Nothing Special   »   [go: up one dir, main page]

EP1069285B1 - Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung - Google Patents

Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung Download PDF

Info

Publication number
EP1069285B1
EP1069285B1 EP00123025A EP00123025A EP1069285B1 EP 1069285 B1 EP1069285 B1 EP 1069285B1 EP 00123025 A EP00123025 A EP 00123025A EP 00123025 A EP00123025 A EP 00123025A EP 1069285 B1 EP1069285 B1 EP 1069285B1
Authority
EP
European Patent Office
Prior art keywords
gas exchange
exchange valve
spring element
spring
electromagnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00123025A
Other languages
English (en)
French (fr)
Other versions
EP1069285A2 (de
EP1069285A3 (de
Inventor
Thomas Esch
Martin Pischinger
Michael Schebitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEV Europe GmbH
Original Assignee
FEV Motorentechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEV Motorentechnik GmbH and Co KG filed Critical FEV Motorentechnik GmbH and Co KG
Publication of EP1069285A2 publication Critical patent/EP1069285A2/de
Publication of EP1069285A3 publication Critical patent/EP1069285A3/de
Application granted granted Critical
Publication of EP1069285B1 publication Critical patent/EP1069285B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • Electromagnetically actuated actuators in particular such actuators for actuating gas exchange valves on internal combustion engines are known, for example from EP-A-O 043 426 and EP-A-O 197 357. Die aus designs known from these publications, however, have specific power-to-weight ratio and a high space requirement, so that when used as actuators for gas exchange valves on modern internal combustion engines, in particular those with multi-valve operation cannot be used.
  • the invention has for its object the known electromagnetic actuators in their construction simplify and thus to a more compact space-saving Design.
  • Electromagnetic actuator with the specified in claim 1 Features.
  • This design enables effective Utilization of the pole faces, resulting in a more compact form of the Actuator leads overall.
  • Another advantage of this Design is that when used as an actuator for a gas exchange valve on an internal combustion engine, the gas exchange valve forming the actuator as before, provided with a valve spring acting in the closing direction can be, as before, on one with the shaft of the Gas exchange valve connected spring plate acts so that the valve can be pre-assembled in the engine block.
  • the valve spring also serves as one of the return spring elements the actuator.
  • the other spring element acts on the Push rod on the anchor of the adjusting device and sets an integral part of the actuator
  • the push rod firmly connected to the anchor and the one with the Gas spring valve connected to the first spring element are divided executed and are non-positively connected.
  • the anchor can be connected to the fixed one Part of the push rod a purely axial movement run while the gas exchange valve connected to the spring element for example when using a coil spring as a spring element without influencing the armature can perform spring rotation occurring during the movement.
  • a particularly advantageous embodiment is due to the features of claim 2 given.
  • the two against each other acting spring elements only on the the actuator facing side of the electromagnet are arranged, wherein one spring element on the push rod and the other spring element acts on an approach on the actuator and that the Push rod and the approach are non-positively connected and the one spring element is the other spring element grips telescopically, the overall height can be reduced.
  • the solenoid in each case is connected to a laminated yoke body, so that the formation of eddy currents is reduced.
  • one of the two electromagnets in the direction of movement of the anchor slidably mounted and with a Actuator is connected, which is an additional electromagnetic has and by which the distance of the facing each other Pole surfaces of the two electromagnets can be changed is, the displaceably mounted electromagnet in cooperation with the second spring element acting as a return spring be held in two different end positions can.
  • the push rod 8 is in a bore 9 of the electromagnet 1 and a bore 10 of the electromagnet 2 out.
  • the electromagnet 1 is at its end facing away from the armature 7 provided with a lid-shaped housing 11, which serves as an abutment for a spring 12, which is related to its other End supported on a plate 13 which 8.2 with the push rod is firmly connected.
  • the end face 14 of the electromagnet facing away from the armature 7 2 is an actuator 15 to be actuated, here a gas exchange valve turned towards an internal combustion engine.
  • the valve stem 16 of the gas exchange valve 15 is more common Way out in the cylinder head 17.
  • the free end of the valve stem 16 is here with a plate-shaped extension 18 firmly connected as an abutment of a spring element 19th serves, with its other end on the cylinder head 17 supports.
  • the spring element 19 is here just like that Spring element 12 is designed as a helical compression spring, so that both spring elements act against each other, the spring element 19 at the same time as a closing spring for the gas exchange valve serves.
  • the spring element 12 on one side and the spring element 19 on the other side of the armature 7 are now designed that the equilibrium position of the armature 7 approximately in the middle between the two opposite pole faces 5 and 6 of the electromagnets 1 and 2.
  • the spring element 12 be designed with a progressive characteristic so that the Equilibrium position from the center position towards moves on the electromagnet 1 and thus a simpler Starting is possible.
  • the power supply is now to Electromagnet 1 switched off and the power supply to the electromagnet 2 switched on after a certain time.
  • the armature 7 is no longer on the pole face of the Electromagnet 1 held so that the spring 12 in the armature Direction towards the middle position between the two pole faces the magnets 1 and 2 can move.
  • the Spring element 19 loaded.
  • FIG. 2 shows a spring arrangement according to the invention, starting from a magnet arrangement like that 1, both spring elements 12 and 19 on the end face of the underlying facing the actuator 15 Magnets 2 are arranged.
  • Anchor 7 is over see push rod 8 with a bell-shaped trained abutment element 13.1.
  • the spring element 12 is supported with one end on the free edge 13.2 of the abutment 13.1 and with its other End on the end face 14 of the magnet 2.
  • the one with the Valve stem 16 connected plate-shaped extension 18 is located itself within the bell-shaped abutment 13.1 and here, as described with reference to FIG. 1, via the Spring element 19 supported on the surface of the cylinder head 17.
  • FIG. 3 is an embodiment of an electromagnetic Actuator for actuating a gas exchange valve shown, which is provided with a spring arrangement j, such as it was described with reference to FIG. 2.
  • the one shown in Fig. 3 The arrangement in turn has an upper electromagnet 1 and a lower electromagnet 2, which are at a distance are arranged to each other and between which an anchor 7 is guided axially movable, the on his push rod 8 the valve stem 16 of the gas exchange valve 15 can act.
  • Electromagnet 2 displaceable in the direction of the double arrow 20 stored and connected to an adjusting device 21, the in the embodiment shown here essentially by an additional magnet 22 an anchor plate 23 and one connected to the electromagnet 2 to be moved Coupling element 24 is formed.
  • the electromagnet 1 and the Additional magnet 22 are here indicated schematically Carrier 26 rigidly connected to the cylinder head 17.
  • the additional magnet 22 is de-energized, the effect a corresponding return spring of the slidably mounted Electromagnet 2 pressed against a spacer 27, of the clear distance between the two pole faces 5 and 6 and thus specifies the possible stroke of the armature 7. in this connection is the anchor plate 23 of the adjusting device in Height of the position line 28 shown in dashed lines
  • the illustrated embodiment forms the second spring element 12 also the return spring.
  • the "working direction" of the additional magnet should be made in this way be that the position of the sliding magnet currentless additional magnet corresponds to normal operation.
  • Sets the operating mode with a short stroke of the armature 7 "Normal operation” is then the anchor plate 23 in the dashed position acc. Fig. 3.
  • Represents the mode of operation with a long stroke represents "normal operation”, the anchor plate 23 arranged on the other side of the additional magnet 22 his.
  • a magnetically actuated actuating device 21 can also be a mechanical, hydraulic or pneumatic adjustment of the stroke length of the armature 7 by moving of the magnet 2 may be provided.
  • coil springs can also use torsion springs or spiral springs, for example Leaf springs are used.
  • the magnets can have a circular cross section in horizontal section, but also a rectangular or square cross section exhibit. The latter is favorable for the laminated yoke body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Switches With Compound Operations (AREA)

Description

Elektromagnetisch betätigbare Stellvorrichtungen, insbesondere derartige Stellvorrichtungen zur Betätigung von Gaswechselventilen an Brennkraftmaschinen sind bekannt, so beispielsweise aus EP-A-O 043 426 und EP-A-O 197 357. Die aus diesen Druckschriften bekannten Bauformen weisen jedoch ein spezifisches Leistungsgewicht und einen hohen Raumbedarf auf, so daß sie bei der Anwendung als Stellvorrichtungen für Gaswechselventile an Brennkraftmaschinen moderner Bauart, insbesondere solchen mit Mehrventilbetrieb, nicht einsetzbar sind.
Aus US-A-4,831,973 ist eine elektromagnetische Stellvorrichtung zur Betätigung eines Gaswechselventils bekannt, bei der an einer fest mit dem Gaswechselventil verbundenen Führungsstange ein Anker befestigt ist, der zwischen den einander zugekehrten Polflächen von zwei mit Abstand zueinander angeordneten Elektromagneten gegen die Kraft von zwei gegeneinander wirkenden Rückstellfedern hin und her bewegbar ist. Die als Rückstellfedern vorgesehenen Federelemente sind auf der dem Gaswechselventil zugekehrten Stirnseite angeordnet, wobei an der Führungsstange ein glockenförmiges Stützelement vorgesehen ist, auf das von der einen Seite her das in Schließrichtung wirkende Federelement und von der anderen Seite her das in Öffnungsrichtung wirkende Federelement einwirkt. Bei stromlos gesetzten Elektromagneten befindet sich hierbei der Anker in der Mittellage zwischen den beiden Polflächen. Der Aufbau und insbesondere die Montage der vorbekannten Stelleinrichtung ist kompliziert.
Der Erfindung liegt die Aufgabe zugrunde, die vorbekannten elektromagnetischen Stellvorrichtungen in ihrem Aufbau zu vereinfachen und so zu einer kompakteren raumsparenden Bauform zu gelangen.
Diese Aufgabe wird gemäß der Erfindung gelöst durch eine elektromagnetische Stellvorrichtung mit den im Anspruch 1 angegebenen Merkmalen. Diese Bauform ermöglicht eine effektive Ausnutzung der Polflächen, was zu einer kompakteren Form der Stelleinrichtung insgesamt führt. Ein weiterer Vorteil dieser Bauform besteht darin, daß bei der Verwendung als Stellvorrichtung für ein Gaswechselventil an einer Brennkraftmaschine, das das Stellorgan bildende Gaswechselventil wie bisher, mit einer in Schließrichtung wirkenden Ventilfeder versehen werden kann, die wie bisher, auf einen mit dem Schaft des Gaswechselventils verbundenen Federteller einwirkt, so daß das Ventil im Motorblock vormontiert werden kann. Die Ventilfeder dient gleichzeitig als eines der Rückstellfederelemente der Stellvorrichtung. Das andere Federelement wirkt über die Schubstange auf den Anker der Stellvorrichtung ein und stellt ein integrales Bauteil der Stellvorrichtung dar
Die mit dem Anker fest verbundene Schubstange und das mit dem ersten Federelement verbundene Gaswechselventil sind geteilt ausgeführt und stehen kraftschlüssig miteinander in Verbindung. Durch diese Unterteilung kann der Anker mit dem festverbundenen Teil der Schubstange eine rein axiale Bewegung ausführen, während das mit dem Federelement verbundene Gaswechselventil beispielsweise bei der Verwendung einer Schraubenfeder als Federelement ohne Beeinflussung des Ankers die bei der Bewegung auftretende Federrotation ausführen kann.
Durch diese Abkoppelung des Ankers mit seiner Schubstange vom Gaswechselventil wird bei der Verwendung einer Schraubenfeder als erstes Federelement bewirkt, daß das Gaswechselventil die im Betrieb auftretende Federrotation ohne Beeinflussung des Ankers ausführen kann. Damit ist die erwünschte Rotation des Gaswechselventils auf seinem Ventilsitz einerseits ermöglicht, andererseits die bei eckigem Anker unerwünschte Rotation vermieden.
Eine besonders vorteilhafte Ausgestaltung ist durch die Merkmale des Anspruchs 2 gegeben. Dadurch, daß die beiden gegeneinander wirkenden Federelemente nur auf der dem Stellorgan zugekehrten Seite des Elektromagneten angeordnet sind, wobei ein Federelement auf die Schubstange und das andere Federelement auf einen Ansatz am Stellorgan einwirkt und daß die Schubstange und der Ansatz kraftschlüssig miteinander verbunden sind und das eine Federelement das andere Federelement teleskopartig umgreift, kann noch die Bauhöhe reduziert werden.
In weiterer vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß bei den Elektromagneten jeweils die Magnetspule mit einem geblechten Jochkörper verbunden ist, so daß das Entstehen von Wirbelströmen vermindert wird.
In einer besonders vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß einer der beiden Elektromagneten in Bewegungsrichtung des Ankers verschiebbar gelagert und mit einer Stelleinrichtung verbunden ist, die einen Zusatz-Elektromagenten aufweist und durch die der Abstand der einander zugekehrten Polflächen der beiden Elektromagneten veränderbar ist, wobei der verschiebbar gelagerte Elektromagnet im Zusammenwirken mit dem als Rückstellfeder wirkenden zweiten Federelement in zwei verschiedenen Endlagen gehalten werden kann. Hierdurch ist es möglich, den Abstand der Polflächen der beiden einander zugeordneten Elektromagneten und damit auch den Hub des Ankers und dementsprechend auch den Hub des zu betätigenden Stellorgans zu verändern.
Die Erfindung wird anhand schematischer Ausführungsbeispiele näher erläutert. Es zeigen:
Fig. 1
eine Stelleinrichtung zur Betätigung eines Gaswechselventils an einem Verbrennungsmotor,
Fig. 2
in vergrößerter Darstellung eine spezielle Federschaltung,
Fig. 3
eine Stelleinrichtung mit verstellbarem Hub.
Anhand von Fig. 1 wird der prinzipielle Aufbau und die Funktion einer Stelleinrichtung zur Betätigung eines Gaswechselventiles beschrieben. Diese weist zwei mit Abstand zueinander angeordnete Stellmagnete 1 und 2 auf, deren Jochkörper mit Magnetspulen 3 und 4 versehen sind. Die Anordnung ist hierbei so getroffen, daß die jeweiligen Polflächen 5 und 6 einander gegenüberliegen. Zwischen den beiden Polflächen 5 und 6 ist ein Anker 7 angeordnet, der mit einer zweiteilig ausgebildeten Schubstange 8 verbunden ist, wobei der eine Schubstangenteil 8.1 fest mit dem Anker verbunden ist, während der andere Schubstangenteil 8.2 auf dem Anker 7 aufsitzt.
Die Schubstange 8 ist jeweils in einer Bohrung 9 des Elektromagneten 1 und einer Bohrung 10 des Elektromagneten 2 geführt.
Der Elektromagnet 1 ist an seinem dem Anker 7 abgekehrten Ende mit einem deckelförmigen Gehäuse 11 versehen, das als Widerlager für eine Feder 12 dient, die sich mit ihrem anderen Ende an einer Platte 13 abstützt, die mit der Schubstange 8.2 fest verbunden ist.
Die dem Anker 7 abgekehrte Stirnfläche 14 des Elektromagneten 2 ist einem zu betätigenden Stellorgan 15, hier einem Gaswechselventil an einer Brennkraftmaschine zugekehrt. Der Ventilschaft 16 des Gaswechselventils 15 ist hierbei in üblicher Weise im Zylinderkopf 17 geführt. Das freie Ende des Ventilschaftes 16 ist hierbei mit einem tellerförmigen Ansatz 18 fest verbunden der als Widerlager eines Federelementes 19 dient, das sich mit seinem anderen Ende auf dem Zylinderkopf 17 abstützt. Das Federelement 19 ist hierbei ebenso wie das Federelement 12 als Schraubendruckfeder ausgebildet, so daß beide Federelemente gegeneinander wirken, wobei das Federelement 19 zugleich als Schließfeder für das Gaswechselventil dient.
Das Federelement 12 auf der einen Seite und das Federelement 19 auf der anderen Seite des Ankers 7 sind nun so ausgelegt, daß die Gleichgewichtslage des Ankers 7 etwa in der Mitte zwischen den beiden einander gegenüberliegenden Polflächen 5 und 6 der Elektromagnete 1 und 2 liegt. Hierbei kann eines der beiden Federelemente, beispielsweise das Federelement 12 mit progressiver Kennlinie ausgestaltet sein, so daß die Gleichgewichtslage sich aus der Mittenstellung in Richtung auf den Elektromagneten 1 verschiebt und somit ein einfacheres Starten möglich ist.
Wird zum Elektromagneten 1 die Stromzufuhr eingeschaltet, dann kommt der Anker 7 zur Anlage an der Polfläche 5, wobei das Federelement 12 zusammengedrückt und das Federelement 19 im wesentlichen entlastet wird. Das Gaswechselventil ist in dieser Position geschlossen.
Zum Öffnen des Gaswechselventils wird nun die Stromzufuhr zum Elektromagneten 1 abgeschaltet und die Stromzufuhr zum Elektromagneten 2 nach einem bestimmten Zeitpunkt zugeschaltet. Dadurch wird der Anker 7 nicht länger an der Polfläche des Elektromagneten 1 gehalten, so daß die Feder 12 den Anker in Richtung auf die Mittelstellung zwischen den beiden Polflächen der Magnete 1 und 2 verschieben kann. Hierbei wird das Federelement 19 belastet.
Das System schwingt über die Gleichgewichtslage hinaus auf die andere Seite. Da zwischenzeitlich die Stromzufuhr zum Elektromagneten 2 eingeschaltet worden ist, wird der Anker 7 eingefangen und kommt an der Polfläche 6 zur Anlage. Das Federelement 12 ist nunmehr teilweise entspannt, wohingegen das Federelement 19 zusammengedrückt ist. Da der Ventilschaft 16 über das Federelement 19 kraftschlüssig in jeder Stellung mit der Schubstange 8 in Verbindung steht, wird der Ventilschaft 16 um diesen Betrag verschoben und das Gaswechselventil entsprechend geöffnet. Zum Schließen des Gaswechselventils wird wieder umgeschaltet, so daß der vorstehend beschriebene Vorgang in umgekehrter Reihenfolge abläuft.
Da nun die Federelemente 12 und 19 jeweils axial und stirnseitig zu den Elektromagneten 1, 2 angeordnet sind, ergibt sich eine sehr schlanke Bauart. Gegenüber den vorbekannten Magnetsystemen, bei denen die Federelemente in die Magnetkörper integriert sind, ergibt sich ferner eine effektivere Ausnutzung der Polflächen. Die Unterteilung der Schubstange 8 in den mit dem Federelement 12 verbundenen Schubstangenteil 8.2 und den mit dem Anker fest verbundenen Schubstangenteil 8.1 einerseits und die Abkoppelung des Schubstangenteils 8.1 von dem zu betätigenden Stellorgane, hier dem Ventilschaft 16, der seinerseits mit dem tellerförmigen Ansatz 18 verbunden ist, ergibt sich der Vorteil, daß die beim Zusammendrücken und Entlasten der vorzugsweise als Schraubnfedern ausgebildeten Federelemente 12 und 19 auftretende Rotation jeweils auf das mit dem Federelement verbundene Bauteil beschränkt bleibt.
In Fig. 2 ist eine erfindungsgemäße Federanordnung dargestellt, bei der ausgehend von einer Magnetanordnung, wie sie anhand von Fig. 1 beschrieben ist, beide Federelemente 12 und 19 auf der dem Stellorgan 15 zugekehrten Stirnseite des untenliegenden Magneten 2 angeordnet sind. In der Darstellung ist der Magnet 2 lediglich angedeutet. Der hier nur angedeutete Anker 7 ist über sehe Schubstange 8 mit einem glockenförmig ausgebildeten Widerlagerelement 13.1 versehen. Das Federelement 12 stützt sich hierbei mit einem Ende auf dem freien Rand 13.2 des Widerlagers 13.1 ab und mit seinem anderen Ende auf der Stirnfläche 14 des Magneten 2. Der mit dem Ventilschaft 16 verbundene tellerförmige Ansatz 18 befindet sich hierbei innerhalb des glockenförmigen Widerlagers 13.1 und ist hierbei, wie anhand von Fig. 1 beschrieben, über das Federelement 19 auf der Oberfläche des Zylinderkopfs 17 abgestützt. Durch diese Verschachtelung der beiden Federelemente 12 und 19 kann gegenüber der Ausführungsform gem. Fig. 1 die Bauhöhe reduziert werden, ohne daß die kompakte Bauform der Elektromagnete aufgegeben wird. Die Arbeitsweise entspricht der anhand von Fig. 1 beschriebenen Arbeitsweise. Die beiden Federelemente 12 und 19 besitzen trotz der unterschiedlichen geometrischen Abmessungen die gleiche Federsteifigkeit. Zur Erleichterung des "Anfahrens" kann das Federelement 12, wie vorstehend beschrieben, eine progressive Kennlinie aufweisen.
In Fig. 3 ist eine Ausführungsform einer elektromagnetischen Stelleinrichtung zur Betätigung eines Gaswechselventils dargestellt, die mit einer Federanordnung versehen j ist, wie sie anhand von Fig. 2 beschrieben wurde. Die in Fig. 3 dargestellte Anordnung weist wiederum einen oberen Elektromagneten 1 und einen unteren Elektromagneten 2 auf, die mit Abstand zueinander angeordnet sind und zwischen denen ein Anker 7 axial bewegbar geführt ist, der über seine Schubstange 8 auf den Ventilschaft 16 des Gaswechselventils 15 einwirken kann.
Im Gegensatz zu der Ausführungsform gem. Fig. 1 ist nun der Elektromagnet 2 in Richtung des Doppelpfeiles 20 verschiebbar gelagert und mit einer Verstelleinrichtung 21 verbunden, die bei dem hier dargestellten Ausführungsbeispiel im wesentlichen durch einen Zusatzmagneten 22 einer Ankerplatte 23 und einem mit dem zu verschiebenden Elektromagneten 2 verbundenen Koppelelement 24 gebildet wird. Der Elektromagnet 1 und der Zusatzmagnet 22 sind hierbei über einen schematisch angedeuteten Träger 26 starr mit dem Zylinderkopf 17 verbunden.
Ist der Zusatzmagnet 22 stromlos gesetzt, wird unter der Wirkung einer entsprechenden Rückstellfeder der verschiebbar gelagerte Elektromagnet 2 gegen einen Distanzhalter 27gedrückt, der den lichten Abstand zwischen den beiden Polflächen 5 und 6 und damit den möglichen Hub des Ankers 7 vorgibt. Hierbei befindet sich die Ankerplatte 23 der Verstelleinrichtung in Höhe der gestrichelt dargestellten Positionslinie 28. Bei dem dargestellten Ausführungsbeispiel bildet das zweite Federelement 12 zugleich die Rückstellfeder.
Wird nun der Elektromagnet 22 erregt, wird die Ankerplatte 23 angezogen und der verschiebbar gelagerte Magnet 2 gegen das Stellorgan vorgeschoben, so daß der lichte Abstand zwischen den beiden Polflächen 5 und 6 um den vorgegebenen Hub vergrößert ist und dementsprechend auch der Arbeitshub des Ankers 7 um dieses Maß erhöht ist. Bei der Anwendung auf ein Gaswechselventil als Stellorgan ergibt sich somit die Möglichkeit, während der Einschaltzeit des Zusatzmagneten 22 einen höheren Ventilhub zu bewirken, so daß ein derart angesteuertes Gaswechselventil mit zwei unterschiedlichen Hubweiten und damit mit zwei unterschiedlichen Öffnungsquerschnitten betrieben werden kann.
Die "Arbeitsrichtung" des Zusatzmagneten sollte so getroffen werden, daß die Position des verschiebbaren Magneten bei stromlosem Zusatzmagneten der Normalbetriebsweise entspricht. Stellt die Betriebsweise mit kurzem Hub des Ankers 7 den "Normalbetrieb" dar, dann befindet sich die Ankerplatte 23 in der gestrichelten Position gem. Fig. 3. Stellt die Betriebsweise mit langem Hub den "Normalbetrieb" dar, muß die Ankerplatte 23 auf der anderen Seite des Zusatzmagneten 22 angeordnet sein. Es ergibt sich eine Energieersparnis, wenn der Zusatzmagnet nur während der jeweiligen "Sonderbetriebsphase" erregt wird. Anstelle einer magnetisch betätigbaren Stelleinrichtung 21 kann auch eine mechanische, hydraulische oder pneumatische Verstellung der Hubweite des Ankers 7 durch Verschieben des Magneten 2 vorgesehen sein.
Anstelle oder in Kombination mit den beschriebenen Schraubenfedern können auch Torsionsfedern oder Biegefedern, beispielsweise Blattfedern verwendet werden.
Die Magnete können im Horizontalschnitt einen Kreisquerschnitt, aber auch einem Rechteck- oder Quadratquerschnitt aufweisen. Letzteres ist günstig für den geblechten Jochkörper.

Claims (4)

  1. Elektromagnetische Stellvorrichtung zur Betätigung eines Gaswechselventils an einer Brennkraftmaschine, die eine Schubstange (8) aufweist, die auf das zu betätigende Gaswechselventil (15) einwirkt und die mit einem Anker (7) verbunden ist, der zwischen den Polflächen (5, 6) von zwei in axialem Abstand zueinander angeordneten Elektromagneten (1, 2) hin und her bewegbar geführt ist und der bei stromlos gesetzten Elektromagneten (1, 2) durch wenigstens zwei gegeneinander wirkende Federelemente (12, 19) in einer Zwischenstellung zwischen den Polflächen (5, 6) gehalten wird, und wobei die beiden gegeneinander wirkenden Federelemente (12, 19) außerhalb der Elektromagneten (1, 2) auf der dem Gaswechselventil (15) zugekehrten Stirnseite des Elektromagneten (2) angeordnet sind, wobei ein erstes Federelement (19) auf einen Ansatz (18) am Gaswechselventil (15) in Schließrichtung einwirkt und wobei ein zweites Federelement (12) auf die Schubstange (8) in Öffnungsrichtung einwirkt und die Schubstange (8) und der Ansatz (18) kraftschlüssig miteinander verbunden sind.
  2. Stellvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Schubstange (8) mit einem glockenförmigen Widerlagerelement (13.1) versehen ist, auf dem sich das zweite Federelement (12) in Öffnungsrichtung wirkend abstützt, das die erste, auf das Gaswechselventil (15) in Schließrichtung wirkende erste Federelement (19) teleskopartig umfaßt.
  3. Stellvorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß bei den Elektromagneten (1, 2) die Magnetspulen (3, 4) in einem geblechten Jochkörper angeordnet sind.
  4. Stellvorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß einer der beiden Elektromagnete (2) in Bewegungsrichtung (20) des Ankers (7) verschiebbar gelagert und mit einer Stelleinrichtung (21) verbunden ist, die einen Zusatzelektromagneten (22) aufweist und durch die der Abstand der einander zugekehrten Polflächen (5, 6) der beiden Elektromagnete (1, 2) veränderbar ist, wobei der verschiebbar gelagerte Elektromagnet (2) im Zusammenwirken mit dem als Rückstellfeder wirkenden zweiten Federelement (12) in zwei verschiedenen Endlagen positionierbar ist.
EP00123025A 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung Expired - Lifetime EP1069285B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE9420463U 1994-12-21
DE9420463U DE9420463U1 (de) 1994-12-21 1994-12-21 Elektromagnetisch betätigbare Stellvorrichtung
EP95942673A EP0748416B1 (de) 1994-12-21 1995-12-15 Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP95942673A Division EP0748416B1 (de) 1994-12-21 1995-12-15 Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine

Publications (3)

Publication Number Publication Date
EP1069285A2 EP1069285A2 (de) 2001-01-17
EP1069285A3 EP1069285A3 (de) 2001-05-02
EP1069285B1 true EP1069285B1 (de) 2003-02-19

Family

ID=6917724

Family Applications (2)

Application Number Title Priority Date Filing Date
EP95942673A Expired - Lifetime EP0748416B1 (de) 1994-12-21 1995-12-15 Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
EP00123025A Expired - Lifetime EP1069285B1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP95942673A Expired - Lifetime EP0748416B1 (de) 1994-12-21 1995-12-15 Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine

Country Status (4)

Country Link
US (1) US5813653A (de)
EP (2) EP0748416B1 (de)
DE (4) DE9420463U1 (de)
WO (1) WO1996019643A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19518056B4 (de) * 1995-05-17 2005-04-07 Fev Motorentechnik Gmbh Einrichtung zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung und Verfahren zur Ansteuerung
DE19747009C2 (de) * 1997-10-24 2000-11-16 Daimler Chrysler Ag Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils
DE19822907B4 (de) * 1998-05-22 2006-07-27 Fev Motorentechnik Gmbh Elektromagnetischer Aktuator mit gelenkig abgestützter Rückstellfeder
US6091314A (en) * 1998-06-05 2000-07-18 Siemens Automotive Corporation Piezoelectric booster for an electromagnetic actuator
FR2783033B1 (fr) 1998-09-04 2006-06-02 Renault Agencement pour la commande electromagnetique d'une soupape
FR2790137B1 (fr) * 1999-02-19 2001-07-27 Sagem Module de rappel elastique et procede de fabrication d'un tel module
DE19919734A1 (de) * 1999-04-30 2000-11-02 Mahle Ventiltrieb Gmbh Verfahren und Vorrichtung zum Öffnen und Schließen eines Ventils eines Verbrennungsmotors
FR2817292B1 (fr) 2000-11-24 2003-01-24 Renault Procede de commande d'un moteur a combustion en vue d'optimiser le demarrage
JP2002188417A (ja) * 2000-12-21 2002-07-05 Honda Motor Co Ltd 内燃機関の電磁式動弁装置
FR2838864B1 (fr) 2002-04-18 2004-06-11 Renault Sa Actionneur lineaire electromagnetique de soupape comportant un dispositif de rappel a raideur variable
US20040079306A1 (en) * 2002-10-23 2004-04-29 Norton John D. Variable lift electromechanical valve actuator
GB202005894D0 (en) * 2020-04-22 2020-06-03 Wastling Michael Fast-acting toggling armature uses centring spring

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1471861A (en) * 1921-09-07 1923-10-23 Perrault Oscar Louis Valve-actuating mechanism for internal-combustion engines
GB1391955A (en) * 1972-07-12 1975-04-23 British Leyland Austin Morris Actuating internal combustion engine poppet valves
DE2630512A1 (de) * 1976-07-07 1978-01-12 Daimler Benz Ag Ventilsteuerung, insbesondere fuer brennkraftmaschinen
DE3024109A1 (de) 1980-06-27 1982-01-21 Pischinger, Franz, Prof. Dipl.-Ing. Dr.Techn., 5100 Aachen Elektromagnetisch arbeitende stelleinrichtung
DE3025537A1 (de) * 1980-07-05 1982-06-03 Arthur Böhm Kunststoffverarbeitung, 8676 Schwarzenbach, Saale Einrichtung, insbesondere zur halterung von rohren von rohrpostsystemen in schutzrohren
US4649803A (en) * 1984-08-15 1987-03-17 The Garrett Corporation Servo system method and apparatus, servo valve apparatus therefor and method of making same
DE3513107A1 (de) * 1985-04-12 1986-10-16 Fleck, Andreas, 2000 Hamburg Elektromagnetisch arbeitende stelleinrichtung
DE3708373C1 (de) * 1987-03-14 1988-07-14 Fleck Andreas Verfahren zum Betreiben eines Einlassventiles einer Brennkraftmaschine
US4831973A (en) 1988-02-08 1989-05-23 Magnavox Government And Industrial Electronics Company Repulsion actuated potential energy driven valve mechanism
DE3920976A1 (de) * 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg Elektromagnetisch arbeitende stelleinrichtung
DE4004876A1 (de) * 1990-02-16 1991-09-26 Ulrich Karrer Elektrisch betaetigte ventilsteuerung fuer periodisch betriebene ventile fuer kraftmaschinen
US5548263A (en) * 1992-10-05 1996-08-20 Aura Systems, Inc. Electromagnetically actuated valve

Also Published As

Publication number Publication date
DE19581518D2 (de) 1997-02-27
DE59510563D1 (de) 2003-03-27
EP0748416A1 (de) 1996-12-18
DE59510173D1 (de) 2002-05-23
EP1069285A2 (de) 2001-01-17
DE9420463U1 (de) 1996-04-25
EP0748416B1 (de) 2002-04-17
WO1996019643A1 (de) 1996-06-27
US5813653A (en) 1998-09-29
EP1069285A3 (de) 2001-05-02

Similar Documents

Publication Publication Date Title
DE60023824T2 (de) Elektromagnetisches Dosierventil für ein Kraftstoffeinspritzventil
DE19733186A1 (de) Elektromagnetisch betätigbares Gaswechselventil für eine Kolbenbrennkraftmaschine
DE29604946U1 (de) Elektromagnetischer Aktuator für ein Gaswechselventil mit Ventilspielausgleich
EP1069285B1 (de) Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung
DE3513109A1 (de) Elektromagnetisch arbeitende stellvorrichtung
DE19751609B4 (de) Schmalbauender elektromagnetischer Aktuator
DE69624240T2 (de) Brennstoffpumpe
DE3817368C2 (de)
EP0867898B1 (de) Elektromagnetisch arbeitende Stelleinrichtung
EP1288481B1 (de) Elektromagnetischer Stellantrieb
DE20109597U1 (de) Vorrichtung zur Betätigung eines Gaswechselventils einer Brennkraftmaschine
DE19750228C1 (de) Vorrichtung zum Betätigen eines Gaswechselventils mit einem elektromagnetischen Aktuator
WO2001057389A2 (de) Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge
DE19607019A1 (de) Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventiles für Verbrennungsmotoren
EP0793004B1 (de) Elektromagnetische Ventilbetätigung
DE3928066A1 (de) Vorrichtung zur elektromagnetischen steuerung eines gaswechsel-ventils einer hubkolben-brennkraftmaschine
DE2361591A1 (de) Schieberventil zur steuerung des arbeitsdrucks eines arbeitsmediums
EP2543050A1 (de) Elektromagnetventil
EP3346121B1 (de) Magnetventil für ein kraftstoffeinspritzsystem und kraftstoffhochdruckpumpe
DE29700096U1 (de) Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils mit Dämpfungsmitteln zur Verminderung der Körperschallübertragung
DE10003930C1 (de) Vorrichtung zur Betätigung eines Gaswechselventils
DE102018119267A1 (de) Vorrichtung zur Betätigung verschiebbarer Verriegelungsmittel
DE10317644A1 (de) Elektromagnetischer Aktuator mit unsymmetrischer Magnetkreisauslegung zur Betätigung eines Gaswechselventils
DE19852287A1 (de) Elektromagnetischer Aktuator
DE10010048C1 (de) Vorrichtung zum Betätigen eines Gaswechselventils mit einem elektromagnetischen Aktuator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 748416

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR IT

17P Request for examination filed

Effective date: 20010515

AKX Designation fees paid

Free format text: DE FR IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020502

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0748416

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Designated state(s): DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030219

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030219

REF Corresponds to:

Ref document number: 59510563

Country of ref document: DE

Date of ref document: 20030327

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20031120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090127

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701