Nothing Special   »   [go: up one dir, main page]

EP0927982B1 - Messumformer-Speisegerät - Google Patents

Messumformer-Speisegerät Download PDF

Info

Publication number
EP0927982B1
EP0927982B1 EP97122991A EP97122991A EP0927982B1 EP 0927982 B1 EP0927982 B1 EP 0927982B1 EP 97122991 A EP97122991 A EP 97122991A EP 97122991 A EP97122991 A EP 97122991A EP 0927982 B1 EP0927982 B1 EP 0927982B1
Authority
EP
European Patent Office
Prior art keywords
measuring
current
transducer
transmitter
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97122991A
Other languages
English (en)
French (fr)
Other versions
EP0927982B2 (de
EP0927982A1 (de
Inventor
Martin PFÄNDLER
Bernd Strütt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Endress and Hauser Group Services Deutschland AG and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8227901&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0927982(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Priority to DE59710058T priority Critical patent/DE59710058D1/de
Priority to EP97122991A priority patent/EP0927982B2/de
Priority to US09/217,241 priority patent/US6133822A/en
Priority to CA002257585A priority patent/CA2257585C/en
Priority to JP11000089A priority patent/JP2999469B2/ja
Publication of EP0927982A1 publication Critical patent/EP0927982A1/de
Publication of EP0927982B1 publication Critical patent/EP0927982B1/de
Publication of EP0927982B2 publication Critical patent/EP0927982B2/de
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage

Definitions

  • the invention relates to a transmitter supply device for supply a transmitter with electrical energy from a DC voltage source via a two-wire connection, over that in the opposite direction that detected by the transmitter Measured value by a variable between two limit values Direct current is transmitted, whereby for electrical isolation into the connection between the transmitter and the DC voltage source a transformer is inserted, whose primary winding via a chopper to the DC voltage source is connected and a secondary winding Rectifier circuit connected to their Output connections one by rectifying the over the Transmitters of chopped electricity generated direct current with the size determined by the transmitter supplies.
  • Such a transmitter supply device is known, for example, from US Pat. No. 3,764,880.
  • a transmitter supply unit of this type is designed to one located in a hazardous area passive transmitter with a two-wire connection to supply electrical energy and at the same time the transmission of the measurement signal supplied by the passive transmitter in the form of a variable between two limit values Enable current signal in the opposite direction.
  • the current signal is between 4 mA and 20 mA variable.
  • a passive transmitter contains not its own electrical voltage source, but it relates the energy required for its operation via the two-wire connection from a remote DC voltage source, and it forms the measurement signal in that it the DC voltage source in addition to the supply current takes a supplementary stream, which is dimensioned so that the total current drawn from the DC voltage source corresponding current signal that corresponds between the both limit values of 4 and 20 mA, for example.
  • This current signal can also communication signals superimposed in the form of impulsive changes which means that digital data is transmitted in both directions can be. Since the total current is only in one Direction, namely from the voltage source to the transmitter is transmitted, there is a galvanic isolation between the Voltage source and the transmitter through a transformer possible by taking from the DC voltage source Total current according to the principle of a DC converter chopped on the primary side of the transmitter and on the Secondary side of the transformer is rectified. A such galvanic isolation is a particularly advantageous one Protective measure for transmitters used in potentially explosive atmospheres Zones are arranged.
  • the galvanic isolation by means of the Transformer of a DC converter does not allow only the transmission of the direct current supply and the Measured value representing DC signal, but also the bidirectional transmission of communication signals in Form of impulsive changes superimposed on the total current provided that the chopper frequency is significantly higher than the frequency of the communication signals.
  • An active transmitter differs of a passive transmitter in that it is connected to a own electrical energy supply and the measurement signal in the form of the variable between two limit values DC signal from this own energy supply generated and released at its outputs. It is not possible, the DC signal supplied by the active transmitter in the direction of transmission of the DC / DC converter to transmit in the opposite direction.
  • the object of the invention is to provide a transmitter power supply of the type specified at the outset, while maintaining caused by the galvanic isolation Protective measure either with a passive transmitter or can be operated with an active transmitter.
  • the one via the rectifier circuit and the transformer from the primary-side DC voltage source current drawn also contains the power required to operate the matching circuit required supply current.
  • the Total current can be in the same way as when loaded by a passive transmitter communication signals in the form of impulsive changes are superimposed on the bidirectional are transmitted via the transmitter.
  • the through the galvanic isolation protective measure for explosive Zones remain regardless of whether an active one or a passive transmitter is connected receive.
  • Fig. 1 of the drawing the right of the interrupted Line A-A circuit components shown a transmitter power supply 10 according to the state of the art for supply a passive transmitter 11 with electrical energy from a DC voltage source 12 via the two conductors 13, 14 of a two-wire connection, via which in the opposite direction the measured value signal generated by the transmitter 11 is transmitted.
  • the two-wire connection 13, 14 is interrupted shown to indicate that they are of arbitrary Length can be. It connects the passive transmitter 11 with two terminals 15, 16 of the transmitter supply unit 10.
  • the transmitter 11 contains a sensor for the one to be measured physical size and an electronic circuit for Conversion of the sensor signal into the measured value signal to be transmitted.
  • a passive transmitter does not contain its own Energy source, but it relates to the operation of the electronic circuit required energy over the Two-wire connection 13, 14 from the DC voltage source 12 in the remote transmitter supply unit 10.
  • Forms according to a common standard the transmitter 11 the measured value signal in that it off sets the current drawn from the DC voltage source 12 in such a way that the measured value is between 4 mA and 20 mA DC current is expressed.
  • the direct current is through an evaluation circuit arranged at the location of the DC voltage source 12 18 measured and to determine the measured value the physical quantity detected by the transmitter 11 is evaluated.
  • the transmitter 11 can be designed in this way be that he the current signal digital communication signals superimposed in the form of impulsive changes, so that Measured values and parameters are read and written digitally can be. There is then a requirement for such communication signals bidirectionally between the transmitter 11 and to transmit the evaluation circuit 18.
  • the passive transmitter 11 is in a potentially explosive atmosphere Zone is arranged, additional safety precautions must be taken to be hit.
  • the transmitter power supply shown in Fig. 1 10 is designed with such a galvanic isolation.
  • the transmitter power supply is electrically isolated 10 of Fig. 1 by a transformer 20 with a primary winding 21 and a secondary winding 22. Die DC voltage source 12 is between a center tap 23 the primary winding 21 and ground connected. Everyone who two outer connections 24 and 25 of the primary winding 21 via a switch 26 or 27 with one connection 28 a resistor 29 connected to the other terminal Mass lies.
  • the two switches 26 and 27 are through a clock 30 with a relatively high clock frequency controlled by, for example, 200 kHz in push-pull, so that switch 26 is open when switch 27 is closed, and vice versa.
  • the primary winding 21 is the DC voltage to a square wave AC voltage chopped, which is transferred to the secondary winding 22.
  • On the secondary winding 22 is a full wave rectifier circuit 31 with four diodes 32 and a filter capacitor 33 connected by rectifying the square wave AC voltage the operating DC voltage for the passive Transmitter 11 generated.
  • the Transmitter 20 in connection with that of the switches 26, 27 and the chopper 30 formed chopper and with the Rectifier circuit 31 a DC converter known type forms.
  • the switches 26, 27 that simplified are shown as mechanical switch contacts are in Reality of course fast electronic switches for example field effect transistors.
  • the passive Transmitter 11 contains in a hazardous area the rectifier circuit 31 via a fuse 34 connected voltage limiter 35, the Zener diode is shown. Between the output terminals 36, 37 of the Rectifier circuit 31 and for the connection of the passive Transmitter 11 certain terminals 15, 16 of the transmitter power supply protective resistors 38 and 39 are inserted. The protective resistors 38, 39 prevent an increase of the electricity in the hazardous area via a permissible limit, and the voltage limiter 35 limits in connection with fuse 34 the voltage in the potentially explosive Zone to an allowable value.
  • the passive transducer 11 takes a direct current I MP from the rectifier circuit 31, the value of which is set in the range from 4 to 20 mA in such a way that it represents the measured value of the physical quantity detected by the sensor.
  • This direct current is supplied via the transformer 20 from the direct voltage source 12, so that with a transmission ratio 1: 1 of the transformer 20 a direct current of the same size flows through the resistor 29.
  • the direct voltage dropping across the resistor 29 is thus proportional to the measuring current I MP set by the passive measuring transducer 11. It is fed to the evaluation circuit 18 connected to the connection 28.
  • the measuring current I MP is superimposed by the passive transmitter 11 communication signals in the form of pulse-shaped changes
  • these pulse-shaped changes are also transmitted via the transmitter 20 so that they are expressed in pulse-shaped voltage changes in the voltage drop across the resistor 29.
  • These voltage changes are also detected and evaluated by the evaluation circuit 18.
  • the repetition frequency of the pulse-shaped changes is substantially lower than the clock frequency of the clock generator 30.
  • the evaluation circuit 18 preferably contains a low-pass filter at the input, the cut-off frequency of which is set so that the clock frequency of the clock generator 30 is suppressed, but the superimposed pulse-shaped communication signals are transmitted.
  • Fig. 2 shows the schematic diagram of a transmitter supply device 40, which makes it possible to replace the passive transmitter 11 optionally connect an active transmitter 41.
  • an active transmitter contains its own electrical one Power supply, and it gives one of these at the output Voltage supply supplied direct current, its size again in the range of 4 to 20 mA the measured value from the sensor recorded physical size corresponds. It is immediate to recognize that it would not be possible to use the active transmitter 41 simply instead of the passive transmitter 11 to connect the terminals 15, 16 of the circuit arrangement of FIG. 1, because that supplied by the active transmitter 41 DC current could not go through the rectifier circuit 31 and the transmitter 20 to the primary side of the transmitter 20 be transmitted.
  • the transmitter power supply 40 therefore has two further terminals 42 and 43 to which the active transmitter 41 via the two conductors 44 and 45 of a two-wire connection connected.
  • FIG. 2 For simplification, only those on the secondary side are shown in FIG. 2 of the transformer 20 lying circuit components the transmitter power supply 40 shown; the on the Primary circuit components are with those of Fig. 1 identical. So much for the circuit components in FIG. 2 correspond to those of FIG. 1, they are designated by the same reference numerals as in FIG. 1, and they have the same function as before has been described in connection with FIG. 1. It is immediately recognize that for the passive transmitter 11th the same circuit arrangement as in FIG. 1 is present, with the only difference that between the connection 36 the rectifier circuit 31 and the protective resistor 38 a switch 50 is inserted. If the switch 50 in the position is in which he is the rectifier circuit 31 via the protective resistor 38 with the terminal 15 connects, the circuit arrangement is that of Fig. 1 identical.
  • the changeover switch 50 when the changeover switch 50 is brought into the position shown in FIG. 2, it connects the connection 36 of the rectifier circuit 31 via a connecting conductor 51, an isolating capacitor 52, a protective resistor 53 and a diode 54 to the terminal 42.
  • the connection 37 of the rectifier circuit 31 is permanently connected to terminal 43 via a connecting conductor 55 and a protective resistor 56.
  • the active transducer 41 has its own electrical voltage supply, and it outputs a direct current I MA at the output, the size of which in the range from 4 to 20 mA corresponds to the measured value of the physical quantity detected by the sensor.
  • the matching circuit 60 contains a resistor 61 connected via the diode 54 to the terminals 42 and 43, a control circuit 62, the input connections of which are connected to the connections of the resistor 61, and a controllable current source 63 connected between the connecting conductors 51 and 55, the control input of which is connected to the output of the control circuit 62.
  • the controllable current source 63 thus bridges the two output connections 36 and 37 of the rectifier circuit 31 when the changeover switch 50 assumes the position shown in FIG.
  • the control circuit 62 receives at the input a DC voltage which corresponds to the voltage drop across the resistor 61 caused by the current I MA , and it is designed such that its output signal adjusts the controllable current source 63 so that the current I MS taken from the rectifier circuit 31 corresponds to that of the active transmitter 41 supplied current I MA is proportional to a predetermined constant factor.
  • This factor preferably has the value 1, so that the current I MS is equal to the current I MA .
  • the current I MS taken from the rectifier circuit 31 has the same effect as the current I MP determined in the other position of the switch 50 by the passive measuring transducer 11: it is mirrored on the primary side of the transmitter 20 and causes a proportional voltage drop across the resistor 29 , This voltage drop is thus proportional to the measuring current I MA supplied by the active transmitter 41.
  • Fig. 3 shows the circuit diagram of an embodiment of the controllable Matching circuit 60 of FIG. 2.
  • the circuit components, which correspond to those of Fig. 2 are with the same reference numerals as in Fig. 2.
  • the controllable current source 63 is through a field effect transistor 70 formed in series with a resistor 71 is connected between the connecting conductors 51 and 55.
  • the control circuit 62 includes an operational amplifier 72, whose power supply connections with the connecting conductors 51 and 55 are connected so that the operational amplifier 72 from the rectifier circuit 31 with current is supplied when the switch 50 in the position is brought, the connection of the active transmitter 41st equivalent.
  • the inverting input of the operational amplifier 72 is connected to the connecting conductor via a resistor 73 55 connected.
  • a resistor 74 is inserted, via which both the one determined by the controllable current source 63 Current as well as the supply current of the operational amplifier 72 flows.
  • the non-inverting input of the Operational amplifier 72 is at the tap of a voltage divider connected from two resistors 75 and 76, the in series between that via the diode 54 with the terminal 42 connected connection of the resistor 61 and the connection 37 the rectifier circuit 31 are connected.
  • the output of operational amplifier 72 is at the gate terminal of the field effect transistor 70 connected.
  • the diode 54 is polarized so that it allows the current I MA supplied by the active transmitter 41 to flow in the forward direction via the resistor 61, but prevents a current flow from the transmitter supply device 40 to the active transmitter 41. Due to the current and voltage limitation already contained in the circuit of FIG. 1, when a passive transmitter is connected, there is sufficient safety for the transmitter / power supply unit because the maximum energy available in the event of a fault is too low to ignite a spark. When connecting an active transmitter, however, the case could arise that a current flowing from the transmitter supply device, which would be too weak in itself to ignite a spark, is superimposed on a current originating from the active transmitter outside the transmitter supply device, so that the The sum of the two currents could be sufficient to ignite a spark. This danger is eliminated by the diode 54 since it prevents a current from flowing from the transmitter supply unit to the active transmitter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

Die Erfindung betrifft ein Meßumformer-Speisegerät zur Versorgung eines Meßumformers mit elektrischer Energie von einer Gleichspannungsquelle über eine Zweidrahtverbindung, über die in der Gegenrichtung der vom Meßumformer erfaßte Meßwert durch einen zwischen zwei Grenzwerten veränderlichen Gleichstrom übertragen wird, wobei zur galvanischen Trennung in die Verbindung zwischen dem Meßumformer und der Gleichspannungsquelle ein Übertrager eingefügt ist, dessen Primärwicklung über einen Zerhacker an die Gleichspannungsquelle angeschlossen ist und an dessen Sekundärwicklung eine Gleichrichterschaltung angeschlossen ist, die an ihren Ausgangsanschlüssen einen durch Gleichrichtung des über den Übertrager übertragenen, zerhackten Stroms erzeugten Gleichstrom mit der durch den Meßumformer bestimmten Größe liefert.
Ein solches Meßumformer-Speisegerät ist beispielsweise aus der US-A-3 764 880 bekannt.
Ein Meßumformer-Speisegerät dieser Art ist dazu bestimmt, einen in einer explosionsgefährdeten Zone angeordneten passiven Meßumformer über eine Zweidrahtverbindung mit elektrischer Energie zu versorgen und zugleich die Übertragung des vom passiven Meßumformer gelieferten Meßsignals in Form eines zwischen zwei Grenzwerten veränderlichen Stromsignals in der Gegenrichtung zu ermöglichen. Einer üblichen Norm entsprechend ist das Stromsignal zwischen 4 mA und 20 mA veränderlich. Ein passiver Meßumformer enthält keine eigene elektrische Spannungsquelle, sondern er bezieht die für seinen Betrieb erforderliche Energie über die Zweidrahtverbindung von einer entfernt angeordneten Gleichspannungsquelle, und er bildet das Meßsignal dadurch, daß er der Gleichspannungsquelle zusätzlich zu dem Versorgungsstrom einen Ergänzungsstrom entnimmt, der so bemessen ist, daß der der Gleichspannungsquelle entnommene Gesamtstrom dem zu übertragenden Stromsignal entspricht, das zwischen den beiden Grenzwerten von beispielsweise 4 und 20 mA liegt. Diesem Stromsignal können außerdem noch Kommunikationssignale in Form von impulsförmigen Änderungen überlagert werden, wodurch digitale Daten in beiden Richtungen übertragen werden können. Da der Gesamtstrom nur in einer Richtung, nämlich von der Spannungsquelle zum Meßumformer übertragen wird, ist eine galvanische Trennung zwischen der Spannungsquelle und dem Meßumformer durch einen Übertrager möglich, indem der aus der Gleichspannungsquelle entnommene Gesamtstrom nach dem Prinzip eines Gleichspannungswandlers auf der Primärseite des Übertragers zerhackt und auf der Sekundärseite des Übertragers gleichgerichtet wird. Eine solche galvanische Trennung ist eine besonders vorteilhafte Schutzmaßnahme für Meßumformer, die in explosionsgefährdeten Zonen angeordnet sind. Die galvanische Trennung mittels des Übertragers eines Gleichspannungswandlers ermöglicht nicht nur die Übertragung des Versorgungsgleichstroms und des den Meßwert darstellenden Gleichstromsignals, sondern auch die bidirektionale Übertragung von Kommunikationssignalen in Form von dem Gesamtstrom überlagerten impulsförmigen Änderungen unter der Voraussetzung, daß die Zerhackerfrequenz wesentlich höher ist als die Frequenz der Kommunikationssignale.
Bei einem Meßumformer-Speisegerät der vorstehend geschilderten Art besteht jedoch das Problem, daß es nicht möglich ist, anstelle des passiven Meßumformers einen aktiven Meßumformer anzuschließen. Ein aktiver Meßumformer unterscheidet sich von einem passiven Meßumformer dadurch, daß er mit einer eigenen elektrischen Energieversorgung ausgestattet ist und das Meßsignal in Form des zwischen zwei Grenzwerten veränderlichen Gleichstromsignals aus dieser eigenen Energieversorgung erzeugt und an seinen Ausgängen abgibt. Es ist nicht möglich, das vom aktiven Meßumformer gelieferte Gleichstromsignal in der der Übertragungsrichtung des Gleichspannungswandlers entgegengesetzten Richtung zu übertragen.
Aufgabe der Erfindung ist die Schaffung eines Meßumformer-Speisegeräts der eingangs angegebenen Art, das unter Aufrechterhaltung der durch die galvanische Trennung bewirkten Schutzmaßnahme wahlweise mit einem passiven Meßumformer oder mit einem aktiven Meßumformer betrieben werden kann.
Nach der Erfindung wird diese Aufgabe durch die Merkmale der Ansprüche 1 und 6.
Bei dem erfindungsgemäßen Meßumformer-Speisegerät bewirkt die zwischen dem aktiven Meßumformer und der Gleichrichterschaltung eingefügte Anpassungsschaltung, daß die primärseitig angeordnete Gleichspannungsquelle über die Gleichrichterschaltung und den Übertrager in gleicher Weise wie durch einen passiven Meßumformer mit einem Gleichstrom belastet wird, der dem zu übertragenden Meßsignal entspricht. Von der Primärseite her gesehen ist daher nicht erkennbar, ob sekundärseitig ein aktiver oder ein passiver Meßumformer angeschlossen ist. Der über die Gleichrichterschaltung und den Übertrager aus der primärseitigen Gleichspannungsquelle entnommene Strom enthält auch den für den Betrieb der Anpassungsschaltung erforderlichen Versorgungsstrom. Dem Gesamtstrom können in gleicher Weise wie bei Belastung durch einen passiven Meßumformer Kommunikationssignale in Form von impulsförmigen Änderungen überlagert werden, die bidirektional über den Übertrager übertragen werden. Die durch die galvanische Trennung bewirkte Schutzmaßnahme für explosionsgefährdete Zonen bleibt unabhängig davon, ob ein aktiver oder ein passiver Meßumformer angeschlossen ist, voll erhalten.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnungen. In den Zeichnungen zeigen:
Fig. 1
das Schaltbild eines Meßumformer-Speisegeräts bekannter Art zur Versorgung eines passiven Meßumformers mit elektrischer Energie und zur Übertragung des Meßsignals über eine Zweidrahtverbindung,
Fig. 2
die Abänderung des Meßumformer-Speisegeräts von Fig. 1 zum wahlweisen Anschluß eines aktiven Meßumformers anstelle eines passiven Meßumformers und
Fig. 3
das Meßumformer-Speisegerät von Fig. 2 mit dem Schaltbild einer Ausführungsform der Anpassungsschaltung.
In Fig. 1 der Zeichnung bilden die rechts der unterbrochenen Linie A-A dargestellten Schaltungsbestandteile ein Meßumformer-Speisegerät 10 nach dem Stand der Technik zur Versorgung eines passiven Meßumformers 11 mit elektrischer Energie von einer Gleichspannungsquelle 12 über die beiden Leiter 13, 14 einer Zweidrahtverbindung, über die in der Gegenrichtung das vom Meßumformer 11 erzeugte Meßwertsignal übertragen wird. Die Zweidrahtverbindung 13, 14 ist unterbrochen dargestellt, um anzudeuten, daß sie von beliebiger Länge sein kann. Sie verbindet den passiven Meßumformer 11 mit zwei Klemmen 15, 16 des Meßumformer-Speisegeräts 10.
Der Meßumformer 11 enthält einen Sensor für die zu messende physikalische Größe und eine elektronische Schaltung zur Umwandlung des Sensorsignals in das zu übertragende Meßwertsignal. Ein passiver Meßumformer enthält keine eigene Energiequelle, sondern er bezieht die für den Betrieb der elektronischen Schaltung erforderliche Energie über die Zweidrahtverbindung 13, 14 von der Gleichspannungsquelle 12 in dem an entfernter Stelle angeordneten Meßumformer-Speisegerät 10. Einem üblichen Standard entsprechend bildet der Meßumformer 11 das Meßwertsignal dadurch, daß er den aus der Gleichspannungsquelle 12 entnommenen Strom so einstellt, daß der Meßwert durch einen zwischen 4 mA und 20 mA liegenden Gleichstrom ausgedrückt ist. Der Gleichstrom wird durch eine am Ort der Gleichspannungsquelle 12 angeordnete Auswerteschaltung 18 gemessen und zur Ermittlung des Meßwertes der vom Meßumformer 11 erfaßten physikalischen Größe ausgewertet. Zusätzlich kann der Meßumformer 11 so ausgebildet sein, daß er dem Stromsignal digitale Kommunikationssignale in Form von impulsförmigen Veränderungen überlagert, so daß Meßwerte und Parameter digital gelesen und geschrieben werden können. Es besteht dann die Forderung, solche Kommunikationssignale bidirektional zwischen dem Meßumformer 11 und der Auswerteschaltung 18 zu übertragen.
Wenn der passive Meßumformer 11 in einer explosionsgefährdeten Zone angeordnet ist, müssen zusätzliche Sicherheitsvorkehrungen getroffen werden. Eine besonders wirksame Schutzmaßnahme für explosionsgefährdete Zonen ist eine galvanische Trennung zwischen dem Meßumformer 11 einerseits und der Gleichspannungsquelle 12 und der Auswerteschaltung 18 andererseits. Das in Fig. 1 dargestellte Meßumformer-Speisegerät 10 ist mit einer solchen galvanischen Trennung ausgebildet.
Die galvanische Trennung erfolgt bei dem Meßumformer-Speisegerät 10 von Fig. 1 durch einen Übertrager 20 mit einer Primärwicklung 21 und einer Sekundärwicklung 22. Die Gleichspannungsquelle 12 ist zwischen einem Mittelabgriff 23 der Primärwicklung 21 und Masse angeschlossen. Jeder der beiden Außenanschlüsse 24 und 25 der Primärwicklung 21 ist über einen Schalter 26 bzw. 27 mit dem einen Anschluß 28 eines Widerstands 29 verbunden, dessen anderer Anschluß an Masse liegt. Die beiden Schalter 26 und 27 werden durch einen Taktgeber 30 mit einer verhältnismäßig hohen Taktfrequenz von beispielsweise 200 kHz im Gegentakt gesteuert, so daß der Schalter 26 geöffnet ist, wenn der Schalter 27 geschlossen ist, und umgekehrt. Somit fließt der von der Gleichspannungsquelle 12 gelieferte Strom im Takt der Schalterbetätigung abwechselnd gegensinnig durch die eine bzw. die andere Hälfte der Primärwicklung 21, jedoch stets gleichsinnig durch den Widerstand 29. In der Primärwicklung 21 ist die Gleichspannung zu einer Rechteck-Wechselspannung zerhackt, die in die Sekundärwicklung 22 übertragen wird. An die Sekundärwicklung 22 ist eine Vollweg-Gleichrichterschaltung 31 mit vier Dioden 32 und einem Siebkondensator 33 angeschlossen, die durch Gleichrichtung der Rechteck-Wechselspannung die Betriebsgleichspannung für den passiven Meßumformer 11 erzeugt. Es ist somit zu erkennen, daß der Übertrager 20 in Verbindung mit dem aus den Schaltern 26, 27 und dem Taktgeber 30 gebildeten Zerhacker und mit der Gleichrichterschaltung 31 einen Gleichspannungswandler bekannter Art bildet. Die Schalter 26, 27, die vereinfacht als mechanische Schaltkontakte dargestellt sind, sind in Wirklichkeit natürlich schnelle elektronische Schalter, beispielsweise Feldeffekttransistoren.
Als weitere Schutzmaßnahme für die Verwendung des passiven Meßumformers 11 in einer explosionsgefährdeten Zone enthält die Gleichrichterschaltung 31 einen über eine Sicherung 34 angeschlossenen Spannungsbegrenzer 35, der als Zenerdiode dargestellt ist. Zwischen die Ausgangsanschlüsse 36, 37 der Gleichrichterschaltung 31 und die für den Anschluß des passiven Meßumformers 11 bestimmten Klemmen 15, 16 des Meßumformer-Speisegeräts sind Schutzwiderstände 38 bzw. 39 eingefügt. Die Schutzwiderstände 38, 39 verhindern ein Ansteigen des Stroms in der explosionsgefährdeten Zone über einen zulässigen Grenzwert, und der Spannungsbegrenzer 35 begrenzt in Verbindung mit der Sicherung 34 die Spannung in der explosionsgefährdeten Zone auf einen zulässigen Wert.
Der passive Meßumformer 11 entnimmt der Gleichrichterschaltung 31 einen Gleichstrom IMP, dessen Wert im Bereich von 4 bis 20 mA so eingestellt ist, daß er den Meßwert der vom Sensor erfaßten physikalischen Größe darstellt. Dieser Gleichstrom wird über den Übertrager 20 von der Gleichspannungsquelle 12 geliefert, so daß bei einem Übersetzungsverhältnis 1:1 des Übertragers 20 ein Gleichstrom gleicher Größe über den Widerstand 29 fließt. Die am Widerstand 29 abfallende Gleichspannung ist somit dem vom passiven Meßumformer 11 eingestellten Meßstrom IMP proportional. Sie wird der an den Anschluß 28 angeschlossenen Auswerteschaltung 18 zugeführt.
Wenn dem Meßstrom IMP durch den passiven Meßumformer 11 Kommunikationssignale in Form von impulsförmigen Änderungen überlagert sind, werden diese impulsförmigen Änderungen ebenfalls über den Übertrager 20 übertragen, so daß sie sich in impulsförmigen Spannungsänderungen in der am Widerstand 29 abfallenden Spannung äußern. Diese Spannungsänderungen werden von der Auswerteschaltung 18 gleichfalls erfaßt und ausgewertet. Die Folgefrequenz der impulsförmigen Änderungen ist wesentlich geringer als die Taktfrequenz des Taktgebers 30. Die Auswerteschaltung 18 enthält vorzugsweise am Eingang ein Tiefpaßfilter, dessen Grenzfrequenz so eingestellt ist, daß die Taktfrequenz des Taktgebers 30 unterdrückt wird, jedoch die überlagerten impulsförmigen Kommunikationssignale übertragen werden.
Fig. 2 zeigt das Prinzipschema eines Meßumformer-Speisegeräts 40, das es ermöglicht, anstelle des passiven Meßumformers 11 wahlweise einen aktiven Meßumformer 41 anzuschließen. Im Gegensatz zu einem passiven Meßumformer enthält ein aktiver Meßumformer eine eigene elektrische Spannungsversorgung, und er gibt am Ausgang einen von dieser Spannungsversorgung gelieferten Gleichstrom ab, dessen Größe wieder im Bereich von 4 bis 20 mA dem Meßwert der vom Sensor erfaßten physikalischen Größe entspricht. Es ist unmittelbar zu erkennen, daß es nicht möglich wäre, den aktiven Meßumformer 41 einfach anstelle des passiven Meßumformers 11 an die Klemmen 15, 16 der Schaltungsanordnung von Fig. 1 anzuschließen, denn der vom aktiven Meßumformer 41 gelieferte Gleichstrom könnte nicht über die Gleichrichterschaltung 31 und den Übertrager 20 zur Primärseite des Übertragers 20 übertragen werden. Das Meßumformer-Speisegerät 40 hat daher zwei weitere Klemmen 42 und 43, an die der aktive Meßumformer 41 über die beiden Leiter 44 und 45 einer Zweidrahtverbindung angeschlossen ist.
Zur Vereinfachung sind in Fig. 2 nur die auf der Sekundärseite des Übertragers 20 liegenden Schaltungsbestandteile des Meßumformer-Speisegeräts 40 dargestellt; die auf der Primärseite liegenden Schaltungsbestandteile sind mit denjenigen von Fig. 1 identisch. Soweit die Schaltungsbestandteile in Fig. 2 mit denjenigen von Fig. 1 übereinstimmen, sind sie mit den gleichen Bezugszeichen wie in Fig. 1 bezeichnet, und sie haben die gleiche Funktion, wie sie zuvor im Zusammenhang mit Fig. 1 beschrieben worden ist. Es ist unmittelbar zu erkennen, daß für den passiven Meßumformer 11 die gleiche Schaltungsanordnung wie in Fig. 1 vorhanden ist, mit dem einzigen Unterschied, daß zwischen den Anschluß 36 der Gleichrichterschaltung 31 und den Schutzwiderstand 38 ein Umschalter 50 eingefügt ist. Wenn der Umschalter 50 in die Stellung gebracht ist, in der er die Gleichrichterschaltung 31 über den Schutzwiderstand 38 mit der Klemme 15 verbindet, ist die Schaltungsanordnung mit derjenigen von Fig. 1 identisch.
Wenn dagegen der Umschalter 50 in die in Fig. 2 dargestellte Stellung gebracht ist, verbindet er den Anschluß 36 der Gleichrichterschaltung 31 über einen Verbindungsleiter 51, einen Trennkondensator 52, einen Schutzwiderstand 53 und eine Diode 54 mit der Klemme 42. Der Anschluß 37 der Gleichrichterschaltung 31 ist über einen Verbindungsleiter 55 und einen Schutzwiderstand 56 dauernd mit der Klemme 43 verbunden. Wie zuvor erläutert, enthält der aktive Meßumformer 41 eine eigene elektrische Spannungsversorgung, und er gibt am Ausgang einen Gleichstrom IMA ab, dessen Größe im Bereich von 4 bis 20 mA dem Meßwert der vom Sensor erfaßten physikalischen Größe entspricht. Zwischen den aktiven Meßumformer 41 und die Gleichrichterschaltung 31 ist eine Anpassungsschaltung 60 eingefügt, die der Gleichrichterschaltung 31 einen Gleichstrom IMS entnimmt, der dem vom aktiven Meßumformer 41 gelieferten Gleichstrom IMA gleich oder proportional ist. Die Anpassungsschaltung 60 enthält einen über die Diode 54 an die Klemmen 42 und 43 angeschlossenen Widerstand 61, eine Steuerschaltung 62, deren Eingangsanschlüsse mit den Anschlüssen des Widerstands 61 verbunden sind, und eine zwischen den Verbindungsleitern 51 und 55 angeschlossene steuerbare Stromquelle 63, deren Steuereingang mit dem Ausgang der Steuerschaltung 62 verbunden ist. Somit überbrückt die steuerbare Stromquelle 63 die beiden Ausgangsanschlüsse 36 und 37 der Gleichrichterschaltung 31, wenn der Umschalter 50 die in Fig. 2 gezeigte Stellung einnimmt, die dem Anschluß des aktiven Meßumformers 41 entspricht. Die Steuerschaltung 62 empfängt am Eingang eine Gleichspannung, die dem vom Strom IMA verursachten Spannungsabfall am Widerstand 61 entspricht, und sie ist so ausgebildet, daß ihr Ausgangssignal die steuerbare Stromquelle 63 so einstellt, daß der aus der Gleichrichterschaltung 31 entnommene Strom IMS dem vom aktiven Meßumformer 41 gelieferten Strom IMA mit einem vorbestimmten konstanten Faktor proportional ist. Vorzugsweise hat dieser Faktor den Wert 1, so daß der Strom IMS gleich dem Strom IMA ist. Somit ergibt der aus der Gleichrichterschaltung 31 entnommene Strom IMS die gleiche Wirkung wie der in der anderen Stellung des Umschalters 50 vom passiven Meßumformer 11 bestimmte Strom IMP: Er wird auf die Primärseite des Übertragers 20 gespiegelt und ruft einen proportionalen Spannungsabfall am Widerstand 29 hervor. Dieser Spannungsabfall ist somit dem vom aktiven Meßumformer 41 gelieferten Meßstrom IMA proportional.
Fig. 3 zeigt das Schaltbild einer Ausführungsform der steuerbaren Anpassungsschaltung 60 von Fig. 2. Die Schaltungsbestandteile, die denjenigen von Fig. 2 entsprechen, sind mit den gleichen Bezugszeichen wie in Fig. 2 bezeichnet. Die steuerbare Stromquelle 63 ist durch einen Feldeffekttransistor 70 gebildet, der in Reihe mit einem Widerstand 71 zwischen den Verbindungsleitern 51 und 55 angeschlossen ist. Die Steuerschaltung 62 enthält einen Operationsverstärker 72, dessen Stromversorgungsanschlüsse mit den Verbindungsleitern 51 und 55 verbunden sind, so daß der Operationsverstärker 72 von der Gleichrichterschaltung 31 mit Strom versorgt wird, wenn der Umschalter 50 in die Stellung gebracht ist, die dem Anschluß des aktiven Meßumformers 41 entspricht. Der invertierende Eingang des Operationsverstärkers 72 ist über einen Widerstand 73 mit dem Verbindungsleiter 55 verbunden. In den Verbindungsleiter 55 ist zwischen den Anschlußstellen der steuerbaren Stromquelle 63, des Operationsverstärkers 72 und des Widerstands 73 einerseits und dem Ausgangsanschluß 37 der Gleichrichterschaltung 31 andererseits ein Widerstand 74 eingefügt, über den somit sowohl der von der steuerbaren Stromquelle 63 bestimmte Strom als auch der Versorgungsstrom des Operationsverstärkers 72 fließt. Der nichtinvertierende Eingang des Operationsverstärkers 72 ist an den Abgriff eines Spannungsteilers aus zwei Widerständen 75 und 76 angeschlossen, die in Serie zwischen dem über die Diode 54 mit der Klemme 42 verbundenen Anschluß des Widerstands 61 und dem Anschluß 37 der Gleichrichterschaltung 31 angeschlossen sind. Der Ausgang des Operationsverstärkers 72 ist mit dem Gate-Anschluß des Feldeffekttransistors 70 verbunden.
Bezeichnet man die Widerstandswerte der Widerstände 61, 74, 75 und 76 mit R61, R74, R75 bzw. R76, so besteht der folgende Zusammenhang zwischen dem über den Widerstand 61 fließenden Strom IMA und dem über den Widerstand 74 zum Eingangsanschluß 37 der Gleichrichterschaltung 31 fließenden Strom IMS: IMS = IMA ·R61 · R76 R74 · R75
Somit ist der Strom IMS zu dem Strom IMA mit einem durch die Widerstände bestimmten konstanten Faktor proportional. Dieser konstante Faktor kann durch geeignete Bemessung der Widerstände gleich 1 gemacht werden, so daß dann der Strom IMS gleich dem Strom IMA ist. Dies gilt beispielsweise für die folgenden Widerstandswerte:
  • R61 = 250 Ω
  • R74 = 50 Ω
  • R75 = 100 kΩ
  • R76 = 20 kΩ
  • Aus den Figuren 2 und 3 ist ferner zu erkennen, daß bei jeder Stellung des Umschalters 50 die im Hinblick auf die explosionsgefährdete Zone getroffenen Schutzmaßnahmen, nämlich die galvanische Trennung durch den Übertrager 20, die Spannungsbegrenzung durch den Spannungsbegrenzer 35 und die Sicherung 34 und die Strombegrenzung durch die Schutzwiderstände 38, 39 bzw. durch die Schutzwiderstände 53, 56 in vollem Umfang wirksam bleiben. Der Trennkondensator 52 bewirkt eine gleichstrommäßige Trennung des aktiven Meßumformers 41 von der Gleichrichterschaltung 31, ermöglicht aber die Übertragung der überlagerten Kommunikationssignale.
    Die Diode 54 ist so gepolt, daß sie den vom aktiven Meßumformer 41 gelieferten Strom IMA in der Durchlaßrichtung über den Widerstand 61 fließen läßt, aber einen Stromfluß vom Meßumformer-Speisegerät 40 zum aktiven Meßumformer 41 verhindert. Durch die bereits in der Schaltung von Fig. 1 enthaltene Strom- und Spannungsbegrenzung ist beim Anschluß eines passiven Meßumformers eine ausreichende Sicherheit für das Meßumformer-Speisegerät gegeben, weil die in einem Störfall maximal vorhandene Energie zu gering ist, um einen Funken zu zünden. Beim Anschluß eines aktiven Meßumformers könnte aber der Fall auftreten, daß ein aus dem Meßumformer-Speisegerät fließender Strom, der für sich genommen zur Zündung eines Funkens zu schwach wäre, sich außerhalb des Meßumformer-Speisegeräts einem vom aktivem Meßumformer stammenden Strom überlagert, so daß die Summe der beiden Ströme ausreichen könnte, einen Funken zu zünden. Diese Gefahr wird durch die Diode 54 ausgeschlossen, da sie verhindert, daß ein Strom vom Meßumformer-Speisegerät zum aktiven Meßumformer fließt.

    Claims (7)

    1. Vorrichtung zum Ermitteln eines eine physikalische Größe darstellenden Meßwerts, welche Vorrichtung ein von einem Gleichstrom (IMS) durchflossenes Meßumformer-Speisegerät (40), das zur Versorgung eines, insb. in einer explosionsgefährdeten Zone angeordneten, Meßumformers mit elektrischer Energie über eine Zweidrahtverbindung geeignet ist, und einen an das Meßumformer-Speisegerät (40) gekoppelten Meßumformer (41) umfaßt, dadurch gekennzeichnet, daß es sich bei dem Meßumformer (41) um einen aktiven Meßumformer handelt, der mit einer eigenen Energieversorgung ausgestattet ist und der einen den Meßwert darstellenden Ausgangsstrom (IMA) liefert, und daß zum Anschluß des aktiven Meßumformers (41) an das Meßumformer-Speisegerät (40) eine Anpassungsschaltung (60) vorgesehen ist, die mit dem Meßumformer (41) und dem Meßumformer-Speisegerät (40) derart verbunden ist, daß sie sowohl vom Ausgangsstrom (IMA) als auch vom Gleichstrom (IMS) durchflossen ist, und die den im Meßumformer-Speisegerät (40) fließenden Gleichstrom (IMS) unter Verwendung des Ausgangsstroms (IMA) so einstellt, daß dieser Gleichstrom (IMS) dem Ausgangsstrom (IMA) des aktiven Meßumformers (41) proportional ist.
    2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß eine den Gleichstrom (IMS) treibende Gleichspannung von einer Gleichspannungsquelle (12) geliefert wird, und daß zur galvanischen Trennung in die Verbindung zwischen dem Meßumformer (41) und der Gleichspannungsquelle (12) ein Gleichspannungswandler (20, 26, 27, 30, 31) eingefügt ist, der sekundärseitig vom Gleichstrom (IMS) durchflossen ist.
    3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Gleichspannungswandler einen Übertrager (20) umfaßt, von dem eine Primärwicklung (21) über einen Zerhacker (26, 27, 30) mit der Gleichspannungsquelle (12) gekoppelt ist, und von dem eine Sekundärwicklung (22) an eine Gleichrichterschaltung (31) angeschlossen ist, die an ihren Ausgangsanschlüssen den durch Gleichrichtung des über den Übertrager (20) übertragenen, zerhackten Stroms erzeugten Gleichstrom (IMS) mit der durch den Ausgangsstrom (IMA) bestimmten Größe liefert.
    4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Anpassungsschaltung (60) im Meßumformer-Speisegerät (40) angeordnet ist.
    5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Meßumformer-Speisegerät (40) einen Umschalter (50) umfaßt, der den Gleichstrom (IMS) wahlweise entweder durch eine mit dem Meßumformer-Speisegerät (40) verbundene Zweidrahtverbindung oder durch die Anpassungsschaltung (60) fließen läßt.
    6. Verfahren zum Messen einer veränderlichen physikalischen Größe, welches Verfahren die folgenden Schritte umfaßt:
      Verbinden eines Meßumformer-Speisegeräts (40) mit einem aktiven Meßumformer (41) unter Zwischenschaltung einer Anpassungsschaltung (60), wobei der aktive Meßumformer (41) mit einer eigenen Energieversorgung ausgestattet ist,
      Erfassen der physikalischen Größe mittels des aktiven Meßumformers (41),
      Erzeugen eines die Anpassungsschaltung (60) durchfließenden, zur physikalischen Größe proportionalen Ausgangsstroms (IMA) mittels des mit der Anpassungsschaltung (60) verbundenen Meßumformers (41),
      Erzeugen eines die Anpassungsschaltung (60) durchfließenden, veränderlichen Gleichstroms (IMS) mittels des mit der der Anpassungsschaltung (60) verbundenen Meßumformer-Speisegeräts (40),
      Regeln des in der Anpassungsschaltung (60) fließenden Gleichstroms (IMS) unter Verwendung des in der Anpassungsschaltung (60) fließenden Ausgangsstroms (IMA), so daß der Gleichstrom (IMS) gleich oder proportional zum Ausgangsstroms (IMA) ist, sowie
      Messen des Gleichstroms (IMS) und Ermitteln eines Meßwerts für die vom Meßumformer (41) erfaßte physikalische Größe.
    7. Verfahren nach Anspruch 6, das zur Verwirklichung einer galvanischen Trennung zwischen Meßumformer (41) und einer den Gleichstrom (IMS) treibenden Gleichspannungsquelle (12) folgende weitere Schritte umfaßt:
      Zerhacken des Gleichstroms (IMS),
      Übertragen des zerhackten Gleichstroms (IMS) mittels eines Übertragers (20) und
      Gleichrichten des via Übertrager (20) übertragen Gleichstroms (IMS).
    EP97122991A 1997-12-30 1997-12-30 Messumformer-Speisegerät Expired - Lifetime EP0927982B2 (de)

    Priority Applications (5)

    Application Number Priority Date Filing Date Title
    DE59710058T DE59710058D1 (de) 1997-12-30 1997-12-30 Messumformer-Speisegerät
    EP97122991A EP0927982B2 (de) 1997-12-30 1997-12-30 Messumformer-Speisegerät
    US09/217,241 US6133822A (en) 1997-12-30 1998-12-21 Transducer supply
    CA002257585A CA2257585C (en) 1997-12-30 1998-12-29 Transducer supply
    JP11000089A JP2999469B2 (ja) 1997-12-30 1999-01-04 測定変換器給電装置

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP97122991A EP0927982B2 (de) 1997-12-30 1997-12-30 Messumformer-Speisegerät

    Publications (3)

    Publication Number Publication Date
    EP0927982A1 EP0927982A1 (de) 1999-07-07
    EP0927982B1 true EP0927982B1 (de) 2003-05-07
    EP0927982B2 EP0927982B2 (de) 2011-11-23

    Family

    ID=8227901

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97122991A Expired - Lifetime EP0927982B2 (de) 1997-12-30 1997-12-30 Messumformer-Speisegerät

    Country Status (5)

    Country Link
    US (1) US6133822A (de)
    EP (1) EP0927982B2 (de)
    JP (1) JP2999469B2 (de)
    CA (1) CA2257585C (de)
    DE (1) DE59710058D1 (de)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005055546A1 (de) * 2005-11-18 2007-05-24 Endress + Hauser Wetzer Gmbh + Co Kg Vorrichtung zur Übertragung eines Stromes und/oder eines Signals
    DE102007060555A1 (de) 2007-12-13 2009-06-18 Endress + Hauser Wetzer Gmbh + Co Kg Vorrichtung zur Übertragung von elektrischer Energie und Information
    CN101535770B (zh) * 2006-10-31 2012-08-29 恩德莱斯和豪瑟尔两合公司 用于确定和/或监控至少一个过程变量的装置
    DE102018120878A1 (de) * 2018-08-27 2020-02-27 Endress+Hauser Conducta Gmbh+Co. Kg Sensor und Sensoranordnung

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10034684A1 (de) * 2000-07-17 2002-01-31 Endress Hauser Gmbh Co Meßeinrichtung zur Messung einer Prozeßvariablen
    DE10048599C1 (de) 2000-09-30 2002-04-18 Bosch Gmbh Robert Vorrichtung zur elektrischen Energieversorgung von Meldern, Steuer- und Signalisierungseinrichtungen
    DE10152653B4 (de) * 2001-10-16 2005-06-02 Pepperl + Fuchs Gmbh Vorrichtung zur eigensicheren redundanten Strom-Spannungsversorgung
    FR2863124B1 (fr) * 2003-11-27 2006-05-05 Giat Ind Sa Liaison logique pour unites de traitement
    US7152781B2 (en) * 2003-12-01 2006-12-26 Advanced Technology Materials, Inc. Manufacturing system with intrinsically safe electric information storage
    US7830155B2 (en) * 2005-10-05 2010-11-09 Chrysler Group Llc Two-wire active sensor interface circuit
    DE102005062422A1 (de) * 2005-12-27 2007-07-05 Vega Grieshaber Kg Schaltkreis-Anordnung mit Exschutz
    DE102013103454A1 (de) 2013-04-08 2014-10-09 Endress + Hauser Gmbh + Co. Kg Messumformerspeisegerät, System zum Einsatz in der Automatisierungstechnik, sowie Verfahren zum Bedienen eines solchen Systems
    DE102018126808A1 (de) * 2018-10-26 2020-04-30 Krohne Messtechnik Gmbh Feldmessgerät
    DE102021127430A1 (de) 2021-10-21 2023-04-27 Endress+Hauser SE+Co. KG Eigensicheres Feldgerät der Automatisierungstechnik

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3764880A (en) * 1972-05-08 1973-10-09 Rosemount Inc Two-wire current transmitter with isolated transducer circuit
    US3757195A (en) * 1972-08-11 1973-09-04 Honeywell Inc Isolated two wire signal transmitter
    US4292633A (en) * 1978-11-24 1981-09-29 Robertshaw Controls Company Two-wire isolated signal transmitter
    DE3139963A1 (de) * 1980-11-27 1982-06-24 Hartmann & Braun Ag, 6000 Frankfurt "schaltungsanordnung zur galvanischen trennung von analogen gleichstromsignalen"
    DE3207785A1 (de) 1982-03-04 1983-09-15 Hartmann & Braun Ag, 6000 Frankfurt Schaltungsanordnung zur speisung eines messgroessenumformers
    US5148144A (en) * 1991-03-28 1992-09-15 Echelon Systems Corporation Data communication network providing power and message information
    EP0601046B1 (de) * 1991-09-07 1998-12-23 Phoenix Petroleum Services Ltd. Gerät zur übertragung von instrumentierungssignalen über versorgungsleitungen
    EP0744724B1 (de) * 1995-05-24 2001-08-08 Endress + Hauser Gmbh + Co. Anordnung zur leitungsgebundenen Energieversorgung eines Signalgebers vom Singnalempfänger

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005055546A1 (de) * 2005-11-18 2007-05-24 Endress + Hauser Wetzer Gmbh + Co Kg Vorrichtung zur Übertragung eines Stromes und/oder eines Signals
    CN101535770B (zh) * 2006-10-31 2012-08-29 恩德莱斯和豪瑟尔两合公司 用于确定和/或监控至少一个过程变量的装置
    DE102007060555A1 (de) 2007-12-13 2009-06-18 Endress + Hauser Wetzer Gmbh + Co Kg Vorrichtung zur Übertragung von elektrischer Energie und Information
    DE102018120878A1 (de) * 2018-08-27 2020-02-27 Endress+Hauser Conducta Gmbh+Co. Kg Sensor und Sensoranordnung
    US11982548B2 (en) 2018-08-27 2024-05-14 Endress+Hauser Conducta Gmbh+Co. Kg Sensor and sensor arrangement

    Also Published As

    Publication number Publication date
    US6133822A (en) 2000-10-17
    CA2257585A1 (en) 1999-06-30
    CA2257585C (en) 2001-09-25
    EP0927982B2 (de) 2011-11-23
    EP0927982A1 (de) 1999-07-07
    JP2999469B2 (ja) 2000-01-17
    DE59710058D1 (de) 2003-06-12
    JPH11288494A (ja) 1999-10-19

    Similar Documents

    Publication Publication Date Title
    EP0927982B1 (de) Messumformer-Speisegerät
    DE2822484C3 (de) Einrichtung zur elektrischen Leistungsmessung und -überwachung
    EP0744724B1 (de) Anordnung zur leitungsgebundenen Energieversorgung eines Signalgebers vom Singnalempfänger
    DE3850239T2 (de) Gerät zur übertragung von differentiellen digitalen signalen mit eigensicherer trennung.
    EP0355532B1 (de) Anordnung zum Übertragen von Daten und einer Versorgungsspannung über eine Busleitung
    EP0244808A1 (de) Anordnung zur Signalübertragung in einer Messanordnung
    DE2953275C2 (de)
    DE2701184A1 (de) Schaltungsanordnung zur uebertragung von messwertsignalen
    DE69103634T2 (de) Fernsprechleitungsschaltung.
    DE69203446T2 (de) Verfahren und vorrichtung zur determination von gruppen.
    DE4203725C2 (de) Anordnung zur potentialgetrennten Kapazitätsmessung, insbesondere zur kapazitiven Füllstandmessung
    DE3717591C2 (de)
    EP0725995B1 (de) Fernspeiseeinrichtung
    DE2940524C2 (de) Isolationswiderstandsprüfer
    DE2903860A1 (de) Einrichtung zur gleichstromversorgung eines verbrauchers und zur gleichzeitigen informationsuebertragung ueber ein aderpaar
    DE3139963C2 (de)
    DE3043059A1 (de) Schaltung zur gemeinsamen ausnutzung eines einfachen stromweges
    EP2665195B1 (de) Vorrichtung zur Bereitstellung einer eigensicheren Versorgungsspannung und zur Übertragung von Kommunikationssignalen
    DE3146987A1 (de) Eigendrahtloses kommunikationssystem
    DE3619505A1 (de) Synchro-leistungsverstaerker und steuerschaltung zum automatischen abstimmen einer induktiven last
    EP0477660B1 (de) Schaltungsanordnung zum Empfang von Informationen, die über Starkstromleitungen übertragen werden
    EP0258214A1 (de) Einrichtung zur kontrolle von elektrischen verbrauchern in kraftfahrzeugen.
    WO1999054977A1 (de) Schutzschaltgerät
    DE2212286C3 (de) Vorrichtung zur Steuerung des Stromes im Lastkreis einer Gleichstromquelle
    DE3210710A1 (de) Fernsteuerempfaenger, insbesondere zur steuerung von elektrogeraeten

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19991223

    AKX Designation fees paid

    Free format text: DE FR GB IT

    17Q First examination report despatched

    Effective date: 20010906

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ENDRESS + HAUSER GMBH + CO.KG.

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    AK Designated contracting states

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59710058

    Country of ref document: DE

    Date of ref document: 20030612

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    ET Fr: translation filed
    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    26 Opposition filed

    Opponent name: IFM ELECTRONIC GMBH

    Effective date: 20040206

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE4

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: IFM ELECTRONIC GMBH

    Effective date: 20040206

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: ENDRESS + HAUSER (DEUTSCHLAND) HOLDING GMBH

    Owner name: ENDRESS + HAUSER GMBH + CO. KG

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: ENDRESS+HAUSER (DEUTSCHLAND) AG + CO. KG

    Owner name: ENDRESS + HAUSER GMBH + CO. KG

    APBQ Date of receipt of statement of grounds of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA3O

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20071221

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20071218

    Year of fee payment: 11

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: IFM ELECTRONIC GMBH

    Effective date: 20040206

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20081230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081230

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110104

    Year of fee payment: 14

    PUAH Patent maintained in amended form

    Free format text: ORIGINAL CODE: 0009272

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT MAINTAINED AS AMENDED

    27A Patent maintained in amended form

    Effective date: 20111123

    AK Designated contracting states

    Kind code of ref document: B2

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R102

    Ref document number: 59710058

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R102

    Ref document number: 59710058

    Country of ref document: DE

    Effective date: 20111123

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120102

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20121220

    Year of fee payment: 16

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081230

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59710058

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59710058

    Country of ref document: DE

    Effective date: 20140701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140701