Nothing Special   »   [go: up one dir, main page]

EP1346442B1 - Printed patch antenna - Google Patents

Printed patch antenna Download PDF

Info

Publication number
EP1346442B1
EP1346442B1 EP01995742A EP01995742A EP1346442B1 EP 1346442 B1 EP1346442 B1 EP 1346442B1 EP 01995742 A EP01995742 A EP 01995742A EP 01995742 A EP01995742 A EP 01995742A EP 1346442 B1 EP1346442 B1 EP 1346442B1
Authority
EP
European Patent Office
Prior art keywords
antenna
substrate
symmetry
raised portion
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01995742A
Other languages
German (de)
French (fr)
Other versions
EP1346442A1 (en
Inventor
Yann Toutain
Jean-Philippe Coupez
Jean-Pierre Blot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1346442A1 publication Critical patent/EP1346442A1/en
Application granted granted Critical
Publication of EP1346442B1 publication Critical patent/EP1346442B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0471Non-planar, stepped or wedge-shaped patch

Definitions

  • the present invention relates to an antenna "pastille” type printed in plated technology, linear or circular polarization, to operate at frequencies on the order of a few Gigahertz.
  • this antenna is intended to be reproduced to be integrated into a network of reception and / or transmission of telecommunications, embedded in a machine, such as a low-orbiting satellite, or installed in a base station in conjunction with a satellite of telecommunications, or installed in a basis for radiocommunications with terminals mobile.
  • the invention is directed to a printed antenna of the half-wave type "patch" comprising a dielectric substrate and two conductive layers respectively on the substrate faces.
  • One of the layers constitutes a ground plan.
  • the other layer is a plate rectangular or square conductor, called “pastille” (patch in English).
  • Such an antenna elementary print is easily integrated and has a low manufacturing cost thanks to a simple machining process.
  • the electrical characteristics of the antenna depend greatly on the material dielectric of the substrate on which the two layers conductive are engraved.
  • the antenna When the dielectric substrate is thin and has a high dielectric permittivity, the antenna is not very efficient and its bandwidth is low.
  • the dielectric substrate must be thick and be made of a material of low permittivity dielectric.
  • the size of the antenna as well obtained is significantly larger, which makes difficult to integrate it into a network.
  • the opening of the radiation diagram of the antenna is reduced.
  • the object of the present invention is to provide a printed antenna of the "pastille" half-wave type at high efficiency, having a size smaller than that according to the prior art mentioned above, and presenting a radiation diagram more open.
  • a printed antenna of the half-wave type comprising a dielectric substrate and two conductive layers respectively on the faces of the substrate and symmetrically with respect to a plane symmetry of the antenna perpendicular to the faces of the substrate, is characterized in that one of the faces of the substrate has a projection extending longitudinally to the plane of symmetry and one of conductive layers extends over and along the jump.
  • the conductive layer of the antenna which extends over and the along the projection can have a contour for example rectangular and constitute a radiating element, and the other conductive layer can constitute a plane of mass.
  • the layer conductive which extends over and along the projection can be a ground plane, and the other layer conductive can be flat, for example rectangular, and constitute a radiating element.
  • the projection which can have a section transverse to the plane of symmetry which is rectangular or sinusoidal, or trapezoidal or triangular, has a height substantially equal to the half difference in lengths of large and small sides of the rectangular layer extending over and the along the projection.
  • the height of the projection is generally chosen according to the level of targeted compactness of the antenna; the higher the the larger the projection, the smaller the antenna size scaled down.
  • the other side of the substrate may include another projection extending longitudinally to the plane of symmetry and covered by the other conductive layer.
  • one of the faces of the antenna substrate has two perpendicular projections forming a cross protruding, extending longitudinally in two planes of respective symmetry of the perpendicular antenna.
  • the conductive layer of the antenna which extends over and along the projections can occupy a surface rectangular or square on the dielectric substrate whose sides have respectively the lengths of projections.
  • the cross-polarized antenna includes preferably a hybrid coupler which is produced on a dielectric support and housed in the substrate dielectric and which has at least one access connected to the end of the internal conductor of a probe coaxial, and at least one other access connected by a metallic crossing at the conductive layer spanning and along one of the projections.
  • the two projections on one of the substrate faces are replaced by a jump to axial symmetry about an axis perpendicular to substrate faces.
  • the invention also relates to a method of manufacture of the printed antenna "patch", which includes machining one side of a substrate block dielectric to form cavities separated by at minus a strip having the section of a projection extending longitudinally to the plane of symmetry, a metallization at least of the face of the block dielectric machined to form one of the layers conductive, and a cutout of the printed antenna substantially in the center of the metallized machined block along the outline of the antenna.
  • an antenna polarized half-wave "pastille" type print linear 1a comprises a dielectric substrate 2a, a first electrically conductive layer 3a extending over a first face of the substrate and constituting a ground plane, and a second layer electrically conductive rectangular 4a extending to the center of the second face of the substrate and having a central parallelepiped projection 5a.
  • the second conductive layer 4a has a contour rectangular and covers the top and sides of the projection 5a.
  • the antenna thus has a symmetrical structure with respect to a plane of symmetry YY perpendicular to the faces of the substrate 2a and longitudinal to the projection 5a.
  • Layer 4a has a U-shaped section with a potent end, as shown in Figure 1, with wings extending over the second face of the substrate 2a and having a width L1 much larger than the width L2 of the projection 5a.
  • the height h of the projection 5a is equal to or greater than the thickness e of the substrate 2a.
  • FIG 2 is also shown a microstrip line 7a having a width W7 significantly smaller than the width W of the element radiating 4a and extending perpendicular to this one, to the middle of the long side of a wing of width L1 of layer 4a.
  • This microstrip line corresponds to a quarter wave transformer, and plays the role of impedance adapter with respect to the characteristic impedance, typically 50 ⁇ , of the antenna feed line.
  • a coaxial probe whose internal conductor is connected to an antenna point, such as a wing of layer 4a, having an input impedance equal to the characteristic impedance.
  • the printed antenna of the half-wave "patch" type 1b is a dual variant of the first embodiment while still having symmetry with respect to a plane of symmetry YY perpendicular to the faces of the substrate 2b and by providing the symmetrical projection 5a, not on the second face of the dielectric substrate 2a supporting the rectangular radiating element 4a, but on the first face of the substrate 2b supporting the first conductive layer 3b constituting the ground plane of the antenna 1b.
  • the radiating element 1b is a completely flat rectangular conductive plate 4b, extending along the axis of the projection 5b above it.
  • the diagram of radiation in the electric field plane perpendicular to the projection 5a has an opening proportional to the height h of the projection, a lot wider, for example for antenna 1a4, than the opening of the antenna radiation diagram RT according to the prior art.
  • Half-power opening radiated (3 dB) reaches approximately 120 ° for antenna 1a4.
  • the diagram openings radiation at 3 dB can vary from 60 ° to at minus about 120 °.
  • the radiation efficiency remains greater than 90% for all antennas according to the invention.
  • a preferred method of manufacturing an antenna printed with linear polarization 1a according to the invention mainly comprises four stages E1, E2, E3 and E4 respectively illustrated in FIGS. 6-7, 8-9, 10-11 and 12-13.
  • the production starts with a block of thin foam BL of thickness h + e, of width greater than W and of length greater than La.
  • step E2 two rectangular cavities C with a bottom of thickness e, are machined symmetrically relative to the transverse axis in one face of the block BL so that the cavities are separated by a strip transverse BA having the section (h.L2) of the projection 5a.
  • the cavities C have a width greater than L1 and a length greater than W.
  • step E3 the upper face of the block BL with the cavities is metallized by depositing a layer of metallic paint to form the conductive layer 4a.
  • the painting metal covers the BA strip and the bottom of the cavities C.
  • Metallic paint also covers the underside of the block so as to constitute the ground plane 3a.
  • the ground plane 3a is constituted by a metal support on which the machined foam block is fixed.
  • step E4 the antenna 1a is cut in D by a second machining in the block metallized along the rectangular outline (W.La) of the conductive layer 4a and the rectangular outline lengthened from the microstrip supply line 7a.
  • an antenna 1b with a ground plane 3b conformed with a projection 5b can also be machined from a block of BL dielectric foam.
  • the section of the projection 5a, 5b transverse to the plane of symmetry YY is not limited to the profile rectangular or square shown in Figures 1 and 3.
  • the reduction of the length from L to La, Lb of the antenna generating a central zone of very high impedance may result from another symmetrical profile of the cross section of the projection, for example substantially sinusoidal 51, as shown in the figure 14, or substantially isosceles trapezoidal or isosceles triangular, or even substantially in stair steps 52 as shown in FIG. 15, with bearings parallel or inclined with respect to to the faces of the substrate.
  • the antenna comprises at both parallel projections superimposed on the substrate faces.
  • the faces of the substrate 2ab of the antenna 1ab respectively comprise a first projection 52ab to rectangular cross section for the first conductive layer of ground plane 3ab and a second 51ab jump with cross section sinusoidal for the second conductive layer of radiating element 4ab.
  • the 52ab and 51ab projections extend one above the other longitudinally to the plane of symmetry YY and are covered respectively by layers 3ab and 4ab.
  • the half-wave antenna 1a, 1b Compared to a quarter wave antenna mass return which is not symmetrical with respect to in two planes, the half-wave antenna 1a, 1b according to the invention retains, despite the jump 5a, 5b a double symmetry along the plane of symmetry YY longitudinal to the projection and a plane of symmetry XX perpendicular to the projection and longitudinal to the line supply 7a, as shown in Figures 2 and 4.
  • This double symmetry provides the advantages of the jump to a two antenna crossed polarizations, and more particularly to a circularly polarized antenna described below.
  • a printed antenna with circular polarization 1c has a doubly structure symmetrical with respect to two planes of symmetry XX and YY perpendicular to each other and to the faces of the antenna.
  • the antenna 1c comprises on a first face of a thin dielectric substrate 2c of thickness e a metal layer 3c, which can be a metal base, to constitute the ground plane of the antenna 1c, and in the center of a second face of the substrate 2c, a conductive layer 4c covering two projections 5c of identical size perpendicular to each other to form a central cross with four equal branches.
  • a metal layer 3c which can be a metal base
  • the antenna 1c thus presents two planes longitudinal XX and YY perpendiculars 5c cross-over and one layer respectively conductive 4c forming a radiating element having a reduced square area (Lc.Lc) on the substrate 2c.
  • the antenna 1c is supplied by a coaxial probe 7c whose external conductive base is fixed to the ground plane 3c and whose internal conductor only passes through the dielectric support 21c.
  • the end of the internal conductor of the probe coaxial 7c is welded to the end of a branch 81c forming an access to a vertex of a coupler 8c hybrid at 3dB-90 °.
  • the coupler 8c is configured substantially along the outline of a square and photo-etched on the upper face of the support 21c.
  • a another vertex, located in front in Figures 17 and 18, can be connected to the internal conductor of a second coaxial probe (not shown) for a cross polarization operation.
  • Both other vertices 82c of the coupler 8c are extended by metallic bushings 83c which are provided at through the ends of the two projections 5c and of which the ends are in metallic contact by welds 84c with the conductive layer 4c extending on the tops of the projections 5c.
  • the relative permittivity of the dielectric support 21c is significantly higher than that of the substrate 2c so that for the operating frequencies of the gigahertz antenna, the dimensions of the 8c coupler are small and therefore compatible with the compactness of the antenna.
  • the antenna 2c is manufactured, substantially according to steps analogous to steps E1 to E4, with regard to relates to the block of dielectric foam 21c, in machining four cavities to form two cross bands forming after cutting the two perpendicular projections 5c, and by digging a underlying cavity to receive the support dielectric 21c supporting the hybrid coupler 8c.
  • the dielectric substrate 21c has a overall thickness e of 10 mm with a cavity 635 ⁇ m thick to receive the support dielectric 21c having a thickness of 635 ⁇ m.
  • Figure 20 shows adaptation A and the TC transmission for circular polarization preferred turning in the opposite direction of clockwise compared to a TD transmission rotating in the direct direction of clockwise, depending on the frequency.
  • the antenna resonates around a frequency of 2 GHz with an adaptation to 10 dB of around 20% for the bandwidth, which corresponds to a width of 410 MHz band.
  • the effective bandwidth in transmission is lower, around 13%.
  • the lengths of the projections 5c are different for polarization operation elliptical with a probe, or crossed polarizations with two probes.
  • the invention is not limited to projections crossed parallelepiped 5c for operation with crossed polarizations, in particular with polarization circular.
  • the two projections can be replaced by a symmetrical central projection axial around a central axis of symmetry ZZ perpendicular to the faces of the substrate 2d coated with conductive layers 3d and 4d.
  • the projection 5d is a macaroon.
  • the projection has a shape discoid, frustoconical or conical or domed or bell, with a circular or elliptical base on the substrate.
  • At least two coupler ends supply 84d are provided on the 5d projection, on two axes perpendicular to each other and to the axis of symmetry ZZ, at equal or different distances from the ZZ axis.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Description

La présente invention concerne une antenne imprimée du type "pastille" en technologie plaquée, à polarisation linéaire ou circulaire, pour fonctionner à des fréquences de l'ordre de quelques Gigahertz. En particulier, cette antenne est destinée à être reproduite pour être intégrée dans un réseau de réception et/ou d'émission de signaux de télécommunications, embarqué dans un engin, tel qu'un satellite à orbite basse, ou installée dans une station de base en liaison avec un satellite de télécommunication, ou installée dans une station de base pour des radiocommunications avec des terminaux mobiles.The present invention relates to an antenna "pastille" type printed in plated technology, linear or circular polarization, to operate at frequencies on the order of a few Gigahertz. In particular, this antenna is intended to be reproduced to be integrated into a network of reception and / or transmission of telecommunications, embedded in a machine, such as a low-orbiting satellite, or installed in a base station in conjunction with a satellite of telecommunications, or installed in a basis for radiocommunications with terminals mobile.

Plus particulièrement, l'invention est dirigée vers une antenne imprimée du type demi-onde "pastille" comprenant un substrat diélectrique et deux couches conductrices respectivement sur les faces du substrat. L'une des couches constitue un plan de masse. L'autre couche est une plaque conductrice rectangulaire ou carrée, appelée "pastille" (patch en anglais). Une telle antenne imprimée élémentaire est facilement intégrable et présente un faible coût de fabrication grâce à un procédé d'usinage simple.More particularly, the invention is directed to a printed antenna of the half-wave type "patch" comprising a dielectric substrate and two conductive layers respectively on the substrate faces. One of the layers constitutes a ground plan. The other layer is a plate rectangular or square conductor, called "pastille" (patch in English). Such an antenna elementary print is easily integrated and has a low manufacturing cost thanks to a simple machining process.

Cependant, les caractéristiques électriques de l'antenne dépendent considérablement de la matière diélectrique du substrat sur lequel les deux couches conductrices sont gravées.However, the electrical characteristics of the antenna depend greatly on the material dielectric of the substrate on which the two layers conductive are engraved.

Lorsque le substrat diélectrique est mince et présente une permittivité diélectrique élevée, l'antenne est peu efficace et sa bande passante est faible. When the dielectric substrate is thin and has a high dielectric permittivity, the antenna is not very efficient and its bandwidth is low.

Pour obtenir une antenne plus efficace, le substrat diélectrique doit être épais et être constitué en une matière de faible permittivité diélectrique. Toutefois la taille de l'antenne ainsi obtenue est nettement plus grande, ce qui rend difficile l'intégration de celle-ci dans un réseau. En outre, l'ouverture du diagramme du rayonnement de l'antenne est diminuée.To obtain a more efficient antenna, the dielectric substrate must be thick and be made of a material of low permittivity dielectric. However the size of the antenna as well obtained is significantly larger, which makes difficult to integrate it into a network. In addition, the opening of the radiation diagram of the antenna is reduced.

La présente invention a pour but de fournir une antenne imprimée de type demi-onde "pastille" à efficacité élevée, ayant une taille plus petite que celle selon la technique antérieure évoquée ci-dessus, et présentant un diagramme de rayonnement plus ouvert.The object of the present invention is to provide a printed antenna of the "pastille" half-wave type at high efficiency, having a size smaller than that according to the prior art mentioned above, and presenting a radiation diagram more open.

A cette fin, une antenne imprimée du type demi-onde comprenant un substrat diélectrique et deux couches conductrices respectivement sur les faces du substrat et symétriquement par rapport à un plan dé symétrie de l'antenne perpendiculaire aux faces du substrat, est caractérisée en ce que l'une des faces du substrat comporte un ressaut s'étendant longitudinalement au plan de symétrie et l'une des couches conductrices s'étend sur et le long du ressaut.To this end, a printed antenna of the half-wave type comprising a dielectric substrate and two conductive layers respectively on the faces of the substrate and symmetrically with respect to a plane symmetry of the antenna perpendicular to the faces of the substrate, is characterized in that one of the faces of the substrate has a projection extending longitudinally to the plane of symmetry and one of conductive layers extends over and along the jump.

Pour une antenne à polarisation linéaire, la couche conductrice de l'antenne qui s'étend sur et le long du ressaut peut avoir un contour par exemple rectangulaire et constituer un élément rayonnant, et l'autre couche conductrice peut constituer un plan de masse. Selon une autre réalisation, la couche conductrice qui s'étend sur et le long du ressaut peut constituer un plan de masse, et l'autre couche conductrice peut être plane, par exemple rectangulaire, et constituer un élément rayonnant.For a linearly polarized antenna, the conductive layer of the antenna which extends over and the along the projection can have a contour for example rectangular and constitute a radiating element, and the other conductive layer can constitute a plane of mass. According to another embodiment, the layer conductive which extends over and along the projection can be a ground plane, and the other layer conductive can be flat, for example rectangular, and constitute a radiating element.

Le ressaut qui peut avoir une section transversale au plan de symétrie qui est rectangulaire ou sinusoïdale, ou trapézoïdale ou triangulaire, a une hauteur sensiblement égale à la demi-différence des longueurs des grands et petits côtés de la couche rectangulaire s'étendant sur et le long du ressaut. Toutefois, la hauteur du ressaut est de manière générale choisie en fonction du niveau de compacité visé de l'antenne ; plus la hauteur du ressaut est grande, plus la taille de l'antenne est réduite.The projection which can have a section transverse to the plane of symmetry which is rectangular or sinusoidal, or trapezoidal or triangular, has a height substantially equal to the half difference in lengths of large and small sides of the rectangular layer extending over and the along the projection. However, the height of the projection is generally chosen according to the level of targeted compactness of the antenna; the higher the the larger the projection, the smaller the antenna size scaled down.

L'autre face du substrat peut comporter un autre ressaut s'étendant longitudinalement au plan de symétrie et recouvert par l'autre couche conductrice.The other side of the substrate may include another projection extending longitudinally to the plane of symmetry and covered by the other conductive layer.

Pour une antenne à polarisations croisées, notamment à polarisation circulaire ou elliptique, l'une des faces du substrat de l'antenne comporte deux ressauts perpendiculaires formant une croix saillante, s'étendant longitudinalement à deux plans de symétrie respectifs de l'antenne perpendiculaires. La couche conductrice de l'antenne qui s'étend sur et le long des ressauts peut occuper une surface rectangulaire ou carrée sur le substrat diélectrique dont les côtés ont respectivement les longueurs des ressauts.For a cross-polarized antenna, in particular with circular or elliptical polarization, one of the faces of the antenna substrate has two perpendicular projections forming a cross protruding, extending longitudinally in two planes of respective symmetry of the perpendicular antenna. The conductive layer of the antenna which extends over and along the projections can occupy a surface rectangular or square on the dielectric substrate whose sides have respectively the lengths of projections.

L'antenne à polarisations croisées comprend de préférence un coupleur hybride qui est réalisé sur un support diélectrique et logé dans le substrat diélectrique et qui a au moins un accès connecté à l'extrémité du conducteur interne d'une sonde coaxiale, et au moins un autre accès relié par une traversée métallique à la couche conductrice s'étendant sur et le long de l'un des ressauts. The cross-polarized antenna includes preferably a hybrid coupler which is produced on a dielectric support and housed in the substrate dielectric and which has at least one access connected to the end of the internal conductor of a probe coaxial, and at least one other access connected by a metallic crossing at the conductive layer spanning and along one of the projections.

En variante, les deux ressauts sur l'une des faces du substrat sont remplacés par un ressaut à symétrie axiale autour d'un axe perpendiculaire aux faces du substrat.As a variant, the two projections on one of the substrate faces are replaced by a jump to axial symmetry about an axis perpendicular to substrate faces.

L'invention concerne également un procédé de fabrication de l'antenne imprimée "pastille", qui comprend un usinage d'une face d'un bloc de substrat diélectrique pour former des cavités séparées par au moins une bande ayant la section d'un ressaut s'étendant longitudinalement au plan de symétrie, une métallisation au moins de la face du bloc diélectrique usiné pour former l'une des couches conductrices, et un découpage de l'antenne imprimée sensiblement au centre du bloc usiné métallisé suivant le contour de l'antenne.The invention also relates to a method of manufacture of the printed antenna "patch", which includes machining one side of a substrate block dielectric to form cavities separated by at minus a strip having the section of a projection extending longitudinally to the plane of symmetry, a metallization at least of the face of the block dielectric machined to form one of the layers conductive, and a cutout of the printed antenna substantially in the center of the metallized machined block along the outline of the antenna.

D'autres caractéristiques et avantages de la présente invention apparaítront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention en référence aux dessins annexés dans lesquels :

  • les figures 1 et 2 sont respectivement une vue en coupe prise suivant la ligne I-I dans la figure 2 et une vue de dessus d'une antenne imprimée de type "pastille" à polarisation linéaire selon une première réalisation préférée de l'invention ;
  • les figures 3 et 4 sont respectivement une vue en coupe prise suivant la ligne III-III dans la figure 4 et une vue de dessus d'une antenne imprimée de type "pastille" à polarisation linéaire selon une deuxième réalisation préférée de l'invention ;
  • la figure 5 montre deux diagrammes de rayonnement de champ électrique relatifs respectivement à une antenne "pastille" selon la technique antérieure et une antenne "pastille" selon la première réalisation ;
  • les figures 6 et 7 sont respectivement des vues de dessus et en perspective d'un bloc de mousse diélectrique brut lors d'une première étape de fabrication d'une antenne selon l'invention ;
  • les figures 8 et 9 sont respectivement des vues de dessus et en perspective du bloc de mousse diélectrique usiné lors d'une deuxième étape du procédé de fabrication ;
  • les figures 10 et 11 sont respectivement des vues de dessus et en perspective du bloc de mousse usiné et métallisé lors d'une troisième étape du procédé de fabrication ;
  • les figures 12 et 13 sont respectivement des vues de dessus et en perspective du bloc de mousse usiné et métallisé après une autre étape d'usinage selon le procédé de fabrication;
  • les figures 14 et 15 sont des vues en coupe analogues à la figure 1, montrant des ressauts à profils sinusoïdal et en marche d'escalier, respectivement ;
  • la figure 16 est une vue en coupe analogue aux figures 1 et 3, d'une antenne à deux ressauts superposés respectivement sur les deux faces du substrat ;
  • la figure 17 est une vue en perspective d'une antenne imprimée du type "pastille" à polarisation circulaire avec coupleur hybride, selon une troisième réalisation de l'invention, un quart de secteur d'antenne ayant été arraché ;
  • les figures 18 et 19 sont des vues de dessus et en coupe prises le long de la ligne XIX-XIX de l'antenne montrée à la figure 17 ;
  • la figure 20 montre des variations d'adaptation et de transmission en fonction de la fréquence pour l'antenne selon la troisième réalisation ; et
  • la figure 21 est une vue en perspective d'une antenne imprimée à polarisations croisées.
Other characteristics and advantages of the present invention will appear more clearly on reading the following description of several preferred embodiments of the invention with reference to the accompanying drawings in which:
  • Figures 1 and 2 are respectively a sectional view taken along line II in Figure 2 and a top view of a printed antenna type "patch" with linear polarization according to a first preferred embodiment of the invention;
  • Figures 3 and 4 are respectively a sectional view taken along line III-III in Figure 4 and a top view of a printed antenna type "patch" linear polarization according to a second preferred embodiment of the invention;
  • FIG. 5 shows two electric field radiation diagrams relating respectively to a “patch” antenna according to the prior art and a “patch” antenna according to the first embodiment;
  • Figures 6 and 7 are respectively top and perspective views of a block of raw dielectric foam during a first step of manufacturing an antenna according to the invention;
  • FIGS. 8 and 9 are respectively top and perspective views of the block of dielectric foam machined during a second step of the manufacturing process;
  • Figures 10 and 11 are respectively top and perspective views of the block of foam machined and metallized during a third step of the manufacturing process;
  • Figures 12 and 13 are respectively top and perspective views of the block of machined and metallized foam after another machining step according to the manufacturing process;
  • Figures 14 and 15 are sectional views similar to Figure 1, showing projections with sinusoidal profiles and staircase, respectively;
  • Figure 16 is a sectional view similar to Figures 1 and 3, of an antenna with two projections superposed respectively on the two faces of the substrate;
  • FIG. 17 is a perspective view of a printed antenna of the circular polarization "patch" type with hybrid coupler, according to a third embodiment of the invention, a quarter of the antenna sector having been cut away;
  • Figures 18 and 19 are top and sectional views taken along line XIX-XIX of the antenna shown in Figure 17;
  • FIG. 20 shows variations in adaptation and transmission as a function of the frequency for the antenna according to the third embodiment; and
  • FIG. 21 is a perspective view of a printed antenna with crossed polarizations.

En référence aux figures 1 et 2, une antenne imprimée de type demi-onde "pastille" à polarisation linéaire 1a selon la première réalisation de l'invention comprend un substrat diélectrique 2a, une première couche conductrice électriquement 3a s'étendant sur une première face du substrat et constituant un plan de masse, et une deuxième couche rectangulaire conductrice électriquement 4a s'étendant au centre de la deuxième face du substrat et présentant un ressaut central parallélépipédique 5a. La deuxième couche conductrice 4a a un contour rectangulaire et recouvre le dessus et les côtés longitudinaux du ressaut 5a. L'antenne a ainsi une structure symétrique par rapport à un plan de symétrie YY perpendiculaire aux faces du substrat 2a et longitudinal au ressaut 5a. La couche 4a présente une section en U à extrémité potencée, comme montré à la figure 1, avec des ailes s'étendant sur la deuxième face du substrat 2a et ayant une largeur L1 beaucoup plus grande que la largeur L2 du ressaut 5a. En général, la hauteur h du ressaut 5a est égale ou supérieure à l'épaisseur e du substrat 2a.Referring to Figures 1 and 2, an antenna polarized half-wave "pastille" type print linear 1a according to the first embodiment of the invention comprises a dielectric substrate 2a, a first electrically conductive layer 3a extending over a first face of the substrate and constituting a ground plane, and a second layer electrically conductive rectangular 4a extending to the center of the second face of the substrate and having a central parallelepiped projection 5a. The second conductive layer 4a has a contour rectangular and covers the top and sides of the projection 5a. The antenna thus has a symmetrical structure with respect to a plane of symmetry YY perpendicular to the faces of the substrate 2a and longitudinal to the projection 5a. Layer 4a has a U-shaped section with a potent end, as shown in Figure 1, with wings extending over the second face of the substrate 2a and having a width L1 much larger than the width L2 of the projection 5a. In general, the height h of the projection 5a is equal to or greater than the thickness e of the substrate 2a.

Comparativement à un élément rayonnant plat (patch) selon la technique antérieure ayant une largeur W et une longueur L bien souvent égale à W, comme montré en traits pointillés à la figure 2, la longueur La de l'antenne la selon l'invention est réduite à : La = 2L1 + L2 = L - 2h. Grâce au ressaut 5a sur toute la largeur W de l'antenne, la longueur de l'élément rayonnant constitué par la deuxième couche conductrice 4a est réduite de manière significative. Cette réduction de longueur rapproche les fentes rayonnantes 6a à des extrémités symétriques de l'antenne "pastille" 1a, ce qui ouvre le diagramme de rayonnement dans le plan de champ électrique perpendiculaire au ressaut 5a.Compared to a flat radiating element (patch) according to the prior art having a width W and a length L very often equal to W, as shown in dotted lines in FIG. 2, the length La of the antenna la according to the invention is reduced to: La = 2L1 + L2 = L - 2h. Thanks to the projection 5a over the entire width W of the antenna, the length of the radiating element constituted by the second conductive layer 4a is reduced significantly. This reduction in length brings the radiating slots 6a closer to symmetrical ends of the “patch” antenna 1a, which opens the radiation pattern in the electric field plane perpendicular to the projection 5a.

L'épaississement important au centre du substrat 2a formé par le ressaut 5a recouvert de la couche conductrice 4a allonge électriquement la dimension résonnante de l'antenne demi-onde et ainsi augmente l'impédance caractéristique au centre de l'antenne qui est équivalent à un pseudo court-circuit. Le ressaut réduit de manière significative la taille de l'antenne pour une fréquence de fonctionnement donnée. Plus l'impédance de ressaut au centre de l'antenne est élevée, plus la largeur L2 du ressaut doit être diminuée pour une fréquence donnée sous la condition de résonance.Significant thickening in the center of the substrate 2a formed by the projection 5a covered with the layer conductor 4a electrically lengthens the dimension resonant of the half-wave antenna and thus increases the characteristic impedance at the center of the antenna which is equivalent to a pseudo short circuit. The jump significantly reduces the size of the antenna for an operating frequency given. The higher the jump impedance at the center of the antenna is high, the more the width L2 of the projection must be decreased for a given frequency below the resonance condition.

Dans la figure 2 est également représentée une ligne microruban 7a présentant une largeur W7 nettement plus petite que la largeur W de l'élément rayonnant 4a et s'étendant perpendiculairement à celui-ci, jusqu'au milieu du long côté d'une aile de largeur L1 de la couche 4a. Cette ligne microruban correspond à un transformateur quart d'onde, et joue le rôle d'adaptateur d'impédance par rapport à l'impédance caractéristique, typiquement 50 Ω, de la ligne d'alimentation de l'antenne. Pour alimenter l'antenne, une autre solution consiste à utiliser une sonde coaxiale, dont le conducteur interne est connecté en un point de l'antenne, telle qu'une aile de la couche 4a, présentant une impédance d'entrée égale à l'impédance caractéristique.In Figure 2 is also shown a microstrip line 7a having a width W7 significantly smaller than the width W of the element radiating 4a and extending perpendicular to this one, to the middle of the long side of a wing of width L1 of layer 4a. This microstrip line corresponds to a quarter wave transformer, and plays the role of impedance adapter with respect to the characteristic impedance, typically 50 Ω, of the antenna feed line. To feed the antenna, another solution is to use a coaxial probe, whose internal conductor is connected to an antenna point, such as a wing of layer 4a, having an input impedance equal to the characteristic impedance.

Dans les figures 3 et 4 concernant une deuxième réalisation d'antenne imprimée 1b de type demi-onde "pastille" selon l'invention, des éléments similaires à ceux dans l'antenne 1a selon la première réalisation sont désignés par le même repère numérique suivi de la lettre b à la place de la lettre a.In Figures 3 and 4 concerning a second production of half-wave type printed antenna 1b "tablet" according to the invention, similar elements to those in antenna 1a according to the first achievement are designated by the same mark numeric followed by the letter b instead of the letter a.

L'antenne imprimée de type demi-onde "pastille" 1b est une variante duale de la première réalisation en présentant encore une symétrie par rapport à un plan de symétrie YY perpendiculaire aux faces du substrat 2b et en ménageant le ressaut symétrique 5a, non pas sur la deuxième face du substrat diélectrique 2a supportant l'élément rayonnant rectangulaire 4a, mais sur la première face du substrat 2b supportant la première couche conductrice 3b constituant le plan de masse de l'antenne 1b. L'élément rayonnant 1b est une plaque conductrice rectangulaire 4b complètement plane, s'étendant suivant l'axe du ressaut 5b au-dessus de celui-ci. La longueur Lb de la couche conductrice 4b est encore conservée selon la relation précédente : Lb = L - 2h, où h dénote la hauteur du ressaut 5b de largeur L2.The printed antenna of the half-wave "patch" type 1b is a dual variant of the first embodiment while still having symmetry with respect to a plane of symmetry YY perpendicular to the faces of the substrate 2b and by providing the symmetrical projection 5a, not on the second face of the dielectric substrate 2a supporting the rectangular radiating element 4a, but on the first face of the substrate 2b supporting the first conductive layer 3b constituting the ground plane of the antenna 1b. The radiating element 1b is a completely flat rectangular conductive plate 4b, extending along the axis of the projection 5b above it. The length Lb of the conductive layer 4b is still conserved according to the preceding relation: Lb = L - 2h, where h denotes the height of the jump 5b of width L2.

A titre d'exemple, le tableau I ci-après indique la fréquence de résonance correspondant à une longueur d'onde λ, la bande passante centrée sur la fréquence de résonance en pourcentage par rapport à celle-ci, et la directivité pour une antenne TA selon la technique antérieure comprenant une plaque plane carrée de largeur W = L = 50 mm = λ/(2 ε r) et un substrat ayant une épaisseur e = 2 mm et réalisé en mousse de permittivité relative εr = 1,07, sensiblement équivalent à une lame d'air, et pour des antennes conformées à polarisation linéaire 1a1 à 1a4 selon la première réalisation (figures 1 et 2), avec une longueur La = L - 2h < λ/(2 ε r). TA 1a1 1a2 1a3 1a4 h (mm) 0 2 4 6 8 Fréquence de résonance (GHz) 2,63 2,43 2,28 2,21 2 Bande passante 1,7% 1,9% 2% 2,2% 2,4% Directivité (dB) 9,4 8,47 7,68 7,14 6,64 As an example, table I below indicates the resonance frequency corresponding to a wavelength λ, the bandwidth centered on the resonance frequency in percentage relative to it, and the directivity for an antenna TA according to the prior art comprising a flat square plate of width W = L = 50 mm = λ / (2 ε r ) and a substrate having a thickness e = 2 mm and made of foam with relative permittivity ε r = 1.07, substantially equivalent to an air space, and for antennas conformed with linear polarization 1a1 to 1a4 according to the first embodiment (Figures 1 and 2), with a length La = L - 2h <λ / (2 ε r ). YOUR 1a1 1 to 2 1a3 1a4 h (mm) 0 2 4 6 8 Resonance frequency (GHz) 2.63 2.43 2.28 2.21 2 Bandwidth 1.7% 1.9% 2% 2.2% 2.4% Directivity (dB) 9.4 8.47 7.68 7.14 6.64

Selon le tableau 1 précédent, plus la hauteur h du ressaut 5a est grande, ou plus précisément plus le rapport h/e est grand, et dans une moindre mesure, plus la largeur L2 du ressaut 5a est grande, plus la bande passante de l'antenne croít et plus la directivité de l'antenne diminue.According to table 1 above, the higher the height h of the projection 5a is large, or more precisely the more m / e ratio is great, and to a lesser extent, the larger the width L2 of the projection 5a, the greater the antenna bandwidth increases and the more antenna directivity decreases.

Comme montré à la figure 5, le diagramme de rayonnement dans le plan de champ électrique perpendiculaire au ressaut 5a présente une ouverture proportionnelle à la hauteur h du ressaut, beaucoup plus large, par exemple pour l'antenne 1a4, que l'ouverture du diagramme du rayonnement de l'antenne TA selon la technique antérieure. L'ouverture à demi-puissance rayonnée (3 dB) atteint 120° environ pour l'antenne 1a4. As shown in Figure 5, the diagram of radiation in the electric field plane perpendicular to the projection 5a has an opening proportional to the height h of the projection, a lot wider, for example for antenna 1a4, than the opening of the antenna radiation diagram RT according to the prior art. Half-power opening radiated (3 dB) reaches approximately 120 ° for antenna 1a4.

Ces propriétés offrent plus de liberté sur les positions relatives des antennes selon l'invention mises dans un réseau à cause de la réduction relative des dimensions de l'antenne. De plus, le faisceau d'un réseau avec des antennes selon l'invention peut être plus largement dépointé puisque le diagramme de rayonnement de l'antenne est plus ouvert.These properties offer more freedom over relative positions of the antennas according to the invention put into a network because of the relative reduction dimensions of the antenna. In addition, the beam of a network with antennas according to the invention can to be more largely depointed since the diagram of radiation from the antenna is more open.

Ainsi en adaptant de manière appropriée la hauteur h du ressaut 5a, les ouvertures du diagramme de rayonnement à 3 dB peuvent varier de 60° à au moins 120° environ. L'efficacité de rayonnement reste supérieure à 90% pour toutes les antennes selon l'invention.So by appropriately adapting the height h of the jump 5a, the diagram openings radiation at 3 dB can vary from 60 ° to at minus about 120 °. The radiation efficiency remains greater than 90% for all antennas according to the invention.

Des résultats similaires ont été observés pour des antennes 1b1 à 1b4 selon la deuxième réalisation de l'invention, avec un plan de masse 3b conformé avec un ressaut 5b, comme montré dans le tableau 2 ci-après pour des antennes toujours avec les dimensions Lb = L = 50 mm et e = 2 mm. Test TA 1b1 1b2 1b3 1b4 h (mm) 0 2 4 6 8 Fréquence de résonance (GHz) 2, 63 2,3 2, 09 1,95 1,82 Bande passante 1,7% 1,9% 2,1% 2,3% 2,5% Directivité (dB) 9,4 7,9 7 6,4 6,1 Similar results have been observed for antennas 1b1 to 1b4 according to the second embodiment of the invention, with a ground plane 3b shaped with a projection 5b, as shown in table 2 below for antennas always with the dimensions Lb = L = 50 mm and e = 2 mm. TA test 1b1 1b2 1b3 1b4 h (mm) 0 2 4 6 8 Resonance frequency (GHz) 2, 63 2.3 2, 09 1.95 1.82 Bandwidth 1.7% 1.9% 2.1% 2.3% 2.5% Directivity (dB) 9.4 7.9 7 6.4 6.1

Un procédé de fabrication préféré d'une antenne imprimée à polarisation linéaire 1a selon l'invention comprend principalement quatre étapes E1, E2, E3 et E4 respectivement illustrées aux figures 6-7, 8-9, 10-11 et 12-13.A preferred method of manufacturing an antenna printed with linear polarization 1a according to the invention mainly comprises four stages E1, E2, E3 and E4 respectively illustrated in FIGS. 6-7, 8-9, 10-11 and 12-13.

A l'étape initiale E1, la fabrication part d'un bloc de mousse mince BL d'épaisseur h+e, de largeur supérieure à W et de longueur supérieure à La. La matière diélectrique du bloc BL dans lequel sera usiné le substrat diélectrique 2a présente une permittivité relative typiquement de l'ordre de 1,07 en correspondance avec une longueur L = 50 mm < λr/2 avec λr = λ/ ε r, où λ est la longueur d'onde correspondant à une fréquence de l'ordre de 2 GHz.In the initial step E1, the production starts with a block of thin foam BL of thickness h + e, of width greater than W and of length greater than La. The dielectric material of the block BL in which the dielectric substrate will be machined 2a has a relative permittivity typically of the order of 1.07 in correspondence with a length L = 50 mm <λ r / 2 with λ r = λ / ε r , where λ is the wavelength corresponding to a frequency of the order of 2 GHz.

A l'étape E2, deux cavités rectangulaires C avec un fond d'épaisseur e, sont usinées symétriquement par rapport à l'axe transversal dans une face du bloc BL afin que les cavités soient séparées par une bande transversale BA ayant la section (h.L2) du ressaut 5a. Les cavités C ont une largeur supérieure à L1 et une longueur supérieure à W.In step E2, two rectangular cavities C with a bottom of thickness e, are machined symmetrically relative to the transverse axis in one face of the block BL so that the cavities are separated by a strip transverse BA having the section (h.L2) of the projection 5a. The cavities C have a width greater than L1 and a length greater than W.

Puis à l'étape E3, la face supérieure du bloc BL avec les cavités est métallisée en déposant une couche de peinture métallique pour constituer la couche conductrice 4a. En particulier, la peinture métallique recouvre la bande BA et le fond des cavités C. La peinture métallique recouvre également la face inférieure du bloc de manière à constituer le plan de masse 3a. En variante, à la place de la métallisation de la face inférieure, le plan de masse 3a est constitué par un support métallique sur lequel le bloc de mousse usiné est fixe.Then in step E3, the upper face of the block BL with the cavities is metallized by depositing a layer of metallic paint to form the conductive layer 4a. In particular, the painting metal covers the BA strip and the bottom of the cavities C. Metallic paint also covers the underside of the block so as to constitute the ground plane 3a. Alternatively, instead of the metallization of the underside, the ground plane 3a is constituted by a metal support on which the machined foam block is fixed.

Finalement à l'étape E4, l'antenne 1a est découpée en D par un deuxième usinage dans le bloc métallisé suivant le contour rectangulaire (W.La) de la couche conductrice 4a et le contour rectangulaire allongé de la ligne d'alimentation à microruban 7a.Finally in step E4, the antenna 1a is cut in D by a second machining in the block metallized along the rectangular outline (W.La) of the conductive layer 4a and the rectangular outline lengthened from the microstrip supply line 7a.

Par des étapes analogues aux étapes précédentes E1 à E4, une antenne 1b avec un plan de masse 3b conformé avec un ressaut 5b peut être également usinée dans un bloc de mousse diélectrique BL.By steps analogous to the previous steps E1 to E4, an antenna 1b with a ground plane 3b conformed with a projection 5b can also be machined from a block of BL dielectric foam.

La section du ressaut 5a, 5b transversale au plan de symétrie YY n'est pas limitée au profil rectangulaire ou carré montré aux figures 1 et 3. La réduction de la longueur de L en La, Lb de l'antenne engendrant une zone centrale de très forte impédance peut résulter d'un autre profil symétrique de la section transversale du ressaut, par exemple sensiblement sinusoïdal 51, comme montré à la figure 14, ou sensiblement trapézoïdal isocèle ou triangulaire isocèle, ou encore sensiblement en marches d'escalier 52 comme montré à la figure 15, avec des paliers parallèles ou inclinés par rapport aux faces du substrat.The section of the projection 5a, 5b transverse to the plane of symmetry YY is not limited to the profile rectangular or square shown in Figures 1 and 3. The reduction of the length from L to La, Lb of the antenna generating a central zone of very high impedance may result from another symmetrical profile of the cross section of the projection, for example substantially sinusoidal 51, as shown in the figure 14, or substantially isosceles trapezoidal or isosceles triangular, or even substantially in stair steps 52 as shown in FIG. 15, with bearings parallel or inclined with respect to to the faces of the substrate.

Selon une autre variante, l'antenne comprend à la fois des ressauts parallèles superposés sur les faces du substrat. Par exemple, comme montré à la figure 16, les faces du substrat 2ab de l'antenne 1ab comprennent respectivement un premier ressaut 52ab à section transversale rectangulaire pour la première couche conductrice de plan de masse 3ab et un deuxième ressaut 51ab à section transversale sinusoïdale pour la deuxième couche conductrice d'élément rayonnant 4ab. Les ressauts 52ab et 51ab s'étendent l'un au dessus de l'autre longitudinalement au plan de symétrie YY et sont recouverts respectivement par les couches 3ab et 4ab.According to another variant, the antenna comprises at both parallel projections superimposed on the substrate faces. For example, as shown in the Figure 16, the faces of the substrate 2ab of the antenna 1ab respectively comprise a first projection 52ab to rectangular cross section for the first conductive layer of ground plane 3ab and a second 51ab jump with cross section sinusoidal for the second conductive layer of radiating element 4ab. The 52ab and 51ab projections extend one above the other longitudinally to the plane of symmetry YY and are covered respectively by layers 3ab and 4ab.

Comparativement à une antenne quart d'onde à retour de masse qui n'est pas symétrique par rapport à deux plans, l'antenne demi-onde 1a, 1b selon l'invention conserve, malgré le ressaut 5a, 5b une double symétrie suivant le plan de symétrie YY longitudinal au ressaut et un plan de symétrie XX perpendiculaire au ressaut et longitudinal à la ligne d'alimentation 7a, comme indiqué aux figures 2 et 4.Compared to a quarter wave antenna mass return which is not symmetrical with respect to in two planes, the half-wave antenna 1a, 1b according to the invention retains, despite the jump 5a, 5b a double symmetry along the plane of symmetry YY longitudinal to the projection and a plane of symmetry XX perpendicular to the projection and longitudinal to the line supply 7a, as shown in Figures 2 and 4.

Cette double symétrie permet de conférer les avantages du ressaut à une antenne à deux polarisations croisées, et plus particulièrement à une antenne à polarisation circulaire décrite ci-après.This double symmetry provides the advantages of the jump to a two antenna crossed polarizations, and more particularly to a circularly polarized antenna described below.

En référence maintenant aux figures 17, 18 et 19, une antenne imprimée à polarisation circulaire 1c selon l'invention présente une structure doublement symétrique par rapport à deux plans de symétrie XX et YY perpendiculaires entre eux et aux faces de l'antenne.Referring now to Figures 17, 18 and 19, a printed antenna with circular polarization 1c according to the invention has a doubly structure symmetrical with respect to two planes of symmetry XX and YY perpendicular to each other and to the faces of the antenna.

L'antenne 1c comprend sur une première face d'un substrat diélectrique mince 2c d'épaisseur e une couche métallique 3c, qui peut être un socle métallique, pour constituer le plan de masse de l'antenne 1c, et au centre d'une deuxième face du substrat 2c, une couche conductrice 4c recouvrant deux ressauts 5c de dimension identique perpendiculaires entre eux pour former une croix centrale à quatre branches égales. Comme les ressauts 5a et 5b, les ressauts 5c ont une hauteur h en général supérieure à l'épaisseur e du substrat 2c et une longueur Lc telle que : Lc = L2 + 2.L1 = L - 2h, où L2 désigne la largeur de chaque ressaut, L1 la largeur des quatre surfaces carrées de la couche métallique 4c situées à la base de la croix formée par les ressauts 5c et disposées sur la deuxième face du substrat 2c, et L la longueur correspondante d'une pastille carrée plane d'une antenne selon la technique antérieure.The antenna 1c comprises on a first face of a thin dielectric substrate 2c of thickness e a metal layer 3c, which can be a metal base, to constitute the ground plane of the antenna 1c, and in the center of a second face of the substrate 2c, a conductive layer 4c covering two projections 5c of identical size perpendicular to each other to form a central cross with four equal branches. Like the projections 5a and 5b, the projections 5c have a height h generally greater than the thickness e of the substrate 2c and a length Lc such that: Lc = L2 + 2.L1 = L - 2h, where L2 denotes the width of each projection, L1 the width of the four square surfaces of the metal layer 4c situated at the base of the cross formed by the projections 5c and arranged on the second face of the substrate 2c, and L the corresponding length of a flat square patch of an antenna according to the prior art.

L'antenne 1c présente ainsi deux plans perpendiculaires de symétrie XX et YY longitudinaux respectivement aux ressauts croisés 5c et une couche conductrice 4c formant un élément rayonnant ayant une surface carrée réduite (Lc.Lc) sur le substrat 2c.The antenna 1c thus presents two planes longitudinal XX and YY perpendiculars 5c cross-over and one layer respectively conductive 4c forming a radiating element having a reduced square area (Lc.Lc) on the substrate 2c.

En pratique, le substrat diélectrique 2c est composé d'un substrat 2c en mousse diélectrique de permittivité faible εr = 1,07, dont la face supérieure est usinée d'une manière analogue au substrat 2a, 2b pour obtenir les ressauts croisés 5c, et d'un petit support diélectrique carré 21c encastré dans une cavité centrale de la première face du substrat 2c et recouvert par la couche métallique 3c. La permittivité relative du support 21c est plus élevée, comme le diélectrique AR1000 de la société ARLON avec une permittivité εr = 10,2.In practice, the dielectric substrate 2c is composed of a substrate 2c of dielectric foam of low permittivity ε r = 1.07, the upper face of which is machined in a manner analogous to the substrate 2a, 2b to obtain the crossed projections 5c, and a small square dielectric support 21c embedded in a central cavity of the first face of the substrate 2c and covered by the metal layer 3c. The relative permittivity of the support 21c is higher, like the dielectric AR1000 from the company ARLON with a permittivity ε r = 10.2.

Comme montré en détail aux figures 17 à 19, l'antenne 1c est alimentée par une sonde coaxiale 7c dont l'embase conductrice externe est fixée sur le plan de masse 3c et dont le conducteur interne traverse seulement le support diélectrique 21c. L'extrémité du conducteur interne de la sonde coaxiale 7c est soudée à l'extrémité d'une branche 81c formant un accès à un sommet d'un coupleur hybride 8c à 3dB-90°. Le coupleur 8c est configuré sensiblement suivant le contour d'un carré et photogravé sur la face supérieure du support 21c. Un autre sommet, situé devant dans les figures 17 et 18, peut être relié au conducteur interne d'une deuxième sonde coaxiale (non représentée) pour un fonctionnement à polarisations croisées. Les deux autres sommets 82c du coupleur 8c sont prolongés par des traversées métalliques 83c qui sont ménagées à travers des extrémités des deux ressauts 5c et dont les extrémités sont en contact métallique par soudures 84c avec la couche conductrice 4c s'étendant sur les dessus des ressauts 5c.As shown in detail in Figures 17-19, the antenna 1c is supplied by a coaxial probe 7c whose external conductive base is fixed to the ground plane 3c and whose internal conductor only passes through the dielectric support 21c. The end of the internal conductor of the probe coaxial 7c is welded to the end of a branch 81c forming an access to a vertex of a coupler 8c hybrid at 3dB-90 °. The coupler 8c is configured substantially along the outline of a square and photo-etched on the upper face of the support 21c. A another vertex, located in front in Figures 17 and 18, can be connected to the internal conductor of a second coaxial probe (not shown) for a cross polarization operation. Both other vertices 82c of the coupler 8c are extended by metallic bushings 83c which are provided at through the ends of the two projections 5c and of which the ends are in metallic contact by welds 84c with the conductive layer 4c extending on the tops of the projections 5c.

La permittivité relative du support diélectrique 21c est nettement plus élevée que celle du substrat 2c afin que pour les fréquences de fonctionnement de l'antenne de l'ordre du gigahertz, les dimensions du coupleur 8c soient petites et donc compatibles avec la compacité de l'antenne.The relative permittivity of the dielectric support 21c is significantly higher than that of the substrate 2c so that for the operating frequencies of the gigahertz antenna, the dimensions of the 8c coupler are small and therefore compatible with the compactness of the antenna.

L'antenne 2c est fabriquée, sensiblement selon des étapes analogues aux étapes E1 à E4, pour ce qui concerne le bloc de mousse diélectrique 21c, en creusant par usinage quatre cavités pour former deux bandes en croix formant après découpe les deux ressauts perpendiculaires 5c, et en creusant une cavité sous-jacente pour recevoir le support diélectrique 21c supportant le coupleur hybride 8c.The antenna 2c is manufactured, substantially according to steps analogous to steps E1 to E4, with regard to relates to the block of dielectric foam 21c, in machining four cavities to form two cross bands forming after cutting the two perpendicular projections 5c, and by digging a underlying cavity to receive the support dielectric 21c supporting the hybrid coupler 8c.

Par exemple, le substrat diélectrique 21c a une épaisseur globale e de 10 mm avec une cavité d'épaisseur de 635 µm pour recevoir le support diélectrique 21c ayant une épaisseur de 635 µm. La couche conductrice 4c recouvrant les ressauts croisés 5c a une largeur Lc = 25 mm, pour des ressauts 5c ayant une hauteur h = 8 mm par rapport à une épaisseur utile e = 2 mm du substrat 2c.For example, the dielectric substrate 21c has a overall thickness e of 10 mm with a cavity 635 µm thick to receive the support dielectric 21c having a thickness of 635 μm. The conductive layer 4c covering the crossed projections 5c has a width Lc = 25 mm, for 5c projections having a height h = 8 mm compared to a useful thickness e = 2 mm of the substrate 2c.

Pour l'antenne 1c telle que dimensionnée ci-dessus, la figure 20 montre l'adaptation A et la transmission TC pour une polarisation circulaire préférée tournant suivant le sens contraire des aiguilles d'une montre, comparativement à une transmission TD tournant suivant le sens direct des aiguilles d'une montre, en fonction de la fréquence. L'antenne résonne autour d'une fréquence de 2 GHz avec une adaptation à 10 dB de 20% environ pour la bande passante, ce qui correspond à une largeur de bande de 410 MHz. La bande passante effective en transmission est plus faible, de l'ordre de 13%.For the antenna 1c as dimensioned above, Figure 20 shows adaptation A and the TC transmission for circular polarization preferred turning in the opposite direction of clockwise compared to a TD transmission rotating in the direct direction of clockwise, depending on the frequency. The antenna resonates around a frequency of 2 GHz with an adaptation to 10 dB of around 20% for the bandwidth, which corresponds to a width of 410 MHz band. The effective bandwidth in transmission is lower, around 13%.

En variante, les longueurs des ressauts 5c sont différentes pour un fonctionnement à polarisation elliptique avec une sonde, ou un fonctionnement à polarisations croisées avec deux sondes.Alternatively, the lengths of the projections 5c are different for polarization operation elliptical with a probe, or crossed polarizations with two probes.

L'invention n'est pas limitée aux ressauts parallélépipédiques croisés 5c pour un fonctionnement à polarisations croisées, notamment à polarisation circulaire. Par exemple, les deux ressauts peuvent être remplacés par un ressaut central à symétrie axiale autour d'un axe central de symétrie ZZ perpendiculaire aux faces du substrat 2d revêtues des couches conductrices 3d et 4d. Selon l'exemple illustré à la figure 21, le ressaut 5d est un macaron. Plus généralement, le ressaut a une forme discoïde, tronconique ou conique ou en forme de dôme ou cloche, avec une base circulaire ou elliptique sur le substrat. Au moins deux extrémités de coupleur d'alimentation 84d sont prévues sur le ressaut 5d, sur deux axes perpendiculaires entre eux et à l'axe de symétrie ZZ, à distances égales ou différentes de l'axe ZZ.The invention is not limited to projections crossed parallelepiped 5c for operation with crossed polarizations, in particular with polarization circular. For example, the two projections can be replaced by a symmetrical central projection axial around a central axis of symmetry ZZ perpendicular to the faces of the substrate 2d coated with conductive layers 3d and 4d. According to the example illustrated in figure 21, the projection 5d is a macaroon. More generally, the projection has a shape discoid, frustoconical or conical or domed or bell, with a circular or elliptical base on the substrate. At least two coupler ends supply 84d are provided on the 5d projection, on two axes perpendicular to each other and to the axis of symmetry ZZ, at equal or different distances from the ZZ axis.

Claims (11)

  1. A half-wave printed antenna (1a; 1b) comprising a dielectric substrate (2a; 2b) and two conductive layers (3a, 4a; 3b, 4b) extending on respective faces of the substrate and symmetrical with respect to a plane of symmetry (XY) of the antenna perpendicular to the faces of the substrate, characterized in that one of the faces of the substrat (2a; 2b) has a raised portion (5a; 5b) extending lengthwise of the plane of symmetry and one of the conductive layers (4a; 3b) extends over and along the raised portion.
  2. The antenna according to claim 1, wherein the conductive layer (4a) which extends over and along the raised portion (5a) constitutes a radiating element, and the other conductive layer (3a) constitutes a ground plane.
  3. The antenna according to claim 1, wherein the conductive layer (3b) which extends over and along the raised portion (5b) constitutes a ground plane, and the other conductive layer (4b) constitutes a radiating element.
  4. The antenna according to any one of claims 1 to 3, wherein the raised portion (5a; 5b) has a height (h) substantially equal to half the distance between the lengths of the longer and shorter sides of the rectangular layer (4a; 4b) extending over and along the raised portion.
  5. The antenna according to any one of claims 1 to 4, wherein the raised portion (51, 52) has a rectangular, or sinusoidal, or trapezoidal or triangular cross section in the plane of symmetry (YY).
  6. The antenna according to any one of claims 1 to 5, characterized in that the other face of the substrate (2ab) includes another raised portion (52ab; 51ab) extending lengthwise of the plane of symmetry (YY) and covered by the other conductive layer (3ab; 4ab).
  7. The antenna (1c) according to any one of claims 1 to 6, wherein one face of the substrate (2c) includes two mutually perpendicular raised portions (5c) extending lengthwise of two respective planes of symmetry (XX, YY) of the antenna.
  8. The antenna according to claim 7, wherein the conductive layer (4c) extending over and along the raised portions occupies a rectangular surface on the dielectric substrate (2c) whose sides are the same lengths as the raised portions (5c) respectively.
  9. The antenna according to claim 7 or 8, including a hybrid coupler (8c) that is formed on a dielectric support (21c) and lodged in the dielectric substrate (2c) and has at least a port (81c) connected to an end of an inner conductor of a coaxial probe (7c), and at least another port (81c) connected by a metal via (83c) to the conductive layer (4c) extending over and along the raised portions (5c).
  10. The antenna according to one of claims 7 to 9, wherein said two raised portions on one face of the substrate (2d) are replaced by a raised portion (5d) with axial symmetry about an axis (ZZ) perpendicular to the faces of the substrate.
  11. A method of fabricating a half-wave printed antenna (1a; 1b; 1c) including a dielectric substrate (2a; 2b) and two conductive layers (3a, 4a; 3b, 4b) extending on respective faces of the substrate and symmetrical with respect to a plane of symmetry (XY) of the antenna perpendicular to the faces of the substrate, characterized in that it comprises a machining one face (E2) of a block of dielectric substrate (BL) to form cavities (C) separated by at least one strip (BA) having the same section as a raised portion (5a; 5b; 5c) extending lengthwise of the plane of symmetry, metallizing (E3) at least the face of the block with the machined dielectric raised portion to form one of the conductive layers (4a; 3b; 4c), and cutting out (E4) the printed antenna substantially at the center of the metallized and machined block following the contour of the antenna.
EP01995742A 2000-12-26 2001-12-19 Printed patch antenna Expired - Lifetime EP1346442B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0017257A FR2818811A1 (en) 2000-12-26 2000-12-26 COMPACT PAD PRINTED ANTENNA
FR0017257 2000-12-26
PCT/FR2001/004064 WO2002052680A1 (en) 2000-12-26 2001-12-19 Printed patch antenna

Publications (2)

Publication Number Publication Date
EP1346442A1 EP1346442A1 (en) 2003-09-24
EP1346442B1 true EP1346442B1 (en) 2004-09-08

Family

ID=8858373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01995742A Expired - Lifetime EP1346442B1 (en) 2000-12-26 2001-12-19 Printed patch antenna

Country Status (5)

Country Link
US (1) US20020113736A1 (en)
EP (1) EP1346442B1 (en)
DE (1) DE60105447T2 (en)
FR (1) FR2818811A1 (en)
WO (1) WO2002052680A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051747A (en) * 2003-07-14 2005-02-24 Ngk Spark Plug Co Ltd Antenna system and method for manufacturing the same
FR2869727B1 (en) 2004-04-30 2007-04-06 Get Enst Bretagne Etablissemen PLANAR ANTENNA HAVING CONDUCTIVE PLATES EXTENDING FROM THE MASS PLAN AND / OR AT LEAST ONE RADIANT ELEMENT, AND METHOD OF MANUFACTURING SAME
US8552835B2 (en) * 2005-10-28 2013-10-08 Mojix, Inc. RFID system with low complexity implementation and pallet coding error correction
EP2927758B1 (en) 2005-10-28 2018-02-28 Mojix, Inc. Detecting a data sequence from a sequence of symbols
US7873326B2 (en) * 2006-07-11 2011-01-18 Mojix, Inc. RFID beam forming system
EP2044650B1 (en) * 2006-07-11 2019-04-24 Mojix, Inc. Rfid system
US7667652B2 (en) * 2006-07-11 2010-02-23 Mojix, Inc. RFID antenna system
EP2137710B1 (en) * 2007-03-23 2019-10-09 Mojix, Inc. Rfid systems using distributed exciter network
EP2283474B1 (en) 2008-04-14 2016-12-14 Mojix, Inc. Radio frequency identification tag location estimation and tracking system and method
US9444148B2 (en) * 2009-08-06 2016-09-13 Indian Space Research Organisation Of Isro Printed quasi-tapered tape helical array antenna
US8528827B2 (en) * 2010-06-18 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Antenna, semiconductor device, and method of manufacturing antenna
US9008239B2 (en) 2011-03-07 2015-04-14 Mojix, Inc. Collision detection using a multiple symbol noncoherent soft output detector
US9602316B2 (en) 2011-03-07 2017-03-21 Mojix, Inc. Multiple symbol noncoherent soft output detector
US9883337B2 (en) 2015-04-24 2018-01-30 Mijix, Inc. Location based services for RFID and sensor networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284505A (en) * 1989-04-26 1990-11-21 Kokusai Denshin Denwa Co Ltd <Kdd> Micro strip antenna
US5216430A (en) * 1990-12-27 1993-06-01 General Electric Company Low impedance printed circuit radiating element
JPH08510622A (en) * 1994-03-08 1996-11-05 セテルコ セルラー テレフォーン カンパニー アー/エス Handy transmitter / receiver
EP1026774A3 (en) * 1999-01-26 2000-08-30 Siemens Aktiengesellschaft Antenna for wireless operated communication terminals

Also Published As

Publication number Publication date
FR2818811A1 (en) 2002-06-28
WO2002052680A1 (en) 2002-07-04
DE60105447D1 (en) 2004-10-14
DE60105447T2 (en) 2005-11-17
US20020113736A1 (en) 2002-08-22
EP1346442A1 (en) 2003-09-24

Similar Documents

Publication Publication Date Title
EP1346442B1 (en) Printed patch antenna
EP0825673B1 (en) Plane antenna with interposed short-circuited elements
EP2692018B1 (en) Structure for antennas using metamaterials
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
WO2011051403A1 (en) Dual-polarized dielectric resonator antenna
EP0493190B1 (en) Stacked microstrip microwave antenna
EP0667984B1 (en) Monopolar wire-plate antenna
EP1172885A1 (en) Short-circuit microstrip antenna and dual-band transmission device including that antenna
EP1225655B1 (en) Dual-band planar antenna and apparatus including such an antenna device
WO2007088191A1 (en) Circularly or linearly polarized antenna
EP1751820B1 (en) Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method
EP2643886A1 (en) Planar antenna having a widened bandwidth
EP1550183A2 (en) Essentially square broadband, dual polarised radiating element
EP1516392B1 (en) Wire antenna
WO2012095365A1 (en) Dielectric resonator antenna
EP0860894B1 (en) Miniature resonant antenna in the form of annular microstrips
EP2316149B1 (en) Low-loss compact radiating element
EP1376758B1 (en) Compact patch antenna with a matching circuit
CA2228640A1 (en) Resonating antenna for emitting or receiving polarized waves
WO2010106073A1 (en) Dual fin antenna
WO2002103845A1 (en) Wide band printed antenna with several radiating elements
FR2705167A1 (en) Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device
EP0429338A1 (en) Circularly polarised antenna particularly for antenna arrays
EP1873864A1 (en) Symmetric antenna using microwave-strip technology.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: COUPEZ, JEAN-PHILIPPE

Inventor name: BLOT, JEAN-PIERRE

Inventor name: TOUTAIN, YANN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60105447

Country of ref document: DE

Date of ref document: 20041014

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081218

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090528 AND 20090603

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111205

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121221

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121219

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60105447

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60105447

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701