaschinen AG) and a print job was started using K + E Novavit 800 Skinnex ink (trademark of BASF Drucksysteme GmbH) and 3% FS101 (trademark from Agfa) with 10% isopropanol as a fountain liquid.
- Table 8 Stain (Dmin) and toning results Sensitivity mJ/cm 2 (*) Dmin Toning Plate 17 (Precursor 17) Image adhesion to substrate not sufficient (deteriorated image after processing) Plate 18 (Precursor 18) Image adhesion to substrate not sufficient (deteriorated image after processing) Plate 19 (Precursor 19) 225 0.02 No Plate 20 (Precursor 20) 190 0.00 No (*) : energy at wich 2% dot is clearly reproduced on print
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials For Photolithography (AREA)
- Printing Plates And Materials Therefor (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05105726A EP1614538B1 (fr) | 2004-07-08 | 2005-06-28 | Procédé pour la fabrication d'un précurseur de type négatif d'une plaque d'impression lithographique thermosensible |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04103245 | 2004-07-08 | ||
EP05105726A EP1614538B1 (fr) | 2004-07-08 | 2005-06-28 | Procédé pour la fabrication d'un précurseur de type négatif d'une plaque d'impression lithographique thermosensible |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1614538A2 true EP1614538A2 (fr) | 2006-01-11 |
EP1614538A3 EP1614538A3 (fr) | 2006-06-21 |
EP1614538B1 EP1614538B1 (fr) | 2009-03-04 |
Family
ID=34929307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05105726A Not-in-force EP1614538B1 (fr) | 2004-07-08 | 2005-06-28 | Procédé pour la fabrication d'un précurseur de type négatif d'une plaque d'impression lithographique thermosensible |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1614538B1 (fr) |
JP (1) | JP4778738B2 (fr) |
AT (1) | ATE424299T1 (fr) |
DE (1) | DE602005013029D1 (fr) |
ES (1) | ES2321955T3 (fr) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1834764A1 (fr) | 2006-03-17 | 2007-09-19 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique thermosensible à action négative |
EP1914068A1 (fr) * | 2006-10-17 | 2008-04-23 | Agfa Graphics N.V. | Précurseur de type négatif d'une plaque d'impression lithographique thermosensible |
WO2008046775A1 (fr) | 2006-10-17 | 2008-04-24 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique thermosensible, négative |
EP1972461A1 (fr) | 2007-03-20 | 2008-09-24 | Agfa Graphics N.V. | Procédé pour réaliser un support de plaque d'impression lithographique |
EP1974912A1 (fr) * | 2007-03-30 | 2008-10-01 | Agfa Graphics N.V. | Procédé pour réaliser un précurseur de plaque d'impression lithographique |
EP1974911A1 (fr) | 2007-03-27 | 2008-10-01 | Agfa Graphics N.V. | Procédé de fabrication d'une plaque d'impression lithographique |
EP2047988A1 (fr) | 2007-10-09 | 2009-04-15 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
EP2065211A1 (fr) | 2007-11-30 | 2009-06-03 | Agfa Graphics N.V. | Procédé pour traiter une plaque d'impression lithographique |
EP2072570A1 (fr) | 2007-12-20 | 2009-06-24 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
EP2095948A1 (fr) | 2008-02-28 | 2009-09-02 | Agfa Graphics N.V. | Procédé pour fabrication d'une plaque d'impression lithographique |
EP2098376A1 (fr) | 2008-03-04 | 2009-09-09 | Agfa Graphics N.V. | Procédé pour réaliser un support de plaque d'impression lithographique |
EP2106924A1 (fr) | 2008-03-31 | 2009-10-07 | Agfa Graphics N.V. | Procédé pour traiter une plaque d'impression lithographique |
EP1817166B1 (fr) * | 2004-10-01 | 2010-01-20 | Agfa Graphics Nv | Procede de production de plaques d'impression lithographique |
EP2243628A1 (fr) | 2009-04-24 | 2010-10-27 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
EP2263874A1 (fr) | 2009-06-18 | 2010-12-22 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
WO2011067382A1 (fr) | 2009-12-04 | 2011-06-09 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique |
US8133657B2 (en) | 2006-05-24 | 2012-03-13 | Agfa Graphics Nv | Method for making a lithographic printing plate |
US8216769B2 (en) | 2006-05-24 | 2012-07-10 | Agfa Graphics Nv | Negative working, heat sensitive lithographic printing plate precursor |
WO2012101046A1 (fr) | 2011-01-25 | 2012-08-02 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique |
EP2489512A1 (fr) | 2011-02-18 | 2012-08-22 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
US8419923B2 (en) | 2006-08-03 | 2013-04-16 | Agfa Graphics Nv | Lithographic printing plate support |
WO2014106554A1 (fr) | 2013-01-01 | 2014-07-10 | Agfa Graphics Nv | Copolymères (éthylène, acétal vinylique) et leur utilisation dans des précurseurs de plaque d'impression lithographique |
US8778590B2 (en) | 2008-12-18 | 2014-07-15 | Agfa Graphics Nv | Lithographic printing plate precursor |
EP2775351A1 (fr) | 2013-03-07 | 2014-09-10 | Agfa Graphics Nv | Appareil et procédé de traitement d'une plaque d'impression lithographique |
WO2014202519A1 (fr) | 2013-06-18 | 2014-12-24 | Agfa Graphics Nv | Procédé pour fabriquer un précurseur de plaque d'impression lithographique ayant une couche arrière à motif |
EP2871057A1 (fr) | 2013-11-07 | 2015-05-13 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique thermosensible à action négative |
EP3032334A1 (fr) | 2014-12-08 | 2016-06-15 | Agfa Graphics Nv | Système permettant de réduire les débris d'ablation |
EP3170662A1 (fr) | 2015-11-20 | 2017-05-24 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique |
WO2017157579A1 (fr) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Procédé de traitement d'une plaque d'impression lithographique |
EP3239184A1 (fr) | 2016-04-25 | 2017-11-01 | Agfa Graphics NV | Particules de polymère thermoplastique et précurseur de plaque d'impression lithographique |
EP3441223A1 (fr) | 2017-08-07 | 2019-02-13 | Agfa Nv | Précurseur de plaque d'impression lithographique |
EP3637188A1 (fr) | 2018-10-08 | 2020-04-15 | Agfa Nv | Précurseur de révélateur effervescent pour le traitement d'un précurseur de plaque d'impression lithographique |
EP3715140A1 (fr) | 2019-03-29 | 2020-09-30 | Agfa Nv | Procédé d'impression |
EP4382306A1 (fr) | 2022-12-08 | 2024-06-12 | Eco3 Bv | Procédé de préparation de presse d'impression lithographique |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0849091A1 (fr) * | 1996-12-19 | 1998-06-24 | Agfa-Gevaert N.V. | Elément sensible à la chaleur formateur d'image pour la fabrication de plaques d'impression lithographiques comprenant des particules de polymère avec une dimension de particule spécifique |
US5948591A (en) * | 1997-05-27 | 1999-09-07 | Agfa-Gevaert, N.V. | Heat sensitive imaging element and a method for producing lithographic plates therewith |
EP1048458A1 (fr) * | 1999-04-27 | 2000-11-02 | Agfa-Gevaert N.V. | Procédé pour la fabrication des plaques d'impression lithographique |
EP1208972A1 (fr) * | 2000-11-21 | 2002-05-29 | Agfa-Gevaert | Procédé d' impression lithographique avec support réutilisable |
US20020172888A1 (en) * | 2001-04-04 | 2002-11-21 | Kodak Polychrome Graphics, L.L.C. | Substrate improvements for thermally imageable composition and methods of preparation |
EP1371484A2 (fr) * | 2002-06-12 | 2003-12-17 | Konica Corporation | Précurseur de plaque d'impression planographique et sa méthode de fixation sur un cylindre porte-plaques |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69804750T2 (de) * | 1997-12-09 | 2002-11-21 | Agfa-Gevaert, Mortsel | Rückstandsfreies Aufzeichnungselement ohne Materialabtrag für die Herstellung von Flachdruckplatten mit unterschiedlicher Farbdichte zwischen Bild und Nicht-Bild |
DE69812871T2 (de) * | 1998-01-23 | 2004-02-26 | Agfa-Gevaert | Wärmeempfindliches Aufzeichnungselement und Verfahren um damit Flachdruckplatten herzustellen |
JP2002251005A (ja) * | 2000-12-20 | 2002-09-06 | Agfa Gevaert Nv | オンプレス現像用のネガ作用サーマルプレートを用いた印刷システム |
JP2003005366A (ja) * | 2001-06-22 | 2003-01-08 | Fuji Photo Film Co Ltd | ヒートモードレーザー描画用平版印刷用原板 |
JP2003063165A (ja) * | 2001-08-27 | 2003-03-05 | Fuji Photo Film Co Ltd | 平版印刷版用原板 |
JP2004050616A (ja) * | 2002-07-19 | 2004-02-19 | Konica Minolta Holdings Inc | 印刷版材料および印刷方法 |
JP2004167904A (ja) * | 2002-11-21 | 2004-06-17 | Konica Minolta Holdings Inc | 印刷版材料及び印刷版 |
-
2005
- 2005-06-28 EP EP05105726A patent/EP1614538B1/fr not_active Not-in-force
- 2005-06-28 DE DE602005013029T patent/DE602005013029D1/de active Active
- 2005-06-28 AT AT05105726T patent/ATE424299T1/de not_active IP Right Cessation
- 2005-06-28 ES ES05105726T patent/ES2321955T3/es active Active
- 2005-07-06 JP JP2005197753A patent/JP4778738B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0849091A1 (fr) * | 1996-12-19 | 1998-06-24 | Agfa-Gevaert N.V. | Elément sensible à la chaleur formateur d'image pour la fabrication de plaques d'impression lithographiques comprenant des particules de polymère avec une dimension de particule spécifique |
US5948591A (en) * | 1997-05-27 | 1999-09-07 | Agfa-Gevaert, N.V. | Heat sensitive imaging element and a method for producing lithographic plates therewith |
EP1048458A1 (fr) * | 1999-04-27 | 2000-11-02 | Agfa-Gevaert N.V. | Procédé pour la fabrication des plaques d'impression lithographique |
EP1208972A1 (fr) * | 2000-11-21 | 2002-05-29 | Agfa-Gevaert | Procédé d' impression lithographique avec support réutilisable |
US20020172888A1 (en) * | 2001-04-04 | 2002-11-21 | Kodak Polychrome Graphics, L.L.C. | Substrate improvements for thermally imageable composition and methods of preparation |
EP1371484A2 (fr) * | 2002-06-12 | 2003-12-17 | Konica Corporation | Précurseur de plaque d'impression planographique et sa méthode de fixation sur un cylindre porte-plaques |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1817166B1 (fr) * | 2004-10-01 | 2010-01-20 | Agfa Graphics Nv | Procede de production de plaques d'impression lithographique |
EP1834764A1 (fr) | 2006-03-17 | 2007-09-19 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique thermosensible à action négative |
US8216769B2 (en) | 2006-05-24 | 2012-07-10 | Agfa Graphics Nv | Negative working, heat sensitive lithographic printing plate precursor |
US8133657B2 (en) | 2006-05-24 | 2012-03-13 | Agfa Graphics Nv | Method for making a lithographic printing plate |
US8419923B2 (en) | 2006-08-03 | 2013-04-16 | Agfa Graphics Nv | Lithographic printing plate support |
EP1914068A1 (fr) * | 2006-10-17 | 2008-04-23 | Agfa Graphics N.V. | Précurseur de type négatif d'une plaque d'impression lithographique thermosensible |
WO2008046773A1 (fr) * | 2006-10-17 | 2008-04-24 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique thermosensible, négative |
WO2008046775A1 (fr) | 2006-10-17 | 2008-04-24 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique thermosensible, négative |
US8409780B2 (en) | 2006-10-17 | 2013-04-02 | Agfa Graphics Nv | Negative working, heat-sensitive lithographic printing plate precursor |
US8304165B2 (en) | 2006-10-17 | 2012-11-06 | Agfa Graphics Nv | Negative working, heat-sensitive lithographic printing plate precursor |
EP1972461A1 (fr) | 2007-03-20 | 2008-09-24 | Agfa Graphics N.V. | Procédé pour réaliser un support de plaque d'impression lithographique |
EP1974911A1 (fr) | 2007-03-27 | 2008-10-01 | Agfa Graphics N.V. | Procédé de fabrication d'une plaque d'impression lithographique |
WO2008119619A1 (fr) * | 2007-03-30 | 2008-10-09 | Agfa Graphics Nv | Procédé de fabrication d'un précurseur de plaque d'impression lithographique |
EP1974912A1 (fr) * | 2007-03-30 | 2008-10-01 | Agfa Graphics N.V. | Procédé pour réaliser un précurseur de plaque d'impression lithographique |
EP2047988A1 (fr) | 2007-10-09 | 2009-04-15 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
EP2065211A1 (fr) | 2007-11-30 | 2009-06-03 | Agfa Graphics N.V. | Procédé pour traiter une plaque d'impression lithographique |
EP2072570A1 (fr) | 2007-12-20 | 2009-06-24 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
EP2095948A1 (fr) | 2008-02-28 | 2009-09-02 | Agfa Graphics N.V. | Procédé pour fabrication d'une plaque d'impression lithographique |
EP2098376A1 (fr) | 2008-03-04 | 2009-09-09 | Agfa Graphics N.V. | Procédé pour réaliser un support de plaque d'impression lithographique |
EP2106924A1 (fr) | 2008-03-31 | 2009-10-07 | Agfa Graphics N.V. | Procédé pour traiter une plaque d'impression lithographique |
US8778590B2 (en) | 2008-12-18 | 2014-07-15 | Agfa Graphics Nv | Lithographic printing plate precursor |
EP2243628A1 (fr) | 2009-04-24 | 2010-10-27 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
WO2010122042A1 (fr) | 2009-04-24 | 2010-10-28 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique |
US8685622B2 (en) | 2009-04-24 | 2014-04-01 | Agfa Graphics Nv | Method for preparing a lithographic printing plate |
US8771918B2 (en) | 2009-06-18 | 2014-07-08 | Agfa Graphics N.V. | Lithographic printing plate precursor |
EP2263874A1 (fr) | 2009-06-18 | 2010-12-22 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
WO2011067382A1 (fr) | 2009-12-04 | 2011-06-09 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique |
US9738064B2 (en) | 2009-12-04 | 2017-08-22 | Agfa Graphics N.V. | Lithographic printing plate precursor |
WO2012101046A1 (fr) | 2011-01-25 | 2012-08-02 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique |
US9029066B2 (en) | 2011-02-18 | 2015-05-12 | Agfa Graphics Nv | Lithographic printing plate precursor |
EP2489512A1 (fr) | 2011-02-18 | 2012-08-22 | Agfa Graphics N.V. | Précurseur de plaque d'impression lithographique |
WO2012110359A1 (fr) | 2011-02-18 | 2012-08-23 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique |
WO2014106554A1 (fr) | 2013-01-01 | 2014-07-10 | Agfa Graphics Nv | Copolymères (éthylène, acétal vinylique) et leur utilisation dans des précurseurs de plaque d'impression lithographique |
EP2775351A1 (fr) | 2013-03-07 | 2014-09-10 | Agfa Graphics Nv | Appareil et procédé de traitement d'une plaque d'impression lithographique |
WO2014202519A1 (fr) | 2013-06-18 | 2014-12-24 | Agfa Graphics Nv | Procédé pour fabriquer un précurseur de plaque d'impression lithographique ayant une couche arrière à motif |
EP3346332A1 (fr) | 2013-06-18 | 2018-07-11 | Agfa Nv | Précurseur de plaque d'impression lithographique comportant une couche arrière non continue |
EP2871057A1 (fr) | 2013-11-07 | 2015-05-13 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique thermosensible à action négative |
WO2015067581A1 (fr) | 2013-11-07 | 2015-05-14 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique à travail négatif sensible à la chaleur |
EP3032334A1 (fr) | 2014-12-08 | 2016-06-15 | Agfa Graphics Nv | Système permettant de réduire les débris d'ablation |
EP3170662A1 (fr) | 2015-11-20 | 2017-05-24 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique |
WO2017085002A1 (fr) | 2015-11-20 | 2017-05-26 | Agfa Graphics Nv | Précurseur de plaque d'impression lithographique |
WO2017157575A1 (fr) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Procédé et appareil de traitement de plaque d'impression lithographique |
WO2017157572A1 (fr) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Appareil permettant de traiter une plaque d'impression lithographique, et procédé correspondant |
WO2017157576A1 (fr) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Procédé de traitement d'une plaque d'impression lithographique |
WO2017157571A1 (fr) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Procédé et appareil de traitement d'une plaque d'impression lithographique |
WO2017157578A1 (fr) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Procédé de traitement d'une plaque d'impression lithographique |
WO2017157579A1 (fr) | 2016-03-16 | 2017-09-21 | Agfa Graphics Nv | Procédé de traitement d'une plaque d'impression lithographique |
EP3239184A1 (fr) | 2016-04-25 | 2017-11-01 | Agfa Graphics NV | Particules de polymère thermoplastique et précurseur de plaque d'impression lithographique |
WO2017186556A1 (fr) | 2016-04-25 | 2017-11-02 | Agfa Graphics Nv | Particules de polymère thermoplastique et précurseur de plaque d'impression lithographique |
WO2019029945A1 (fr) | 2017-08-07 | 2019-02-14 | Agfa Nv | Précurseur de plaque d'impression lithographique |
EP3441223A1 (fr) | 2017-08-07 | 2019-02-13 | Agfa Nv | Précurseur de plaque d'impression lithographique |
US11376836B2 (en) | 2017-08-07 | 2022-07-05 | Agfa Nv | Lithographic printing plate precursor |
EP3637188A1 (fr) | 2018-10-08 | 2020-04-15 | Agfa Nv | Précurseur de révélateur effervescent pour le traitement d'un précurseur de plaque d'impression lithographique |
WO2020074258A1 (fr) | 2018-10-08 | 2020-04-16 | Agfa Nv | Précurseur de révélateur effervescent pour le traitement d'un précurseur de plaque d'impression lithographique |
EP3715140A1 (fr) | 2019-03-29 | 2020-09-30 | Agfa Nv | Procédé d'impression |
WO2020200905A1 (fr) | 2019-03-29 | 2020-10-08 | Agfa Nv | Procédé d'impression |
EP4382306A1 (fr) | 2022-12-08 | 2024-06-12 | Eco3 Bv | Procédé de préparation de presse d'impression lithographique |
WO2024120763A1 (fr) | 2022-12-08 | 2024-06-13 | Eco3 Bv | Procédé de préparation de presse d'impression lithographique |
Also Published As
Publication number | Publication date |
---|---|
JP4778738B2 (ja) | 2011-09-21 |
ATE424299T1 (de) | 2009-03-15 |
JP2006023743A (ja) | 2006-01-26 |
ES2321955T3 (es) | 2009-06-15 |
EP1614538A3 (fr) | 2006-06-21 |
EP1614538B1 (fr) | 2009-03-04 |
DE602005013029D1 (de) | 2009-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1614538B1 (fr) | Procédé pour la fabrication d'un précurseur de type négatif d'une plaque d'impression lithographique thermosensible | |
EP1614539B1 (fr) | Procédé de production d'une plaque d'impression lithographique | |
EP1614540B1 (fr) | Procédé de production d'une plaque d'impression lithographique | |
US7195861B2 (en) | Method for making a negative working, heat-sensitive lithographic printing plate precursor | |
EP1767349B1 (fr) | Procédé de production d'une plaque d'impression lithographique | |
EP1940620B1 (fr) | Précurseur de plaque d'impression lithographique thermosensible et négative | |
EP1777067B1 (fr) | Procédé pour réaliser un précurseur de plaque d'impression lithographique | |
EP1904305B1 (fr) | Procédé de fabrication d'un précurseur de plaque d'impression lithographique en négatif | |
EP1859936B1 (fr) | Procédé de fabrication d'une plaque d'impression lithographique | |
EP1859935B1 (fr) | Précurseur de plaque d'impression lithographique thermosensible à action négative | |
EP1974912A1 (fr) | Procédé pour réaliser un précurseur de plaque d'impression lithographique | |
US7354696B2 (en) | Method for making a lithographic printing plate | |
US7425405B2 (en) | Method for making a lithographic printing plate | |
WO2007135142A1 (fr) | Procédé de fabrication d'une plaque d'impression lithographique | |
JP4806222B2 (ja) | 平版印刷版の製造方法 | |
EP1604818B1 (fr) | Précurseur de plaque d'impression lithographique, sensible à la chaleur et travaillant en négatif | |
JP4806221B2 (ja) | 平版印刷版の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20061221 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGFA GRAPHICS N.V. |
|
17Q | First examination report despatched |
Effective date: 20071030 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602005013029 Country of ref document: DE Date of ref document: 20090416 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2321955 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090604 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090818 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090704 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090604 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20091207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090628 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602005013029 Country of ref document: DE Owner name: AGFA NV, BE Free format text: FORMER OWNER: AGFA GRAPHICS N.V., MORTSEL, BE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: AGFA NV Effective date: 20180308 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: AGFA NV; BE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: AGFA GRAPHICS N.V. Effective date: 20180126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: AGFA NV, BE Effective date: 20180628 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20200330 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200428 Year of fee payment: 16 Ref country code: DE Payment date: 20200505 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200428 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20200717 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005013029 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20210701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210628 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210701 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210629 |