Nothing Special   »   [go: up one dir, main page]

EP0795077B1 - Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems - Google Patents

Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems Download PDF

Info

Publication number
EP0795077B1
EP0795077B1 EP96913445A EP96913445A EP0795077B1 EP 0795077 B1 EP0795077 B1 EP 0795077B1 EP 96913445 A EP96913445 A EP 96913445A EP 96913445 A EP96913445 A EP 96913445A EP 0795077 B1 EP0795077 B1 EP 0795077B1
Authority
EP
European Patent Office
Prior art keywords
temperature
pressure
metering system
combustion chamber
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96913445A
Other languages
English (en)
French (fr)
Other versions
EP0795077A1 (de
Inventor
Gerhard Stumpp
Johannes Locher
Claus Maier
Jürgen Biester
Werner Teschner
Wilhelm Eyberg
Jochen Neumeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0795077A1 publication Critical patent/EP0795077A1/de
Application granted granted Critical
Publication of EP0795077B1 publication Critical patent/EP0795077B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3827Common rail control systems for diesel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure

Definitions

  • the invention relates to a method and a device to monitor a fuel metering system according to General terms of the independent claims.
  • Such a method and such a device for Monitoring a fuel metering system are from the US 52 41 933 known. There will be one procedure and one Device for monitoring a high pressure circuit at a Common rail system described. The one described there The device regulates the pressure in the rail. Is that Actuating variable of the pressure control circuit outside of a specifiable one Range, the device detects for errors.
  • US 4 512 307 describes a method in which monitoring is whether the combustion chamber temperature is a certain critical Exceeds the maximum. This maximum value is chosen so that destruction or damage to the Internal combustion engine should be prevented. Monitored the establishment of whether the temperature is a fixed predetermined Value exceeds. A leak or other error in the area of fuel metering can be done with a not recognize such a facility or recognize it very late. This Facility only detects serious errors that are related to can lead to destruction of the internal combustion engine.
  • US 4,466,408 shows a method and an apparatus at which the cylinder pressure is evaluated.
  • the course of the Cylinder pressure during a combustion is with predetermined curves compared. Give way to the saved ones Curves significantly from the actual course of the Combustion chamber pressure decreases, a faulty combustion recognized.
  • the invention has for its object in a Device and a method for monitoring a Fuel metering system of the type mentioned at the outset, if possible to be able to recognize errors safely and easily. This task is by the in the independent claims marked features solved.
  • DE-OS 44 40 700 is a method known in the event of an accident caused by a Airbag sensor is detected, an electromagnetic High pressure regulator on the downstream side of the High pressure line opens completely. This leads to one Pressure drop in the high pressure part of the fuel metering device.
  • FIG. 1 shows a block diagram of the device according to the invention and the Figures 2, 3 and 4 each show a flow chart of a Embodiment of the method according to the invention.
  • an internal combustion engine is referred to an intake line 105 receives fresh air and emits 110 exhaust gases via an exhaust pipe.
  • the internal combustion engine shown is a four-cylinder internal combustion engine. Every cylinder the Internal combustion engine is an injector 120, 121, 122 and 123 assigned. The injectors are connected via solenoid valves 130, 131, 132 and 133 fuel metered. The fuel arrives from a so-called rail 135 via the injectors 120, 121, 122 and 123 into the cylinders of internal combustion engine 100.
  • the fuel in the rail 135 is from a high pressure pump 145 brought to an adjustable pressure.
  • the High pressure pump 145 is connected to a via a solenoid valve 150
  • Fuel delivery pump 155 connected.
  • the fuel delivery pump communicates with a fuel tank 160.
  • the valve 150 comprises a coil 152.
  • the solenoid valves 130, 131, 132 and 133 include coils 140, 141, 142 and 143 that each supplied with current by means of an output stage 175 can be.
  • the final stage 175 is preferably in one Control device 170 arranged, which also the coil 152nd controls.
  • a sensor 177 is provided which detects the pressure in the Rail 135 detected and a corresponding signal to the Control unit 170 conducts.
  • the Control unit 180 can be designed as an independent control unit his. However, it can also be integrated into the controller 170 his.
  • the pressure control valve can from the Control 170 can be controlled and are present a corresponding control signal the connection between the rail 135 and the return line 195 and thus the Reservoir 160 free.
  • the Sensors 181 to 184 designed as pressure sensors. This Sensors record the combustion chamber pressure in the combustion chambers of the single cylinder.
  • the Fuel delivery pump 155 delivers the fuel from the Storage container via valve 150 to high pressure pump 145.
  • the high pressure pump 145 builds one in the rail 135 predefinable pressure on. Usually pressure values achieved greater than 800 bar in Rail 135.
  • the Control signals for the coils set the Start of injection and end of injection of fuel the injectors 120 to 123.
  • the control signals are depending on the control unit from different Operating conditions, such as the driver's request, the speed and other sizes.
  • the temperature in the Combustion chamber of each engine cylinder measured. Exceeds that Temperature of one of the cylinders a predetermined Threshold, the fuel supply is reduced or turned off or other emergency driving measures initiated.
  • the senor is in the Glow plug integrated. This has the advantage that none additional drilling in the engine is required. Especially It is advantageous if the electrical resistance of the Glow plugs are used as temperature signals. This Resistance changes by a factor of 2 to 4 in Temperature range O to 1100 ° C. Alternatively, the Thermal effect of the glow plugs to provide a Temperature signal can be evaluated.
  • the target temperature in the combustion chamber is used for fault detection depending on the target fuel quantity and engine speed N saved. This target temperature is compared with the Combustion chamber measured temperature compared. If the actual temperature in the combustion chamber longer than a time ts by more than a temperature difference ⁇ exceeds the error recognized and the amount of fuel greatly reduced or switched off.
  • step 200 a counter t set to zero. Then in step 210 the current combustion chamber temperature TI, the fuel quantity QKS and Speed N detected.
  • the fuel quantity QKS can all be in fuel quantity signals present to controller 170, such as for example the target or the actual fuel quantity be used.
  • step 220 the setpoint temperature becomes the map IS as a function F of the fuel quantity QKS and the speed N read out.
  • the query 230 checks whether the amount of the difference between the actual temperature TI and the target temperature Ts is less than ⁇ . If this is the case, follow again Step 210. If not, i. H. the actual temperature deviates significantly from the target temperature, so the time counter t is increased by 1 in step 240. The Query 250 checks whether the time counter t is greater or is equal to a threshold ts. If this is not the case, then Step 210 follows again. If this is the case, then in Step 260 is detected for errors and there will be corresponding ones Measures initiated.
  • step 300 the temperature signal of the first Cylinder Z1 detected. Accordingly, in step 300 Temperature signal of the second cylinder Z2 detected. In step 302 and 303 becomes the temperature signal of cylinders Z3 and Z4 detected. In step 310, the amplitudes of the four Signals summed up and divided by 4. Hence it follows the mean M of the four temperature signals.
  • step 320 a counter i is set to 0 and in subsequent step 330 increased by 1.
  • Query 340 checks whether the difference between the values Zi of the i-th Cylinder and the average M greater than a threshold value S is. If this is not the case, query 350 checks whether i is greater than or equal to 4. If this is not the case, then step 330 occurs again or if i is greater than or equal to 4 step 300 follows.
  • Step 360 recognizes that the amount of the difference between the values of the i-th cylinder Zi and the Mean value M is greater than the threshold value S, then in Step 360 detected errors and a corresponding one Measures initiated.
  • a time counter t becomes zero set.
  • one of the Temperature sensors 181 to 184 have a temperature value Z (k) Combustion chamber temperature.
  • the time counter is in Step 420 increased by one.
  • the subsequent query 430 checks whether a waiting time tw has expired. Is this If this is not the case, step 420 follows again.
  • Step 450 forms then the difference ZA between the old value Z (k) and the new value Z (k + 1). This difference ZA is a measure for the temperature rise during the waiting period tw.
  • the subsequent query 460 checks whether the Difference ZA is greater than a threshold value SA. Is this the old value Z (k) does not become the case in step 470 overwritten with the new value Z (k + 1). Then follows Step 420. Query 460 recognizes that the Temperature rise is greater than an allowable value, so step 480 detects errors.
  • the device both a detects increased as well as a reduced injection quantity.
  • the pressure in the rail to a value just above the Opening pressure of the nozzles can be set. At this Measure can still damage a sensitive engine take too much fuel from a leaky nozzle can flow.
  • Safe emergency driving can be achieved if the Engine cylinders are assigned to two groups and for each Group a separate high pressure pump, a separate rail and a separate pressure relief valve is used. At this configuration can only the cylinder group be switched off in which a combustion chamber with too high Temperature was diagnosed. With the second Cylinder group can maintain emergency operation become.
  • a particularly advantageous alternative is when Place or in addition to the temperature sensors 181 to 184 at least one pressure sensor is used, the a signal delivers that corresponds to the pressure in the respective combustion chamber.
  • the error detection takes place using average values across all cylinders, as in the case of Temperature measurement. Instead of the temperature signals Pressure signals processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

Es wird ein Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems, insbesondere eines Common-Rail-Systems für eine Dieselbrennkraftmaschine, beschrieben. Ein Defekt des Zumeßsystems wird erkannt, wenn ein Signal eines Temperatursensors und/oder eines Drucksensors von einem vorgebbaren Wert abweicht.

Description

Stand der Technik
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems gemäß den Oberbegriffen der unabhängigen Ansprüche.
Ein solches Verfahren und eine solche Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems sind aus der US 52 41 933 bekannt. Dort werden ein Verfahren und eine Vorrichtung zur Überwachung eines Hochdruckkreises bei einem Common-Rail-System beschrieben. Bei der dort beschriebenen Vorrichtung wird der Druck im Rail geregelt. Liegt die Stellgröße des Druckregelkreises außerhalb eines vorgebbaren Bereichs, erkennt die Vorrichtung auf Fehler.
Die US 4 512 307 beschreibt ein Verfahren, bei dem überwacht wird, ob die Brennraumtemperatur einen bestimmten kritischen Höchstwert übersteigt. Dieser Höchstwert ist so gewählt, daß eine Zerstörung oder eine Beschädigung der Brennkraftmaschine verhindert werden soll. Dabei überwacht die Einrichtung, ob die Temperatur einen fest vorgegebenen Wert überschreitet. Eine Leckage oder ein sonstiger Fehler im Bereich der Kraftstoffzumessung läßt sich mit einer solchen Einrichtung nicht oder nur sehr spät erkennen. Diese Einrichtung erkennt lediglich schwerwiegende Fehler, die zu einer Zerstörung der Brennkraftmaschine führen können.
Die US 4 466 408 zeigt ein Verfahren und eine Vorrichtung, bei dem der Zylinderdruck ausgewertet wird. Der Verlauf des Zylinderdruckes während einer Verbrennung wird mit vorgegebenen Kurven verglichen. Weichen die abgespeicherten Kurven wesentlich von dem tatsächlichen Verlauf des Brennraumdrucks ab, wird eine fehlerhafte Verbrennung erkannt.
Nachteilig bei diesen Anordnungen ist, daß ein Fehler erst bei einem starken Druckabfall erkannt wird.
Aufgabe der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, bei einer Vorrichtung und einem Verfahren zur Überwachung eines Kraftstoffzumeßsystems der eingangs genannten Art möglichst sicher und einfach Fehler erkennen zu können. Diese Aufgabe wird durch die in den unabhängigen Ansprüchen gekennzeichneten Merkmalen gelöst.
Vorteile der Erfindung
Mittels des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung können Fehler im Zumeßsystem sicher und einfach erkannt werden. Insbesondere können defekte Injektoren bei Common-Rail-Systemen sicher nachgewiesen werden.
Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Des weiteren ist aus der DE-OS 44 40 700 ein Verfahren bekannt, bei dem bei einem Unfall, der mittels eines Airbagsensors erkannt wird, ein elektromagnetischer Hochdruckregler auf der stromabwärtigen Seite der Hochdruckleitung vollständig öffnet. Dies führt zu einem Druckabfall im Hochdruckteil der Kraftstoffzumeßeinrichtung.
Zeichnung
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung und die Figuren 2, 3 und 4 jeweils ein Flußdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens.
Im folgenden wird die erfindungsgemäße Vorrichtung am Beispiel einer selbstzündenden Brennkraftmaschine dargestellt, bei der die Kraftstoffzumessung mittels eines Magnetventils gesteuert wird. Die in Figur 1 dargestellte Ausführungsform betrifft ein sogenanntes Common-Rail-System. Die erfindungsgemäße Vorgehensweise ist aber nicht auf diese Systeme beschränkt. Sie kann bei allen Systemen eingesetzt werden, bei denen eine entsprechende Kraftstoffzumessung erfolgt.
Mit 100 ist eine Brennkraftmaschine bezeichnet, die über einen Ansaugleitung 105 Frischluft zugeführt bekommt und über eine Abgasleitung 110 Abgase abgibt.
Bei der dargestellten Brennkraftmaschine handelt es sich um eine Vierzylinderbrennkraftmaschine. Jedem Zylinder der Brennkraftmaschine ist ein Injektor 120, 121, 122 und 123 zugeordnet. Den Injektoren wird über Magnetventile 130, 131, 132 und 133 Kraftstoff zugemessen. Der Kraftstoff gelangt von einem sogenannten Rail 135 über die Injektoren 120, 121, 122 und 123 in die Zylinder der Brennkraftmaschine 100.
Der Kraftstoff in dem Rail 135 wird von einer Hochdruckpumpe 145 auf einen einstellbaren Druck gebracht. Die Hochdruckpumpe 145 ist über ein Magnetventil 150 mit einer Kraftstofförderpumpe 155 verbunden. Die Kraftstofförderpumpe steht mit einem Kraftstoffvorratsbehälter 160 in Verbindung.
Das Ventil 150 umfaßt eine Spule 152. Die Magnetventile 130, 131, 132 und 133 enthalten Spulen 140, 141, 142 und 143, die jeweils mittels einer Endstufe 175 mit Strom beaufschlagt werden können. Die Endstufe 175 ist vorzugsweise in einem Steuergerät 170 angeordnet, das auch die Spule 152 ansteuert.
Desweiteren ist ein Sensor 177 vorgesehen, der den Druck im Rail 135 erfaßt und ein entsprechendes Signal an das Steuergerät 170 leitet.
Mit 181 bis 184 sind Sensoren bezeichnet, die die Temperatur in den Brennräumen der einzelnen Zylinder erfassen. Diese Sensoren stehen mit einer Steuereinheit 180 in Verbindung, die die Steuerung 170 mit einem Signal beaufschlagt. Die Steuereinheit kann als selbständige Steuergerät ausgebildet sein. Sie kann aber auch in die Steuerung 170 integriert sein.
Zwischen der Hochdruckpumpe 145 und dem Rail 135 ist ein Druckregelventil bzw. ein Druckbegrenzungsventil 190 angeordnet. Das Druckbegrenzungsventil 190 ist zwischen der Verbindungsleitung zwischen der Hochdruckpumpe 145 und dem Rail 135 und einer Rücklaufleitung 195 angeordnet. Über die Rücklaufleitung 195 gelangt Kraftstoff zurück in den Vorratsbehälter 160. Das Druckregelventil kann von der Steuerung 170 angesteuert werden und gibt bei Vorliegen eines entsprechenden Ansteuersignals die Verbindung zwischen dem Rail 135 und der Rücklaufleitung 195 und damit dem Vorratsbehälter 160 frei.
Bei einer weiteren Ausführungsform der Erfindung sind die Sensoren 181 bis 184 als Drucksensoren ausgebildet. Diese Sensoren erfassen den Brennraumdruck in den Brennräumen der einzelnen Zylinder.
Dies Einrichtung arbeitet nun wie folgt. Die Kraftstofförderpumpe 155 fördert den Kraftstoff aus dem Vorratsbehälter über das Ventil 150 zur Hochdruckpumpe 145. Die Hochdruckpumpe 145 baut in dem Rail 135 einen vorgebbaren Druck auf. Üblicherweise werden Druckwerte größer als 800 bar im Rail 135 erzielt.
Durch Bestromen der Spulen 140 bis 143 werden die entsprechenden Magnetventile 130 bis 133 angesteuert. Die Ansteuersignale für die Spulen legen dabei den Einspritzbeginn und das Einspritzende des Kraftstoffs durch die Injektoren 120 bis 123 fest. Die Ansteuersignale werden von dem Steuergerät abhängig von verschiedenen Betriebsbedingungen, wie beispielsweise dem Fahrerwunsch, der Drehzahl und weiteren Größen festgelegt.
Bei einem Common-Rail-System kann eine Dauereinspritzung eines Injektors bei ausgeglichener Massenbilanz im Rail nicht ohne weiteres sicher erkannt werden. Diese kann zum Beispiel auftreten, wenn das Magnetventil dauerhaft bestromt wird oder der Injektor klemmt bzw. eine Undichtigkeit aufweist. Dies kann zu einer ungewollten Druckerhöhung in einem Zylinder führen und bis zur Motorzerstörung reichen, wenn die Zylinderspitzendrücke bzw. die zulässigen Temperaturen überschritten werden.
Mittels der Sensoren 181 bis 184 wird die Temperatur im Brennraum jedes Motorzylinders gemessen. Übersteigt die Temperatur eines der Zylinder einen vorgegebenen Schwellwert, wird die Kraftstoffzufuhr gedrosselt bzw. abgestellt oder sonstige Notfahrmaßnahmen eingeleitet.
Bei Dieselbrennkraftmaschinen ist der Sensor in die Glühstiftkerze integriert. Dies hat den Vorteil, daß keine zusätzliche Bohrung im Motor erforderlich ist. Besonders vorteilhaft ist es, wenn der elektrische Widerstand der Glühstifkerzen als Temperatursignal verwendet wird. Dieser Widerstand ändert sich um ca. den Faktor 2 bis 4 im Temperarturbereich O bis 1100°C. Alternativ kann auch der Thermoeffekt der Glühstiftkerzen zur Bereitstellung eines Temperatursignals ausgewertet werden.
Zur Fehlererkennung wird die Soll-Temperatur im Brennraum abhängig von der Soll-Kraftstoffmenge und der Motordrehzahl N gespeichert. Diese Soll-Temperatur wird mit der im Brennraum gemessenen Temperatur verglichen. Falls die Ist-Temperatur im Brennraum länger als eine Zeit ts um mehr als eine Temperaturdifferenz Δ überschreitet, wird auf Fehler erkannt und die Kraftstoffmenge stark vermindert oder abgestellt.
Falls das vorgenannte Temperaturkennfeld gespeichert ist, kann die Kraftstoffmenge vor einem Motorschaden beeinflußt werden oder die Kraftstoffmenge kann reduziert werden, bevor das Fahrzeug unbeabsichtigt beschleunigt. Falls nur ein Motorschaden verhindert werden soll, genügt es, bei einer vereinfachten Ausführungsform die Soll-Temperatur als Funktion der Drehzahl abzulegen.
Eine mögliche Realisierung dieses Verfahrens ist in Figur 2 als Flußdiagramm dargestellt. In Schritt 200 wird ein Zähler t auf Null gesetzt. Anschließend in Schritt 210 werden die aktuelle Brennraumtemperatur TI, die Kraftstoffmenge QKS und Drehzahl N erfaßt. Als Kraftstoffmenge QKS können alle in der Steuerung 170 vorliegenden Kraftstoffmengensignale, wie beispielsweise die Soll- oder die Ist-Kraftstoffmenge verwendet werden.
Im Schritt 220 wird aus einem Kennfeld die Soll-Temperatur IS als Funktion F der Kraftstoffmenge QKS und der Drehzahl N ausgelesen.
Die Abfrage 230 überprüft, ob der Betrag der Differenz zwischen der Ist-Temperatur TI und der Soll-Temperatur Ts kleiner als Δ ist. Ist dies der Fall, so folgt erneut Schritt 210. Ist dies nicht der Fall, d. h. die Ist-Temperatur weicht wesentlich von der Soll-Temperatur ab, so wird in Schritt 240 der Zeitzähler t um 1 erhöht. Die Abfrage 250 überprüft, ob der Zeitzähler t größer oder gleich einem Schwellwert ts ist. Ist dies nicht der Fall, so folgt erneut Schritt 210. Ist dies der Fall, so wird in Schritt 260 auf Fehler erkannt und es werden entsprechende Maßnahmen eingeleitet.
Weicht der Temperaturwert eines Zylinders von einem erwarteten Wert ab, so wird auf Fehler des entsprechenden Injektors bzw. des entsprechenden Magnetventils geschlossen.
Alternativ kann auch vorgesehen sein, daß die Abweichung der Temperatur eines Zylinders von einem Mittelwert über mehrere Zylinder ausgewertet wird. Ein entsprechendes Ausführungsbeispiel ist in Figur 3 dargestellt.
In Schritt 300 wird das Temperatursignal des ersten Zylinders Z1 erfaßt. Entsprechend wird im Schritt 300 das Temperatursignal des zweiten Zylinders Z2 erfaßt. In Schritt 302 und 303 wird das Temperatursignal der Zylinder Z3 und Z4 erfaßt. Im Schritt 310 werden die Amplituden der vier Signale aufsummiert und durch 4 dividiert. Somit ergibt sich der Mittelwert M der vier Temperatursignale.
Im Schritt 320 wird ein Zähler i auf 0 gesetzt und im anschließenden Schritt 330 um 1 erhöht. Die Abfrage 340 überprüft, ob die Differenz zwischen den Werten Zi des i-ten Zylinders und dem Mittelwert M größer als ein Schwellwert S ist. Ist dies nicht der Fall, so überprüft die Abfrage 350 ob i größer oder gleich 4 ist. Ist dies nicht der Fall, so erfolgt erneut Schritt 330 bzw. wenn i größer oder gleich 4 ist folgt Schritt 300.
Erkennt die Abfrage 340, daß der Betrag der Differenz zwischen den Werten des i-ten Zylinders Zi und dem Mittelwert M größer als der Schwellwert S ist, so wird in Schritt 360 auf Fehler erkannt und eine entsprechende Maßnahmen eingeleitet.
Das dargestellte Verfahren wurde am Beispiel einer Vierzylinder Brennkraftmaschine beschrieben. Durch entsprechende Wahl der Parameter insbesondere von i kann das Verfahren auch auf Brennkraftmaschinen mit anderer Zylinderzahl angewandt werden.
Alternativ kann auch vorgesehen sein, daß überprüft wird, ob die Temperatur innerhalb eines vorgebbaren Zeitraums um mehr als ein Toleranzwert ansteigt. Ein entsprechendes Ausführungsbeispiel ist als Flußdiagramm in Figur 4 dargestellt.
In einem ersten Schritt 400 wird ein Zeitzähler t auf Null gesetzt. Im anschließenden Schritt 410 erfaßt einer der Temperatursensoren 181 bis 184 einen Temperaturwert Z(k) der Brennraumtemperatur. Anschließend wird der Zeitzähler in Schritt 420 um eins erhöht. Die sich anschließende Abfrage 430 überprüft, ob eine Wartezeit tw abgelaufen ist. Ist dies nicht der Fall, so folgt erneut Schritt 420.
Nach Ablauf der Wartezeit tw wird in Schritt 440 ein neuer Wert Z(k+1) der Temperatur erfaßt. Der Schritt 450 bildet anschließend die Differenz ZA zwischen dem alten Wert Z(k) und dem neuen Wert Z(k+1). Diese Differenz ZA ist ein Maß für den Temperaturanstieg während der Wartezeit tw.
Die sich anschließende Abfrage 460 überprüft, ob die Differenz ZA größer als ein Schwellwert SA ist. Ist dies nicht der Fall wird in Schritt 470 der alte Wert Z(k) mit dem neuen Wert Z(k+1) überschrieben. Anschließend folgt Schritt 420. Erkennt die Abfrage 460, daß der Temperaturanstieg größer ist, als ein zulässiger Wert, so erkennt der Schritt 480 auf Fehler.
Besonders vorteilhaft bei den beschriebenen Ausführungsformen ist es, daß die Einrichtung sowohl eine erhöhte als auch eine verringerte Einspritzmenge erkennt.
Als Notfahrmaßnahme kann vorgesehen sein, daß mittels eines Druckbegrenzungsventils der Druck im Rail vermindert wird. Ferner kann durch Absperren des Ventils 150 die Kraftstoffzufuhr zur Hochdruckpumpe 145 unterbunden werden.
Wird der Druck im Rail 135 unter den Öffnungsdruck der Injektoren 120 bis 123 abgesenkt, fließt an korrekt arbeitenden Injektoren kein Kraftstoff mehr. Kraftstoff fließt nur noch aus einem Injektor mit einer undichten Injektor.
Um einen Notfahrbetrieb des Motors aufrecht halten zu können, kann der Druck im Rail auf einen Wert knapp über dem Öffnungsdruck der Düsen eingestellt werden. Bei dieser Maßnahme kann ein empfindlicher Motor trotzdem Schaden nehmen, weil aus einer undichten Düse zuviel Kraftstoff strömen kann.
Ein sicheres Notfahren ist erreichbar, wenn die Motorzylinder zwei Gruppen zugeordnet werden und für jede Gruppe eine separate Hochdruckpumpe, ein separates Rail und ein separates Druckbegrenzungsventil verwendet wird. Bei dieser Ausgestaltung kann nur die Zylindergruppe abgeschaltet werden, in welcher ein Brennraum mit zu hoher Temperatur diagnostiziert wurde. Mit der zweiten Zylindergruppe kann ein Notfahrbetrieb aufrechterhalten werden.
Eine besonders vorteilhafte Alternative ergibt sich, wenn an Stelle bzw. zusätzlich zu den Temperatursensoren 181 bis 184 wenigstens ein Drucksensor eingesetzt wird, der ein Signal liefert, das dem Druck im jeweiligen Brennraum entspricht. Die Fehlererkennung erfolgt, unter Benutzung von Mittelwerten über alle Zylinder, entsprechend, wie bei der Temperaturmesssung. An Stelle der Temperatursignale werden Drucksignale verarbeitet.

Claims (8)

  1. Verfahren zur Überwachung eines Kraftstoffzumeßsystems einer Dieselbrennkraftmaschine, insbesondere eines Common-Rail-Systems, dadurch gekennzeichnet, daß ein defektes Zumeßsystem erkannt wird, wenn ein Signal eines Sensors, der die Temperatur und/oder den Druck in wenigstens einem Brennraum der Brennkraftmaschine erfaßt, von einem Mittelwert über alle Zylinder abweicht, oder daß ein defektes Zumeßsystem erkannt wird, wenn ein Signal eines Sensors, der die Temperatur in wenigstens einem Brennraum der Brennkraftmaschine erfaßt, innerhalb eines vorgebbaren Zeitraums um mehr als eine zulässige Änderung ansteigt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Sensor ein Signal liefert, das der Temperatur im Brennraum entspricht.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Sensor ein Signal liefert, das dem Druck im Brennraum entspricht.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Temperatursensor in eine Glühstiftkerze integriert ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß der Widerstand der Glühstiftkerze als Maß für die Temperatur ausgewertet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei erkanntem Fehler der Druck im Rail abgesenkt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zylinder in zwei Gruppen aufgeteilt werden und bei erkanntem Defekt in einer Gruppe, die als Defekt erkannte Gruppe abgeschaltet wird.
  8. Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems einer Dieselbrennkraftmaschine, insbesondere eines Common-Rail-Systems, dadurch gekennzeichnet, daß Mittel vorgesehen sind, die ein defektes Zumeßsystem erkennen, wenn ein Signal eines Sensors, der die Temperatur und/oder den Druck in wenigstens einem Brennraum der Brennkraftmaschine erfaßt, von einem Mittelwert über alle Zylinder abweicht, oder daß Mittel vorgesehen sind, die ein defektes Zumeßsystem erkennen, wenn ein Signal eines Sensors, der die Temperatur in wenigstens einem Brennraum der Brennkraftmaschine erfaßt, innerhalb eines vorgebbaren Zeitraums um mehr als eine zulässige Änderung ansteigt.
EP96913445A 1995-09-28 1996-04-24 Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems Expired - Lifetime EP0795077B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19536109 1995-09-28
DE19536109A DE19536109A1 (de) 1995-09-28 1995-09-28 Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems
PCT/DE1996/000749 WO1997012137A1 (de) 1995-09-28 1996-04-24 Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems

Publications (2)

Publication Number Publication Date
EP0795077A1 EP0795077A1 (de) 1997-09-17
EP0795077B1 true EP0795077B1 (de) 2001-10-04

Family

ID=7773435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96913445A Expired - Lifetime EP0795077B1 (de) 1995-09-28 1996-04-24 Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems

Country Status (6)

Country Link
US (1) US5816220A (de)
EP (1) EP0795077B1 (de)
JP (1) JPH10512345A (de)
KR (1) KR980700509A (de)
DE (2) DE19536109A1 (de)
WO (1) WO1997012137A1 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002252A (en) 1991-05-22 1999-12-14 Wolff Controls Corporation Compact sensing apparatus having transducer and signal conditioner with a plurality of mounting pins
DE19626690B4 (de) * 1996-07-03 2008-12-11 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
DE19651671C2 (de) * 1996-12-12 2001-10-04 Daimler Chrysler Ag Steuerung einer Einspritzanlage für eine mehrzylindrige Brennkraftmaschine
JP3695046B2 (ja) * 1997-02-07 2005-09-14 いすゞ自動車株式会社 エンジンの燃料噴射方法及びその装置
US6220217B1 (en) * 1997-08-11 2001-04-24 Sanshin Kogyo Kabushiki Kaisha Fuel supply system for direct injected system for engines
US6763807B1 (en) * 1997-11-28 2004-07-20 Clean Fuel Technology, Inc. Apparatus and method for controlling a fuel injector assembly of an internal combustion engine during cold operation thereof
US6076504A (en) * 1998-03-02 2000-06-20 Cummins Engine Company, Inc. Apparatus for diagnosing failures and fault conditions in a fuel system of an internal combustion engine
AU4698799A (en) * 1998-06-23 2000-01-10 H.R. Krueger Machine Tool, Inc. Flowmeter
DE19860468A1 (de) * 1998-12-28 2000-07-06 Bosch Gmbh Robert Kraftstoffeinspritzanlage
DE19927901B4 (de) * 1999-06-18 2005-10-20 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung einer Brennkraftmaschine
US6321593B1 (en) * 1999-11-18 2001-11-27 Ford Global Technologies, Inc. Electronic fuel pump, sender and pressure transducer tester
DE10003906A1 (de) * 2000-01-29 2001-08-09 Bosch Gmbh Robert Verfahren und Vorrichtung zum Kalibrieren eines Drucksensors
DE10022953A1 (de) * 2000-05-11 2001-11-15 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung der Kraftstoffeinspritzung
DE10036868B4 (de) * 2000-07-28 2004-07-29 Robert Bosch Gmbh Injektor für ein einen Hochdrucksammelraum umfassendes Einspritzsystem
US20020152985A1 (en) * 2001-04-20 2002-10-24 Wolff Peter U. System, apparatus including on-board diagnostics, and methods for improving operating efficiency and durability of compression ignition engines
DE10137315A1 (de) 2001-07-31 2003-02-20 Volkswagen Ag Schaltungsanordnung und Verfahren zur Regelung einer elektrischen Kraftstoffpumpe in einem rücklauffreien Kraftstoff-Fördersystem
DE10148221A1 (de) * 2001-09-28 2003-07-31 Bosch Gmbh Robert Verfahren, Computerprogramm sowie Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
US7124746B2 (en) * 2002-07-16 2006-10-24 Brocco Douglas S Method and apparatus for controlling a fuel injector
JP4161690B2 (ja) * 2002-11-20 2008-10-08 株式会社デンソー 蓄圧式燃料噴射装置
DE10259358B4 (de) * 2002-12-18 2005-02-24 Siemens Ag Verfahren zur Überwachung einer Brennkraftmaschine
US7006910B2 (en) * 2003-06-03 2006-02-28 Caterpillar Inc. Engine power loss compensation
US6708507B1 (en) 2003-06-17 2004-03-23 Thermo King Corporation Temperature control apparatus and method of determining malfunction
JP4218465B2 (ja) * 2003-08-22 2009-02-04 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
DE102004012491B4 (de) * 2004-03-15 2008-12-24 Continental Automotive Gmbh Verfahren zur Bestimmung von defekten Aktoren einer Brennkraftmaschine
US6976390B2 (en) * 2004-03-25 2005-12-20 General Motors Corporation Engine cylinder deactivation test apparatus and method for using
US7428893B2 (en) * 2004-11-12 2008-09-30 Caterpillar Inc Electronic flow control valve
US20100082219A1 (en) * 2008-09-30 2010-04-01 Gm Global Technology Operations, Inc. Engine Using Glow Plug Resistance For Estimating Combustion Temperature
US7950371B2 (en) * 2009-04-15 2011-05-31 GM Global Technology Operations LLC Fuel pump control system and method
JP4858578B2 (ja) 2009-06-19 2012-01-18 株式会社デンソー 燃料温度検出装置
DE102011081928A1 (de) * 2011-08-31 2013-02-28 Man Diesel & Turbo Se Verfahren zur Überwachung von in Gaszufuhrleitungen eines Gasmotors angeordneten Rückschlagventilen
DE102012203097B3 (de) * 2012-02-29 2013-04-11 Continental Automotive Gmbh Verfahren und Vorrichtung zum Bestimmen eines Fehlers einer Druckmessung in einem Druckbehälter
JP5928395B2 (ja) * 2013-04-02 2016-06-01 トヨタ自動車株式会社 インジェクタの診断装置
US10221782B2 (en) * 2014-04-04 2019-03-05 Honda Motor Co., Ltd. In-cylinder pressure detecting apparatus
AT515859B1 (de) 2014-06-12 2019-10-15 Innio Jenbacher Gmbh & Co Og Brennkraftmaschine
US10428751B2 (en) * 2017-04-20 2019-10-01 Ford Global Technologies, Llc Method and system for characterizing a port fuel injector
DE102019212214B3 (de) * 2019-08-14 2020-10-15 Mtu Friedrichshafen Gmbh Verfahren zur Diagnose einer Injektorleckage bei einer Brennkraftmaschine, Brennkraftmaschine sowie Computerprogrammprodukt
DE102019212215B3 (de) * 2019-08-14 2020-12-31 Mtu Friedrichshafen Gmbh Verfahren zur Diagnose einer Injektorenfunktionsfähigkeit bei einer Brennkraftmaschine mit einer Mehrzahl von Injektoren, Brennkraftmaschine zur Durchführung eines solchen Verfahrens und Computerprogrammprodukt

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466408A (en) * 1983-03-10 1984-08-21 The United States Of America As Represented By The Secretary Of The Army Apparatus for closed-loop combustion control in internal combustion engines

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916622A (en) * 1971-09-04 1975-11-04 Volkswagenwerk Ag Combustion engine with at least one exhaust gas cleaning arrangement
DE2330258A1 (de) * 1973-06-14 1975-01-09 Bosch Gmbh Robert Einrichtung zur abgasentgiftung von brennkraftmaschinen
JPS5813134A (ja) * 1981-07-18 1983-01-25 Nippon Soken Inc 過給式デイ−ゼルエンジンの安全装置
US4499876A (en) * 1981-10-30 1985-02-19 Nippondenso Co., Ltd. Fuel injection control for internal combustion engines
JPS59201943A (ja) * 1983-04-30 1984-11-15 Hino Motors Ltd エンジンの燃料噴射装置
JP3033214B2 (ja) * 1991-02-27 2000-04-17 株式会社デンソー 複数の燃料圧送手段による蓄圧式燃料供給方法及び装置と、複数の流体圧送手段を有する機器における異常判断装置
JPH0569374U (ja) * 1992-02-28 1993-09-21 富士重工業株式会社 筒内直噴式エンジンの異常警告装置
DE4335171C1 (de) * 1993-10-15 1995-05-04 Daimler Benz Ag Kraftstoffeinspritzanlage für eine mehrzylindrige Dieselbrennkraftmaschine
JP3133586B2 (ja) * 1993-11-18 2001-02-13 富士重工業株式会社 高圧燃料噴射式エンジンの燃料圧力制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466408A (en) * 1983-03-10 1984-08-21 The United States Of America As Represented By The Secretary Of The Army Apparatus for closed-loop combustion control in internal combustion engines

Also Published As

Publication number Publication date
DE59607829D1 (de) 2001-11-08
WO1997012137A1 (de) 1997-04-03
KR980700509A (ko) 1998-03-30
US5816220A (en) 1998-10-06
DE19536109A1 (de) 1997-04-03
EP0795077A1 (de) 1997-09-17
JPH10512345A (ja) 1998-11-24

Similar Documents

Publication Publication Date Title
EP0795077B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems
EP0975942B1 (de) Verfahren und vorrichtung zur funktionsüberwachung eines drucksensors
EP0819213B1 (de) Einrichtung zur erkennung eines lecks in einem kraftstoffversorgungssystem
DE102007028900B4 (de) Verfahren und Vorrichtung zur Diagnose eines mit einer Kraftstoffverteilerleiste in Verbindung stehenden Einspritzventils einer Brennkraftmaschine
DE19626690B4 (de) Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
EP1926900B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems
DE102013216255B3 (de) Verfahren zur injektorindividuellen Diagnose einer Kraftstoff-Einspritzeinrichtung und Brennkraftmaschine mit einer Kraftstoff-Einspritzeinrichtung
DE19548279B4 (de) Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems
DE19620038B4 (de) Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems
DE19937962A1 (de) Verfahren und Vorrichtung zur Steuerung eines Einspritzsystems
EP2076667B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffeinspritzsystems
DE102013101905A1 (de) Kraftstoffeinspritzfehlererfassungsvorrichtung
DE19923475A1 (de) Motorsteuerung mit Abgasrückführung und Verfahren zur Ermittlung des korrekten Funktionierens des AGR-Systems in einem Kraftfahrzeug
EP0603543A1 (de) Verfahren und Vorrichtung zur Überwachung einer Steuereinrichtung einer Brennkraftmaschine
DE102007057311B3 (de) Verfahren und Vorrichtung zur Fehlererkennung bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
DE19641942B4 (de) Verfahren und Vorrichtung zur Fehlererkennung bei einer Brennkraftmaschine
WO2006061296A1 (de) Verfahren und vorrichtung zum überprüfen von temperaturwerten eines temperatursensors einer brennkraftmaschine
DE112008000659B4 (de) Verfahren für die Diagnose eines Verbrennungsmotors
DE19935237B4 (de) Verfahren und Vorrichtung zum Bestimmen des Beladungszustandes eines Kraftstoffilters
DE102017004895B4 (de) Verfahren zur Überwachung eines Zylinderdrucksensors
EP1564394A2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19541774A1 (de) Verfahren und Vorrichtung zur Erkennung eines Lecks in einem Kraftstoffversorgungssystem einer Brennkraftmaschine mit Hochdruckeinspritzung
DE10038444A1 (de) Verfahren zum Überprüfen eines Kraftstoff-Einspritzsystems
DE102006010903B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm-Produkt, Computerprogramm und Steuer- und/oder Regeleinrichtung für eine Brennkraftmaschine
DE19927901A1 (de) Verfahren und Vorrichtung zur Überwachung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19971006

17Q First examination report despatched

Effective date: 19990318

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59607829

Country of ref document: DE

Date of ref document: 20011108

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020417

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030424

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130627

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130523

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59607829

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59607829

Country of ref document: DE

Effective date: 20141101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430