EP0869519A1 - Planar magnetic motor and magnetic microactuator with such a motor - Google Patents
Planar magnetic motor and magnetic microactuator with such a motor Download PDFInfo
- Publication number
- EP0869519A1 EP0869519A1 EP98400763A EP98400763A EP0869519A1 EP 0869519 A1 EP0869519 A1 EP 0869519A1 EP 98400763 A EP98400763 A EP 98400763A EP 98400763 A EP98400763 A EP 98400763A EP 0869519 A1 EP0869519 A1 EP 0869519A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- substrate
- micro
- support frame
- actuator according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/005—Details of electromagnetic relays using micromechanics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/005—Details of electromagnetic relays using micromechanics
- H01H2050/007—Relays of the polarised type, e.g. the MEMS relay beam having a preferential magnetisation direction
Definitions
- the present invention relates to a planar motor magnetic as well as a micro-actuator comprising a such engine.
- the invention finds a particularly application advantageous in the field of actuators, such as example micro-valves, micro-relays, micro-motors and more generally all micro-systems having a movement function.
- micro-actuators existing work on the principles of electrostatic, piezoelectric or thermal.
- the field of micro-actuators magnetic remains little exploited.
- micro-actuators existing relay type are not fully satisfactory, especially the currents necessary for actuation are often relatively high by the fact that the number of turns of the coils that make them up is small.
- a first technical problem to be solved by the object of the present invention is to provide a magnetic planar motor which would increase the magnetic force developed while keeping a reasonable surface.
- the solution to this first technical problem consists, according to the present invention, in that said motor planar magnetic has a plurality of poles magnetic ferromagnetic material placed at center of planar coils made up of at least one layer of turns formed on the surface of a substrate made of ferromagnetic material, said turns being wound and connected together so that add the magnetic fluxes generated by said magnetic poles.
- a second technical problem to be solved by the object of the present invention is to provide a micro-actuator magnetic with planar motor magnetic according to the invention, which would have in particular a compact mobile mechanical element in order to reduce the size of the system.
- said magnetic microactuator also includes a mechanical element with movable contact, comprising a support frame placed on said surface of the substrate magnetic through a spacer, a blade flexible arranged substantially parallel to the surface of said substrate and one end of which is fixed said support frame, a material core ferromagnetic carried by said flexible blade, and a movable contact secured to said ferromagnetic core, located next to a fixed contact fitted on the surface of the substrate of said magnetic planar motor.
- a mechanical element with movable contact comprising a support frame placed on said surface of the substrate magnetic through a spacer, a blade flexible arranged substantially parallel to the surface of said substrate and one end of which is fixed said support frame, a material core ferromagnetic carried by said flexible blade, and a movable contact secured to said ferromagnetic core, located next to a fixed contact fitted on the surface of the substrate of said magnetic planar motor.
- the magnetic micro-actuator according to the invention has a number of advantages. On the one hand, it constitutes a miniature and planar device little bulky with the possibility of adding a circuit integrated. On the other hand, the thickness of the spacer allows direct control of the insulation voltage of the micro-actuator acting as a relay. Moreover, the mobile and fixed contacts can be made in thin, integrated layer.
- said spacer is produced by deposition on the substrate surface of the magnetic planar motor of a conductive material, said support frame being attached to said spacer through conductive protrusions.
- the embodiment implements the technology so-called "flip-chip” (flip-chip in English), well known in the field of connector technology semiconductor pads, or “chips”.
- said spacer is made of insulating material and integrated into said support frame, said flexible blade being conductive and electrically connected to the substrate surface of the magnetic planar motor by its end fixed on the support frame.
- FIG. 1 is shown in side view a motor planar magnetic 100 made up of planar coils 110, 120 each comprising four layers of turns, structured on the surface of a ferromagnetic substrate 130.
- Each coil 110, 120 has in its center a magnetic pole 111, 121 made of ferromagnetic material such as ferronickel FeNi.
- This structure is actually a magnetic circuit with air interval.
- the passage of a current through the coils 110, 120 between an input terminal 141 and an output terminal 142 generates a flow 150 in the magnetic circuit which results in a force of attraction at the air gap.
- the circuit magnetic consists of two poles 111, 121 surrounded by coils 110, 120 whose turns are wound and connected together so that add the magnetic fluxes generated by said magnetic poles.
- the coupling of this motor part with an element mobile forms a micro-actuator, for example a valve, relay or levitation motor, etc.
- a micro-actuator for example a valve, relay or levitation motor, etc.
- the Figures 2 and 6 show the special case of production of a mechanical element 200 with movable contact for a micro-relay.
- This structure comprises a support frame 210 which, as shown in Figure 3, is intended to be placed on the surface of the ferromagnetic substrate 130 of the planar motor 100 via a spacer 211.
- the spacer 211 is produced by depositing on the surface of the substrate 130 a conductive material.
- the height of the spacer 211 allows to control the air gap between the contact fixed 150 fitted on the surface of the planar motor 100 and a movable contact 220 integral with a core ferromagnetic 230, in FeNi for example, carried by a flexible blade 240 which must be made of a material ferromagnetic, for example nickel.
- An extremity of said flexible blade 240 is fixed to the support frame 210 and acts as a fixed point for the arm of lever constituted by the blade 240.
- the support frame 210 is surmounted by a substrate 260, which can be made of silicon when it is intended to accommodate a integrated circuit.
- the substrate 260 can, depending on the applications, be a transparent (glass) or ferromagnetic material (FeNi or FeSi).
- ferromagnetic material as a substrate shielding of the two parts of the motor and actuator magnetic device is assured.
- substrates can serve as connection terminals electric.
- said support frame 210 is attached to the spacer 211 via protuberances conductive 250 according to the "chip” method inverted “or” flip-chip “.
- Assembly can be done by welding or gluing techniques, the condition being that this part is electrically conductive so as to make one of the contacts of the micro-relay on the other part.
- this assembly positioned all around the device allows to isolate the contact of the micro-relay, to create a sealed cavity in which the atmosphere and the pressure are controlled. There is therefore no need to provide a cover, this part integral to the system due to the assembly by protuberances.
- the electrical contact is done, not through contacts individuals but through the poles magnetic 111 and 121.
- the connections with the outside are done through ferromagnetic substrates.
- Figures 4 and 5 show a variant of realization of the mechanical element with movable contact obtained from a thin ferromagnetic substrate on which is structured a spacer 311 made of insulating material as well as the flexible metal blade 340 carrying movable contacts 320.
- a spacer 311 made of insulating material as well as the flexible metal blade 340 carrying movable contacts 320.
- the electrical continuity between contacts 150 and 320 of the micro-relay is provided by the fact that the flexible conductive blade 340 is electrically connected to the surface of the substrate 130 of the magnetic planar motor 100 by its fixed end to the support frame 310.
- relay control can be obtained by current continuous applied to planar coils 110, 120 or by magnetic induction produced by a magnet permanent.
- the use of permanent magnets, or of a locally magnetizable material by means of a coil can be provided to make the system bistable; that is to say having a stable state in activated position and a stable state in position rest.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Micromachines (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
Description
La présente invention concerne un moteur planaire magnétique ainsi qu'un micro-actionneur comportant un tel moteur.The present invention relates to a planar motor magnetic as well as a micro-actuator comprising a such engine.
L'invention trouve une application particulièrement avantageuse dans le domaine des actionneurs, comme par exemple les micro-vannes, les micro-relais, les micro-moteurs et plus généralement tous les micro-systèmes ayant une fonction de mouvement.The invention finds a particularly application advantageous in the field of actuators, such as example micro-valves, micro-relays, micro-motors and more generally all micro-systems having a movement function.
Jusqu'à présent, la plupart des micro-actionneurs existants fonctionnent sur les principes de l'actionnement électrostatique, piézo-électrique ou thermique. Par contre, le domaine des micro-actionneurs magnétiques reste encore peu exploité.So far, most micro-actuators existing work on the principles of electrostatic, piezoelectric or thermal. However, the field of micro-actuators magnetic remains little exploited.
Ceci peut être expliqué par le fait que les technologies permettant de réaliser des dispositifs magnétiques efficaces sont relativement récentes, notamment la maítrise des couches épaisses avec "aspect ratio", ou rapport de la hauteur à la largeur, élevé.This can be explained by the fact that the technologies for making devices effective magnets are relatively new, especially the control of thick layers with "aspect ratio ", or ratio of height to width, high.
D'autre part, on peut constater que les micro-actionneurs existants de type relais ne sont pas entièrement satisfaisants, en particulier les courants nécessaires pour l'actionnement sont souvent relativement élevés par le fait que le nombre de spires des bobines qui les constituent est petit.On the other hand, we can see that the micro-actuators existing relay type are not fully satisfactory, especially the currents necessary for actuation are often relatively high by the fact that the number of turns of the coils that make them up is small.
Aussi, un premier problème technique à résoudre par l'objet de la présente invention est de proposer un moteur planaire magnétique qui permettrait d'augmenter la force magnétique développée tout en gardant une surface raisonnable. Also, a first technical problem to be solved by the object of the present invention is to provide a magnetic planar motor which would increase the magnetic force developed while keeping a reasonable surface.
La solution à ce premier problème technique consiste, selon la présente invention, en ce que ledit moteur planaire magnétique comporte une pluralité de pôles magnétiques en matériau ferromagnétique placés au centre de bobines planaires constituées d'au moins une couche de spires réalisées en surface d'un substrat en matériau ferromagnétique, lesdites spires étant bobinées et connectées entre elles de manière à additionner les flux magnétiques générés par lesdits pôles magnétiques.The solution to this first technical problem consists, according to the present invention, in that said motor planar magnetic has a plurality of poles magnetic ferromagnetic material placed at center of planar coils made up of at least one layer of turns formed on the surface of a substrate made of ferromagnetic material, said turns being wound and connected together so that add the magnetic fluxes generated by said magnetic poles.
Ainsi, en augmentant le nombre de pôles, deux par exemple ainsi que le nombre de couches de spires par bobine, on peut augmenter le nombre effectif N de spires du moteur planaire magnétique de l'invention, et par conséquent la force magnétique, proportionnelle à I2(N1 + N2)2, I étant le courant traversant lesdites spires et N1 et N2 désignant le nombre de spires des première et deuxième bobines, tout en conservant une surface acceptable pour le dispositif.Thus, by increasing the number of poles, two for example as well as the number of layers of turns per coil, one can increase the effective number N of turns of the magnetic planar motor of the invention, and consequently the magnetic force, proportional to I 2 (N1 + N2) 2 , I being the current passing through said turns and N1 and N2 designating the number of turns of the first and second coils, while maintaining an acceptable surface for the device.
Un deuxième problème technique à résoudre par l'objet de la présente invention est de proposer un micro-actionneur magnétique comportant un moteur planaire magnétique selon l'invention, qui présenterait notamment un élément mécanique mobile compact afin de réduire la taille du système.A second technical problem to be solved by the object of the present invention is to provide a micro-actuator magnetic with planar motor magnetic according to the invention, which would have in particular a compact mobile mechanical element in order to reduce the size of the system.
La solution au deuxième problème technique posé consiste, selon la présente invention, en ce que ledit micro-actionneur magnétique comprend également un élément mécanique à contact mobile, comportant un cadre-support placé sur ladite surface du substrat magnétique par l'intermédiaire d'un espaceur, une lame flexible disposée sensiblement parallèlement à la surface dudit substrat et dont une extrémité est fixée audit cadre-support, un noyau en matériau ferromagnétique porté par ladite lame flexible, et un contact mobile solidaire dudit noyau ferromagnétique, situé en regard d'un contact fixe aménagé sur la surface du substrat dudit moteur planaire magnétique.The solution to the second technical problem posed consists, according to the present invention, in that said magnetic microactuator also includes a mechanical element with movable contact, comprising a support frame placed on said surface of the substrate magnetic through a spacer, a blade flexible arranged substantially parallel to the surface of said substrate and one end of which is fixed said support frame, a material core ferromagnetic carried by said flexible blade, and a movable contact secured to said ferromagnetic core, located next to a fixed contact fitted on the surface of the substrate of said magnetic planar motor.
Le micro-actionneur magnétique conforme à l'invention présente un certain nombre d'avantages. D'une part, il constitue un dispositif miniature et planaire peu encombrant avec possibilité d'y adjoindre un circuit intégré. D'autre part, l'épaisseur de l'espaceur permet de contrôler directement la tension d'isolation du micro-actionneur agissant comme relais. De plus, les contacts mobile et fixe peuvent être réalisés en couche mince et intégrée.The magnetic micro-actuator according to the invention has a number of advantages. On the one hand, it constitutes a miniature and planar device little bulky with the possibility of adding a circuit integrated. On the other hand, the thickness of the spacer allows direct control of the insulation voltage of the micro-actuator acting as a relay. Moreover, the mobile and fixed contacts can be made in thin, integrated layer.
Selon un premier mode de réalisation de micro-actionneur magnétique de l'invention, ledit espaceur est réalisé par dépôt à la surface du substrat du moteur planaire magnétique d'un matériau conducteur, ledit cadre-support étant rapporté sur ledit espaceur par l'intermédiaire de protubérances conductrices.According to a first embodiment of micro-actuator magnetic of the invention, said spacer is produced by deposition on the substrate surface of the magnetic planar motor of a conductive material, said support frame being attached to said spacer through conductive protrusions.
Le mode de réalisation met en oeuvre la technologie dite de la "puce retournée" (flip-chip en anglo-saxon), bien connue dans le domaine de la connectique des pastilles semi-conductrices, ou "puces".The embodiment implements the technology so-called "flip-chip" (flip-chip in English), well known in the field of connector technology semiconductor pads, or "chips".
Selon un deuxième mode de réalisation de micro-actionneur magnétique de l'invention, ledit espaceur est en matériau isolant et intégré audit cadre-support, ladite lame flexible étant conductrice et électriquement reliée à la surface du substrat du moteur planaire magnétique par son extrémité fixée sur le cadre-support.According to a second embodiment of micro-actuator magnetic of the invention, said spacer is made of insulating material and integrated into said support frame, said flexible blade being conductive and electrically connected to the substrate surface of the magnetic planar motor by its end fixed on the support frame.
La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
- la figure 1 est une vue de côté d'un moteur planaire magnétique conforme à l'invention;
- la figure 2 est une vue de côté d'un premier mode de réalisation d'un élément mobile d'un micro-actionneur de l'invention;
- la figure 3 est une vue de côté d'un micro-actionneur comportant l'élément mobile de la figure 2 associé au moteur planaire magnétique de la figure 1;
- la figure 4 est une vue de côté d'un deuxième mode de réalisation d'un élément mobile d'un micro-actionneur de l'invention;
- la figure 5 est une vue de côté d'un micro-actionneur comportant l'élément mobile de la figure 4 associé au moteur planaire magnétique de la figure 1;
- la figure 6 est une vue en perspective d'un élément mobile muni d'une membrane déformable de compensation de surépaisseur.
- Figure 1 is a side view of a planar magnetic motor according to the invention;
- Figure 2 is a side view of a first embodiment of a movable member of a micro-actuator of the invention;
- Figure 3 is a side view of a micro-actuator comprising the movable member of Figure 2 associated with the magnetic planar motor of Figure 1;
- Figure 4 is a side view of a second embodiment of a movable member of a micro-actuator of the invention;
- Figure 5 is a side view of a micro-actuator comprising the movable member of Figure 4 associated with the magnetic planar motor of Figure 1;
- FIG. 6 is a perspective view of a mobile element provided with a deformable membrane for compensating for excess thickness.
Sur la figure 1 est représenté en vue de côté un moteur
planaire magnétique 100 constitué de bobines planaires
110, 120 comprenant, chacune, quatre couches de spires,
structurées en surface d'un substrat ferromagnétique
130. Chaque bobine 110, 120 comporte en son centre un
pôle magnétique 111, 121 en un matériau ferromagnétique
tel que du ferronickel FeNi.In Figure 1 is shown in side view a motor
planar magnetic 100 made up of
Cette structure est en fait un circuit magnétique avec
intervalle d'air. Le passage d'un courant à travers
les bobines 110, 120 entre une borne 141 d'entrée et
une borne 142 de sortie génère un flux 150 dans le
circuit magnétique qui se traduit par une force
d'attraction au niveau de l'intervalle d'air.This structure is actually a magnetic circuit with
air interval. The passage of a current through
the
Dans le cas particulier de la figure 1, le circuit
magnétique est constitué de deux pôles 111, 121
entourés de bobines 110, 120 dont les spires sont
bobinées et connectées entre elles de manière à
additionner les flux magnétiques générés par lesdits
pôles magnétiques.In the particular case of Figure 1, the circuit
magnetic consists of two
Le couplage de cette partie moteur avec un élément
mobile forme un micro-actionneur, par exemple une
vanne, un relais ou un moteur à lévitation, etc. Les
figures 2 et 6 montrent le cas particulier de la
réalisation d'un élément mécanique 200 à contact mobile
pour un micro-relais.The coupling of this motor part with an element
mobile forms a micro-actuator, for example a
valve, relay or levitation motor, etc. The
Figures 2 and 6 show the special case of
production of a
Cette structure comporte un cadre-support 210 qui,
comme l'indique la figure 3, est destiné à être placé
sur la surface du substrat ferromagnétique 130 du
moteur planaire 100 par l'intermédiaire d'un espaceur
211. Dans l'exemple de la figure 3, l'espaceur 211 est
réalisé par un dépôt à la surface du substrat 130 d'un
matériau conducteur. La hauteur de l'espaceur 211
permet de contrôler l'intervalle d'air entre le contact
fixe 150 aménagé sur la surface du moteur planaire 100
et un contact mobile 220 solidaire d'un noyau
ferromagnétique 230, en FeNi par exemple, porté par une
lame flexible 240 qui doit être en un matériau
ferromagnétique, par exemple en nickel. Une extrémité
de ladite lame flexible 240 est fixée au cadre-support
210 et joue le rôle de point fixe pour le bras de
levier constitué par la lame 240.This structure comprises a
On peut voir sur les figures 2 et 3 que le cadre-support
210 est surmonté d'un substrat 260, qui peut
être en silicium lorsqu'il est destiné à accueillir un
circuit intégré.We can see in Figures 2 and 3 that the
Le substrat 260 peut, selon les applications, être en
un matériau transparent (verre) ou ferromagnétique
(FeNi ou FeSi).The
En utilisant un matériau ferromagnétique comme substrat des deux parties moteur et actionneur, un blindage magnétique du dispositif est assuré. En outre, les substrats peuvent servir de bornes de connexion électrique.Using ferromagnetic material as a substrate shielding of the two parts of the motor and actuator magnetic device is assured. In addition, substrates can serve as connection terminals electric.
Enfin, ledit cadre-support 210 est rapporté sur
l'espaceur 211 par l'intermédiaire de protubérances
conductrices 250 selon le procédé de la "puce
renversée" ou "flip-chip". L'assemblage peut se faire
par des techniques de soudure ou de collage, la
condition étant que cette partie soit électriquement
conductrice de façon à réaliser un des contacts du
micro-relais sur l'autre partie. Par ailleurs, cet
assemblage positionné tout autour du dispositif permet
d'isoler le contact du micro-relais, de créer une
cavité étanche dans laquelle l'ambiance et la pression
sont contrôlées. Il n'est donc pas nécessaire de
prévoir un couvercle, celui-ci faisant partie
intégrante du système du fait de l'assemblage par
protubérances.Finally, said
Dans une variante de l'invention, le contact électrique est effectué, non pas à travers des contacts particuliers mais par l'intermédiaire des pôles magnétiques 111 et 121. Dans ce cas, les connexions avec l'extérieur se font par l'intermédiaire des substrats ferromagnétiques.In a variant of the invention, the electrical contact is done, not through contacts individuals but through the poles magnetic 111 and 121. In this case, the connections with the outside are done through ferromagnetic substrates.
Les figures 4 et 5 font apparaítre une variante de
réalisation de l'élément mécanique à contact mobile
obtenu à partir d'un substrat ferromagnétique mince sur
lequel on structure un espaceur 311 en matériau isolant
ainsi que la lame flexible métallique 340 portant des
contacts mobiles 320. Par attaque sélective du dos du
substrat selon les lignes en pointillé de la figure 4,
on réalise le cadre-support 310 et le noyau
ferromagnétique 330. La continuité électrique entre
les contacts 150 et 320 du micro-relais est assuré par
le fait que la lame flexible 340 conductrice est
électriquement reliée à la surface du substrat 130 du
moteur planaire magnétique 100 par son extrémité fixe
au cadre-support 310.Figures 4 and 5 show a variant of
realization of the mechanical element with movable contact
obtained from a thin ferromagnetic substrate on
which is structured a
Revenant par exemple sur le mode de réalisation de la figure 3, on peut constater que, lorsque les deux contacts 150, 220 du micro-relais sont placés en regard et que le relais est fermé, ces deux contacts, en raison de leur épaisseur, vont empêcher le circuit magnétique de se fermer avec un intervalle d'air minimum. C'est pourquoi, afin d'emmagasiner cette surépaisseur, il est prévu, conformément à la figure 6, que le contact mobile 220 de l'élément mécanique 200 soit placé sur une membrane déformable 270 qui peut être réalisée également en nickel. Cette disposition présente deux avantages :
- une bonne fermeture de contact électrique grâce à un transfert de la force magnétique générée par le circuit magnétique;
- une bonne efficacité de circuit magnétique par le fait que l'intervalle d'air est maintenu minimum, et par conséquent, la force magnétique générée est maximale.
- good closing of an electrical contact thanks to a transfer of the magnetic force generated by the magnetic circuit;
- good magnetic circuit efficiency by the fact that the air gap is kept minimum, and therefore, the magnetic force generated is maximum.
Diverses variantes du micro-relais de l'invention
peuvent être envisagées. Au niveau de l'actionnement,
la commande du relais peut être obtenue par un courant
continu appliqué aux bobines planaires 110, 120 ou par
l'induction magnétique produite par un aimant
permanent.Various variants of the micro-relay of the invention
can be considered. At the actuation level,
relay control can be obtained by current
continuous applied to
Par ailleurs, l'utilisation d'aimants permanents, ou d'un matériau localement magnétisable au moyen d'une bobine, peut être prévue pour rendre le système bistable ; c'est-à-dire présentant un état stable en position activée et un état stable en position de repos. In addition, the use of permanent magnets, or of a locally magnetizable material by means of a coil, can be provided to make the system bistable; that is to say having a stable state in activated position and a stable state in position rest.
Enfin, l'invention telle que décrite, se prête particulièrement bien à la réalisation de matrices de micro-actionneurs magnétiques sur un même substrat.Finally, the invention as described, lends itself particularly well at the realization of matrices of magnetic micro-actuators on the same substrate.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9703961A FR2761518B1 (en) | 1997-04-01 | 1997-04-01 | MAGNETIC PLANAR MOTOR AND MAGNETIC MICRO-ACTUATOR COMPRISING SUCH A MOTOR |
FR9703961 | 1997-04-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0869519A1 true EP0869519A1 (en) | 1998-10-07 |
EP0869519B1 EP0869519B1 (en) | 2002-02-20 |
Family
ID=9505400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98400763A Expired - Lifetime EP0869519B1 (en) | 1997-04-01 | 1998-03-31 | Planar magnetic motor and magnetic microactuator with such a motor |
Country Status (4)
Country | Link |
---|---|
US (1) | US6084281A (en) |
EP (1) | EP0869519B1 (en) |
DE (1) | DE69803893T2 (en) |
FR (1) | FR2761518B1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001057899A1 (en) * | 2000-02-02 | 2001-08-09 | Arizona State University | Electronically switching latching micro-magnetic relay and method of operating same |
US6496612B1 (en) | 1999-09-23 | 2002-12-17 | Arizona State University | Electronically latching micro-magnetic switches and method of operating same |
EP1399939A1 (en) * | 2001-05-18 | 2004-03-24 | Microlab, Inc. | Micromagnetic latching switch packaging |
EP1437036A1 (en) * | 2001-09-17 | 2004-07-14 | John Stafford | Latching micro magnetic relay packages and methods of packaging |
US6794965B2 (en) | 2001-01-18 | 2004-09-21 | Arizona State University | Micro-magnetic latching switch with relaxed permanent magnet alignment requirements |
US6836194B2 (en) | 2001-12-21 | 2004-12-28 | Magfusion, Inc. | Components implemented using latching micro-magnetic switches |
US7027682B2 (en) | 1999-09-23 | 2006-04-11 | Arizona State University | Optical MEMS switching array with embedded beam-confining channels and method of operating same |
US7183884B2 (en) | 2003-10-15 | 2007-02-27 | Schneider Electric Industries Sas | Micro magnetic non-latching switches and methods of making same |
US7202765B2 (en) | 2003-05-14 | 2007-04-10 | Schneider Electric Industries Sas | Latchable, magnetically actuated, ground plane-isolated radio frequency microswitch |
US7250838B2 (en) | 2002-01-08 | 2007-07-31 | Schneider Electric Industries Sas | Packaging of a micro-magnetic switch with a patterned permanent magnet |
US7253710B2 (en) | 2001-12-21 | 2007-08-07 | Schneider Electric Industries Sas | Latching micro-magnetic switch array |
US7266867B2 (en) | 2002-09-18 | 2007-09-11 | Schneider Electric Industries Sas | Method for laminating electro-mechanical structures |
US7300815B2 (en) | 2002-09-30 | 2007-11-27 | Schneider Electric Industries Sas | Method for fabricating a gold contact on a microswitch |
US7327211B2 (en) | 2002-01-18 | 2008-02-05 | Schneider Electric Industries Sas | Micro-magnetic latching switches with a three-dimensional solenoid coil |
US7342473B2 (en) | 2004-04-07 | 2008-03-11 | Schneider Electric Industries Sas | Method and apparatus for reducing cantilever stress in magnetically actuated relays |
US7391290B2 (en) | 2003-10-15 | 2008-06-24 | Schneider Electric Industries Sas | Micro magnetic latching switches and methods of making same |
US7420447B2 (en) | 2002-03-18 | 2008-09-02 | Schneider Electric Industries Sas | Latching micro-magnetic switch with improved thermal reliability |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3714020B2 (en) * | 1999-04-20 | 2005-11-09 | オムロン株式会社 | Semiconductor element sealing structure |
TWI248718B (en) * | 1999-09-02 | 2006-02-01 | Koninkl Philips Electronics Nv | Displacement device |
US6806610B2 (en) * | 2001-02-27 | 2004-10-19 | Monte Dilliner | Magnetic motor with movable rotor and drive magnets |
US20020196110A1 (en) * | 2001-05-29 | 2002-12-26 | Microlab, Inc. | Reconfigurable power transistor using latching micromagnetic switches |
US20030179058A1 (en) * | 2002-01-18 | 2003-09-25 | Microlab, Inc. | System and method for routing input signals using single pole single throw and single pole double throw latching micro-magnetic switches |
US7215229B2 (en) * | 2003-09-17 | 2007-05-08 | Schneider Electric Industries Sas | Laminated relays with multiple flexible contacts |
US7557470B2 (en) * | 2005-01-18 | 2009-07-07 | Massachusetts Institute Of Technology | 6-axis electromagnetically-actuated meso-scale nanopositioner |
US9284183B2 (en) | 2005-03-04 | 2016-03-15 | Ht Microanalytical, Inc. | Method for forming normally closed micromechanical device comprising a laterally movable element |
US7482899B2 (en) * | 2005-10-02 | 2009-01-27 | Jun Shen | Electromechanical latching relay and method of operating same |
CA2690010A1 (en) * | 2007-06-26 | 2008-12-31 | Panasonic Electric Works Co., Ltd. | A micro relay |
US8665041B2 (en) * | 2008-03-20 | 2014-03-04 | Ht Microanalytical, Inc. | Integrated microminiature relay |
US8068002B2 (en) * | 2008-04-22 | 2011-11-29 | Magvention (Suzhou), Ltd. | Coupled electromechanical relay and method of operating same |
US8836454B2 (en) * | 2009-08-11 | 2014-09-16 | Telepath Networks, Inc. | Miniature magnetic switch structures |
US8159320B2 (en) * | 2009-09-14 | 2012-04-17 | Meichun Ruan | Latching micro-magnetic relay and method of operating same |
US8436701B2 (en) | 2010-02-08 | 2013-05-07 | International Business Machines Corporation | Integrated electromechanical relays |
US8432240B2 (en) | 2010-07-16 | 2013-04-30 | Telepath Networks, Inc. | Miniature magnetic switch structures |
US8957747B2 (en) | 2010-10-27 | 2015-02-17 | Telepath Networks, Inc. | Multi integrated switching device structures |
KR20130109166A (en) * | 2010-10-29 | 2013-10-07 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | Magnetically actuated micro-electro-mechanical capacitor switches in laminate |
EP2761640B1 (en) | 2011-09-30 | 2016-08-10 | Telepath Networks, Inc. | Multi integrated switching device structures |
US8552824B1 (en) * | 2012-04-03 | 2013-10-08 | Hamilton Sundstrand Corporation | Integrated planar electromechanical contactors |
WO2013184223A1 (en) * | 2012-06-05 | 2013-12-12 | The Regents Of The University Of California | Micro electromagnetically actuated latched switches |
US10145906B2 (en) | 2015-12-17 | 2018-12-04 | Analog Devices Global | Devices, systems and methods including magnetic structures |
US10190702B2 (en) * | 2016-03-15 | 2019-01-29 | Dunan Microstaq, Inc. | MEMS based solenoid valve |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0573267A1 (en) * | 1992-06-01 | 1993-12-08 | SHARP Corporation | A microrelay and a method for producing the same |
US5472539A (en) * | 1994-06-06 | 1995-12-05 | General Electric Company | Methods for forming and positioning moldable permanent magnets on electromagnetically actuated microfabricated components |
US5475353A (en) * | 1994-09-30 | 1995-12-12 | General Electric Company | Micromachined electromagnetic switch with fixed on and off positions using three magnets |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2101404B (en) * | 1981-07-02 | 1984-11-28 | Standard Telephones Cables Ltd | Semiconductor switch device |
FR2659178B1 (en) * | 1990-03-02 | 1992-05-15 | Ebauchesfabrik Eta Ag | DRIVING COIL ASSEMBLY, METHOD FOR MANUFACTURING SUCH AN ASSEMBLY, AND ELECTROMAGNETIC MICROMOTOR EQUIPPED WITH SAME. |
JP2560629B2 (en) * | 1993-12-08 | 1996-12-04 | 日本電気株式会社 | Silicon micro relay |
FR2742917B1 (en) * | 1995-12-22 | 1998-02-13 | Suisse Electronique Microtech | MINIATURE DEVICE FOR EXECUTING A PREDETERMINED FUNCTION, ESPECIALLY MICRORELAIS |
-
1997
- 1997-04-01 FR FR9703961A patent/FR2761518B1/en not_active Expired - Fee Related
-
1998
- 1998-03-31 EP EP98400763A patent/EP0869519B1/en not_active Expired - Lifetime
- 1998-03-31 DE DE69803893T patent/DE69803893T2/en not_active Expired - Fee Related
- 1998-04-01 US US09/052,980 patent/US6084281A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0573267A1 (en) * | 1992-06-01 | 1993-12-08 | SHARP Corporation | A microrelay and a method for producing the same |
US5472539A (en) * | 1994-06-06 | 1995-12-05 | General Electric Company | Methods for forming and positioning moldable permanent magnets on electromagnetically actuated microfabricated components |
US5475353A (en) * | 1994-09-30 | 1995-12-12 | General Electric Company | Micromachined electromagnetic switch with fixed on and off positions using three magnets |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6469603B1 (en) | 1999-09-23 | 2002-10-22 | Arizona State University | Electronically switching latching micro-magnetic relay and method of operating same |
US6469602B2 (en) | 1999-09-23 | 2002-10-22 | Arizona State University | Electronically switching latching micro-magnetic relay and method of operating same |
US6496612B1 (en) | 1999-09-23 | 2002-12-17 | Arizona State University | Electronically latching micro-magnetic switches and method of operating same |
US6633212B1 (en) | 1999-09-23 | 2003-10-14 | Arizona State University | Electronically latching micro-magnetic switches and method of operating same |
US7027682B2 (en) | 1999-09-23 | 2006-04-11 | Arizona State University | Optical MEMS switching array with embedded beam-confining channels and method of operating same |
US7071431B2 (en) | 1999-09-23 | 2006-07-04 | Arizona State University | Electronically latching micro-magnetic switches and method of operating same |
WO2001057899A1 (en) * | 2000-02-02 | 2001-08-09 | Arizona State University | Electronically switching latching micro-magnetic relay and method of operating same |
US6794965B2 (en) | 2001-01-18 | 2004-09-21 | Arizona State University | Micro-magnetic latching switch with relaxed permanent magnet alignment requirements |
EP1399939A1 (en) * | 2001-05-18 | 2004-03-24 | Microlab, Inc. | Micromagnetic latching switch packaging |
US7372349B2 (en) | 2001-05-18 | 2008-05-13 | Schneider Electric Industries Sas | Apparatus utilizing latching micromagnetic switches |
EP1399939A4 (en) * | 2001-05-18 | 2006-11-15 | Microlab Inc | Micromagnetic latching switch packaging |
US6894592B2 (en) | 2001-05-18 | 2005-05-17 | Magfusion, Inc. | Micromagnetic latching switch packaging |
EP1437036A4 (en) * | 2001-09-17 | 2006-11-15 | John Stafford | Latching micro magnetic relay packages and methods of packaging |
EP1437036A1 (en) * | 2001-09-17 | 2004-07-14 | John Stafford | Latching micro magnetic relay packages and methods of packaging |
US6836194B2 (en) | 2001-12-21 | 2004-12-28 | Magfusion, Inc. | Components implemented using latching micro-magnetic switches |
US7253710B2 (en) | 2001-12-21 | 2007-08-07 | Schneider Electric Industries Sas | Latching micro-magnetic switch array |
US7250838B2 (en) | 2002-01-08 | 2007-07-31 | Schneider Electric Industries Sas | Packaging of a micro-magnetic switch with a patterned permanent magnet |
US7327211B2 (en) | 2002-01-18 | 2008-02-05 | Schneider Electric Industries Sas | Micro-magnetic latching switches with a three-dimensional solenoid coil |
US7420447B2 (en) | 2002-03-18 | 2008-09-02 | Schneider Electric Industries Sas | Latching micro-magnetic switch with improved thermal reliability |
US7266867B2 (en) | 2002-09-18 | 2007-09-11 | Schneider Electric Industries Sas | Method for laminating electro-mechanical structures |
US7300815B2 (en) | 2002-09-30 | 2007-11-27 | Schneider Electric Industries Sas | Method for fabricating a gold contact on a microswitch |
US7202765B2 (en) | 2003-05-14 | 2007-04-10 | Schneider Electric Industries Sas | Latchable, magnetically actuated, ground plane-isolated radio frequency microswitch |
US7183884B2 (en) | 2003-10-15 | 2007-02-27 | Schneider Electric Industries Sas | Micro magnetic non-latching switches and methods of making same |
US7391290B2 (en) | 2003-10-15 | 2008-06-24 | Schneider Electric Industries Sas | Micro magnetic latching switches and methods of making same |
US7342473B2 (en) | 2004-04-07 | 2008-03-11 | Schneider Electric Industries Sas | Method and apparatus for reducing cantilever stress in magnetically actuated relays |
Also Published As
Publication number | Publication date |
---|---|
DE69803893T2 (en) | 2002-10-10 |
FR2761518A1 (en) | 1998-10-02 |
US6084281A (en) | 2000-07-04 |
FR2761518B1 (en) | 1999-05-28 |
DE69803893D1 (en) | 2002-03-28 |
EP0869519B1 (en) | 2002-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0869519B1 (en) | Planar magnetic motor and magnetic microactuator with such a motor | |
EP1556873B1 (en) | Electrical switching device, relay and electrical apparatus comprising same | |
EP0780858A1 (en) | Miniature device to execute a predetermined function, in particular a microrelay | |
CH691559A5 (en) | magnetic micro-switch and its production process. | |
EP2779190B1 (en) | Individual switching block and switching device comprising at least one such block | |
EP1185995A1 (en) | On/off control device especially for a disconnection device such as a circuit breaker and circuit breaker fitter with said device. | |
EP1836714B1 (en) | Microsystem with electromagnetic control | |
EP1450011B1 (en) | Electromagnetic valve actuator for internal combustion engine and engine comprising such an actuator | |
EP1425764B1 (en) | Bistable magnetic actuator | |
EP1576260A1 (en) | Electromagnetic dual-coil valve actuator with permanent magnet | |
EP0874379B1 (en) | Magnetic microswitch and method of making | |
FR2826504A1 (en) | MAGNETIC ACTUATOR WITH REDUCED RESPONSE TIME | |
EP3688866B1 (en) | Electromagnetic energy converter | |
EP0032331A1 (en) | Switch with wetted contacts and magnetic operation, and electric relay comprising such a switch | |
FR2880730A1 (en) | Microsystem for use as e.g. switch, has permanent magnet moved by push-button to control, by magnetic effect, movement of membrane of movable unit between two positions, each corresponding to opening or closing of electric circuit | |
FR2927466A1 (en) | Bistable actuator for use as bistable double power switch for e.g. motor vehicle, has magnetic maintaining units with magnet for maintaining actuator in stable position, where units generate magnetic field perpendicular to support plane | |
FR2706075A1 (en) | Control device of the moving-component actuator type keeping its orientation in the course of movement | |
EP0886875A1 (en) | Rotatable single-phase electromagnetic actuator with a magnetic spring, and electrically operated valve using same | |
EP1836713B1 (en) | Microsystem with integrated reluctant magnetic circuit | |
EP1319119B1 (en) | Connecting device for routing control and power signals to an internal combustion engine valve actuators | |
WO2007115945A1 (en) | Microsystem for switching a power electric circuit | |
FR3076945A1 (en) | ELECTRICAL CONTACTOR AND SEMICONDUCTOR CUTTING DEVICE COMPRISING SUCH A CONTACTOR | |
EP1901325A1 (en) | Switching device including magnetic microswitches organized in a matrix | |
WO2017032930A1 (en) | Electrical connector of an electromagnetic actuator for a valve | |
EP1866946A1 (en) | Microsystem with bistable mobile part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI NL |
|
17P | Request for examination filed |
Effective date: 19981208 |
|
AKX | Designation fees paid |
Free format text: CH DE FR GB LI NL |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010328 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COLIBRYS S.A. |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI NL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69803893 Country of ref document: DE Date of ref document: 20020328 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020514 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHN |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20021121 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CHRISTOPHE SAAM PATENTS & TECHNOLOGY SURVEYS SA |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: PATENTS & TECHNOLOGY SURVEYS SA;RUE DES TERREAUX 7 CASE POSTALE 2848;2001 NEUCHATEL (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20090317 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090325 Year of fee payment: 12 Ref country code: CH Payment date: 20090316 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090320 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090312 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20101001 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101001 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101001 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 |