Nothing Special   »   [go: up one dir, main page]

EP0521298B1 - Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen - Google Patents

Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen Download PDF

Info

Publication number
EP0521298B1
EP0521298B1 EP92108919A EP92108919A EP0521298B1 EP 0521298 B1 EP0521298 B1 EP 0521298B1 EP 92108919 A EP92108919 A EP 92108919A EP 92108919 A EP92108919 A EP 92108919A EP 0521298 B1 EP0521298 B1 EP 0521298B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
air
passages
passage
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92108919A
Other languages
English (en)
French (fr)
Other versions
EP0521298A3 (en
EP0521298A2 (de
Inventor
Werner Brüggemann
Josef Gievers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Autokuehler GmbH and Co KG
Original Assignee
Autokuehler GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4118289A external-priority patent/DE4118289A1/de
Application filed by Autokuehler GmbH and Co KG filed Critical Autokuehler GmbH and Co KG
Publication of EP0521298A2 publication Critical patent/EP0521298A2/de
Publication of EP0521298A3 publication Critical patent/EP0521298A3/de
Application granted granted Critical
Publication of EP0521298B1 publication Critical patent/EP0521298B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • F26B21/086Humidity by condensing the moisture in the drying medium, which may be recycled, e.g. using a heat pump cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0038Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for drying or dehumidifying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction

Definitions

  • the invention relates to a heat exchanger device for refrigeration dryers in compressed air systems according to the preamble of claim 1.
  • Compressed air systems of the type of interest here serve to be generated by means of a compressor and under a pressure of e.g. to provide compressed air up to 25 bar.
  • This compressed air however, like the atmospheric air, has a high one at least in European areas Moisture content corresponding to a relative humidity of up to 80% and more.
  • Moisture content corresponding to a relative humidity of up to 80% and more.
  • absolutely dry air is needed. It is therefore known from the compressor to discharge compressed air through a refrigeration dryer before it can be used is fed, and completely remove the moisture in this refrigeration dryer.
  • Air is usually dried in such a way that the air coming from the compressor heated air first in an aftercooler to a temperature of e.g. 35 - 55 ° C cooled becomes. After that, the air is passed through a heat exchanger device, which is an air / air heat exchanger and has a refrigerant-air heat exchanger.
  • the air / air heat exchanger serves the purpose of the compressed air at approx. 35 - 55 ° C on the one hand on e.g. 20 ° C to cool and on the other hand, the counterflow, from a strongly cooled compressed air coming to a water separator at about room temperature heat up to avoid that on the outer sides of the pipes leading to cold air or Apparatus a cold bridge arises.
  • the refrigerant / air heat exchanger serves the purpose that of the air / air heat exchanger Coming compressed air, cooled to approx. 20 ° C, using a refrigerant, e.g. Freeze on cool down their dew point, which is usually 2 - 3 ° C.
  • a refrigerant e.g. Freeze on cool down their dew point, which is usually 2 - 3 ° C.
  • the refrigerant is in liquefied in a known manner by means of a compressor and a condenser, then by the Refrigerant / air heat exchanger relaxed and thereby to a temperature of e.g. - brought 2 ° C at its entrance and + 4 ° C at its exit, and then again at the Compressor fed.
  • the air cooled down to its dew point becomes after her Passage through the refrigerant / air heat exchanger to a water separator, in from which the moisture is completely removed, and then again through the air / air heat exchanger passed by while cooling the still warm, from the Compressed air system coming compressed air is warmed to about room temperature.
  • the refrigerant / air heat exchanger contains a serpentine or meandering shape laid pipes to be flowed through by air on the baffles or fins are plugged in, and laid between the baffles, to form passages for a Refrigerant specific plates.
  • the pipes are perpendicular to the baffles and plates arranged. This results in a comparatively low heat transfer overall, and A comparatively large construction volume is required to achieve a specified performance.
  • the two heat exchangers also have open passages at their ends and are housed with these in a common housing that has the required redirections for the air or refrigerant flows. This results in a comparative complicated manufacturing method and the disadvantage that the mutual sealing of the different Passages is problematic and high flow resistance can occur, resulting in cross-sectional reductions that reduce efficiency.
  • heat exchangers are known (US-A-4 966 230), which are parallel to one another arranged plates alternately by these limited passages for a first medium and have further passages intended for the flow of a second medium, which pass through pipes lying parallel to the plates, laid in a serpentine or meandering shape are.
  • Such heat exchangers have so far not been used to manufacture heat exchanger devices the genus described at the outset.
  • the invention has for its object the heat exchanger device of the beginning designate the designated genus so that it has a comparatively small volume, is inexpensive to manufacture and has little tendency to become contaminated.
  • the invention has the advantage that a heat exchanger device in a compact design was created, which makes it possible for the entire refrigeration dryer Reduce construction volume to about a third of the previously required volume. Since the Heat exchanger of the heat exchanger device according to the invention also preferably are made of aluminum, the invention also leads to a considerable weight reduction. Finally, the heat exchanger device according to the invention is inexpensive producible, which can significantly reduce the total cost of the refrigeration dryer. Of the Pipe / plate heat exchanger of the heat exchanger device according to the invention is also very compact design and enables a small construction volume. On the other hand, he can be designed on the process air side so that the Risk of serious contamination, especially those that are too noticeable Lead cross-sectional reductions is small. Finally, the heat exchanger points to the Refrigerant side closed pipes so that it is in contrast to in plate construction manufactured heat exchangers has a high compressive strength.
  • 1 and 2 contains an air / air heat exchanger 1 and a refrigerant / air heat exchanger 2. Both heat exchangers 1 and 2 are arranged one above the other according to FIG. 1, the refrigerant / air heat exchanger 2 is below the air / air heat exchanger 1, although it may also be the other way around could.
  • the air / air heat exchanger 1 (Fig. 1) consists of a plate heat exchanger and contains a heat exchanger block 3 (Fig. 5-7) with a plate construction Passages 4 and 5, each in the direction of the arrows, i.e. mostly in counterflow, through which air flows. The air comes out, as shown in FIGS. 6 and 7, each at one end of the passages 4 and 5 laterally into this and at the opposite End in the longitudinal direction again. Passages 4 and 5 are also 4 and 5 alternately arranged one above the other.
  • Each passage 4 is made up of two parallel to the longitudinal direction of the heat exchanger block 3, to the left in Fig. 6 end of the heat exchanger block 3 bordering strips 6 and 7 with in essentially square or rectangular cross-section and two above or arranged below the same, over the entire length and width of the heat exchanger block 3 extended plates 8 formed.
  • the passages 4 are at the right end in FIGS. 5 and 6 through the Width of the heat exchanger block 3 extended strips 9 completed while at the same time the strips 6 are shorter than the strips 7 so that the passages 4 accordingly Fig. 6 are not open to the right end, but to the side and the air in Direction of the drawn arrow can flow in from the side.
  • conventional slats 10 only partially in Fig. 5 are shown and their passages according to FIG. 6 along a line 11 by 90 ° are redirected.
  • the passageways 5 are open.
  • the passages 5 are in Fig. 5 and 7 left end by strips 16 extending over the width of the heat exchanger block 3 completed, while at the same time the strips 14 are shorter than the strips 15 are so that the passages 5 according to FIG.
  • the strips 6, 7, 9 and 16, the plates 8 arranged between them and the between two plates 8 arranged slats 10 and 17 are stacked one above the other, as is known per se from plate heat exchangers, and arranged in such a way that a passage 4 or 5 alternates and the heat exchanger block 3 is completed up and down by a plate 8 each.
  • Plate 8 and possibly also the strips 6, 7, 9 and 16 preferably consist of plated with a solder Aluminum and are first stacked in a known manner and then in an air or vacuum oven or soldered together in a flux bath.
  • the strips 6 and 14, the strips 7 and 15 and the strips 9 and 16 are useful identically formed, so that there is a symmetrical and training of the heat exchanger block 3 results in a particularly cost-effective manner.
  • the Number of runs 4 and 5 depends on the required output of the heat exchanger block 3rd
  • the refrigerant / air heat exchanger 2 (Fig. 1) consists of a combined tube / plate heat exchanger and contains a heat exchanger block 20 (Figs. 8-10) with passages 21 for a refrigerant and passages 22 for the compressed air, the passages 21 and 22 each in the direction of the arrows drawn in Fig. 9, i.e. predominantly in Direct current, through which the refrigerant or compressed air flows.
  • the passages 21 for the refrigerant consist of tubes with a round or preferably rectangular or square cross section, each between two over the length and Width of the heat exchanger block 20 extending plates 23 are arranged. Every run 21 is serpentine or meandering and has a plurality of straight sections 24, which in the exemplary embodiment are parallel to one another and perpendicular are arranged to the longitudinal axis and at a close distance. Two adjacent straight Sections 24 are corresponding to FIG. 9 by sections 25 bent by 180 ° connected that an uninterrupted flow path from an entrance 26 to a Output 27 results. As particularly shown in FIGS.
  • the passages 22 are therefore in FIG. 8 and 9 open at the right and left ends, respectively.
  • the arrangement is such that The passages 21 and 22 alternate in the heat exchanger block 20, i.e. that the pipes (Passages 21) covered on both sides with plates 23 and these to form the passages 21 are kept at a distance by the spacers 28. According to this scheme, in Fig.
  • one passage 21 each can form a unit with the two adjoining plates 23.
  • the various parts of the heat exchanger block 20 consist of those of the heat exchanger block 3 preferably made of aluminum, especially plated with a solder Aluminum, and are first stacked in a manner known per se and then together soldered.
  • the heat exchanger blocks 3 and 20 are arranged one above the other and firmly connected, e.g. soldered.
  • the passages 5 are where the air in it occurs (Fig. 7), with a side and over the height of the heat exchanger block 3 extended collection box 33 connected liquid-tight, the one with a Inlet flange having inlet opening 34 is provided.
  • the passages are 5 at their open ends in FIGS. 1 and 2 by a width and height both the heat exchanger block 3 and the heat exchanger block 20 extended Collection or deflection box 35 with the likewise open right ends of the passages 22 (Fig. 10) of the heat exchanger block 20 connected liquid-tight.
  • the inputs and outputs 26, 27 of the passages shown only schematically in FIGS. 2 and 10 21 are corresponding to FIGS. 3 and 4 each by a tubular construction summarized. Since a total of three passages 21 are provided according to FIGS. 8 to 10 , the three resulting outputs 27 are shown in FIGS. 3 and 4 Way through curved intermediate sections 43 to a flange 44 with a common Exit opening guided, the liquid-tight with a via a curved tube 45 Connection nipple 46 is provided.
  • the inputs 26 are corresponding to a connection nipple 47 (Fig. 1) connected, which is not visible in Fig. 3, because this arrangement the Parts 43 to 46 corresponding part includes.
  • the heat exchangers 1 and 2 described which are firmly connected to one another existing heat exchanger device forms a compact, space-saving unit that as a whole can be assigned to a refrigeration dryer with which conventional Compressed air systems can be equipped, as briefly explained below. It follows the particular advantage that the two heat exchangers 1 and 2 are essentially the same Have width and length and are combined into a common block can.
  • Compressed air is supplied from a compressor, which is preferably provided with an aftercooler delivered, e.g. is at a temperature of approx. 35 - 55 ° C.
  • This compressed air will first fed to the collecting box 33 by means of the inlet flange 34 and flows from there in the direction of an arrow line 49 (FIGS. 2 and 7) through the passages 5 of the air / air heat exchanger 1 in the collection and deflection box 35. From there the compressed air enters the refrigerant / air heat exchanger 2 (Fig. 1) and then flows in the opposite Direction of its passages 22 (Fig. 10 and arrow line 50 in Fig. 9). At the same time it will Refrigerant in the direction of the arrows shown in FIG.
  • the compressed air cooled to the dew point flows after the passage through the passages 22 in the collecting box 40 (Fig. 1), is deflected laterally in this and passes over the side extension 41 (Fig. 2) and the outlet flange 42nd out again. Thereafter, the compressed air, as shown schematically in Fig. 2, one Water separator 51 supplied. The one that comes out of it, completely dried Compressed air is finally via the inlet flange 37 (FIG. 2) and the header box 36 fed back to the air / air heat exchanger 1 so that they passages 4 in Direction of an arrow line 52 in FIGS. 2 and 6 can happen.
  • the compressed air is in Interaction with the warm compressed air passing through the passages 5 up to approximately Warmed up to room temperature before reaching the collection box 38 (Fig. 2) and over the outlet flange 39 of the tap for the compressed air is supplied.
  • the number of their passages 4 and 5 or In principle, 21 and 22 can be enlarged arbitrarily by a corresponding number other plates or pipes are stacked on top of each other without the Change dimensions in the height and width of the heat exchanger device.
  • FIG. 11 to 17 An even more compact and less space consuming heat exchanger device, which is particularly suitable for smaller outputs, results from Fig. 11 to 17. It contains an air / air heat exchanger 56 and a refrigerant / air heat exchanger 57.
  • the two heat exchangers 56, 57 are not one above the other, but arranged side by side and into an integral unit with each other connected.
  • both heat exchangers 56 and 57 are made from a coherent Heat exchanger block 58 is produced, which in its in Fig. 15, 16 and 18th right part a section 59 responsible for the air / air heat exchange and in its left part in Fig. 15, 16 and 18 one for the heat exchange refrigerant / air responsible section 60.
  • Both sections 59, 60 are covered by plates 61 formed, which extend over the entire width and length of the heat exchanger block 58.
  • a part of the plates 61 is on the one hand by perpendicular to the longitudinal direction, at the right end of Fig. 15 of the heat exchanger block 58 arranged strips 62 and on the other hand by extending in the longitudinal direction and up to the left in Fig. 15, 16 and 18 End extending strips 63 and 64 arranged on the side edges of the plates 61 Kept clear. This results in passages 65 between the plates 61, which in 18 left end of the heat exchanger block 58 are open. At the right end in Fig.
  • the lower ledges 64 are somewhat shorter, so that between their right ends and the Last 62 creates a space 66 through which air in the direction of the drawn Arrow can enter laterally.
  • the passages 65 there are usual lamellae 67 (Fig. 15 and 17) arranged, which are designed according to Fig. 18 so that the side entering air is deflected along a line 68 (FIG. 18).
  • the other part of the plates 61 is as shown in FIGS. 15 and 16 in the section 59 forming Part by running parallel to the longitudinal direction on the side edges of the plates 61 15 and 16 to the right end of the heat exchanger block 58 extended ledges 69 and 70 and a transverse to the left end of the Section 59 forming end bar 71 completed.
  • the deflection is preferably also corresponding trained slats 74 causes.
  • the arrangement is such that in a central part of the heat exchanger block 58 the passages 72 and 76 are arranged, each of which is up and down Passage 65 (Fig. 15) connects.
  • FIGS. 11 to 14 An input 81 and an output 82 (FIG. 16) of the passage 76 are shown in FIGS. 11 to 14 and analogous to FIGS. 1 to 4 via curved pipe sections 83, each with a connecting nipple 84, 85 provided, of which only the connection nipple 85 is visible in Fig. 13. Furthermore, the 15, 16 and 18 right ends of the passages 65 with a header box 86 and an inlet flange or inlet nipple 87 which has an inlet opening and is liquid-tight 15, 16 and 18 left ends of the passages 65 with a collection box 88 are connected liquid-tight, similar to the collection box 40 according to FIGS.
  • the coming from the compressed air system is on e.g. approx. 35 - 55 ° C heated compressed air via the inlet flange 87 to the collecting tank 86 fed so that they the passages 65 in the direction of an arrow line 96 (Fig. 18) flows through.
  • the compressed air is first in the heat exchanger 56 by the in Countercurrent through the inlet flange 93 or the header 92 supplied by one not shown water separator coming cold compressed air to a temperature of cooled down to approx. 20 ° C.
  • the compressed air On its way through the passages 65, the compressed air then gradually cooled in the heat exchanger 57 to the dew point, since here with the Refrigerant interacts, which flows through the passage 76 in the direction of the arrows (FIG. 16).
  • the compressed air is then the collector box 88 and the outlet flange 91 Water separator and fed from there to the inlet flange 93 so that they are on the outlet nipple 95, which serves as a tap for the compressed air, again approximately to room temperature is heated.
  • the performance of the heat exchanger device be changed in that the length and width of the Heat exchanger blocks 58, the number of passages 65, 72 and 76 changed accordingly becomes.
  • the refrigerant / air heat exchanger described with reference to FIGS. 8 to 10 and 15 to 18 can also be composed by a plurality of the units 140 shown in FIGS. 19 and 20 9, which is formed according to FIG. 9 and meanders Contains pipe coil 141, on the two broad sides of which a plate 142 or 143 is attached is.
  • the pipe coil 141 can be e.g. either through Solder or bond to plates 142, 143 as in Fig. 20 is indicated by the reference symbol.
  • the entire heat exchanger block expediently consists of a plurality of one above the other stacked units 140 (Fig. 21) which are spaced by spacers 145, e.g. Last, at a distance are held. 22, all coils 141 are made of a single, continuous tube formed.
  • the units 140 can accordingly 22 in a row, but also next to each other, star-shaped, triangular, circular or the like. After that, the individual units 140 become the series laid one on top of the other, the tube sections 146 simply corresponding to FIG. 21 be folded over and therefore outside the front or rear end of the actual one Heat exchanger blocks come to rest.
  • the refrigerant flows through the various units 140 not in parallel, but one after the other.
  • the connections for the compressed air and the refrigerant take place analogously to FIGS. 1 to 18.
  • the straight sections of the pipe coil 141 run as in the embodiment 8 to 10 preferably perpendicular to the strips 145, so that the compressed air or Refrigerant flows are mainly directed perpendicular to each other.
  • the invention is not restricted to the exemplary embodiments described, which are based on can be modified in many ways.
  • the spacers 28 and the adjacent ones Plates 23 or the spacers 145 and the two adjacent plates 142 and 143 as e.g. folded pipes 150 (FIG. 23) with a flat oval or rectangular cross section form and the pipe coil 21 and 141 respectively between two such pipes fasten, the axes of these pipes expediently perpendicular to the straight sections the coil are arranged.
  • passages 21, 76 and 141 continuous Pipe but from several parallel pipes or from the usual plate construction to assemble pipe sections produced, the straight Sections corresponding sections through transverse to the longitudinal direction of the heat exchanger block 20 or 58 running strips and the corresponding to the curved sections Sections also formed by straight, but longitudinally extending sections be, for example, by alternating the above bars in front of one or end of the other longitudinal edge of the respective heat exchanger block and thereby the refrigerant Leave the deflection sections deflected by 180 °.
  • the invention Heat exchangers are readily designed such that e.g. the passages 22 according to FIGS. 8 to 10 of inwardly projecting projections, edges or the like, in particular also from the otherwise usual slats or the like, are completely free. Because in this If there were only large, smooth surfaces on the air side, there would be a risk of Contaminations, especially those that cause noticeable reductions in cross-section over time lead, comparatively low. Nevertheless, such a heat exchanger could trained on the refrigerant side with high pressure resistance and overall with small dimensions can be produced. Furthermore, the individual elements of the described heat exchanger used in other than the combinations shown will.
  • grooved plates or the like could. be provided, which extend over the entire height and depth of the heat exchanger blocks 20th or 140 extend and receive the plates 23, 142 and 143 with their grooves.
  • This Grooved plates could also have holes through which the pipe sections 146 or the ends 147 are guided to the outside.
  • the currents of the refrigerant and the air also differently than in cross flow, in particular also in the or countercurrent or in any other, depending on the individual case Flow direction, for which the strips, coils or the like.
  • Just a different orientation need in the respective heat exchanger block 20 or 140 received. So is without further ado it can be seen that the strip-shaped spacers 145 in FIG. 21 also on the free ones there Sides of plates 142 and 143, i.e. parallel to the straight sections of the coil 141, could be arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Drying Of Gases (AREA)
  • Drying Of Solid Materials (AREA)

Description

Die Erfindung betrifft eine Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen gemäß dem Oberbegriff des Anspruchs 1.
Druckluftanlagen der hier interessierenden Art dienen dazu, mittels eines Kompressors erzeugte und unter einem Druck von z.B. bis 25 bar stehende Druckluft bereitzustellen. Diese Druckluft besitzt allerdings wie die atmosphärische Luft zumindest in europäischen Bereichen einen hohen Feuchtigkeitsgehalt entsprechend einer relativen Luftfeuchtigkeit bis zu 80 % und mehr. Für viele Anwendungszwecke, z.B. in der Lebensmittel- und Papierindustrie oder im medizinischen Bereich, wird jedoch absolut trockene Luft benötigt. Es ist daher bekannt, die vom Kompressor abgegebene Druckluft durch einen Kältetrockner zu leiten, bevor sie ihrem Gebrauchszweck zugeführt wird, und ihr in diesem Kältetrockner völlig die Feuchtigkeit zu entziehen.
Die Lufttrocknung erfolgt in der Regel in der Weise, daß die vom Kompressor kommende, erhitzte Luft zunächst in einem Nachkühler auf eine Temperatur von z.B. 35 - 55 ° C abgekühlt wird. Danach wird die Luft durch eine Wärmetauscher-Vorrichtung geleitet, die einen Luft/Luft-Wärmetauscher und einen Kältemittel-Luft-Wärmetauscher aufweist.
Der Luft/Luft-Wärmetauscher dient dem Zweck, die auf ca. 35 - 55° C befindliche Druckluft einerseits auf z.B. 20° C abzukühlen und andererseits die im Gegenstrom zuströmende, von einem Wasserabscheider kommende und stark gekühlte Druckluft etwa auf Raumtemperatur zu erwärmen, um zu vermeiden, daß an den Außenseiten der zu kalte Luft führenden Leitungen oder Apparate eine Kältebrücke entsteht.
Dagegen dient der Kältemittel/Luft-Wärmetauscher dem Zweck, die vom Luft/Luft-Wärmetauscher kommende, auf ca. 20° C abgekühlte Druckluft mittels eines Kältemittels, z.B. Frigen, auf ihren Taupunkt abzukühlen, der in der Regel bei 2 - 3 ° C liegt. Dazu wird das Kältemittel in bekannter Weise mittels eines Verdichters und eines Kondensators verflüssigt, dann durch den Kältemittel/Luft-Wärmetauscher hindurch entspannt und dadurch auf eine Temperatur von z.B. - 2° C an dessen Eingang und + 4° C an dessen Ausgang gebracht, und danach wieder dem Verdichter zugeführt. Die dadurch auf ihren Taupunkt abgekühlte Luft wird nach ihrem Durchgang durch den Kältemittel/Luft-Wärmetauscher einem Wasserabscheider zugeführt, in dem ihr die Feuchtigkeit vollkommen entzogen wird, und danach emeut durch den Luft/LuftWärmetauscher geleitet, indem sie unter gleichzeitiger Abkühlung der noch warmen, von der Druckluftanlage kommenden Druckluft etwa auf Raumtemperatur erwärmt wird.
Bei einer bekannten Wärmetauscher-Vorrichtung der eingangs bezeichneten Gattung (FR-A-21 55 093) enthält der Kältemittel/Luft-Wärmetauscher schlangenlinien- bzw. mäanderförmig verlegte, von der Luft zu durchströmende Rohre, auf die Leitbleche bzw. Lamellen aufgesteckt sind, und zwischen den Leitblechen verlegte, zur Bildung von Durchgängen für ein Kältemittel bestimmte Platten. Die Rohre sind dabei senkrecht zu den Leitblechen und Platten angeordnet. Dadurch ergibt sich insgesamt ein vergleichsweise geringer Wärmeübergang, und zur Erzielung einer vorgegebenen Leistung ist ein vergleichsweise großes Bauvolumen erforderlich. Die beiden Wärmetauscher weisen außerdem an ihren Enden offene Durchgänge auf und sind mit diesen in einem gemeinsamen Gehäuse untergebracht, das die erforderlichen Umlenkungen für die Luft- bzw. Kältemittelströme bewirkt. Daraus resultieren eine vergleichsweise komplizierte Herstellungsweise und der Nachteil, daß die gegenseitige Abdichtung der verschiedenen Durchgänge problematisch ist und hohe Strömungswiderstände auftreten können, wodurch sich Querschnittsminderungen ergeben, die den Wirkungsgrad herabsetzen.
Daneben sind Wärmetauscher bekannt (US-A-4 966 230), die zwischen parallel zueinander angeordneten Platten abwechselnd von diesen begrenzte Durchgänge für ein erstes Medium und weitere, für den Durchfluß eines zweiten Mediums bestimmte Durchgänge aufweisen, die durch zu den Platten parallel liegende, schlangenlinien- bzw. mäanderförmig verlegte Rohre gebildet sind. Derartige Wärmetauscher werden bisher nicht zur Herstellung von Wärmetauscher-Vorrichtungen der eingangs bezeichneten Gattung verwendet.
Der Erfindung liegt die Aufgabe zugrunde, die Wärmetauscher-Vorrichtung der eingangs bezeichneten Gattung so auszubilden, daß sie ein vergleichsweise kleines Volumen besitzt, kostengünstig herstellbar ist und wenig zu Verschmutzungen neigt.
Zur Lösung dieser Aufgabe ist die erfindungsgemäße Wärmetauscher-Vorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 1 versehen.
Weitere vorteilhafte Merkmale ergeben sich aus den Unteransprüchen.
Die Erfindung bringt den Vorteil mit sich, daß eine Wärmetauscher-Vorrichtung in Kompaktbauweise geschaffen wurde, die es ermöglicht, das für den gesamten Kältetrockner benötigte Bauvolumen bis auf etwa ein Drittel des bisher benötigten Volumens zu verringern. Da die Wärmetauscher der erfindungsgemäßen Wärmetauscher-Vorrichtung außerdem vorzugsweise aus Aluminium gefertigt werden, führt die Erfindung auch zu einer erheblichen Gewichtsreduzierung. Schließlich ist die erfindungsgemäße Wärmetauscher-Vorrichtung kostengünstig herstellbar, wodurch sich die Gesamtkosten des Kältetrockners merkbar verringern lassen. Der Rohr/Platten-Wärmetauscher der erfindungsgemäßen Wärmetauscher-Vorrichtung ist ebenfalls sehr kompakt aufgebaut und ermöglicht einerseits ein geringes Bauvolumen. Andererseits kann er auf der Prozeßluftseite so großflächig ausgebildet werden, daß die Gefahr von ernsthaften Verschmutzungen, insbesondere solchen, die zu merklichen Querschnittsverminderungen führen, gering ist. Schließlich weist der Wärmetauscher auf der Kältemittelseite geschlossene Rohre auf, so daß er im Gegensatz zu in Plattenbauweise hergestellten Wärmeaustauschern eine hohe Druckfestigkeit besitzt.
Die Erfindung wird nachfolgend in Verbindung mit der beiliegenden Zeichnung an Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1
eine schematische Seitenansicht einer ersten Ausführungsform der erfindungsgemäßen Wärmetauscher-Vorrichtung;
Fig. 2
die Draufsicht auf die Wärmetauscher-Vorrichtung nach Fig. 1;
Fig. 3
eine Ansicht auf die Wärmetauscher-Vorrichtung in Richtung eines Pfeils X nach Fig. 1, wobei ein mit einem Einlaßflansch versehener Sammelkasten längs der Linie III-III der Fig. 2 geschnitten dargestellt ist;
Fig. 4
einen Schnitt längs der Linie IV-IV der Fig. 3;
Fig. 5
eine Seitenansicht eines Wärmetauscherblocks eines Luft/Luft-Wärmetauschers der Wärmetauscher-Vorrichtung nach Fig. 1 und 2;
Fig. 6
die Draufsicht auf eine Passage für das eine Wärmeaustauschmedium des Wärmetauscherblocks längs der Schnittlinie VI-VI der Fig. 5;
Fig. 7
die Draufsicht auf eine Passage für das andere Wärmeaustauschmedium des Wärmetauscherblocks längs der Schnittlinie VII-VII der Fig. 5;
Fig. 8
eine Seitenansicht eines Wärmetauscherblocks eines Kältemittel/Luft- Wärme tauschers der Wärmetauscher-Vorrichtung nach Fig. 1;
Fig. 9
die Draufsicht auf den Wärmetauscherblock längs der Schnittlinie IX-IX der Fig. 8;
Fig. 10
eine Ansicht des Wärmetauscherblocks nach Fig. 8 in Richtung eines Pfeils Y;
Fig. 11
schematisch eine Seitenansicht einer zweiten Ausführungsform der erfindungsgemäßen Wärmetauscher-Vorrichtung;
Fig. 12
eine Draufsicht auf die Wärmetauscher-Vorrichtung nach Fig. 10 mit der in Richtung eines Pfeils Z dargestellten Ansicht einer Einzelheit C;
Fig. 13
eine Ansicht der Wärmetauscher-Vorrichtung nach Fig. 11 in Richtung eines Pfeils V und in vergrößertem Maßstab;
Fig. 14
einen Schnitt längs der Linie XIV-XIV der Fig. 12 in vergrößertem Maßstab;
Fig. 15
eine Seitenansicht eines Wärmetauscherblocks eines kombinierten Luft/Luft- und Kältemittel/Luft-Wärmetauschers der Wärmetauscher-Vorrichtung nach Fig. 11; und
Fig. 16
die Draufsicht auf den Wärmetauscherblock längs der Schnittlinie XVI-XVI der Fig. 15;
Fig. 17
eine Ansicht des Wärmetauscherblocks nach Fig. 15 in Richtung eines Pfeils W;
Fig. 18
die Draufsicht auf den Wärmetauscherblock längs der Schnittlinie XVIII-XVIII der Fig. 15;
Fig. 19
einen Querschnitt durch eine Einheit eines erfindungsgemäßen Kältemittel/Luft-Wärmetauschers gemäß einer zweiten Ausführungsform;
Fig. 20
eine vergrößerte Einzelheit X der Einheit nach Fig. 19;
Fig. 21
eine perspektivische Darstellung eines Wärmetauscherblocks, der aus einer Vielzahl von Einheiten nach Fig. 22 zusammengesetzt ist;
Fig. 22
eine Vielzahl von hintereinander angeordneten Einheiten nach Fig. 19 mit einer durchgehenden Rohrschlange in perspektivischer Darstellung; und
Fig. 23
eine der Fig. 21 entsprechende Darstellung einer weiteren Ausführungsform eines erfindungsgemäßen Wärmetauscherblocks.
Die Wärmetauscher-Vorrichtung nach Fig. 1 und 2 enthält einen Luft/Luft-Wärmetauscher 1 und einen Kältemittel/Luft-Wärmetauscher 2. Beide Wärmetauscher 1 und 2 sind nach Fig. 1 übereinanderliegend angeordnet, wobei der Kältemittel/Luft-Wärmetauscher 2 unter dem Luft/Luft-Wärmetauscher 1 liegt, obwohl es auch umgekehrt sein könnte.
Der Luft/Luft-Wärmetauscher 1 (Fig. 1) besteht aus einem Plattenwärmetauscher und enthält einen Wärmetauscherblock 3 (Fig. 5 - 7) mit in Plattenbauweise hergestellten Durchgängen 4 und 5, die jeweils in Richtung der eingezeichneten Pfeile, d.h. überwiegend im Gegenstrom, von Luft durchströmt werden. Dabei tritt die Luft, wie Fig. 6 und 7 zeigen, jeweils an einem Ende der Durchgänge 4 und 5 seitlich in diese ein und am gegenüberliegenden Ende in Längsrichtung wieder aus. Die Durchgänge 4 und 5 sind außerdem entsprechend Fig. 4 und 5 jeweils abwechselnd übereinander angeordnet.
Jeder Durchgang 4 wird von zwei zur Längsrichtung des Wärmetauscherblocks 3 parallelen, an das in Fig. 6 linke Ende des Wärmetauscherblocks 3 grenzenden Leisten 6 und 7 mit im wesentlichen quadratischem oder rechteckigem Querschnitt und zwei oberhalb bzw. unterhalb derselben angeordneten, über die ganze Länge und Breite des Wärmetauscherblocks 3 erstreckten Platten 8 gebildet. Am in Fig. 5 und 6 linken Ende sind die Durchgänge 4 offen. Dagegen sind die Durchgänge 4 an dem in Fig. 5 und 6 rechten Ende durch über die Breite des Wärmetauscherblocks 3 erstreckte Leisten 9 abgeschlossen, während gleichzeitig die Leisten 6 kürzer als die Leisten 7 ausgebildet sind, damit die Durchgänge 4 entsprechend Fig. 6 nicht zum rechten Ende, sondern zur Seite hin geöffnet sind und die Luft in Richtung des eingezeichneten Pfeils von der Seite her einströmen kann. In die Durchgänge 4 sind im übrigen zweckmäßig übliche Lamellen 10 eingelegt, die in Fig. 5 nur teilweise dargestellt sind und deren Passagen entsprechend Fig. 6 längs einer Linie 11 um 90° umgelenkt sind.
Dagegen wird jeder Durchgang 5 nach Fig. 5 und 7 von zwei zur Längsrichtung des Wärmetauscherblocks 3 parallelen, an das in Fig. 7 rechte Ende des Wärmetauscherblocks 3 grenzenden Leisten 14 und 15 mit im wesentlichen quadratischem oder rechteckigem Querschnitt und zwei weiteren, oberhalb bzw. unterhalb derselben angeordneten, über die ganze Länge und Breite des Wärmetauscherblocks 3 erstreckten Platten 8 gebildet. Am in Fig. 5 und 7 rechten Ende sind die Durchgänge 5 offen. Dagegen sind die Durchgänge 5 am in Fig. 5 und 7 linken Ende durch über die Breite des Wärmetauscherblocks 3 erstreckte Leisten 16 abgeschlossen, während gleichzeitig die Leisten 14 kürzer als die Leisten 15 ausgebildet sind, damit die Durchgänge 5 entsprechend Fig. 7 nicht zum linken Ende, sondern zur Seite, zweckmäßig zu derselben Seite wie die Durchgänge 4 hin geöffnet sind und die Luft in Richtung der eingezeichneten Pfeile von der Seite her einströmen kann. In die Durchgänge 5 sind im übrigen zweckmäßig Lamellen 17 eingelegt, die in Fig. 5 nur teilweise sichtbar sind und deren Passagen entsprechend Fig. 7 längs einer Linie 18 um 90° umgelenkt sind.
Die Leisten 6, 7, 9 und 16, die jeweils zwischen ihnen angeordneten Platten 8 sowie die zwischen je zwei Platten 8 angeordneten Lamellen 10 und 17 sind derart übereinandergestapelt, wie es von in Plattenbauweise hergestellten Wärmetauschern an sich bekannt ist, und derart angeordnet, daß abwechselnd ein Durchgang 4 bzw. 5 entsteht und der Wärmetauscherblock 3 nach oben und unten durch je eine Platte 8 abgeschlossen ist. Die Platte 8 und ggfs. auch die Leisten 6, 7, 9 und 16 bestehen vorzugsweise aus mit einem Lot plattierten Aluminium und werden in an sich bekannter Weise zunächst gestapelt und dann in einem Luft- oder Vakuumofen oder auch in einem Flußmittelbad miteinander verlötet.
Die Leisten 6 und 14, die Leisten 7 und 15 sowie die Leisten 9 und 16 sind zweckmäßig identisch ausgebildet, so daß sich entsprechend Fig. 5 und 7 eine symmetrische und besonders kostengünstig herstellbare Ausbildung des Wärmetauscherblocks 3 ergibt. Die Zahl der Durchgänge 4 und 5 richtet sich nach der erforderlichen Leistung des Wärmetauscherblocks 3.
Der Kältemittel/Luft-Wärmetauscher 2 (Fig. 1) besteht aus einem kombinierten Rohr/Platten-Wärmetauscher und enthält einen Wärmetauscherblock 20 (Fig. 8 bis 10) mit Durchgängen 21 für ein Kältemittel und Durchgängen 22 für die Druckluft, wobei die Durchgänge 21 und 22 jeweils in Richtung der in Fig. 9 eingezeichneten Pfeile, d.h. überwiegend im Gleichstrom, vom Kältemittel bzw. von der Druckluft durchströmt werden.
Die Durchgänge 21 für das Kältemittel bestehen aus Rohren mit rundem oder vorzugsweise rechteckigem oder quadratischem Querschnitt, die zwischen je zwei über die Länge und Breite des Wärmetauscherblocks 20 erstreckten Platten 23 angeordnet sind. Jeder Durchgang 21 ist schlangenlinien- bzw. mäanderförmig erstreckt und weist eine Mehrzahl von geraden Abschnitten 24 auf, die im Ausführungsbeispiel parallel zueinander und senkrecht zur Längsachse und mit dichtem Abstand angeordnet sind. Je zwei benachbarte gerade Abschnitte 24 sind entsprechend Fig. 9 durch um 180° gebogene Abschnitte 25 derart verbunden, daß sich ein ununterbrochener Strömungspfad von einem Eingang 26 zu einem Ausgang 27 ergibt. Wie insbesondere Fig. 8 und 10 zeigen, wird jeder Durchgang 22 für die Druckluft aus zwei an den Seitenkanten von zwei parallelen Platten 23 erstreckten und diese auf Abstand haltenden, in Längsrichtung des Wärmetauscherblocks 20 verlaufenden Abstandsstücken 28, z.B. in Form von Leisten, begrenzt. Zwischen den beiden Platten 23 sind Lamellen 29 üblicher Bauweise angeordnet. Die Durchgänge 22 sind daher in Fig. 8 und 9 jeweils am rechten und linken Ende offen. Dabei ist die Anordnung so getroffen, daß sich die Durchgänge 21 und 22 im Wärmetauscherblock 20 abwechseln, d.h. daß die Rohre (Durchgänge 21) beidseitig mit Platten 23 belegt und diese zur Bildung der Durchgänge 21 durch die Abstandsstücke 28 auf Abstand gehalten sind. Nach diesem Schema sind in Fig. 8 bis 10 drei Durchgänge 21 und vier Durchgänge 22 gebildet, wobei jeweils ein Durchgang 21 mit den beiden daran angrenzenden Platten 23 eine Einheit bilden kann. Außerdem können zwischen je zwei Platten 23, zwischen denen die die Durchgänge 21 bildenden Rohre angeordnet sind, noch parallel zu den geraden Abschnitten 24 verlaufende, beispielsweise ebenfalls leistenförmige Abschlußelemente 30 und am oberen und unteren Ende je eine Endplatte 31 vorgesehen sein, wobei die Abschlußelemente 30 vor allem dazu dienen, den Raum zwischen den einzelnen Rohrabschnitten vor Verunreinigungen zu schützen.
Die verschiedenen Teile des Wärmetauscherblocks 20 bestehen wie die des Wärmetauscherblocks 3 vorzugsweise aus Aluminium, insbesondere mit einem Lot plattiertem Aluminium, und werden in an sich bekannter Weise zunächst gestapelt und dann miteinander verlötet.
Gemäß Fig. 1 bis 3 sind die Wärmetauscherblöcke 3 und 20 übereinander angeordnet und fest miteinander verbunden, z.B. verlötet. Dabei sind die Durchgänge 5 dort, wo die Luft in sie eintritt (Fig. 7), mit einem seitlich angesetzten und über die Höhe des Wärmetauscherblocks 3 erstreckten Sammelkasten 33 flüssigkeitsdicht verbunden, der mit einem eine Einlaßöffnung aufweisenden Einlaßflansch 34 versehen ist. Dagegen sind die Durchgänge 5 an ihren in Fig. 1 und 2 offenen rechten Enden durch einen über die Breite und Höhe sowohl des Wärmetauscherblocks 3 als auch des Wärmetauscherblocks 20 erstreckten Sammel- bzw. Umlenkkasten 35 mit den ebenfalls offenen rechten Enden der Durchgänge 22 (Fig. 10) des Wärmetauscherblocks 20 flüssigkeitsdicht verbunden. Weiterhin sind die Durchgänge 4 des Wärmetauscherblocks 3 dort, wo die Luft in sie eintritt (Fig. 6), mit einem über die Höhe des Wärmetauscherblocks 3 erstreckten Sammelkasten 36 flüssigkeitsdicht verbunden, der mit einem eine Einlaßöffnung aufweisenden Einlaßflansch 37 versehen ist. Dagegen münden die Durchgänge 4 an ihren in Fig. 1 und 2 offenen linken Ende flüssigkeitsdicht in einem weiteren, über die Höhe und Breite des Wärmetauscherblocks 3 erstreckten Sammelkasten 38, der mit einem eine Auslaßöffnung aufweisenden Auslaßflansch 39 versehen ist. Dieser ist in Fig. 1 durch den Einlaßflansch 34 abgedeckt und daher nur in Fig. 2 sichtbar. Schließlich sind die in Fig. 9 offenen linken Enden der Durchgänge 22 mit einem über die Breite und Höhe des Wärmetauscherblocks 20 erstreckten, flüssigkeitsdichten Sammelkasten 40 versehen, der entsprechend Fig. 2 eine nach der Seite herausragende Verlängerung 41 aufweist, die mit einem eine Auslaßöffnung aufweisenden Anschlußflansch 42 versehen ist, wobei die Strömungsrichtung parallel zu der des Einlaßflansches 34 ist, während dessen Einlaßöffnung entgegengesetzt zur Auslaßöffnung des Auslaßflansches 42 liegt.
Die in Fig. 2 und 10 nur schematisch dargestellten Ein- und Ausgänge 26, 27 der Durchgänge 21 sind entsprechend Fig. 3 und 4 jeweils durch eine hosenrohrartige Konstruktion zusammengefaßt. Da entsprechend Fig. 8 bis 10 insgesamt drei Durchgänge 21 vorgesehen sind, sind die drei daraus resultierenden Ausgänge 27 in der aus Fig. 3 und 4 ersichtlichen Weise durch gebogene Zwischenabschnitte 43 zu einem Flansch 44 mit einer gemeinsamen Austrittsöffnung geführt, der über ein gekrümmtes Rohr 45 flüssigkeitsdicht mit einem Anschlußnippel 46 versehen ist. Die Eingänge 26 sind entsprechend an einen Anschlußnippel 47 (Fig. 1) angeschlossen, was in Fig. 3 nicht sichtbar ist, weil diese Anordnung den Teilen 43 bis 46 entsprechende Teil umfaßt.
Die beschriebenen, aus zwei fest miteinander verbundenen Wärmetauschern 1 und 2 bestehende Wärmetauscher-Vorrichtung bildet eine kompakte, platzsparende Einheit, die als Ganzes vor allem einem Kältetrockner zugeordnet werden kann, mit dem herkömmliche Druckluftanlagen ausgerüstet werden, wie nachfolgend kurz erläutert wird. Dabei ergibt sich der besondere Vorteil, daß die beiden Wärmetauscher 1 und 2 im wesentlichen dieselbe Breite und Länge aufweisen und zu einem gemeinsamen Block zusammengefaßt werden können.
Von einem vorzugsweise mit einem Nachkühler versehenen Kompressor wird Druckluft geliefert, die sich z.B. auf einer Temperatur von ca. 35 - 55° C befindet. Diese Druckluft wird zunächst mittels des Einlaßflansches 34 dem Sammelkasten 33 zugeführt und strömt von dort in Richtung einer Pfeillinie 49 (Fig. 2 und 7) durch die Durchgänge 5 des Luft/Luft-Wärmetauschers 1 in den Sammel- und Umlenkkasten 35. Von dort gelangt die Druckluft in den Kältemittel/Luft-Wärmetauscher 2 (Fig. 1) und durchströmt dann in entgegengesetzter Richtung dessen Durchgänge 22 (Fig. 10 und Pfeillinie 50 in Fig. 9). Gleichzeitig wird das Kältemittel in Richtung der in Fig. 9 eingezeichneten Pfeile durch die Durchgänge 21 geführt und dabei entspannt, wobei aufgrund der langen, durch die geraden und gebogenen Rohrabschnitte 24, 25 (Fig. 9) bewirkten Laufzeit im Kältemittel/Luft-Wärmetauscher 2 trotz seiner vergleichsweise geringen Baulänge ein hohes Maß an Effektivität im Hinblick auf die gewünschte Abkühlung der Druckluft erzielt wird. Im übrigen wird das Kältemittel in an sich bekannter Weise in einem Kältemittelkreislauf geführt, wobei es jeweils am Anschlußnippel 47 zugeführt und am Anschlußnippel 46 abgeführt wird (Fig. 1, 3 und 5).
Die auf den Taupunkt (z.B. ca. 2 - 3° C) abgekühlte Druckluft strömt nach dem Durchgang durch die Durchgänge 22 in den Sammelkasten 40 (Fig. 1), wird in diesem seitlich umgelenkt und tritt über dessen seitliche Verlängerung 41 (Fig. 2) und den Auslaßflansch 42 wieder aus. Danach wird die Druckluft, wie in Fig. 2 schematisch dargestellt ist, einem Wasserabscheider 51 zugeführt. Die aus diesem austretende, vollkommen getrocknete Druckluft wird schließlich über den Einlaßflansch 37 (Fig. 2) und den Sammelkasten 36 wieder dem Luft/Luft-Wärmetauscher 1 zugeführt, so daß sie dessen Durchgänge 4 in Richtung einer Pfeillinie 52 in Fig. 2 und 6 passieren kann. Dabei wird die Druckluft in Wechselwirkung mit der die Durchgänge 5 passierenden warmen Druckluft bis etwa auf Raumtemperatur aufgewärmt, bevor sie den Sammelkasten 38 (Fig. 2) erreicht und über den Auslaßflansch 39 der Zapfstelle für die Druckluft zugeführt wird. Je nach geforderter Leistung der beiden Wärmetauscher 1 und 2 kann die Zahl ihrer Durchgänge 4 und 5 bzw. 21 und 22 im Prinzip beliebig vergrößert werden, indem eine entsprechende Anzahl weiterer Platten bzw. Rohre übereinandergestapelt wird, ohne daß sich dadurch die Abmessungen in der Höhe und Breite der Wärmetauscher-Vorrichtung verändern.
Eine noch kompaktere und weniger Raum in Anspruch nehmende Wärmetauscher-Vorrichtung, die insbesondere für kleinere Leistungen geeignet ist, ergibt sich aus Fig. 11 bis 17. Sie enthält einen Luft/Luft-Wärmetauscher 56 und einen Kältemittel/Luft-Wärmetauscher 57. Beide Wärmetauscher 56, 57 sind im Gegensatz zu Fig. 1 bis 10 nicht übereinander, sondern nebeneinander angeordnet und zu einer integralen Baueinheit miteinander verbunden. Zu diesem Zweck werden beide Wärmetauscher 56 und 57 aus einem zusammenhängenden Wärmetauscherblock 58 hergestellt, der in seinem in Fig. 15, 16 und 18 rechten Teil einen für den Wärmeaustausch Luft/Luft verantwortlichen Abschnitt 59 und in seinem in Fig. 15, 16 und 18 linken Teil einen für den Wärmeaustausch Kältemittel/Luft verantwortlichen Abschnitt 60 aufweist. Beide Abschnitte 59, 60 werden durch Platten 61 gebildet, die über die gesamte Breite und Länge des Wärmetauscherblocks 58 erstreckt sind. Dabei ist ein Teil der Platten 61 einerseits durch senkrecht zur Längsrichtung verlaufende, am in Fig. 15 rechten Ende des Wärmetauscherblocks 58 angeordnete Leisten 62 und andererseits durch in Längsrichtung erstreckte und bis zum in Fig. 15, 16 und 18 linken Ende verlaufende, an den Seitenkanten der Platten 61 angeordnete Leisten 63 und 64 auf Abstand gehalten. Dadurch entstehen zwischen den Platten 61 Durchgänge 65, die am in Fig. 18 linken Ende des Wärmetauscherblocks 58 offen sind. Am in Fig. 18 rechten Ende sind die unteren Leisten 64 etwas kürzer, so daß zwischen ihren rechten Enden und den Leisten 62 ein Zwischenraum 66 entsteht, durch den Luft in Richtung des eingezeichneten Pfeils seitlich eintreten kann. Außerdem sind in den Durchgängen 65 übliche Lamellen 67 (Fig. 15 und 17) angeordnet, die entsprechend Fig. 18 so ausgebildet sind, daß die seitlich eintretende Luft längs einer Linie 68 (Fig. 18) umgelenkt wird.
Der andere Teil der Platten 61 ist gemäß Fig. 15 und 16 in dem den Abschnitt 59 bildenden Teil durch parallel zur Längsrichtung verlaufende, an den Seitenkanten der Platten 61 angeordnete und bis zum in Fig. 15 und 16 rechten Ende des Wärmetauscherblocks 58 erstreckte Leisten 69 und 70 und eine quer dazu verlaufende, an das linke Ende des Abschnitts 59 bildende Abschlußleiste 71 abgeschlossen. Dadurch entsteht zwischen zwei Platten 61 ein weiterer Durchgang 72, der am in Fig. 16 rechten Ende des Wärmetauscherblocks 58 offen ist. Auf der Seite der Abschlußleiste 71 ist die in Fig. 16 obere Leiste 69 etwas kürzer, so daß zwischen beiden ein Zwischenraum 73 entsteht, der im Vergleich zum Zwischenraum 66 auf der gegenüberliegenden Seite des Wärmetauscherblocks 58 liegt, so daß hier Luft seitlich eintreten und in Richtung der eingezeichneten Zeile (Fig. 16) umgelenkt werden kann. Die Umlenkung wird analog zu Fig. 18 vorzugsweise mit entsprechend ausgebildeten Lamellen 74 bewirkt.
In dem Abschnitt 60 werden dieselben Platten 61 dagegen durch einen schlangenlinien- bzw. mäanderförmig angeordneten Durchgang 76 auf Abstand gehalten, der gerade und gebogene Abschnitte 77, 78 aufweist und im wesentlichen genauso wie die Durchgänge 21 nach Fig. 8 bis 10 ausgebildet und angeordnet ist. Der Durchgang 76 erstreckt sich von der Abschlußleiste 71 zu einer am in Fig. 17 linken Ende des Wärmetauscherblocks 58 angeordneten Abschlußleiste 79.
Im übrigen ist die Anordnung so getroffen, daß in einem mittleren Teil des Wärmetauscherblocks 58 die Durchgänge 72 und 76 angeordnet sind, an die sich nach oben und unten je ein Durchgang 65 (Fig. 15) anschließt.
Je ein Eingang 81 und Ausgang 82 (Fig. 16) des Durchgangs 76 sind nach Fig. 11 bis 14 und analog zu Fig. 1 bis 4 über gekrümmte Rohrabschnitte 83 mit je einem Anschlußnippel 84, 85 versehen, von denen in Fig. 13 nur der Anschlußnippel 85 sichtbar ist. Weiterhin sind die in Fig. 15, 16 und 18 rechten Enden der Durchgänge 65 mit einem Sammelkasten 86 und einem eine Einlaßöffnung aufweisenden Einlaßflansch oder Einlaßnippel 87 flüssigkeitsdicht verbunden, während die in Fig. 15, 16 und 18 linken Enden der Durchgänge 65 mit einem Sammelkasten 88 flüssigkeitsdicht verbunden sind, der ähnlich wie der Sammelkasten 40 nach Fig. 1 und 2 eine seitliche Verlängerung 89 aufweist, die mit einem eine Auslaßöffnung 90 aufweisenden Anschlußflansch 91 versehen ist. Schließlich ist die seitliche Öffnung des Durchgangs 72 (Fig. 16) mit einem Sammelkasten 92 und einem eine Einlaßöffnung aufweisenden Einlaßflansch oder Einlaßnippel 93 flüssigkeitsdicht verbunden, während das in Fig. 11 und 12 rechte Ende des Durchgangs 72 mit einem Sammelkasten 94 und einem eine Auslaßöffnung aufweisenden Auslaßflansch oder Auslaßnippel 95 flüssigkeitsdicht verbunden ist.
Analog zur Ausführungsform nach Fig. 1 bis 10 wird die von der Druckluftanlage kommende, auf z.B. ca. 35 - 55° C erwärmte Druckluft über den Einlaßflansch 87 dem Sammelkasten 86 zugeführt, so daß sie die Durchgänge 65 in Richtung einer Pfeillinie 96 (Fig. 18) durchströmt. Dabei wird die Druckluft zunächst im Wärmetauscher 56 durch die im Gegenstrom über den Einlaßflansch 93 bzw. den Sammelkasten 92 zugeführte, von einem nicht dargestellten Wasserabscheider kommende kalte Druckluft auf eine Temperatur von ca. 20° C abgekühlt. Auf ihrem weiteren Weg durch die Durchgänge 65 wird die Druckluft dann allmählich im Wärmetauscher 57 auf den Taupunkt abgekühlt, da sie hier mit dem Kältemittel wechselwirkt, das den Durchgang 76 in Richtung der Pfeile (Fig. 16) durchströmt. Die Druckluft wird dann über den Sammelkasten 88 und den Auslaßflansch 91 dem Wasserabscheider und von dort dem Einlaßflansch 93 zugeführt, so daß sie am Auslaßnippel 95, der als Zapfstelle für die Druckluft dient, wieder annähernd auf Raumtemperatur erwärmt ist.
Wie bei der Ausführungsform nach Fig. 1 bis 10 kann die Leistung der Wärmetauscher-Vorrichtung dadurch verändert werden, daß bei gleichbleibender Länge und Breite des Wärmetauscherblocks 58 die Zahl der Durchgänge 65, 72 und 76 entsprechend verändert wird.
Der anhand der Fig. 8 bis 10 bzw. 15 bis 18 beschriebene Kältemittel/Luft-Wärmetauscher kann auch durch eine Mehrzahl der aus Fig. 19 und 20 ersichtlichen Einheiten 140 zusammengesetzt werden, die eine entsprechend Fig. 9 ausgebildete, mäanderförmig gewundene Rohrschlange 141 enthält, an deren beiden Breitseiten je eine Platte 142 bzw. 143 befestigt ist. Dabei kann die Rohrschlange 141 in an sich bekannter Weise z.B. entweder durch Weichlöten oder durch Kleben mit den Platten 142,143 verbunden werden, wie in Fig. 20 durch das Bezugszeichen angedeutet ist.
Der gesamte Wärmetauscherblock besteht zweckmäßig aus einer Vielzahl von übereinander gestapelten Einheiten 140 (Fig. 21), die durch Abstandsstücke 145, z.B. Leisten, auf Abstand gehalten sind. Entsprechend Fig. 22 sind dabei alle Rohrschlangen 141 aus einem einzigen, durchlaufenden Rohr gebildet. Zur Vereinfachung der Herstellung des Wärmetauscherblocks wird dabei zunächst entsprechend Fig. 22 eine Mehrzahl von aneinander gekoppelten Einheiten 140 hergestellt, deren Rohrschlangen 141 durch je einen S- bzw. Z-förmigen Rohrabschnitt 146 miteinander verbunden sind. Dabei können die Einheiten 140 entsprechend Fig. 22 hintereinander, aber auch nebeneinander, sternförmig, dreieckförmig, kreisförmig od. dgl. angeordnet sein. Danach werden die einzelnen Einheiten 140 der Reihe nach übereinandergelegt, wobei die Rohrabschnitte 146 einfach entsprechend Fig. 21 umgefaltet werden und daher außerhalb des Voder- bzw. Hinterendes des eigentlichen Wärmetauscherblocks zu liegen kommen.
Im Gegensatz zu Fig. 8 bis 10 durchströmt das Kältemittel die verschiedenen Einheiten 140 nicht parallel, sondern hintereinander. Dabei können die Anschlüsse für die Druckluft und das Kältemittel analog zu Fig. 1 bis 18 erfolgen.
Die zwischen den Platten 142,143 befindlichen, die Rohrschlange 141 aufnehmenden Hohlräume sind zweckmäßig analog zu Fig. 8 bis 10 durch leistenförmige Abschlußelemente 149 verschlossen, die aus U-Profilen bestehen können, vorzugsweise aber aus an den Platten 142,143 angebrachten Abkantungen bestehen, wie insbesondere Fig. 19 zeigt.
Die geraden Abschnitte der Rohrschlange 141 verlaufen wie bei der Ausführungsform nach Fig. 8 bis 10 vorzugsweise senkrecht zu den Leisten 145, so daß auch die Druckluft- bzw. Kältemittelströme überwiegend senkrecht zueinander gerichtet sind.
Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, die auf vielfache Weise abgewandelt werden können. Alternativ zu Fig. 8 bis 10, 15 bis 18 und 19 bis 21 wäre es beispielsweise möglich, die Abstandsstücke 28 und die jeweils angrenzenden Platten 23 bzw. die Abstandsstücke 145 und die beiden benachbarten Platten 142 und 143 als z.B. gefalzte Rohre 150 (Fig. 23) mit flachovalem bzw. rechteckigem Querschnitt auszubilden und die Rohrschlange 21 bzw. 141 jeweils zwischen zwei solchen Rohren zu befestigen, wobei die Achsen dieser Rohre zweckmäßig senkrecht zu den geraden Abschnitten der Rohrschlange angeordnet sind.
Weiter wäre es möglich, die Durchgänge 21, 76 und 141 nicht aus einem durchgehenden Rohr, sondern aus mehreren parallel verlaufenden Rohren oder aus in üblicher Plattenbauweise hergestellten Rohrabschnitten zusammenzusetzen, wobei die den geraden Abschnitten entsprechenden Abschnitte durch quer zur Längsrichtung des Wärmetauscherblocks 20 bzw. 58 verlaufende Leisten und die den gebogenen Abschnitten entsprechenden Abschnitte ebenfalls durch gerade, jedoch in Längsrichtung verlaufende Abschnitte gebildet werden, indem beispielsweise die genannten Leisten abwechselnd vor der einen oder anderen Längskante des jeweiligen Wärmetauscherblocks enden und dadurch das Kältemittel um 180° umlenkende Umlenkabschnitte freilassen.
Weiter ist es möglich, die dargestellten Anschlüsse (Einlaß- und Auslaßflansche und -nippel) an andere Stellen zu verlegen, falls sich dies als zweckmäßig erweisen sollte, wobei auch die durch Pfeile angedeuteten Strömungsrichtungen für die Luft und das Kältemittel nur Beispiele darstellen. Weiter wäre es möglich, die beschriebenen Wärmetauscher aus anderen Materialien als aus Aluminium herzustellen und/oder für andere Zwecke als den beschriebenen Zweck zu verwenden. Insbesondere sind beispielsweise die beschriebenen Kältemittel/Luft-Wärmetauscher auch ausgezeichnet für in neuerer Zeit bekannt gewordene, Wärmepumpen aufweisende Wäschetrockner geeignet, bei denen die aus dem Wäschetrockner kommende, warme und feuchte Luft in einem als Verdampfer für ein Kältemittel wirksamen Kältemittel/Luft-Wärmetauscher zunächst abgekühlt wird, um das Wasser abzuscheiden, und dann wieder vorgewärmt wird. Während herkömmliche Kältemittel/Luft-Wärmetauscher einer großen Verschmutzung unterliegen, können die erfindungsgemäßen Wärmetauscher ohne weiteres so ausgebildet werden, daß z.B. die Durchgänge 22 nach Fig. 8 bis 10 von nach innen ragenden Vorsprüngen, Kanten od. dgl., insbesondere auch von den sonst üblichen Lamellen od. dgl., völlig frei sind. Weil in diesem Fall auf der Luftseite nur große, glatte Oberflächen vorhanden sind, wäre die Gefahr von Verschmutzungen, insbesondere solchen, die im Laufe der Zeit zu merklichen Querschnittsverminderungen führen, vergleichsweise gering. Dennoch könnte ein solcher Wärmetauscher auf der Kältemittelseite mit hoher Druckfestigkeit ausgebildet und insgesamt mit kleinen Abmessungen hergestellt werden. Weiterhin können die einzelnen Elemente der beschriebenen Wärmetauscher in anderen als den dargestellten Kombinationen verwendet werden. Anstelle der Abstandsstücke 28 bzw. 145 könnten genutete Platten od. dgl. vorgesehen sein, die sich über die ganze Höhe und Tiefe der Wärmetauscherblöcke 20 bzw. 140 erstrecken und mit ihren Nuten die Platten 23,142 bzw. 143 aufnehmen. Diese genuteten Platten könnten außerdem Löcher aufweisen, durch welche die Rohrabschnitte 146 bzw. die Enden 147 nach außen geführt werden. Schließlich können die Ströme des Kältemittels und der Luft auch anders als im Kreuzstrom, insbesondere auch im Gleich- oder Gegenstrom oder in jeder beliebigen, anderen, vom jeweiligen Einzelfall abhängigen Richtung strömen, wozu die Leisten, Rohrschlangen od. dgl. lediglich eine andere Ausrichtung im jeweiligen Wärmetauscherblock 20 bzw. 140 erhalten brauchen. So ist ohne weiteres ersichtlich, daß die leistenförmigen Abstandsstücke 145 in Fig. 21 auch an den dort freien Seiten der Platten 142 bzw. 143, d.h. parallel zu den geraden Abschnitten der Rohrschlange 141, angeordnet sein könnten.

Claims (8)

  1. Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen, bestehend aus einem als Plattenwärmetauscher ausgebildeten Luft/Luft-Wärmetauscher, der erste Durchgänge (4,65) und davon getrennte zweite Durchgänge (5,72) aufweist, und einem als kombinierter Rohr/Platten-Wärmetauscher ausgebildeten Kältemittel/Luft-Wärmetauscher (2,57), der wenigstens einen durch Platten (8,61) gebildeten dritten Durchgang (22,65) und wenigstens einen davon getrennten vierten, schlangen- bzw. mäanderförmigen Durchgang (21,76) aufweist, wobei die beiden Wärmetauscher (1,56 bzw. 2,57) zu einer Baueinheit miteinander verbunden sind und wobei die Ausgänge der ersten Durchgänge (4,65) an den Eingang des dritten Durchgangs (22,65) und der Ausgang des dritten Durchgangs (4,65) an die Eingänge der zweiten Durchgänge (5,72) angeschlossen sind, dadurch gekennzeichnet, daß der dritte Durchgang (22,65) für die Durchströmung von Luft eingerichtet und aus Platten (23,61) und zwischen diesen angeordneten Abstandstücken (28,62-64) gebildet ist, während der vierte Durchgang (21,76) zur Durchströmung des Kältemittels eingerichtet und ebenfalls zwischen den Platten (23,61) angeordnet ist, und daß die Baueinheit entweder zwei durch einen gemeinsamen Sammel- und Umlenkkasten (35) miteinander verbundene, je einen der Wärmetauscher (1,2) bildende Wärmetauscherblöcke (3,20) oder einen einzigen Wärmetauscherblock (58) enthält, der zwei je einen der Wärmetauscher (56,57) bildende Wärmetauscherabschnitte (59,60) aufweist.
  2. Wärmetauscher-Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie zwei übereinanderliegend angeordnete, durch den Sammel- und Umlenkkasten (35) verbundene Wärmetauscherblöcke (3,4) aufweist.
  3. Wärmetauscher-Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie zwei nebeneinanderliegend angeordnete, in einem zusammenhängenden Wärmetauscherblock (58) ausgebildete Abschnitte (59,60) aufweist.
  4. Wärmetauscher-Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der dritte Durchgang (22,65) für die Luft mit Lamellen (29,67) versehen ist.
  5. Wärmetauscher-Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der vierte Durchgang (21,76) für das Kältemittel aus einem durchgehenden, mäanderförmig verlegten Rohr mit parallel zueinander angeordneten geraden Abschnitten (24,77) und diese verbindenden, um 180° umlenkenden Abschnitten (25,78) besteht.
  6. Wärmetauscher-Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die geraden Abschnitte (24,77) senkrecht zur Strömungsrichtung in den die Lamellen (29,67) aufweisenden Durchgängen (22,65) angeordnet sind.
  7. Wärmetauscher-Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der Wärmetauscherblock (58) aus übereinandergestapelten Platten (61) und diese auf Abstand haltenden Leisten (62,63,64,69,70,71,79) gebildet ist, wobei zwischen den Platten (61) die Bestandteile des Luft/Luft-Wärmetauschers (56) bildenden zweiten Durchgänge (72) und in Längsrichtung daneben der einen Bestandteil des Kältemittel/Luft-Wärmetauschers (57) bildende, vierte Durchgang (76) angeordnet sind.
  8. Wärmetauscher-Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß beide Wärmetauscher (1,2 bzw. 56,57) als Aluminium hergestellt sind.
EP92108919A 1991-06-04 1992-05-27 Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen Expired - Lifetime EP0521298B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4118289 1991-06-04
DE4118289A DE4118289A1 (de) 1991-06-04 1991-06-04 Waermetauscher-vorrichtung fuer kaeltetrockner an druckluftanlagen
DE9204952U DE9204952U1 (de) 1991-06-04 1992-04-09 Wärmetauscher, insbesondere für Kondensations-Wäschetrockner
DE9204952U 1992-04-09

Publications (3)

Publication Number Publication Date
EP0521298A2 EP0521298A2 (de) 1993-01-07
EP0521298A3 EP0521298A3 (en) 1993-04-14
EP0521298B1 true EP0521298B1 (de) 1999-12-08

Family

ID=25904241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92108919A Expired - Lifetime EP0521298B1 (de) 1991-06-04 1992-05-27 Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen

Country Status (7)

Country Link
US (1) US5299633A (de)
EP (1) EP0521298B1 (de)
JP (1) JP3273633B2 (de)
AT (1) ATE187547T1 (de)
DE (2) DE9204952U1 (de)
DK (1) DK0521298T3 (de)
ES (1) ES2142310T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10311602A1 (de) * 2003-03-14 2004-09-23 Agt Thermotechnik Gmbh Vorrichtung, insbesondere Wärmetauscher, und Verfahren

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19514155A1 (de) * 1995-04-15 1996-10-17 Miele & Cie Verfahren zum Trocknen sowie eine Trockeneinrichtung zur Durchführung des Verfahrens
DE19709601C5 (de) * 1997-03-08 2007-02-01 Behr Industry Gmbh & Co. Kg Plattenwärmeübertrager
US5845505A (en) * 1997-05-30 1998-12-08 American Precision Industries Inc. Precooler/chiller/reheater heat exchanger for air dryers
DE19754405A1 (de) * 1997-12-09 1999-06-10 Manfred H Langner Verfahren und Vorrichtung zum Entfeuchten von Abluft
US5875837A (en) * 1998-01-15 1999-03-02 Modine Manufacturing Company Liquid cooled two phase heat exchanger
US6394076B1 (en) * 1998-09-23 2002-05-28 Duane L. Hudelson Engine charge air cooler
DE10151238A1 (de) 2001-10-17 2003-04-30 Autokuehler Gmbh & Co Kg Kältemittel/Luft-Wärmeaustauschernetz
US20050066668A1 (en) * 2003-09-26 2005-03-31 Flair Corporation Refrigeration-type dryer apparatus and method
US7093649B2 (en) * 2004-02-10 2006-08-22 Peter Dawson Flat heat exchanger plate and bulk material heat exchanger using the same
US7104314B2 (en) * 2004-06-29 2006-09-12 Modine Manufacturing Company Multi-pass heat exchanger
JP4488871B2 (ja) * 2004-11-25 2010-06-23 三菱電機株式会社 熱交換器
JP5046748B2 (ja) * 2007-05-29 2012-10-10 サンデン株式会社 給湯システムのガスクーラ
DE202009005871U1 (de) 2009-04-21 2010-09-16 Autokühler GmbH & Co. KG Thermoelektrische Wärmepumpe und damit hergestelltes Hausgerät zur Pflege von Wäschestücken
US9476609B2 (en) * 2009-05-06 2016-10-25 Api Heat Transfer Inc. Water separator and system
CN101738122B (zh) * 2009-12-14 2011-12-21 杭州沈氏换热器有限公司 一种盘管及具有该盘管的换热器
EP2377596B9 (de) * 2010-04-14 2016-04-13 Kaeser Kompressoren Se Kältetrockner, insbesondere druckluftkältetrockner, sowie wärmetauscher für einen kältetrockner, insbesondere druckluftkältetrockner
ES2394785T3 (es) 2010-07-16 2013-02-05 Miele & Cie. Kg Secadora de ropa con bomba de calor
CN103765140B (zh) 2011-04-01 2015-11-25 英格索尔兰德公司 用于制冷空气干燥器的热交换器
DE102011081572A1 (de) * 2011-08-25 2013-02-28 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät mit einem Wärmerückgewinnungsaggregat
DE202011110215U1 (de) * 2011-10-26 2013-03-13 Jurii Parfenov Plattenwärmetauscher
KR101266916B1 (ko) * 2011-12-13 2013-05-29 주식회사 코렌스 폐열회수를 이용한 과열증기발생장치
US9574782B2 (en) * 2012-01-20 2017-02-21 Innovent Air Handling Equipment, LLC Dehumidification system
CN103820984B (zh) * 2014-03-18 2016-02-03 杨卫星 一种家用空气内循环式除湿烘衣机
US9682782B2 (en) * 2014-12-04 2017-06-20 Honeywell International Inc. Plate-fin tubular hybrid heat exchanger design for an air and fuel cooled air cooler
JP6190352B2 (ja) * 2014-12-19 2017-08-30 株式会社神戸製鋼所 流体流通装置及びその運転方法
EP3168561A1 (de) * 2015-11-11 2017-05-17 Air To Air Sweden AB Vorrichtung zum austausch von wärme und/oder masseaustausch zwischen fluidströmen
ES2704374A1 (es) 2017-09-08 2019-03-15 Bsh Electrodomesticos Espana Sa Medios para evitar la obstrucción de un condensador de placas de una máquina lavavajillas doméstica
CN110195985A (zh) * 2019-06-11 2019-09-03 哈尔滨汽轮机厂辅机工程有限公司 一种可实现穿管发货的凝汽器水室管板结构
US10712089B1 (en) 2020-01-23 2020-07-14 Sui LIU Heat pump dryer
FI20205367A1 (en) * 2020-04-06 2021-10-07 Vahterus Oy PLATE HEAT EXCHANGER ARRANGEMENT
CN112964079A (zh) * 2021-03-25 2021-06-15 天津海钢板材有限公司 一种用于酸再生机组的烟气回收换热装置及换热方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR958302A (de) * 1950-03-07
US2607201A (en) * 1948-06-28 1952-08-19 Dole Refrigerating Co Blast freezer
US2790507A (en) * 1955-08-29 1957-04-30 Hankison Corp Apparatus for filtering and dehydrating gases
FR2155093A5 (en) * 1971-10-07 1973-05-18 Lenfant Michel Compressed gas purifier - separates off condensate and oil by heat exchange process in single vessel
US3797565A (en) * 1971-11-22 1974-03-19 United Aircraft Prod Refrigerated gas dryer
IT1016559B (it) * 1973-07-13 1977-06-20 Via Ges Mbh Dispositivo per l essiccazione a freddo di gas particolarmente aria
JPS5572792A (en) * 1978-09-05 1980-05-31 Allied Air Prod Condenser
US4249596A (en) * 1979-11-13 1981-02-10 Don Burk Condenser and method of construction
US4966230A (en) * 1989-01-13 1990-10-30 Modine Manufacturing Co. Serpentine fin, round tube heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10311602A1 (de) * 2003-03-14 2004-09-23 Agt Thermotechnik Gmbh Vorrichtung, insbesondere Wärmetauscher, und Verfahren

Also Published As

Publication number Publication date
JPH05223474A (ja) 1993-08-31
EP0521298A3 (en) 1993-04-14
EP0521298A2 (de) 1993-01-07
DE9204952U1 (de) 1992-07-16
DE59209774D1 (de) 2000-01-13
US5299633A (en) 1994-04-05
JP3273633B2 (ja) 2002-04-08
ES2142310T3 (es) 2000-04-16
ATE187547T1 (de) 1999-12-15
DK0521298T3 (da) 2000-05-29

Similar Documents

Publication Publication Date Title
EP0521298B1 (de) Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen
DE3650658T2 (de) Wärmetauscher
EP0401752B1 (de) Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage
DE3856032T2 (de) Wärmetauscher mit verbesserter Kondensatsammlung
DE69626400T2 (de) Luft-luft querstrom-plattenwärmetauscher mit zwei kühlkanälen
DE3336049C3 (de) Gegenstrom-Wärmetauscher
DE2416309C2 (de) Wärmeaustauscher für Kühlmaschinen und Verfahren zu seiner Herstellung
DE69911131T2 (de) Wärmetauscher
DE2232386C3 (de) Vorrichtung zur Kältetrocknung von Gas, insbesondere Luft
WO2004065876A1 (de) Wärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
DE2952736C2 (de)
DE2951352C2 (de) Flachrohr-Wärmetauscher
DE10349150A1 (de) Wärmeübertrager, insbesondere für Kraftfahrzeuge
EP1770345B1 (de) Wärmeaustauschernetz und damit ausgerüsteter Wärmeaustauscher
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
DE69007709T2 (de) Stapelverdampfer.
DE2722288B2 (de) Plattenwärmetauscher, bei dem mit Abstand aufeinander folgende Platten Durchgangsöffnungen für das eine Wärmetauschmedium aufweisen
DE3143334C2 (de)
DE4118289A1 (de) Waermetauscher-vorrichtung fuer kaeltetrockner an druckluftanlagen
DE69802353T2 (de) Luftgekühlter kondensator
DE3143332C1 (de) Waermetauscher mit einem Iuftbeaufschlagbaren Buendel parallel verlaufender Rohre
DE3918455A1 (de) Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
DE10151238A1 (de) Kältemittel/Luft-Wärmeaustauschernetz
DE3209760A1 (de) Waermeaustauscher
EP0910778B1 (de) Flachrohrverdampfer mit vertikaler längserstreckungsrichtung der flachrohre bei kraftfahrzeugen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19930920

17Q First examination report despatched

Effective date: 19940418

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991208

REF Corresponds to:

Ref document number: 187547

Country of ref document: AT

Date of ref document: 19991215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59209774

Country of ref document: DE

Date of ref document: 20000113

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000309

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000309

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2142310

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000527

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000527

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080619

Year of fee payment: 17

Ref country code: DK

Payment date: 20080515

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080527

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080501

Year of fee payment: 17

Ref country code: DE

Payment date: 20080702

Year of fee payment: 17

Ref country code: SE

Payment date: 20080509

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080528

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20081128

Year of fee payment: 17

BERE Be: lapsed

Owner name: *AUTOKUHLER G.M.B.H. & CO. K.G.

Effective date: 20090531

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090527

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080514

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090528