EP0321711B1 - Process for manufacturing porous electrodes - Google Patents
Process for manufacturing porous electrodes Download PDFInfo
- Publication number
- EP0321711B1 EP0321711B1 EP88119445A EP88119445A EP0321711B1 EP 0321711 B1 EP0321711 B1 EP 0321711B1 EP 88119445 A EP88119445 A EP 88119445A EP 88119445 A EP88119445 A EP 88119445A EP 0321711 B1 EP0321711 B1 EP 0321711B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nickel
- process according
- powder
- layer
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 53
- 239000000843 powder Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 239000011812 mixed powder Substances 0.000 claims description 13
- 238000007596 consolidation process Methods 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 7
- 238000005096 rolling process Methods 0.000 claims description 7
- 238000004070 electrodeposition Methods 0.000 claims description 5
- 239000007868 Raney catalyst Substances 0.000 claims description 3
- 229910000564 Raney nickel Inorganic materials 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 2
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims 2
- 230000004913 activation Effects 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- CLDVQCMGOSGNIW-UHFFFAOYSA-N nickel tin Chemical compound [Ni].[Sn] CLDVQCMGOSGNIW-UHFFFAOYSA-N 0.000 claims 1
- 238000005868 electrolysis reaction Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 229910003310 Ni-Al Inorganic materials 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 238000001465 metallisation Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- NPURPEXKKDAKIH-UHFFFAOYSA-N iodoimino(oxo)methane Chemical compound IN=C=O NPURPEXKKDAKIH-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
- C25B11/031—Porous electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
Definitions
- the invention relates to a process for the production of porous electrodes, in which a porous metal layer is formed on a scaffolding metallic carrier with an unevenness of the surface which promotes adhesion and provided with a galvanic metal deposit in the pores and, if appropriate, finally activated by lye treatment.
- Electrodes Different methods for producing such electrodes are already known, in which essentially an activatable Ni / Al or Ni / Zn alloy is applied to an electrically conductive carrier, from which the soluble component (Al, Zn) is removed by subsequent lye treatment , which leaves a catalytically active Ni structure (Raney nickel).
- the electrodes obtained by the known methods are not completely satisfactory in one way or another: According to E. Justi and A. Winsel ("Cold combustion", Franz Steiner Verlag, 1962, chapter 4.1), a sintered self-supporting catalyst electrode is produced by a pressing or rolling process with a coupled sintering process, but this is only an insufficient mechanical one with a thin layer thickness Has strength and can only be produced in relatively small dimensions.
- Electrodes produced by means of galvanic suspension deposition can only be produced in smaller units, since the electrically conductive suspensions only allow regular deposition at low substrate heights. In addition, this technology cannot achieve a sufficiently high catalyst concentration.
- Electrodes are obtained by intermetallic diffusion or galvanic deposition of Ni / Zn alloy (US Pat. No. 4,240,895; German Pat. No. 3,330,961), the structure of which is not very suitable for low-loss charge transfer.
- Plasma spraying ("Hydrogen Energy Progress” V by T.N. Veziroglu and J.B. Taylor (Editors); Pergamon Press, New York, p. 933) hardly makes it possible to produce electrodes of a technically relevant size.
- the process of reductive powder plating (DE-OS 28 29 901; Chem.-Ing.-Technik 5 (1980) 435) is the most technically mature, based on the following principle: A spreadable paste of a powder mixture of Ni / Al and Ni in 50% alcohol and 1% methylcellulosese is applied to a carrier plate and dried. The sheet thus coated is then rolled down to about 50% in a cold rolling mill, so that the catalytic powder layer is strongly compacted and mechanically adhered to or in the matrix. The powder is reductively welded by briefly annealing at 700 ° C in an H2 atmosphere. This creates an activatable catalyst layer that adheres firmly to the electrically conductive, mechanically stable electrode carrier.
- electrodes of this type have excellent catalytic activity and mechanical strength, because of the necessary deformation of the carrier sheet, only continuous (“full”) smooth electrodes can be produced.
- full continuous
- such geometrical structures are difficult to use in gas-developing electrochemical reactions in the "zero-gap" configuration.
- the geometric shape of a perforated plate or expanded metal is necessary for this purpose.
- DE-PS 29 14 094 of the applicant finally describes a process in which a porous electrode layer is formed on a metal support, such as nickel or iron mesh, by sintering a suspension application of powder containing nickel powder or nickel alloy and pore-forming substances a nickel-zinc alloy is deposited electrolytically. Finally, zinc is removed from this galvanically coated sintered body by immersion in alkali, which can be done in situ if the electrodes are used.
- a metal support such as nickel or iron mesh
- the invention is therefore based on the object of providing an economical and technically feasible process for producing active electrodes which as far as possible meet the criteria mentioned above.
- the process according to the invention of the type mentioned at the outset, which was developed for this purpose, is essentially characterized in that the carrier is coated on one or both sides with a dry-rolled layer of a mixed powder of (a) fine-particle carbonyl metal with low bulk density and high sliding resistance and (b) a catalytic Effective or activated by lye treatment powdery component in a: b ratio of 3: 1 to 1: 3 is provided, which is consolidated by galvanic coating with metal, whereupon, if necessary, finally activated.
- a catalytically active or activatable powder one component (a) of which has adhesion-promoting, "matting" properties, such as those in particular in carbonyl nickel with an average particle size (according to Fisher) of 2.2 to 3.0 ⁇ m, a bulk density of 0.5 to 0.65 g / cm3, a specific surface area of 0.68 m2 / g and an angle of repose of 70 ° (INCO 255) can be found, cold-rolled on one or both sides on a framework-forming, metallic conductive support with an adhesion-promoting surface, creating a manageable body that is consolidated by galvanic metal deposition and, if necessary, finally activated by leaching.
- adhesion-promoting, "matting” properties such as those in particular in carbonyl nickel with an average particle size (according to Fisher) of 2.2 to 3.0 ⁇ m, a bulk density of 0.5 to 0.65 g / cm3, a specific surface area of 0.68 m2 / g and an angle of repose of 70
- the carrier used is a fine-meshed metal mesh, in particular steel or nickel mesh with a small mesh size of approximately 200 to 600 ⁇ m, which prevents a dry-rolled powder layer from falling through from a mixed powder of the abovementioned properties, or in particular a perforated plate with a roughened surface which, for. B. is obtained by sandblasting, flame spraying or chemical treatment.
- Component (a) of the mixed powder is preferably carbonyl iron or carbonyl nickel powder and in particular carbonyl nickel with a grain size of about 2 to 3 ⁇ m and a bulk density of 0.5 to 0.7 g / cm3.
- Component (b) is a catalytically active material or one which can be activated by alkali treatment, such as, in particular, nickel sulfide, molybdenum sulfide and molybdenum or nickel alloy with aluminum, zinc, tin, etc.
- Components a and b are in a ratio of 3: 1 to 1: 3 , in particular 2: 1 to 1: 2 but preferably in a ratio of 1: 1 (in weight) and approximately similar grain size, component (b) may also be somewhat coarser and may have grain sizes in the range from 10 to 100 ⁇ m.
- the mixed powder can contain 5 to 20% by weight (based on the mixture (a) and (b)) of a detachable or sublimable filler, such as. B. KCl, NaCl, ammonium carbaminate, ammonium carbonate, naphthalene, etc.
- a detachable or sublimable filler such as. B. KCl, NaCl, ammonium carbaminate, ammonium carbonate, naphthalene, etc.
- the thickness of the dry rolling layer on one or both sides is in particular 50 to 400 ⁇ m, corresponding to a powder mixture application of approximately 30 to 160 mg / cm2, in particular approximately 40 to 90 mg / cm2.
- the metal powder is rolled onto the carrier under a relatively low pressure application, in particular of 0.5 to 10 bar.
- the galvanic consolidation is carried out by metal deposition at a current density which is preferably selected in the range from 0.1 to 10 A / dm2. Nickel or nickel alloy with a soluble component is preferably deposited.
- the thorough consolidation of the dry rolled layer through galvanic metal deposition is particularly important and is influenced by different techniques, such as. B. by appropriate choice of the contact pressure with a view to the formation of an optimal (coarse-pored) porosity (the dry layer), which also makes the areas near the carrier accessible in the galvanic deposition of consolidating metal, or by increasing the current density during the galvanic consolidation or by generating a coarse-pored structure of the dry-rolled layer by using a removable filler, which is removed again before galvanic consolidation, or finally by changing the electrical conductivity of the mixed powder during galvanic consolidation, in which oxidation of the surface of the dry-rolled layer decreases towards the carrier Powder particles at the beginning of the electrodeposition ensure that metal deposition initially takes place in areas close to the carrier, while as the electrodeposition progresses in the nickel bath, the oxide layer dissolves t takes place, so that finally the outermost areas are also included in the galvanic consolidation.
- Such anoxidation of the surface is achieved in particular by pretreating the powder
- the depth grading of the superficial oxidation of the powder of the dry roll layer can, for. B. can be achieved in that for the production of the dry roll layer first sieved and oxidized powder on a flat surface subsequently increasingly oxide-free powder is applied, whereupon after the support (in particular perforated plate) has been placed on it, compression is carried out by rolling.
- a perforated nickel plate of 0.5 mm thickness with 35% transparency and 1 mm hole diameter was roughened on both sides by galvanic fixation of suspended INCO carbonyl nickel powder (with small particle size, irregular particle shape and high surface activity).
- a dry mixture of Ni-Al and carbonyl-nickel (1: 1) was rolled onto the roughened layers thus obtained with a pressure of 5 bar in a layer thickness of approx. 200 ⁇ m each.
- This dry mixture has the property that it sticks relatively firmly in the roughened matrix, while the transparent areas (holes) remain free.
- Perforated sheet obtained in this way and provided with an activatable powder mixture can be freely moved without risk and immersed in an electrolyte (Wattsches bath). The final mechanical fixation of the metal powder by electrolytically deposited nickel then took place in this.
- the electrolysis time was 1 hour at a bath temperature of 30 ° C and a current density of 1 A / dm2.
- the electrode body obtained can be activated and is generally activated in situ immediately when used.
- Nickel mesh of 0.2 mm wire thickness and 0.5 mm mesh size was coated with a dry, binder-free mixture of Ni-Al / Mo / carbonyl nickel 0.45: 0.05: 0.5 on both sides by rolling as in Example 1 with each approx. 200 ⁇ m coated.
- the powder mixture remains firmly adhered to the net so that it can be handled and immersed in an electrolyte without special precautions. Since no binders were used that could possibly interfere with the subsequent electrolysis, galvanic coating in a conventional Watts nickel plating bath is possible. The final galvanic fixation or consolidation of the powder mixture on the network was then carried out in this under electrolysis conditions as in Example 1.
- the dry-rolled layer is given a "loosened up" structure which enables thorough galvanic consolidation of the layer by deposited nickel.
- Example 2 The procedure was again as in Example 1, but the dry powder mixture of Ni-Al and carbonyl nickel was half-oxidized for two hours at 200 ° C. in air before rolling, whereby the surface of the powder particles was provided with a thin oxide layer.
- the two powder halves were successively spread out on a flat surface with the oxidized material underneath and then connected to the roughened perforated plate by dry rolling.
- the metal deposition then begins in the inner areas of the dry-rolled layer and, in the course of the electrolysis, asserts itself towards the surface with the gradual dissolution of the oxide skins in the outer area in the acidic electrolyte.
- the electrodes produced according to Examples 1 to 3 were activated in the usual manner by treatment in hot KOH solution and then as electrodes (anode and cathode) used in alkaline water electrolysis. At a current density of 400 mA / cm2 and electrolyte temperature of 100 ° C, overvoltages of less than 80 mV were reached cathodically, anodically less than 250 mV. These values demonstrate an excellent catalytic effect of the electrodes obtained according to Examples 1 to 3.
- the electrode produced according to Example 4 with molybdenum sulfide was used directly as a cathode in an alkaline water electrolysis operated at 100 ° C. and current densities of 400 mA / cm2. An overvoltage of 140 mV was reached.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Catalysts (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Inert Electrodes (AREA)
Description
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von porösen Elektroden, bei dem auf einem gerüstgebenden metallischen Träger mit haftbegünstigender Unebenheit der Oberfläche eine poröse Metallschicht gebildet und mit einer galvanischen Metallablagerung in den Poren versehen und ggf. abschließend durch Laugebehandlung aktiviert wird.The invention relates to a process for the production of porous electrodes, in which a porous metal layer is formed on a scaffolding metallic carrier with an unevenness of the surface which promotes adhesion and provided with a galvanic metal deposit in the pores and, if appropriate, finally activated by lye treatment.
Aktive Elektroden, an denen nur geringe Überspannungen auftreten, bilden in der elektrochemischen Prozeßtechnik eine der wichtigsten Voraussetzungen für eine wirtschaftliche Arbeitsweise. Bei alkalischen Elektrolysen, wie der Alkalichlorid-Elektrolyse oder der Wasser-Elektrolyse werden üblicherweise aktive Elektroden auf der Basis von Raney-Nickel verwendet. Neben geringen Überspannungen werden von solchen Elektroden noch weitere Eigenschaften gefordert, und zwar:
- ausreichende mechanische Festigkeit der Katalysatorschicht;
- wirtschaftliche Herstellung auch von großen Einheiten;
- Anwendbarkeit bei "zero-gap" Zellkonstruktionen (mit "Null-Abstand" zwischen Diaphragma und Elektrode);
- homogene Stromdichte-Verteilung bei "zero-gap"-Zellen; und
- verlustarme Übertragung der elektrischen Ladung zwischen dem Träger und dem Katalysator.
- sufficient mechanical strength of the catalyst layer;
- economical production of large units;
- Applicability to "zero-gap" cell constructions (with "zero distance" between diaphragm and electrode);
- homogeneous current density distribution with "zero-gap"cells; and
- low-loss transmission of the electrical charge between the carrier and the catalyst.
Es sind bereits unterschiedliche Verfahren zur Herstellung solcher Elektroden bekannt, bei denen im wesentlichen eine aktivierbare Ni/Al-oder Ni/Zn-Legierung auf einen elektrisch leitenden Träger aufgebracht wird, aus der die lösliche Komponente (Al, Zn) durch nachfolgende Laugebehandlung entfernt wird, wodurch eine katalytisch aktive Ni-Struktur (Raney-Nickel) zurückbleibt. Die nach den bekannten Verfahren erhaltenen Elektroden sind jedoch in der einen oder anderen Weise nicht voll befriedigend:
So wird nach E. Justi und A. Winsel ("Kalte Verbrennung", Franz Steiner Verlag. 1962. Kap. 4.1) eine gesinterte selbsttragende Katalysatorelektrode durch ein Preß- oder Walzverfahren mit gekoppeltem Sintervorgang erzeugt, die jedoch bei geringer Schichtdicke nur eine unzureichende mechanische Festigkeit besitzt und nur in relativ kleinen Abmessungen herstellbar ist.Different methods for producing such electrodes are already known, in which essentially an activatable Ni / Al or Ni / Zn alloy is applied to an electrically conductive carrier, from which the soluble component (Al, Zn) is removed by subsequent lye treatment , which leaves a catalytically active Ni structure (Raney nickel). However, the electrodes obtained by the known methods are not completely satisfactory in one way or another:
According to E. Justi and A. Winsel ("Cold combustion", Franz Steiner Verlag, 1962, chapter 4.1), a sintered self-supporting catalyst electrode is produced by a pressing or rolling process with a coupled sintering process, but this is only an insufficient mechanical one with a thin layer thickness Has strength and can only be produced in relatively small dimensions.
Mittels galvanischer Suspensionsabscheidung hergestellte Elektroden (GB-PS 2 015 032; US-PS 4 302 322) sind nur in kleineren Einheiten herstellbar, da die elektrisch leitfähigen Suspensionen nur bei niedrigen Substrathöhen eine regelmäßige Abscheidung ermöglichen. Außerdem kann mit dieser Technik keine ausreichend hohe Katalysatorkonzentration erreicht werden.Electrodes produced by means of galvanic suspension deposition (GB-PS 2 015 032; US-PS 4 302 322) can only be produced in smaller units, since the electrically conductive suspensions only allow regular deposition at low substrate heights. In addition, this technology cannot achieve a sufficiently high catalyst concentration.
Durch intermetallische Diffusion bzw. galvanische Abscheidung von Ni/Zn-Legierung (US-PS 4 240 895; DE-PS 3 330 961) werden Elektroden erhalten, deren Struktur für eine verlustarme Ladungsübertragung wenig geeignet ist.Electrodes are obtained by intermetallic diffusion or galvanic deposition of Ni / Zn alloy (US Pat. No. 4,240,895; German Pat. No. 3,330,961), the structure of which is not very suitable for low-loss charge transfer.
Durch Plasmaspritzen ("Hydrogen Energy Progress" V von T.N. Veziroglu und J.B. Taylor (Editors); Pergamon Press, New York, S. 933) können kaum gleichmäßige Elektroden von technisch relevanter Größe hergestellt werden.Plasma spraying ("Hydrogen Energy Progress" V by T.N. Veziroglu and J.B. Taylor (Editors); Pergamon Press, New York, p. 933) hardly makes it possible to produce electrodes of a technically relevant size.
Technisch am weitesten ausgereift ist das Verfahren der reduktiven Pulverplattierung (DE-OS 28 29 901; Chem.-Ing.-Technik 5(1980)435), das auf folgendem Prinzip basiert:
Eine streichbare Paste aus einer Pulvermischung von Ni/Al und Ni in 50% Alkohol und 1% Methylcelulose wird auf ein Trägerblech aufgetragen und getrocknet. Das so beschichtete Blech wird dann in einem Kaltwalzwerk auf ca. 50% heruntergewalzt, so daß die katalytische Pulverschicht stark verdichtet und mechanisch auf bzw. in der Matrix verhaftet wird. Durch kurzes Glühen bei 700°C in H₂-Atmosphäre wird das Pulver reduktiv verschweißt. Dadurch entsteht eine auf dem elektrisch leitenden, mechanisch stabilen.Elektrodenträger fest haftende, aktivierbare Katalysatorschicht.The process of reductive powder plating (DE-OS 28 29 901; Chem.-Ing.-Technik 5 (1980) 435) is the most technically mature, based on the following principle:
A spreadable paste of a powder mixture of Ni / Al and Ni in 50% alcohol and 1% methylcelulose is applied to a carrier plate and dried. The sheet thus coated is then rolled down to about 50% in a cold rolling mill, so that the catalytic powder layer is strongly compacted and mechanically adhered to or in the matrix. The powder is reductively welded by briefly annealing at 700 ° C in an H₂ atmosphere. This creates an activatable catalyst layer that adheres firmly to the electrically conductive, mechanically stable electrode carrier.
Elektroden dieser Art besitzen zwar eine ausgezeichnete katalytische Aktivität und mechanische Festigkeit, wegen der erforderlichen Verformung des Trägerblechs sind allerdings nur durchgehende ("volle") glatte Elektroden herstellbar. Derartige geometrische Strukturen sind jedoch bei gasentwickelnden elektrochemischen Reaktionen in der "zero-gap"-Konfiguration nur schlecht verwendbar. Zu diesem Zweck wird bekanntlich die geometrische Form eines Lochblechs oder Streckmetalls notwendig.Although electrodes of this type have excellent catalytic activity and mechanical strength, because of the necessary deformation of the carrier sheet, only continuous ("full") smooth electrodes can be produced. However, such geometrical structures are difficult to use in gas-developing electrochemical reactions in the "zero-gap" configuration. As is well known, the geometric shape of a perforated plate or expanded metal is necessary for this purpose.
In der DE-PS 29 14 094 der Anmelderin wird schließlich ein Verfahren beschrieben, bei dem auf einem Metallträger, wie Nickel- oder Eisennetz, durch Sinterung eines Suspensionsauftrages von Nickelpulver oder Nickel-Legierung enthaltendem Pulver und porenbildenden Stoffen eine poröse Elektrodenschicht gebildet wird, auf der elektrolytisch eine Nickel-Zink-Legierung abgeschieden wird. Abschließend wird aus diesem galvanisch beschichtetem Sinterkörper Zink durch Tauchen in Lauge herausgelöst, was ggf. in situ bei Verwendung der Elektroden erfolgen kann.DE-PS 29 14 094 of the applicant finally describes a process in which a porous electrode layer is formed on a metal support, such as nickel or iron mesh, by sintering a suspension application of powder containing nickel powder or nickel alloy and pore-forming substances a nickel-zinc alloy is deposited electrolytically. Finally, zinc is removed from this galvanically coated sintered body by immersion in alkali, which can be done in situ if the electrodes are used.
Auch mit solchen Elektroden werden noch merkliche Überspannungen gemessen.Noticeable overvoltages are also measured with such electrodes.
Der Erfindung liegt daher die Aufgabe zugrunde, ein wirtschaftliches und technisch gut durchführbares Verfahren zur Herstellung aktiver Elektroden vorzusehen, die den oben genannten Kriterien möglichst weitgehend entsprechen.The invention is therefore based on the object of providing an economical and technically feasible process for producing active electrodes which as far as possible meet the criteria mentioned above.
Das zu diesem Zweck entwickelte erfindungsgemäße Verfahren der eingangs genannten Art ist im wesentlichen dadurch gekennzeichnet, daß der Träger ein- oder beidseitig mit einer trocken aufgewalzten Schicht aus einem Mischpulver von (a) feinteiligem Carbonylmetall mit geringer Schüttdichte und hohem Gleitwiderstand und (b) einer katalytisch wirksamen bzw. durch Laugebehandlung aktivierbaren pulverförmigen Komponente im Verhältnis a : b von 3 : 1 bis 1 : 3 versehen wird, die durch galvanische Beschichtung mit Metall konsolidiert wird, worauf ggf. abschließend aktiviert wird.The process according to the invention of the type mentioned at the outset, which was developed for this purpose, is essentially characterized in that the carrier is coated on one or both sides with a dry-rolled layer of a mixed powder of (a) fine-particle carbonyl metal with low bulk density and high sliding resistance and (b) a catalytic Effective or activated by lye treatment powdery component in a: b ratio of 3: 1 to 1: 3 is provided, which is consolidated by galvanic coating with metal, whereupon, if necessary, finally activated.
Gemäß der Erfindung wird also ein katalytisch wirksames oder aktivierbares Pulver, dessen eine Komponente (a) haftvermittelnde, "verfilzende" Eigenschaften aufweist, wie sie insbesondere bei Carbonylnickel mit durchschnittlicher TeilchengröOe (nach Fisher) von 2,2 bis 3,0µm, einer Schüttdichte von 0,5 bis 0,65 g/cm³, einer spezifischen Oberfläche von 0,68 m²/g und einem Schüttwinkel von 70° (INCO 255) gefunden werden, auf einen gerüstgebenden metallisch leitenden Träger mit haftvermittelnder Oberfläche ein- oder beidseitig kalt aufgewalzt, wodurch ein handhabbarer Körper entsteht, der durch galvanische Metallabscheidung konsolidiert und ggf. abschließend durch Auslaugen aktiviert wird.According to the invention, therefore, a catalytically active or activatable powder, one component (a) of which has adhesion-promoting, "matting" properties, such as those in particular in carbonyl nickel with an average particle size (according to Fisher) of 2.2 to 3.0 μm, a bulk density of 0.5 to 0.65 g / cm³, a specific surface area of 0.68 m² / g and an angle of repose of 70 ° (INCO 255) can be found, cold-rolled on one or both sides on a framework-forming, metallic conductive support with an adhesion-promoting surface, creating a manageable body that is consolidated by galvanic metal deposition and, if necessary, finally activated by leaching.
Als Träger dient dabei feinmaschiges Metallnetz, insbesondere Stahl- oder Nickelnetz mit geringer Maschenweite von etwa 200 bis 600 µm, die ein "Durchfallen" einer trocken aufgewalzten Pulverschicht aus einem Mischpulver der genannten Eigenschaften verhindert oder insbesondere ein Lochblech mit aufgerauhter Oberfläche, die z. B. durch Sandstrahlen, Flammspritzen oder chemische Behandlung erhalten wird. Besonders bevorzugt wird ein durch galvanische Abscheidung von Carbonylnickel-Pulver (z. B. 1 -5 mg/cm²; in einem Vernickelungsbad) aufgerauhtes Nickel- Lochblech, an dem Trockenwalzschichten ausgezeichnet haften, jedoch an den Lochungen durch leichte Erschütterung (Klopfen) ohne weiteres entfernt werden können.The carrier used is a fine-meshed metal mesh, in particular steel or nickel mesh with a small mesh size of approximately 200 to 600 μm, which prevents a dry-rolled powder layer from falling through from a mixed powder of the abovementioned properties, or in particular a perforated plate with a roughened surface which, for. B. is obtained by sandblasting, flame spraying or chemical treatment. Particularly preferred is a perforated nickel plate roughened by galvanic deposition of carbonyl-nickel powder (e.g. 1 -5 mg / cm²; in a nickel plating bath), to which dry-rolled layers adhere excellently, but easily to the perforations by slight vibration (tapping) can be removed.
Als Komponente (a) des Mischpulvers dient vorzugsweise Carbonyleisen- oder Carbonylnickel-Pulver und insbesondere Carbonylnickel mit einer Korngröße von etwa 2 bis 3 µm und einer Schüttdichte von 0,5 bis 0,7 g/cm³.Component (a) of the mixed powder is preferably carbonyl iron or carbonyl nickel powder and in particular carbonyl nickel with a grain size of about 2 to 3 μm and a bulk density of 0.5 to 0.7 g / cm³.
Als Komponente (b) dient ein katalytisch wirksames oder durch Laugebehandlung aktivierbares Material, wie insbesondere Nickelsulfid, Molybdänsulfid und Molybdän bzw. Nickel-Legierung mit Aluminium, Zink, Zinn usw. Die Komponenten a und b werden im Verhältnis 3 : 1 bis 1 : 3, insbesondere 2 : 1 bis 1 : 2 vorzugsweise aber im Verhältnis 1 : 1 (in Gewicht) und in etwa ähnlicher Korngröße verwendet, wobei die Komponente (b) auch etwas gröber sein kann und Korngrößen im Bereich von 10 bis 100 µm aufweisen mag.Component (b) is a catalytically active material or one which can be activated by alkali treatment, such as, in particular, nickel sulfide, molybdenum sulfide and molybdenum or nickel alloy with aluminum, zinc, tin, etc. Components a and b are in a ratio of 3: 1 to 1: 3 , in particular 2: 1 to 1: 2 but preferably in a ratio of 1: 1 (in weight) and approximately similar grain size, component (b) may also be somewhat coarser and may have grain sizes in the range from 10 to 100 μm.
Zusätzlich kann das Mischpulver 5 bis 20 Gew% (bezogen auf die Mischung (a) und (b)) eines herauslösbaren oder aussublimierbaren Füllers enthalten, wie z. B. KCl, NaCl, Ammoniumcarbaminat, Ammoniumcarbonat, Naphthalin usw.In addition, the mixed powder can contain 5 to 20% by weight (based on the mixture (a) and (b)) of a detachable or sublimable filler, such as. B. KCl, NaCl, ammonium carbaminate, ammonium carbonate, naphthalene, etc.
Die ein- oder beidseitige Schichtdicke der Trocken walzschicht liegt insbesondere bei 50 bis 400 µm, entsprechend einem Pulvergemischauftrag von ca. 30 bis 160 mg/cm², insbesondere etwa 40 bis 90 mg/cm².The thickness of the dry rolling layer on one or both sides is in particular 50 to 400 μm, corresponding to a powder mixture application of approximately 30 to 160 mg / cm², in particular approximately 40 to 90 mg / cm².
Das Aufwalzen des Metallpulvers auf den Träger findet unter relativ geringer Druckanwendung von insbesondere 0,5 bis 10 bar statt.The metal powder is rolled onto the carrier under a relatively low pressure application, in particular of 0.5 to 10 bar.
Die galvanische Konsolidierung erfolgt durch Metallabscheidung bei einer Stromdichte, die vorzugsweise im Bereich von 0,1 bis 10 A/dm² gewählt wird. Vorzugsweise wird Nickel oder Nickel-Legierung mit löslicher Komponente abgeschieden.The galvanic consolidation is carried out by metal deposition at a current density which is preferably selected in the range from 0.1 to 10 A / dm². Nickel or nickel alloy with a soluble component is preferably deposited.
Die bis zum Träger durchgreifende Konsolidierung der Trockenwalzschicht durch galvanische Metallabscheidung ist besonders wichtig und wird durch unterschiedliche Techniken beeinflußt, wie z. B. durch entsprechende Wahl des Anpreßdrucks im Hinblick auf die Bildung einer optimalen (grobporigen) Porosität (der Trockenschicht), die bei der galvanischen Abscheidung von konsolidierendem Metall auch die trägernahen Bereiche zugänglich macht oder durch Steigerung der Stromdichte während der galvanischen Konsolidierung oder durch Erzeugung einer grobporösen Struktur der Trockenwalzschicht durch Mitverwendung eines entfernbaren Füllers, der vor der galvanischen Konsolidierung wieder entfernt wird, oder schließlich durch eine Veränderung der elektrischen Leitfähigkeit des Mischpulvers während der galvanischen Konsolidierung, bei der eine von der Oberfläche der Trockenwalzschicht zum Träger hin abnehmende Oxidation der Oberfläche der Pulverteilchen zu Beginn der galvanischen Abscheidung dafür sorgt, daß zunächst eine Metallablagerung in trägernahen Bereichen stattfindet, während mit fortschreitender galvanischer Ablagerung im Nickelbad eine Auflösung der Oxidschicht erfolgt, so daß schließlich auch die am weitesten außen liegenden Bereiche in die galvanische Konsolidierung mit einbezogen werden. Eine solche Anoxidation der Oberfläche wird insbesondere durch Vorbehandlung des Pulvers in Luft bei etwa 200°C erreicht.The thorough consolidation of the dry rolled layer through galvanic metal deposition is particularly important and is influenced by different techniques, such as. B. by appropriate choice of the contact pressure with a view to the formation of an optimal (coarse-pored) porosity (the dry layer), which also makes the areas near the carrier accessible in the galvanic deposition of consolidating metal, or by increasing the current density during the galvanic consolidation or by generating a coarse-pored structure of the dry-rolled layer by using a removable filler, which is removed again before galvanic consolidation, or finally by changing the electrical conductivity of the mixed powder during galvanic consolidation, in which oxidation of the surface of the dry-rolled layer decreases towards the carrier Powder particles at the beginning of the electrodeposition ensure that metal deposition initially takes place in areas close to the carrier, while as the electrodeposition progresses in the nickel bath, the oxide layer dissolves t takes place, so that finally the outermost areas are also included in the galvanic consolidation. Such anoxidation of the surface is achieved in particular by pretreating the powder in air at about 200 ° C.
Die Tiefenstaffelung der oberflächlichen Anoxidation des Pulvers der Trockenwalzschicht kann z. B. dadurch erreicht werden, daß für die Herstellung der Trockenwalzschicht zunächst auf eine ebene Unterlage anoxidiertes Pulver aufgesiebt und nachfolgend zunehmend oxidfreies Pulver aufgebracht wird, worauf nach Auflegen des Trägers (insbesondere Lochblech) die Preßverdichtung durch Walzen erfolgt.The depth grading of the superficial oxidation of the powder of the dry roll layer can, for. B. can be achieved in that for the production of the dry roll layer first sieved and oxidized powder on a flat surface subsequently increasingly oxide-free powder is applied, whereupon after the support (in particular perforated plate) has been placed on it, compression is carried out by rolling.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen erläutert:The invention is explained below using exemplary embodiments:
Ein Nickel-Lochblech von 0,5 mm Dicke mit 35% Transparenz und 1 mm Lochdurchmesser wurde durch galvanische Fixierung von suspendiertem INCO-Carbonylnickelpulver (mit geringer Teilchengröße, unregelmäßiger Partikelform und großer Oberflächenaktivität) auf beiden Seiten aufgerauht.A perforated nickel plate of 0.5 mm thickness with 35% transparency and 1 mm hole diameter was roughened on both sides by galvanic fixation of suspended INCO carbonyl nickel powder (with small particle size, irregular particle shape and high surface activity).
Auf die so erhaltenen Aufrauhungsschichten wurde ein trockenes Gemisch von Ni-Al und Carbonylnickel (1:1) mit einem Druck von 5 bar in einer Schichtdicke von je ca. 200µm beidseitig aufgewalzt. Dieses trockene Gemisch hat die Eigenschaft, daß es in der aufgerauhten Matrix relativ fest haften bleibt, während die transparenten Stellen (Löcher) frei bleiben. Auf diese Art und Weise erhaltenes, mit einem aktivierbaren Pulvergemisch versehenes Lochblech kann ohne Gefahr frei bewegt und in einen Elektrolyten (Wattsches Bad) eingetaucht werden. In diesem erfolgte dann die endgültige mechanische Fixierung des Metallpulvers durch elektrolytisch abgeschiedenes Nickel. Die Elektrolysedauer betrug 1 Stunde bei einer Badtemperatur von 30°C und einer Stromdichte von 1 A/dm². Der erhaltene Elektrodenkörper ist aktivierbar und wird im allgemeinen unmittelbar bei Verwendung in situ aktiviert.A dry mixture of Ni-Al and carbonyl-nickel (1: 1) was rolled onto the roughened layers thus obtained with a pressure of 5 bar in a layer thickness of approx. 200 µm each. This dry mixture has the property that it sticks relatively firmly in the roughened matrix, while the transparent areas (holes) remain free. Perforated sheet obtained in this way and provided with an activatable powder mixture can be freely moved without risk and immersed in an electrolyte (Wattsches bath). The final mechanical fixation of the metal powder by electrolytically deposited nickel then took place in this. The electrolysis time was 1 hour at a bath temperature of 30 ° C and a current density of 1 A / dm². The electrode body obtained can be activated and is generally activated in situ immediately when used.
Nickelnetz von 0,2 mm Drahtstärke und 0,5 mm Maschenweite wurde mit einem bindemittelfreien, trockenen Gemisch von Ni-Al/Mo/Carbonylnickel 0,45:0,05:0,5 auf beiden Seiten durch Aufwalzen wie in Beispiel 1 mit je ca. 200 µm beschichtet. Das Pulvergemisch bleibt auf dem Netz fest haften, so daß es ohne besondere Vorkehrungen gehandhabt und in einen Elektrolyten eingetaucht werden kann. Da keine Bindemittel verwendet wurden, die bei der nachfolgenden Elektrolyse gegebenenfalls stören könnten, ist eine galvanische Beschichtung in einem üblichen Wattschen Vernickelungsbad möglich. In diesem erfolgte dann die endgültige galvanische Fixierung bzw. Konsolidierung des Pulvergemisches auf dem Netz unter Elektrolysebedingungen wie im Beispiel 1.Nickel mesh of 0.2 mm wire thickness and 0.5 mm mesh size was coated with a dry, binder-free mixture of Ni-Al / Mo / carbonyl nickel 0.45: 0.05: 0.5 on both sides by rolling as in Example 1 with each approx. 200 µm coated. The powder mixture remains firmly adhered to the net so that it can be handled and immersed in an electrolyte without special precautions. Since no binders were used that could possibly interfere with the subsequent electrolysis, galvanic coating in a conventional Watts nickel plating bath is possible. The final galvanic fixation or consolidation of the powder mixture on the network was then carried out in this under electrolysis conditions as in Example 1.
Ein durch Abscheidung von Carbonylnickelpulver oberflächlich aufgerauhtes Nickel-Lochblech, wie in Beispiel 1 wurde beidseits mit einer trocken aufgewalzten Mischpulverschicht aus Ni-Al und Carbonylnickel (1:1) mit 10 % Zusatz von NaCl mit einer Korngröße von 50 bis 100 µm versehen. Im übrigen wurde wie in Beispiel 1 gearbeitet, jedoch vor der Elektrolyse im Wattschen Bad NaCl mit Wasser herausgelöst.A perforated sheet of nickel roughened on the surface by deposition of carbonyl nickel powder, as in Example 1, was provided on both sides with a dry-rolled mixed powder layer of Ni-Al and carbonyl nickel (1: 1) with 10% addition of NaCl with a grain size of 50 to 100 μm. The rest of the procedure was as in Example 1, but dissolved out with water before the electrolysis in Watts Bad NaCl.
Durch die Mitverwendung von NaCl zur Erzeugung der Trockenwalzschicht, das anschließend vor der Elektrolyse herausgelöst wird, erhält die Trockenwalzschicht eine "aufgelockerte" Struktur, die eine durchgreifende galvanische Konsolidierung der Schicht durch abgeschiedenes Nickel ermöglicht.By using NaCl to create the dry-rolled layer, which is then removed before the electrolysis, the dry-rolled layer is given a "loosened up" structure which enables thorough galvanic consolidation of the layer by deposited nickel.
Es wurde wiederum wie in Beispiel 1 gearbeitet, jedoch wurde anstelle des durch Laugebehandlung aktivierbaren Ni-Al ein katalytisch wirksames nicht-metallisches Pulver von MoS₂ verwendet.The procedure was again as in Example 1, but instead of the Ni-Al which can be activated by lye treatment, a catalytically active non-metallic powder of MoS₂ was used.
Es wurde wiederum wie in Beispiel 1 gearbeitet, jedoch wurde das trockene Pulvergemisch von Ni-Al und Carbonylnickel vor dem Aufwalzen zur Hälfte bei 200°C in Luft zwei Stunden lang oxidiert, wodurch die Oberfläche der Pulverteilchen mit einer dünnen Oxidschicht versehen wurde. Die beiden Pulverhälften wurden nacheinander auf einer ebenen Unterlage ausgebreitet mit zu unterst liegendem anoxidierten Material und dann durch Trockenwalzen mit dem aufgelegten aufgerauhten Lochblech verbunden.The procedure was again as in Example 1, but the dry powder mixture of Ni-Al and carbonyl nickel was half-oxidized for two hours at 200 ° C. in air before rolling, whereby the surface of the powder particles was provided with a thin oxide layer. The two powder halves were successively spread out on a flat surface with the oxidized material underneath and then connected to the roughened perforated plate by dry rolling.
Bei der nachfolgenden galvanischen Fixierung beginnt dann die Metallabscheidung in den inneren Bereichen der Trockenwalzschicht und setzt sich im Verlaufe der Elektrolyse mit allmählicher Auflösung der Oxidhäute des äußeren Bereichs im sauren Elektrolyten zur Oberfläche hin durch.In the subsequent galvanic fixation, the metal deposition then begins in the inner areas of the dry-rolled layer and, in the course of the electrolysis, asserts itself towards the surface with the gradual dissolution of the oxide skins in the outer area in the acidic electrolyte.
Durch diese Technik wird eine gute Konsolidierung, auch der inneren Bereiche, erzielt.This technique ensures good consolidation, also of the inner areas.
Die nach den Beispielen 1 bis 3 hergestellten Elektroden wurden durch Behandlung in heißer KOH-Lösung in üblicher Art und Weise aktiviert und danach als Elektroden (Anode und Kathode) bei der alkalischen Wasserelektrolyse eingesetzt. Kathodisch wurden bei einer Stromdichte von 400 mA/cm² und Elektrolyttemperatur von 100°C Überspannungen von weniger als 80 mV erreicht, anodisch von weniger als 250 mV. Diese Werte beweisen eine ausgezeichnete katalytische Wirkung der nach den Beispielen 1 bis 3 erhaltenen Elektroden.The electrodes produced according to Examples 1 to 3 were activated in the usual manner by treatment in hot KOH solution and then as electrodes (anode and cathode) used in alkaline water electrolysis. At a current density of 400 mA / cm² and electrolyte temperature of 100 ° C, overvoltages of less than 80 mV were reached cathodically, anodically less than 250 mV. These values demonstrate an excellent catalytic effect of the electrodes obtained according to Examples 1 to 3.
Die nach Beispiel 4 hergestellte Elektrode mit Molybdänsulfid wurde direkt als Kathode bei einer bei 100°C und Stromdichten von 400 mA/cm² betriebenen alkalischen Wasserelektrolyse eingesetzt. Hierbei wurde eine Überspannung von 140 mV erreicht.The electrode produced according to Example 4 with molybdenum sulfide was used directly as a cathode in an alkaline water electrolysis operated at 100 ° C. and current densities of 400 mA / cm². An overvoltage of 140 mV was reached.
Claims (12)
- Process for the production of porous electrodes wherein a porous metal layer is formed on a framework-providing metallic carrier with adhesion-promoting surface irregularity, and is provided with an electrodeposited metal deposit in the pores, and is possibly finally activated by treatment with alkaline solution, characterised in that the carrier is provided at one or both sides with a layer, rolled-on in the dry state, of a mixed powder of a) finely divided carbonyl metal of low bulk density and high sliding resistance and b) a pulverulent component catalytically effective or activatable by alkaline solution treatment, in the ratio a b of 3 : 1 to 1 : 3 (by weight), which is consolidated by coating with metal by electrode-position, whereupon finally activation is carried out if appropriate.
- Process according to claim 1, characterised in that fine-mesh metal gauze or perforated metal sheet roughened by powder deposition is used as carrier.
- Process according to claim 2, characterised in that fine-mesh nickel gauze or perforated nickel sheet roughened by deposition of carbonyl nickel powder is used.
- Process according to one of the preceding claims, characterised in that carbonyl nickel powder having a particle size of 2 to 3 µm and a bulk density of 0.5 to 0.7 g/cm³ is used as component (a) of the mixed powder.
- Process according to one of the preceding claims, characterised in that the mixed powder consists in roughly equal proportions of carbonyl nickel and Raney nickel alloy.
- Process according to one of the preceding claims, characterised in that component (b) has a particle size of 10 to 100 µm.
- Process according to one of the preceding claims, characterised in that the powder layer rolled on in the dry state has a thickness of 50 to 400 µm.
- Process according to one of the preceding claims, characterised in that the consolidation using electrode-position of the cold-rolled-on mixed powder layer is carried out with a current density of 0.1 to 10 A/dm².
- Process according to claim 8, characterised in that the electrodeposition consolidation is carried out by depositing nickel and/or nickel alloy with a soluble component, especially nickel-zinc or nickel-tin.
- Process according to one of the preceding claims, characterised in that the rolling of the powder layer or layers on to the carrier is carried out with a pressure of 0.5 to 10 bars.
- Process according to one of the preceding claims, characterised in that the mixed powder for rolling-on has additionally a removable filler in quantities of 5 to 20 % by weight (relatively to the mixed powder a + b).
- Process according to one of the preceding claims, characterised in that a dry rolled layer of mixed powder is applied to the carrier at one or both sides, the powder particles of the said layer having a decreasingly oxidised surface from the outside towards the carrier.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3743354 | 1987-12-21 | ||
DE19873743354 DE3743354A1 (en) | 1987-12-21 | 1987-12-21 | METHOD FOR PRODUCING POROUS ELECTRODES |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0321711A1 EP0321711A1 (en) | 1989-06-28 |
EP0321711B1 true EP0321711B1 (en) | 1992-04-15 |
Family
ID=6343158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88119445A Expired - Lifetime EP0321711B1 (en) | 1987-12-21 | 1988-11-23 | Process for manufacturing porous electrodes |
Country Status (6)
Country | Link |
---|---|
US (1) | US4857153A (en) |
EP (1) | EP0321711B1 (en) |
JP (1) | JPH01205089A (en) |
CA (1) | CA1330316C (en) |
DE (2) | DE3743354A1 (en) |
NO (1) | NO168901C (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4036256A1 (en) * | 1990-11-14 | 1992-05-21 | Forschungszentrum Juelich Gmbh | Porous electrodes for catalytic conversion - comprises mixt. of carbonyl-metal and heavy metal coated carbon@ powder dry pressed into support and bound by subsequent plating |
DE4208057C2 (en) * | 1992-03-13 | 1993-12-23 | Deutsche Aerospace | Cell structure for electrolysers and fuel cells |
JP5605984B2 (en) * | 2008-09-22 | 2014-10-15 | 独立行政法人物質・材料研究機構 | Catalyst for methanol reforming reaction or catalyst for methanol decomposition reaction |
CH703063A1 (en) | 2010-04-21 | 2011-10-31 | Marco Bachmann | Cladding element for apparatus parts of incinerators. |
JPWO2021006327A1 (en) * | 2019-07-10 | 2021-01-14 | ||
CN115110108B (en) * | 2022-06-20 | 2023-06-16 | 华南理工大学 | Porous nickel-molybdenum alloy electrocatalytic material and preparation method and application thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1233834B (en) * | 1958-03-05 | 1967-02-09 | Siemens Ag | Electrode for electrolysers and fuel elements with a superficial double skeleton catalyst structure |
US4170536A (en) * | 1977-11-11 | 1979-10-09 | Showa Denko K.K. | Electrolytic cathode and method for its production |
JPS54112785A (en) * | 1978-02-24 | 1979-09-03 | Asahi Glass Co Ltd | Electrode and manufacture thereof |
DE2829901A1 (en) * | 1978-07-07 | 1980-01-24 | Metallgesellschaft Ag | METHOD FOR PRODUCING A SHEET OR STRIP WITH A SURFACE CATALYST STRUCTURE |
GB2015032B (en) * | 1979-02-26 | 1982-06-23 | Asahi Glass Co Ltd | Electrodes and processes for preparing them |
US4240895A (en) * | 1979-03-29 | 1980-12-23 | Olin Corporation | Raney alloy coated cathode for chlor-alkali cells |
DE2914094C2 (en) * | 1979-04-07 | 1983-02-10 | Kernforschungsanlage Jülich GmbH, 5170 Jülich | Porous nickel electrode for alkaline electrolysis, process for producing the same and its use |
DE3330961C2 (en) * | 1983-08-27 | 1986-04-17 | Kernforschungsanlage Jülich GmbH, 5170 Jülich | Activated electrodes based on Ni, Co, Fe with an active coating and process for the production of the same |
-
1987
- 1987-12-21 DE DE19873743354 patent/DE3743354A1/en active Granted
-
1988
- 1988-11-23 EP EP88119445A patent/EP0321711B1/en not_active Expired - Lifetime
- 1988-11-23 DE DE8888119445T patent/DE3870184D1/en not_active Expired - Lifetime
- 1988-12-14 US US07/284,357 patent/US4857153A/en not_active Expired - Fee Related
- 1988-12-15 NO NO885566A patent/NO168901C/en unknown
- 1988-12-19 CA CA000586301A patent/CA1330316C/en not_active Expired - Fee Related
- 1988-12-21 JP JP63320739A patent/JPH01205089A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE3870184D1 (en) | 1992-05-21 |
NO168901C (en) | 1992-04-15 |
DE3743354C2 (en) | 1989-09-28 |
JPH01205089A (en) | 1989-08-17 |
DE3743354A1 (en) | 1989-06-29 |
EP0321711A1 (en) | 1989-06-28 |
CA1330316C (en) | 1994-06-21 |
US4857153A (en) | 1989-08-15 |
NO885566D0 (en) | 1988-12-15 |
NO168901B (en) | 1992-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69600882T2 (en) | Process for producing a porous metal body, electrode substrate for batteries, and process for producing them | |
EP0169301B1 (en) | Composite electrode and method of production and applications thereof | |
DE2907179C2 (en) | ||
DE3874495T2 (en) | ELECTRODE CATALYST AND ITS MANUFACTURING METHOD. | |
EP0297315B1 (en) | Process for preparing a composite from a cermet layer and a porous metal layer on one or both sides of the cermet layer for a diaphragm with an electrode | |
DE2927566C2 (en) | Diaphragm for alkaline electrolysis, process for producing the same and its use | |
DE2751382A1 (en) | CATHODE FOR ELECTROLYTIC CELLS, METHOD OF MANUFACTURING AND USING THE SAME | |
DE2752875C2 (en) | Electrode for electrochemical processes and processes for their production | |
DE3001946A1 (en) | NICKEL MOLYBDAEN CATHODE | |
DE2462448A1 (en) | FLAT METAL OBJECT, PROCESS FOR ITS MANUFACTURING AND CATALYST FROM THIS METAL OBJECT | |
EP0321711B1 (en) | Process for manufacturing porous electrodes | |
EP0009830A1 (en) | Method of making a sheet or strip with a superficial catalytic structure and application of this strip | |
DE2652152A1 (en) | Electrodes for electrolytic devices - comprising conductive substrate, electrolyte-resistant coating with occlusions to improve electrode activity | |
DE1207358B (en) | Cathode for an alkali chloride electrolysis cell operating according to the diaphragm process | |
DE3004080C2 (en) | Method for coating a porous electrode | |
DE4232958C1 (en) | ||
DE3029364A1 (en) | PROCESS FOR THE MANUFACTURE OF LOW HYDROGEN OVERVOLTAGE CATHODE AND THEIR USE | |
DE2527386A1 (en) | CATHODE SURFACES WITH LOW HYDROGEN OVERVOLTAGE | |
DE1596101A1 (en) | Electrodes for electrochemical cells | |
EP0245201B1 (en) | Anode for electrolyses | |
DE3122526A1 (en) | Electrode and method of manufacturing it | |
DE2449603A1 (en) | Electrodes for electrochemical processes - using porous outer layer of filings bonded to the core by electroplating | |
DE3330961C2 (en) | Activated electrodes based on Ni, Co, Fe with an active coating and process for the production of the same | |
DE3612790C2 (en) | ||
DE1952915A1 (en) | Porous electrodes for gas cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19890724 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FORSCHUNGSZENTRUM JUELICH GMBH |
|
17Q | First examination report despatched |
Effective date: 19910517 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): BE CH DE FR IT LI |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR IT LI |
|
REF | Corresponds to: |
Ref document number: 3870184 Country of ref document: DE Date of ref document: 19920521 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19920626 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19951121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19951129 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960916 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19961130 Ref country code: CH Effective date: 19961130 Ref country code: BE Effective date: 19961130 |
|
BERE | Be: lapsed |
Owner name: FORSCHUNGSZENTRUM JULICH G.M.B.H. Effective date: 19961130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19971130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051123 |