Nothing Special   »   [go: up one dir, main page]

EP0911425A1 - Verfahren zum thermischen Beschichten von Substratwerkstoffen - Google Patents

Verfahren zum thermischen Beschichten von Substratwerkstoffen Download PDF

Info

Publication number
EP0911425A1
EP0911425A1 EP98120104A EP98120104A EP0911425A1 EP 0911425 A1 EP0911425 A1 EP 0911425A1 EP 98120104 A EP98120104 A EP 98120104A EP 98120104 A EP98120104 A EP 98120104A EP 0911425 A1 EP0911425 A1 EP 0911425A1
Authority
EP
European Patent Office
Prior art keywords
gas
powder particles
filler material
spraying
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98120104A
Other languages
English (en)
French (fr)
Other versions
EP0911425B1 (de
Inventor
Peter Dipl.-Ing. Heinrich
Heinrich Professor Dr.-Ing. Kreye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7846743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0911425(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0911425A1 publication Critical patent/EP0911425A1/de
Application granted granted Critical
Publication of EP0911425B1 publication Critical patent/EP0911425B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a method for coating substrate materials thermal spraying, a powdered filler material using a gas is passed onto the surface of the substrate material to be coated without the powder particles of the filler material are melted in the gas jet.
  • Thermal spraying for coating is known as autogenous as process variants Flame spraying or high-speed flame spraying, arc spraying, plasma spraying, detonation spraying and laser spraying.
  • Thermal spray processes are essentially characterized in that they enable evenly applied coatings.
  • Coatings can be applied by varying the spray materials can be adapted to different requirements.
  • the spray materials can be processed in the form of wires, rods or as powder. With thermal In addition, thermal post-treatment can be provided for spraying.
  • Air In the cold gas process according to the prior art (EP 0 484 533 B1) is used as the gas Air, helium or a mixture of air and helium are used.
  • Air the powder particles reach a speed of 300 to 600 m / s when in use from helium to a speed of 1000 to 1200 m / s and when using a Air / helium mixture to a speed in the range of 300 to 1200 m / s accelerates.
  • the particle speed can also be in the range between 300 and 1200 m / s can be controlled by heating the gas from 30 to 400 ° C.
  • the gas is used at a pressure of about 5 to about 20 bar. It becomes a powder with a particle size of 1 to 50 microns used.
  • the cold gas process has compared to conventional thermal processes Spraying a number of advantages.
  • the thermal action and force action The surface of the substrate material is reduced, causing unwanted changes the material properties of the substrate material prevented or at least can be significantly reduced. Likewise, changes in the Structure of the substrate material can be prevented.
  • the present invention is based on the object of the method mentioned at the outset further training, and to improve the quality of the coatings and / or to increase the applicability and performance of the cold gas spray process.
  • the powdered filler material carrying gas a nitrogen-containing, oxygen-free gas, argon, neon, Krypton, xenon, a gas containing hydrogen, a gas containing carbon, in particular carbon dioxide, water vapor or mixtures of the aforementioned gases contains.
  • Gas containing nitrogen in the context of the present invention is nitrogen or to understand a gas mixture containing nitrogen.
  • gases are called gases which are free of are elemental oxygen, this indication referring to technical purities related, so contaminations of elemental oxygen are allowed.
  • the statement that the powder particles of the filler material did not melt in the gas jet in the context of the present invention should also mean that the particles in the gas jet are essentially not melted. This can be done ensure that the temperature of the gas jet is below the Melting point of the powder particles of the filler material. But even at temperatures of the gas jet from 100 K to 200 K above the melting point of the Powder particles of the filler material can be due to the extremely short residence time Particles in the gas jet melt or melt in the range of milliseconds the powder particles can be prevented.
  • the importance of higher gas temperatures or the advantage of heating the gas is that in hotter gases the speed of sound is higher and therefore also the particle speed becomes comparatively larger.
  • the Coatings produced according to the invention adhere very well to a wide variety of products Substrate materials, for example on metal, metal alloys, ceramics, glass, Plastics and composites.
  • the manufactured with the inventive method Coatings are of high quality and have an extremely low level Porosity and have extremely smooth spray surfaces, so that usually a rework is unnecessary.
  • the gases used according to the invention have a sufficient density and speed of sound to achieve the required high speeds to be able to guarantee the powder particles.
  • the gas can contain inert and / or reactive gases.
  • the method according to the invention enables with these gases, the production of very dense and particularly uniform coatings, which are also characterized by their hardness and strength.
  • the coatings produced according to the invention are extremely small Oxide levels. They have no or at least no pronounced texture, i.e. it there is no preferred orientation of the individual grains or crystals.
  • the substrate will furthermore not heated by a flame or a plasma, so that none or only extremely small changes to the substrate and no distortion of workpieces due to thermal stresses.
  • Helium can advantageously be added to the gas.
  • the proportion of helium in the total gas can be up to 90 vol .-%.
  • a helium content of 10 to is preferred 50 vol .-% observed in the gas mixture.
  • the gas jet can be heated to a temperature in the range between 30 and 800 ° C are, all known powdery spray materials are used can.
  • the invention is particularly suitable for wettable powders made of metals, metal alloys, Hard materials, ceramics and / or plastics.
  • the temperature of the gas jet selected between 300 and 500 ° C.
  • These gas temperatures are particularly suitable for the use of reactive gases or reactive Gas components.
  • reactive gases or gas components are in particular Hydrogen admixtures, carbon-containing gases or nitrogenous gases mention.
  • a gas jet with a pressure of 5 to 50 bar used. Above all, working with higher gas pressures brings additional Advantages because the energy transfer in the form of kinetic energy is increased.
  • the Processes according to the invention are suitable for gas pressures in the range from 21 to 50 bar. Excellent spray results were achieved, for example, with gas pressures of around 35 cash achieved.
  • the high pressure gas supply can, for example, by the in the German patent application DE 197 16 414.5 methods described there and described gas supply system can be ensured.
  • the powder particles can run at one speed can be accelerated from 300 to 1600 m / s. Suitable in the process according to the invention speeds of the powder particles between 1000 and 1600 m / s, particularly preferably speeds of the powder particles between 1250 and 1600 m / s, because in this case the energy transfer in the form of kinetic Energy is particularly high.
  • the powders used in the process according to the invention preferably have Particle sizes from 1 to 100 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Beschichten von Substratwerkstoffen durch thermisches Spritzen, wobei ein pulverförmiger Zusatzwerkstoff mittels eines Gases auf die zu beschichtende Oberfläche des Substratwerkstoffes geleitet wird, ohne daß die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl geschmolzen werden. Dieses Verfahren, eine Weiterentwicklung des Hochgeschwindigkeits-Flammspritzens mit Pulver, wird auch als Kaltgasspritzen bezeichnet. Erfindungsgemäß enthält das Gas ein Stickstoff enthaltendes, sauerstofffreies Gas, Argon, Neon, Krypton, Xenon, ein Wasserstoff enthaltendes Gas, ein kohlenstoffhaltiges Gas, insbesondere Kohlendioxid, Wasserdampf oder Mischungen der vorgenannten Gase. Mit Vorteil kann dem Gas Helium zugemischt werden, bevorzugt bis zu einem Heliumanteil von bis zu 90 Vol.-% am Gesamtgas. Der Gasstrahl kann auf eine Temperatur im Bereich zwischen 30 und 800 °C erwärmt werden, bevorzugt im Bereich zwischen 300 und 500 °C. Der Gasstrahl wird mit einem Druck von 5 bis 50 bar eingesetzt. Die Pulverpartikel werden auf eine Geschwindigkeit von 300 bis 1600 m/s beschleunigt.

Description

Die Erfindung betrifft ein Verfahren zum Beschichten von Substratwerkstoffen durch thermisches Spritzen, wobei ein pulverförmiger Zusatzwerkstoff mittels eines Gases auf die zu beschichtende Oberfläche des Substratwerkstoffes geleitet wird, ohne daß die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl geschmolzen werden.
Das thermische Spritzen zum Beschichten kennt als Verfahrensvarianten das autogene Flammspritzen oder das Hochgeschwindigkeits-Flammspritzen, das Lichtbogenspritzen, das Plasmaspritzen, das Detonationsspritzen und das Laserspritzen.
Thermische Spritzverfahren werden in allgemeiner Form beispielsweise in
  • Übersicht und Einführung in das "Thermische Spritzen", Peter Heinrich, Linde-Berichte aus Technik und Wissenschaft, 52/1982, Seiten 29 bis 37,
    oder
  • Thermisches Spritzen - Fakten und Stand der Technik, Peter Heinrich, Jahrbuch Oberflächentechnik 1992, Band 48, 1991, Seiten 304 bis 327, Metall-Verlag GmbH,
    beschrieben.
Thermische Spritzverfahren zeichnen sich im wesentlichen dadurch aus, daß sie gleichmäßig aufgetragene Beschichtungen ermöglichen. Durch thermische Spritzverfahren aufgetragene Beschichtungen können durch Variation der Spritzmaterialien an unterschiedliche Anforderungen angepaßt werden. Die Spritzmaterialien können dabei in Form von Drähten, Stäben oder als Pulver verarbeitet werden. Beim thermischen Spritzen kann zusätzlich eine thermische Nachbehandlung vorgesehen sein.
In jüngerer Zeit wurde darüber hinaus ein weiteres thermisches Spritzverfahren entwickelt, welches auch als Kaltgasspritzen bezeichnet wird. Es handelt sich dabei um eine Art Weiterentwicklung des Hochgeschwindigkeits-Flammspritzens mit Pulver. Dieses Verfahren ist beispielsweise in der europäischen Patentschritt EP 0 484 533 B1 beschrieben. Beim Kaltgasspritzen kommt ein Zusatzwerkstoff in Pulverform zum Einsatz. Die Pulverpartikel werden beim Kaltgasspritzen jedoch nicht im Gasstrahl geschmolzen. Vielmehr liegt die Temperatur des Gasstrahles unterhalb des Schmelzpunktes der Zusatzwerkstoffpulverpartikel (EP 0 484 533 B1). Im Kaltgasspritzverfahren wird also ein im Vergleich zu den herkömmlichen Spritzverfahren "kaltes" bzw. ein vergleichsweise kälteres Gas verwendet. Gleichwohl wird das Gas aber ebenso wie in den herkömmlichen Verfahren erwärmt, aber in der Regel lediglich auf Temperaturen unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes.
Im Kaltgasverfahren nach dem Stand der Technik (EP 0 484 533 B1) wird als Gas Luft, Helium oder ein Gemisch aus Luft und Helium eingesetzt. Beim Einsatz von Luft werden die Pulverpartikel auf eine Geschwindigkeit von 300 bis 600 m/s, beim Einsatz von Helium auf eine Geschwindigkeit von 1000 bis 1200 m/s und beim Einsatz eines Luft/Helium-Gemisches auf eine Geschwindigkeit im Bereich von 300 bis 1200 m/s beschleunigt. Die Partikelgeschwindigkeit kann auch im Bereich zwischen 300 und 1200 m/s durch Erhitzen des Gases von 30 bis 400 °C gesteuert werden. Das Gas wird mit einem Druck von etwa 5 bis etwa 20 bar eingesetzt. Es wird ein Pulver mit einer Partikelgröße von 1 bis 50 µm verwendet.
Das Kaltgasverfahren besitzt gegenüber herkömmlichen Verfahren des thermischen Spritzens eine Reihe von Vorteilen. Die thermische Einwirkung und Kraftwirkung auf die Oberfläche des Substratwerkstoffes ist verringert, wodurch ungewollte Veränderungen der Materialeigenschaften des Substratwerkstoffes verhindert oder zumindest merklich verringert werden können. Ebenso können weitgehend Änderungen in der Struktur des Substratwerkstoffs unterbunden werden.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren weiterzubilden, und die Qualität der Beschichtungen zu verbessern und/oder die Anwendbarkeit und Leistungsfähigkeit des Kaltgaspritzverfahrens zu vergrößern.
Die gestellte Aufgabe wird dadurch gelöst, daß das den pulverförmigen Zusatzwerkstoff tragende Gas ein Stickstoff enthaltendes, sauerstofffreies Gas, Argon, Neon, Krypton, Xenon, ein Wasserstoff enthaltendes Gas, ein kohlenstoffhaltiges Gas, insbesondere Kohlendioxid, Wasserdampf oder Mischungen der vorgenannten Gase enthält.
Unter Stickstoff enthaltendes Gas sind im Rahmen der vorliegenden Erfindung Stickstoff oder ein Stickstoff enthaltendes Gasgemisch zu verstehen. Als sauerstofffreie Gase werden im Rahmen der vorliegenden Erfindung Gase bezeichnet, die frei von elementarem Sauerstoff sind, wobei sich diese Angabe auf technische Reinheiten bezieht, also Verunreinigungen von elementarem Sauerstoff zugelassen sind.
Die Angabe, daß die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl nicht geschmolzen werden, soll im Rahmen der vorliegenden Erfindung auch bedeuten, daß die Partikel im Gasstrahl im wesentlichen nicht angeschmolzen werden. Dies kann dadurch sichergestellt werden, daß die Temperatur des Gasstrahles unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes liegt. Aber selbst bei Temperaturen des Gasstrahles von 100 K bis zu 200 K oberhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes kann aufgrund der extrem kurzen Verweilzeit der Partikel im Gasstrahl im Bereich von Millisekunden ein Schmelzen oder auch ein Anschmelzen der Pulverpartikel verhindert werden. Die Bedeutung der höheren Gastemperaturen bzw. der Vorteil der Erwärmung des Gases liegt darin, daß in heißeren Gasen die Schallgeschwindigkeit höher ist und dadurch auch die Partikelgeschwindigkeit vergleichsweise größer wird.
Überraschenderweise hat sich gezeigt, daß durch den Einsatz von unterschiedlichen Gasen zum Beschleunigen und Tragen des pulverförmigen Zusatzwerkstoffes die Flexibilität und Wirksamkeit des Verfahrens wesentlich vergrößert werden kann. Die erfindungsgemäß hergestellten Beschichtungen haften sehr gut auf den verschiedensten Substratwerkstoffen, beispielsweise auf Metall, Metallegierungen, Keramik, Glas, Kunststoffe und Verbundwerkstoffe. Die mit dem erfindungsgemäßen Verfahren hergestellten Beschichtungen sind von hoher Güte, weisen eine außerordentlich geringe Porosität auf und besitzen extrem glatte Spritzoberflächen, so daß sich in der Regel eine Nacharbeitung erübrigt. Die erfindungsgemäß eingesetzten Gase besitzen eine ausreichende Dichte und Schallgeschwindigkeit, um die erforderlichen hohen Geschwindigkeiten der Pulverpartikel gewährleisten zu können. Das Gas kann dabei inerte und/oder reaktive Gase enthalten. Das erfindungsgemäße Verfahren ermöglicht mit diesen Gasen die Herstellung von sehr dichten und besonders gleichmäßigen Beschichtungen, welche sich außerdem durch ihre Härte und Festigkeit auszeichnen. Die erfindungsgemäß hergestellten Beschichtungen weisen extrem geringe Oxidgehalte auf. Sie besitzen keine oder zumindest keine ausgeprägte Textur, d.h. es gibt keine Vorzugsorientierung der einzelnen Körner oder Kristalle. Das Substrat wird ferner nicht durch eine Flamme oder ein Plasma erwärmt, so daß keine oder nur extrem geringe Veränderungen am Substrat und auch kein Verzug von Werkstücken durch Wärmespannungen auftreten.
Mit Vorteil kann dem Gas Helium zugemischt werden. Der Anteil des Helium am Gesamtgas kann bis zu 90 Vol.-% betragen. Bevorzugt wird ein Heliumanteil von 10 bis 50 Vol.-% im Gasgemisch eingehalten.
Der Gasstrahl kann auf eine Temperatur im Bereich zwischen 30 und 800 °C erwärmt werden, wobei alle bekannten pulverförmigen Spritzmaterialien eingesetzt werden können. Die Erfindung eignet sich insbesondere für Spritzpulver aus Metallen, Metalllegierungen, Hartstoffen, Keramiken und/oder Kunststoffen.
In Ausgestaltung des erfindungsgemäßen Verfahrens wird die Temperatur des Gasstrahles im Bereich zwischen 300 und 500 °C gewählt. Diese Gastemperaturen eignen sich insbesondere für den Einsatz von reaktiven Gasen oder reaktiven Gasbestandteilen. Als reaktive Gase oder Gasbestandteile sind insbesondere Wasserstoffzumischungen, kohlenstoffhaltige Gase oder stickstoffhaltige Gase zu erwähnen.
In Weiterbildung der Erfindung wird ein Gasstrahl mit einem Druck von 5 bis 50 bar eingesetzt. Vor allem das Arbeiten mit höheren Gasdrücken bringt zusätzliche Vorteile, da die Energieübertragung in Form von kinetischer Energie erhöht wird. Im erfindungsgemäßen Verfahren eignen sich Gasdrücke im Bereich von 21 bis 50 bar. Hervorragende Spritzergebnisse wurden beispielsweise mit Gasdrücken von etwa 35 bar erzielt. Die Hochdruckgasversorgung kann beispielsweise durch das in der deutschen Patentanmeldung DE 197 16 414.5 beschriebene Verfahren bzw. die dort beschriebene Gasversorgungsanlage sichergestellt werden.
Im erfindungsgemäßen Verfahren können die Pulverpartikel auf eine Geschwindigkeit von 300 bis 1600 m/s beschleunigt werden. Im erfindungsgemäßen Verfahren eignen sich dabei insbesondere Geschwindigkeiten der Pulverpartikel zwischen 1000 und 1600 m/s, besonders bevorzugt Geschwindigkeiten der Pulverpartikel zwischen 1250 und 1600 m/s, da in diesem Fall die Energieübertragung in Form von kinetischer Energie besonders hoch ausfällt.
Die im erfindungsgemäßen Verfahren eingesetzten Pulver besitzen bevorzugt Partikelgrößen von 1 bis 100 µm.
Zur Durchführung des erfindungsgemäßen Verfahrens können alle geeigneten Vorrichtungen eingesetzt werden. Insbesondere gilt dies für die in der EP 0 484 533 B1 beschriebene Vorrichtung.

Claims (7)

  1. Verfahren zum Beschichten von Substratwerkstoffen durch thermisches Spritzen, wobei ein pulverförmiger Zusatzwerkstoff mittels eines Gases auf die zu beschichtende Oberfläche des Substratwerkstoffes geleitet wird, ohne daß die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl geschmolzen werden,
    dadurch gekennzeichnet,
    daß das Gas ein Stickstoff enthaltendes sauerstofffreies Gas, Argon, Neon, Krypton, Xenon, ein Wasserstoff enthaltendes Gas, ein kohlenstoffhaltiges Gas, insbesondere Kohlendioxid, Wasserdampf oder Mischungen der vorgenannten Gase enthält.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem Gas Helium zugemischt ist.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Temperatur des Gasstrahles im Bereich zwischen 30 und 800 °C liegt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Temperatur des Gasstrahles im Bereich zwischen 300 und 500 °C liegt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Gasstrahl einen Druck von 5 bis 50 bar aufweist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Pulverpartikel auf eine Geschwindigkeit von 300 bis 1600 m/s beschleunigt werden.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Pulverpartikel auf eine Geschwindigkeit zwischen 1000 und 1600 m/s beschleunigt werden.
EP98120104A 1997-10-27 1998-10-23 Verfahren zum thermischen Beschichten von Substratwerkstoffen Revoked EP0911425B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19747386A DE19747386A1 (de) 1997-10-27 1997-10-27 Verfahren zum thermischen Beschichten von Substratwerkstoffen
DE19747386 1997-10-27

Publications (2)

Publication Number Publication Date
EP0911425A1 true EP0911425A1 (de) 1999-04-28
EP0911425B1 EP0911425B1 (de) 2003-01-22

Family

ID=7846743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98120104A Revoked EP0911425B1 (de) 1997-10-27 1998-10-23 Verfahren zum thermischen Beschichten von Substratwerkstoffen

Country Status (2)

Country Link
EP (1) EP0911425B1 (de)
DE (2) DE19747386A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911426B1 (de) * 1997-10-27 2002-12-18 Linde AG Herstellung von Formteilen
EP1332799A1 (de) * 2002-01-31 2003-08-06 Flumesys GmbH Fluidmess- und Systemtechnik Vorrichtung und Verfahren zum thermischen Spritzen
EP1382720A2 (de) * 2002-06-04 2004-01-21 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kaltgasspritzen
US6726953B2 (en) * 1999-12-27 2004-04-27 Sintobrator, Ltd. Method for depositing metal having high corrosion resistance and low contact resistance against carbon on separator for fuel cell
EP0911424B1 (de) * 1997-10-27 2004-08-18 Linde AG Herstellung von selbsttragenden Verbundkörpern
WO2005033353A2 (de) * 2003-10-08 2005-04-14 Miba Gleitlager Gmbh Legierung, insbesondere für eine gleitschicht
WO2006032522A1 (de) * 2004-09-25 2006-03-30 Abb Technology Ag Verfahren zur herstellung einer abbrandfesten beschichtung, sowie entsprechende schirmung für vakuumschaltkammern
DE102008006495A1 (de) 2008-01-29 2009-07-30 Behr-Hella Thermocontrol Gmbh Schaltungsträger, insbesondere Leiterkarte für elektrische Schaltungen
DE102008009106A1 (de) 2008-02-14 2009-08-27 Behr-Hella Thermocontrol Gmbh Schaltungsträger, insbesondere Leiterkarte für elektrische Schaltungen
US7939777B2 (en) 2005-09-13 2011-05-10 Abb Technology Ag Vacuum interrupter chamber
WO2013088007A1 (fr) 2011-12-12 2013-06-20 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique
DE102015102908A1 (de) * 2015-03-02 2016-09-08 Schuler Pressen Gmbh Verfahren zum Fertigen eines Formteils, Formteil, Werkzeug und Presse mit einem Werkzeug

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309018B3 (de) * 2003-03-01 2004-09-30 Newspray Gmbh Verfahren zum Herstellen eines Kochgeschirrs für einen Induktionsherd
DE102006008027B3 (de) * 2006-02-16 2007-09-06 Siemens Ag Bauteil mit einer nanoskalige Strukturelemente aufweisenden Schicht und Verfahren zur Herstellung dieser Schicht
DE102006047101B4 (de) 2006-09-28 2010-04-01 Siemens Ag Verfahren zum Einspeisen von Partikeln eines Schichtmaterials in einen Kaltgasspritzvorgang
DE102007017753A1 (de) * 2007-04-16 2008-10-23 Innovaris Gmbh & Co. Kg Herstellung großer Bauteile durch kinetisches Kaltgaskompaktieren von Werkstoffpartikeln
DE102010022597A1 (de) 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zum Herstellen einer Schicht mittels Kaltgasspritzen und Verwendung einer solchen Schicht
DE102011052119A1 (de) 2011-07-25 2013-01-31 Eckart Gmbh Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren
DE102011052121A1 (de) 2011-07-25 2013-01-31 Eckart Gmbh Beschichtungsverfahren nutzend spezielle pulverförmige Beschichtungsmaterialien und Verwendung derartiger Beschichtungsmaterialien
EP2737100B1 (de) 2011-07-25 2018-12-19 Eckart GmbH Verfahren zur substratbeschichtung und verwendung additivversehener, pulverförmiger beschichtungsmaterialien in derartigen verfahren
DE102011052120A1 (de) 2011-07-25 2013-01-31 Eckart Gmbh Verwendung speziell belegter, pulverförmiger Beschichtungsmaterialien und Beschichtungsverfahren unter Einsatz derartiger Beschichtungsmaterialien
BR112014001043B1 (pt) 2011-08-09 2021-05-25 Saint-Gobain Glass France compósitos de contato elétrico, estrutura elétrica e métodos para produzir um compósito de contato elétrico
DE102011084724A1 (de) * 2011-10-18 2013-04-18 Robert Bosch Gmbh Verfahren zur Herstellung einer magnetischen Trennung für ein Magnetventil
DE102012212682A1 (de) * 2012-07-19 2014-01-23 Siemens Aktiengesellschaft Verfahren zum Kaltgasspritzen mit einem Trägergas
DE102012023210A1 (de) 2012-11-28 2014-05-28 Wieland-Werke Ag Kupferband zur Herstellung von Leiterplatten
DE102012023212B3 (de) 2012-11-28 2014-01-30 Wieland-Werke Ag Elektrisch leitendes Bauteil mit verbesserter Haftung und Verfahren zu seiner Herstellung, sowie zur Herstellung eines Werkstoffverbunds
EP2959992A1 (de) 2014-06-26 2015-12-30 Eckart GmbH Verfahren zur Herstellung eines partikelhaltigen Aerosols
DE202020106328U1 (de) 2019-11-08 2021-02-10 Additive Space Gmbh Behälter
EP4340540A1 (de) 2022-09-13 2024-03-20 Saint-Gobain Glass France Verfahren zum herstellen einer fahrzeugscheibe mit elektrisch leitfähiger sprühschicht

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003167A (en) * 1931-01-09 1935-05-28 Gen Electric Apparatus for fusing powdered materials
DE876787C (de) * 1949-04-07 1953-05-18 Deutsche Edelstahlwerke Ag Verfahren zum Erzeugen eines metallischen Spritzstrahles
GB882582A (en) * 1957-10-02 1961-11-15 William Edward Ballard Improvements in or relating to methods for applying coatings of substances to surfaces
US3195217A (en) * 1959-08-14 1965-07-20 Westinghouse Electric Corp Applying layers of materials to semiconductor bodies
DE2646554A1 (de) * 1976-10-15 1978-04-20 Castolin Sa Verfahren zum beschichten von metallischen werkstoffen
GB2051613A (en) * 1979-06-11 1981-01-21 United Technologies Corp Plasma spray method and apparatus
CH658045A5 (en) * 1982-05-12 1986-10-15 Castolin Sa Process for the production of glass moulds for machines for the production of hollow glass
EP0484533A1 (de) * 1990-05-19 1992-05-13 Anatoly Nikiforovich Papyrin Beschichtungsverfahren und -vorrichtung
WO1995007768A1 (fr) * 1993-09-15 1995-03-23 Societe Europeenne De Propulsion Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en ×uvre

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806177A1 (de) * 1988-02-26 1989-09-07 Siemens Ag Verfahren zum aufbringen von schichten aus hochtemperatur-supraleitendem material auf substrate
DE4413306C1 (de) * 1994-04-16 1995-10-19 Daimler Benz Aerospace Ag Verfahren zur Verstärkung eines Bauteils und Anwendung des Verfahrens
DE4427262C1 (de) * 1994-07-30 1995-03-23 Mtu Muenchen Gmbh Verfahren und Vorrichtung zum Flammspritzen
DE19520885C2 (de) * 1995-06-08 1999-05-20 Daimler Benz Ag Verfahren zum thermischen Spritzen von Schichten aus Metallegierungen oder Metallen und seine Verwendung
DE19747384A1 (de) * 1997-10-27 1999-04-29 Linde Ag Herstellung von Verbundkörpern
DE19747385A1 (de) * 1997-10-27 1999-04-29 Linde Ag Herstellung von Formteilen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003167A (en) * 1931-01-09 1935-05-28 Gen Electric Apparatus for fusing powdered materials
DE876787C (de) * 1949-04-07 1953-05-18 Deutsche Edelstahlwerke Ag Verfahren zum Erzeugen eines metallischen Spritzstrahles
GB882582A (en) * 1957-10-02 1961-11-15 William Edward Ballard Improvements in or relating to methods for applying coatings of substances to surfaces
US3195217A (en) * 1959-08-14 1965-07-20 Westinghouse Electric Corp Applying layers of materials to semiconductor bodies
DE2646554A1 (de) * 1976-10-15 1978-04-20 Castolin Sa Verfahren zum beschichten von metallischen werkstoffen
GB2051613A (en) * 1979-06-11 1981-01-21 United Technologies Corp Plasma spray method and apparatus
CH658045A5 (en) * 1982-05-12 1986-10-15 Castolin Sa Process for the production of glass moulds for machines for the production of hollow glass
EP0484533A1 (de) * 1990-05-19 1992-05-13 Anatoly Nikiforovich Papyrin Beschichtungsverfahren und -vorrichtung
WO1995007768A1 (fr) * 1993-09-15 1995-03-23 Societe Europeenne De Propulsion Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en ×uvre

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEICHIRO KASHU: "deposition of ultrafine particles using a gas jet", JAPANESE JOURNL OFAPLIED PHYSICS, vol. 23, no. 12, December 1984 (1984-12-01), tokyo,japan, pages l910 - l912, XP002092246 *
TOKAREV A O: "STRUCTURE OF ALUMINUM POWDER COATINGS PREPARED BY COLD GASDYNAMIC SPRAYING", METAL SCIENCE AND HEAT TREATMENT, vol. 38, no. 3/04, March 1996 (1996-03-01), pages 136 - 139, XP000698921 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911424B1 (de) * 1997-10-27 2004-08-18 Linde AG Herstellung von selbsttragenden Verbundkörpern
EP0911426B1 (de) * 1997-10-27 2002-12-18 Linde AG Herstellung von Formteilen
US6726953B2 (en) * 1999-12-27 2004-04-27 Sintobrator, Ltd. Method for depositing metal having high corrosion resistance and low contact resistance against carbon on separator for fuel cell
EP1332799A1 (de) * 2002-01-31 2003-08-06 Flumesys GmbH Fluidmess- und Systemtechnik Vorrichtung und Verfahren zum thermischen Spritzen
EP1382720A2 (de) * 2002-06-04 2004-01-21 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kaltgasspritzen
EP1382720A3 (de) * 2002-06-04 2005-12-07 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kaltgasspritzen
US7879453B2 (en) 2003-10-08 2011-02-01 Miba Gleitlager Gmbh Alloy, in particular for a bearing coating
WO2005033353A2 (de) * 2003-10-08 2005-04-14 Miba Gleitlager Gmbh Legierung, insbesondere für eine gleitschicht
WO2005033353A3 (de) * 2003-10-08 2006-01-26 Miba Gleitlager Gmbh Legierung, insbesondere für eine gleitschicht
US8147981B2 (en) 2003-10-08 2012-04-03 Miba Gleitlager Gmbh Alloy, in particular for a bearing coating
WO2006032522A1 (de) * 2004-09-25 2006-03-30 Abb Technology Ag Verfahren zur herstellung einer abbrandfesten beschichtung, sowie entsprechende schirmung für vakuumschaltkammern
US7758917B2 (en) 2004-09-25 2010-07-20 Abb Technology Ag Method of producing an arc-erosion resistant coating and corresponding shield for vacuum interrupter chambers
US7939777B2 (en) 2005-09-13 2011-05-10 Abb Technology Ag Vacuum interrupter chamber
DE102008006495A1 (de) 2008-01-29 2009-07-30 Behr-Hella Thermocontrol Gmbh Schaltungsträger, insbesondere Leiterkarte für elektrische Schaltungen
DE102008009106B4 (de) * 2008-02-14 2010-04-08 Behr-Hella Thermocontrol Gmbh Leiterkarte für elektrische Schaltungen
DE102008009106A1 (de) 2008-02-14 2009-08-27 Behr-Hella Thermocontrol Gmbh Schaltungsträger, insbesondere Leiterkarte für elektrische Schaltungen
WO2013088007A1 (fr) 2011-12-12 2013-06-20 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de revêtement de surface par projection de particules au moyen d'un fluide vecteur cryogénique
DE102015102908A1 (de) * 2015-03-02 2016-09-08 Schuler Pressen Gmbh Verfahren zum Fertigen eines Formteils, Formteil, Werkzeug und Presse mit einem Werkzeug

Also Published As

Publication number Publication date
EP0911425B1 (de) 2003-01-22
DE59806988D1 (de) 2003-02-27
DE19747386A1 (de) 1999-04-29

Similar Documents

Publication Publication Date Title
EP0911425B1 (de) Verfahren zum thermischen Beschichten von Substratwerkstoffen
EP0911426B1 (de) Herstellung von Formteilen
EP1382720B1 (de) Verfahren und Vorrichtung zum Kaltgasspritzen
DE2632739C3 (de) Verfahren zum thermischen Aufspritzen eines selbsthaftenden Nickel-Aluminium- oder-Nickel-Titan-Überzugs auf ein Metallsubstrat
DE19942916A1 (de) Herstellen von aufschäumbaren Metallkörpern und Metallschäumen
DE1924071B1 (de) Metallischer UEberzug fuer Nickel- und Kobalt-Basislegierungen und Verwendung des metallischen UEberzuges fuer Gasturbinen-Maschinenteile
DE10224777A1 (de) Verfahren und Vorrichtung zum Kaltgasspritzen
EP2737101B1 (de) Beschichtungsverfahren nutzend spezielle pulverförmige beschichtungsmaterialien und verwendung derartiger beschichtungsmaterialien
EP0915184A1 (de) Verfahren zur Herstellung einer keramischen Schicht auf einem metallischen Grundwerkstoff
CH654595A5 (de) Verfahren zur herstellung schuetzender oxidschichten auf einer werkstueckoberflaeche.
EP0924315B1 (de) Heissgaserzeugung beim thermischen Spritzen
EP1317995A1 (de) Verfahren und Vorrichtung zur Glättung der Oberfläche einer Gasturbinenschaufel
EP2009132A1 (de) Verfahren zur Herstellung einer funktionalen Schicht, Beschichtungsmaterial, Verfahren zu seiner Herstellung sowie funktionale Schicht
EP0911424B1 (de) Herstellung von selbsttragenden Verbundkörpern
EP0798402A1 (de) Oxidationsschutzschicht
EP0263469B1 (de) Verfahren zum thermischen Beschichten von Oberflächen
EP0911423B1 (de) Verfahren zum Verbinden von Werkstücken
EP0990711B1 (de) Bearbeitung von mittels thermischen Spritzens zu beschichtender Oberflächen
EP2617868B1 (de) Verfahren und Vorrichtung zum thermischen Spritzen
EP1082993A2 (de) Verbund aus einer Kompositmembran
EP1995345A1 (de) Verfahren zur Herstellung eines hochtemperaturbeständigen Werkstoffs
DE102017222182A1 (de) Verfahren zum Aufbringen einer Titanaluminidlegierung, Titanaluminidlegierung und Substrat umfassend eine Titanaluminidlegierung
CN114990541A (zh) 高硬度材料涂层结构及其制备方法
CN114000142A (zh) 一种钛合金炮口制退器喷孔壁强化方法
CH704074A2 (de) Verfahren zur Herstellung von Beschichtungen aus feinkörnigen Pulvern.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990914

AKX Designation fees paid

Free format text: CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE TECHNISCHE GASE GMBH

17Q First examination report despatched

Effective date: 20001012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GAS AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59806988

Country of ref document: DE

Date of ref document: 20030227

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030411

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20030802

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAD Information modified related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSCREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LINDE AKTIENGESELLSCHAFT

Free format text: LINDE AG#ABRAHAM-LINCOLN-STRASSE 21#65189 WIESBADEN (DE) -TRANSFER TO- LINDE AKTIENGESELLSCHAFT#LEOPOLDSTRASSE 252#80807 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LINDE AG

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101020

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101020

Year of fee payment: 13

Ref country code: CH

Payment date: 20101012

Year of fee payment: 13

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101020

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20110124

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20110124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20030122

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20030122