EP0000715A1 - Method for manufacturing cadmium sulfide-copper sulfide solar cells and solar cells manufactured by this method - Google Patents
Method for manufacturing cadmium sulfide-copper sulfide solar cells and solar cells manufactured by this method Download PDFInfo
- Publication number
- EP0000715A1 EP0000715A1 EP78100452A EP78100452A EP0000715A1 EP 0000715 A1 EP0000715 A1 EP 0000715A1 EP 78100452 A EP78100452 A EP 78100452A EP 78100452 A EP78100452 A EP 78100452A EP 0000715 A1 EP0000715 A1 EP 0000715A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- cover glass
- base
- grid
- sulfide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title abstract description 14
- CKKNXLXIMISLER-UHFFFAOYSA-N [Cu]=S.[S-2].[Cd+2] Chemical compound [Cu]=S.[S-2].[Cd+2] CKKNXLXIMISLER-UHFFFAOYSA-N 0.000 title 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims abstract description 31
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000006059 cover glass Substances 0.000 claims abstract description 27
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011521 glass Substances 0.000 claims abstract description 9
- 239000000853 adhesive Substances 0.000 claims description 19
- 230000001070 adhesive effect Effects 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 239000004332 silver Substances 0.000 claims description 11
- 239000010453 quartz Substances 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000002318 adhesion promoter Substances 0.000 claims description 5
- 239000011889 copper foil Substances 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 2
- 238000007496 glass forming Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 229910002804 graphite Inorganic materials 0.000 description 11
- 239000010439 graphite Substances 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- 238000001035 drying Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000012945 sealing adhesive Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical compound [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- AQKDYYAZGHBAPR-UHFFFAOYSA-M copper;copper(1+);sulfanide Chemical compound [SH-].[Cu].[Cu+] AQKDYYAZGHBAPR-UHFFFAOYSA-M 0.000 description 1
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical group O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
- C11D17/047—Arrangements specially adapted for dry cleaning or laundry dryer related applications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0328—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
- H01L31/0336—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
- H01L31/03365—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table comprising only Cu2X / CdX heterojunctions, X being an element of Group VI of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/0488—Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to a method for producing solar cells with a p-n thin-film heterojunction from a cadmium sulfide layer vapor-deposited on an electrically conductive base and a copper sulfide layer chemically produced thereon, with which an electrically conductive grid is in contact.
- Cadmium sulfide solar cells have a lower efficiency than the known silicon single-crystal solar cells, but they have the considerable advantage that they can be manufactured much more cheaply. It is known to produce a semiconductor photo element from a thin silicon single crystal with p- and n-type zones, which is subsequently coated by the like with a casting resin or the like. is encapsulated. Cadmium sulfide solar cells, which belong to the so-called thin-film solar cells, have a polycrystalline semiconductor layer which is vapor-deposited on an electrically conductive base, usually a metallic support, so that their production is considerably cheaper. It is known to convert them to cells in a manner similar to that of silicon solar cells encapsulate.
- the manufacturing effort is thus reduced only with regard to the manufacture of the semiconductor layers, so that the overall manufacturing effort is still relatively high, especially if several solar cells are to be interconnected to form solar batteries.
- additional carrier materials have to be provided, which further increase the costs.
- the invention has for its object to provide a method for producing cadmium sulfide solar cells that enables inexpensive production of a fully encapsulated solar cell that has a favorable efficiency.
- the invention consists in that the cadmium sulphide layer and the copper sulphide layer are applied to a component serving as a lower part, which then forms an encapsulated cell with an upper part formed from a cover glass previously provided with an adhesive and the conductive grid is put together.
- cover slip is sufficient to ensure sufficient mechanical strength.
- the use of the cover slip also has the advantage that the UV component of the incident light is filtered out of the cover slip, so that damage to the adhesive is not to be feared even after a long period of use.
- the lower part contains a glass plate, on which, preferably using an adhesion promoter, a base made of silver or zinc is applied, onto which the cadmium sulfide layer is evaporated.
- a glass plate in the lower part has the advantage that not only the mechanical strength is increased, but also that uniform thermal expansions of the entire cell are ensured, so that destruction or damage by thermal stresses is not to be expected, even if that is particularly the case specific solar cell is set up in areas where, for example, there are very large differences between day and night temperatures.
- a thin, vapor-deposited layer of chromium or titanium can serve as an adhesion promoter, for example.
- the base made of silver or zinc is evaporated at about 400 ° C. This leads to the advantage that, on the one hand, existing water vapor can escape, while, on the other hand, the base, which is preferably made of silver, crystallizes better, which leads to a better crystalline structure of the cadmium sulfide layer applied next.
- the cadmium sulfide layer is vapor-deposited onto the base through a quartz frit.
- This vapor deposition of cadmium sulfide through a quartz frit is also suitable for the production of solar cells constructed in a different way.
- the cadmium sulfide layer is preferably roughened by etching before the copper sulfide layer is produced. This reduces, on the one hand, a potentially harmful reflection, while, on the other hand, grain boundaries are etched out.
- a copper layer is evaporated onto the layer on copper sulfide, after which the lower part is heated to approximately 180 ° C.
- This subsequently vapor-deposited copper means that any vacancies in the copper sulfide can be filled up by diffusion. If this is done under atmospheric conditions, a thin layer of copper oxide (Cu 2 O) forms on the surface. This causes an electron reflecting potential to be formed on the surface. This reduces the surface recombination of the minority carriers (electrons) in the copper sulfide.
- a heat seal adhesive is applied to the cover glass of the upper part, on which a copper foil is first held, from which a grid is then etched out, after which the upper part and lower part are heat sealed under vacuum by means of the heat seal adhesive of the upper part.
- the heat seal adhesive thus initially has the function of holding the copper foil on the upper part and then establishing the connection to the lower part.
- the heat seal adhesive is applied in liquid form and then dried in a vacuum and, if appropriate, thereafter in the atmosphere.
- the first drying under vacuum while removing all gases and vapors that may interfere with the electrical properties of the solar cell, creates an adhesive layer that then enables heat sealing and whose thickness is somewhat thicker than the thickness of the grid.
- a thin gold layer is applied galvanically before the upper part and lower part are joined onto the grid in order to achieve a barrier-free contact.
- a solar cell can be created in which a base plate, which is preferably made of glass, with an electrically conductive base, a cadmium sulfide layer and a copper sulfide layer forms a prefabricated lower part, which has an electrically conductive grid and a cover glass forming an upper part is joined to form an encapsulated cell.
- a base plate which is preferably made of glass
- an electrically conductive base a cadmium sulfide layer and a copper sulfide layer
- a copper sulfide layer forms a prefabricated lower part, which has an electrically conductive grid and a cover glass forming an upper part is joined to form an encapsulated cell.
- the cover glass with the grid and the base plate with the base are laterally offset from one another in such a way that a contact formed by the base and on the other side a contact formed by the grid are exposed.
- a solar cell is very easy to connect to other solar cells because the necessary contacts are created and freely accessible.
- a large cover glass with several in a row is arranged as the upper part electrically conductive grids are provided, each of which is assigned a lower part, which are arranged offset from the grids in such a way that the documents are in contact on one side with the grating associated with the adjacent lower part, and that on one side of the cover glass an edge of the outer Grid is exposed as a contact, while on the other side an edge of the base of the outer lower part is exposed as a contact.
- a large cover glass is provided with several rows of grids and accordingly with several rows of lower parts. A very efficient production is obtained, the somewhat simpler upper part taking up a large area, while the lower parts are designed as individually manufactured elements which are of a size which is favorable for the application of the cadmium sulfide layer.
- the solar cell shown in FIG. 1 has a prefabricated lower part 1 and a prefabricated upper part 2, which are assembled into a self-contained cell in a subsequent operation.
- the lower part 1 has a base plate 3, which preferably consists of a substrate glass. This glass is ultrasonically cleaned in a solvent before an adhesion-promoting layer 4 is applied on one side, for which vapor-deposited chromium (Cr) is preferably used. A layer 5 of silver (Ag) is also applied to this adhesion promoter by vapor deposition. This vapor deposition of both the adhesion promoter and the silver takes place at about 400 ° C., which on the one hand leads to a release of water vapor and on the other hand leads to good crystallization of the silver layer 5, which is advantageous for the subsequent operations.
- a base plate 3 which preferably consists of a substrate glass. This glass is ultrasonically cleaned in a solvent before an adhesion-promoting layer 4 is applied on one side, for which vapor-deposited chromium (Cr) is preferably used.
- Cr chromium
- a layer 5 of silver (Ag) is also applied to this adhesion promoter by vapor deposition. This
- CdS cadmium sulfide
- the cadmium sulfide layer 6 is roughened with an aqueous hydrochloric acid (HCl) to reduce reflection and to etch out grain boundaries.
- a copper sulfide (Cu 2 S) layer 7 is then produced on the cadmium sulfide layer 6, which is done by a chemical reaction by briefly immersing the lower part in a monovalent copper ion solution for about 5 to 10 seconds.
- This copper sulfide layer should have an order of magnitude of 0.2 ⁇ thickness.
- a copper (Cu) layer 8 which has a thickness of 30 to 100 ⁇ , is also evaporated onto the copper sulfide layer 7. Subsequently, the lower part is heated at about 180 ° under atmosphere, which enables filling of vacancies by copper diffusing into the copper sulfide layer and formation of a copper oxide layer (Cu 2 O). With this operation, the manufacture of the lower part 1 is finished. As can be seen from FIG. 1, the layers 6, 7 and 8 are applied in such a way that an edge strip 9 of the base 5 made of silver remains free in FIG. 1, which can later be used as a contact.
- the upper part 2 is also manufactured separately. It contains a cover glass 10, which is also cleaned with ultrasound in a solvent prior to further processing.
- a first liquid heat seal adhesive 11 with a layer thickness of 120 to 150 ⁇ is placed on this cover glass 10 on one side by means of a doctor or the like. applied.
- an adhesive from Kömmerling, Zweimaschiner Landstrasse, 6780 Pirmasens, which has the company identification AK 543, is suitable.
- the cover glass 10 and the initially applied heat-sealing adhesive 11 are then subjected to drying in a vacuum oven at about 100 ° C. for 4 to 5 hours, so that vapors and chamfers can escape from the initially liquid heat-sealing adhesive.
- the now finished upper part 2 is connected to the lower part 1 in a vacuum press at approx. 170 ° to 180 °, the connection being obtained by the layer 11 of the heat seal adhesive, which has a layer thickness which is somewhat larger than the thickness of the grid 12 .
- the grid 12 lies with its gold layer 13 on the layer 8 made of copper and establishes a secure contact, while subsequently the grid 12 penetrates into the layer 11 during heating, which also has an adhesive connection between the cover glass 10 and the layer 8 manufactures.
- the upper part 2 is applied so offset on the lower part 1 that on the left in the drawing, i.e. A strip 14 of the grid 12, which also serves as a contact, is exposed opposite the contact strip 9.
- a solar battery can be assembled from several of the solar cells shown in FIG. 1, the contacts of the adjacent solar cells formed by the edge strips 9 and 14 then being connected to one another.
- a common cover glass 15 can be provided for several solar cells, as shown in FIGS. 2 and 3.
- There- . at parts 1 are used, which were produced according to the preceding description. These bases are appropriately manufactured in a certain size in which they can be manufactured economically.
- the contacts between the individual solar cells are produced in the manner described for FIG. 1, which are only indicated schematically in FIG. 2. In this case, contact is made between the grid 12 and the layer 5 of silver serving as an electrically conductive base for those solar cells lying in a row. As can be seen in FIG.
- FIG. 4 schematically shows a device with which a homogeneous layer of cadmium sulfide can be evaporated onto a lower part 1 of a solar cell.
- a graphite furnace 16 is provided, which is surrounded by a graphite heating coil 17 to which a power supply 18 is connected.
- the outside of the graphite heating coil 17 is surrounded by a radiation reflector 19.
- a thermocouple 20 measuring the temperature for temperature control projects into the graphite furnace 16.
- the graphite furnace is seated on an insulating ceramic ring 21.
- the graphite furnace 16 has the shape of a cylinder, in which an upwardly open chamber 23 is divided by an annular collar 22, into which cadmium sulfide in powder form is filled.
- the chamber 23 is closed at the top by a porous quartz frit 24, which is closely connected to the ring collar 22 is fitted outward adjoining cylindrical part.
- the quartz frit 24 and the inner surface of the graphite furnace 16 are expediently ground.
- the quartz frit 24 is secured in its position in a manner not shown by one or more pins.
- the quartz frit 24 is arranged at a sufficient distance from the end of the graphite furnace 16, that is to say at about a third of the height, so that a temperature is maintained in the area of the quartz frit that is high enough to prevent the quartz frit from evaporating and becoming impermeable .
- thermocouple 20 adjoins the graphite furnace, which sits on the ceramic ring. This approach envelops the thermocouple 20 over a sufficient length, so that it is ensured that the temperature measured by the thermocouple 20 corresponds as closely as possible to the temperature of the chamber 23.
- a displaceable diaphragm 26 Arranged above the outlet of the graphite furnace 16 is a displaceable diaphragm 26, with which the evaporating gas from the lower part 1 of the solar cell can initially be maintained.
- This lower part 1 rests on a support 27, which leaves a section of the size to be vaporized on the lower part 1 with cadmium sulfide.
- a heating part 28 designed as a graphite meander is provided, which is covered by a radiation reflector 29. This heating part 28 ensures that the lower part of the solar cell maintains a temperature of approximately 200 ° C. when the cadmium sulfide is evaporated.
Landscapes
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
Verfahren zum Herstellen von Solarzellen, bei welchem eine vorzugsweise aus Glas bestehende Grundplatte (3) mit einer elektrisch leitenden Unterlage (5) einer Cadmiumsulfidschicht (6) und einer Kupfersulfidschicht (7) als ein vorgefertigtes Unterteil (1) hergestellt wird, das mit einem ein elektrisch leitendes Gitter (12) tragenden Deckglas (10) zu einer verkapselten Zelle zusammengefügt wird, wobei das Deckglas mit dem Gitter einen Oberteil (2) bildet. Eine derartige Solarzelle ist gebrauchsfertig und besitzt eine erhebliche mechanische Festigkeit, durch die es ermöglicht wird, mehrere derartige Solarzellen zu einer Solarbatterie zusammenzuschalten, ohne dass zusätsliche mechanische Tragelemente notwendig sind.Method for the production of solar cells, in which a base plate (3), preferably made of glass, with an electrically conductive base (5), a cadmium sulfide layer (6) and a copper sulfide layer (7) is produced as a prefabricated base part (1), which has a electrically conductive grid (12) carrying cover glass (10) is joined to form an encapsulated cell, the cover glass forming an upper part (2) with the grid. Such a solar cell is ready for use and has considerable mechanical strength, which makes it possible to connect a plurality of such solar cells to form a solar battery without additional mechanical support elements being necessary.
Description
Die Erfindung betrifft ein Verfahren zum Herstellen von Solarzellen mit p-n-Düpnschicht-Heteroübergang aus einer auf eine elektrisch leitenden Unterlage aufgedampften Cadmiumsulfid-Schicht und einer darauf chemisch erzeugten Kupfersulfid-Schicht, mit der ein elektrisch leitendes Gitter in Kontakt steht.The invention relates to a method for producing solar cells with a p-n thin-film heterojunction from a cadmium sulfide layer vapor-deposited on an electrically conductive base and a copper sulfide layer chemically produced thereon, with which an electrically conductive grid is in contact.
Cadmiumsulfid-Solarzellen haben gegenüber den bekannten SiliciumEinkristall-Solarzellen einen geringeren Wirkungsgrad, jedoch den erheblichen Vorteil, daß sie sich wesentlich preiswerter herstellen lassen. Es ist bekannt, ein Halbleiterfotoelement aus einem dünnen Siliciumeinkristall mit p- und n- leitenden Zonen herzustellen, das anschließend durch Umhüllen mit einem Gießharz o.dgl. verkapselt wird. Cadmiumsulfid-Solarzellen, die zu den sogenannten Dünnschichtsolarzellen gehören, besitzen eine polykristalline Halbleiterschicht, die auf eine elektrisch leitende Unterlage, meistens einen metallischen Träger aufgedampft ist, so daß ihre Herstellung wesentlich preiswerter ist. Es ist bekannt, sie in ähnlicher Weise wie die Silicium-Solarzellen zu Zellen zu verkapseln. Der Herstellungsaufwand ist somit nur bezüglich der Herstellung der Halbleiterschichten verringert, so daß insgesamt der Herstellungsaufwand noch relativ hoch ist, insbesondere wenn mehrere Solarzellen zu Solarbatterien zusammengeschaltet werden sollen. In diesem Fall müssen nämlich noch zusätzliche Trägermaterialien vorgesehen werden, die die Kosten weiter erhöhen. Es bestehen Berechnungen, nach welchen aufgrund dieser Kosten für die Erstellung einer flächigen Solarbatterie nur dann eine sinnvolle Anwendung für eine Einspeisung in ein Versorgungsnetz möglich ist, wenn ein Wirkungsgrad von wenigstens 7 % erreicht wird. Dies liegt in der Größenordnung, der bisher von Cadmiumsulfid-Solarzellen erreichbar ist.Cadmium sulfide solar cells have a lower efficiency than the known silicon single-crystal solar cells, but they have the considerable advantage that they can be manufactured much more cheaply. It is known to produce a semiconductor photo element from a thin silicon single crystal with p- and n-type zones, which is subsequently coated by the like with a casting resin or the like. is encapsulated. Cadmium sulfide solar cells, which belong to the so-called thin-film solar cells, have a polycrystalline semiconductor layer which is vapor-deposited on an electrically conductive base, usually a metallic support, so that their production is considerably cheaper. It is known to convert them to cells in a manner similar to that of silicon solar cells encapsulate. The manufacturing effort is thus reduced only with regard to the manufacture of the semiconductor layers, so that the overall manufacturing effort is still relatively high, especially if several solar cells are to be interconnected to form solar batteries. In this case, additional carrier materials have to be provided, which further increase the costs. There are calculations according to which, based on these costs for the creation of a flat solar battery, a sensible application for feeding into a supply network is only possible if an efficiency of at least 7% is achieved. This is of the order of magnitude that can be achieved with cadmium sulfide solar cells.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Herstellen von Cadmiumsulfid-Solarzellen zu schaffen, das eine preiswerte Herstellung einer fertig verkapselten Solarzelle ermöglicht, die einen günstigen Wirkungsgrad besitzt. Die Erfindung besteht darin, daß die Cadmiumsulfid-Schicht und die Kupfersulfid- Schicht auf einem als Unterteil dienenden Bauteil aufgebracht werden, der anschließend mit einem aus einem vorher mit einem Haftmittel und dem leitenden Gitter versehenen Deckglas gebildeten Oberteil zu einer in sich geschlossenen, verkapselten Zelle zusammengefügt wird.The invention has for its object to provide a method for producing cadmium sulfide solar cells that enables inexpensive production of a fully encapsulated solar cell that has a favorable efficiency. The invention consists in that the cadmium sulphide layer and the copper sulphide layer are applied to a component serving as a lower part, which then forms an encapsulated cell with an upper part formed from a cover glass previously provided with an adhesive and the conductive grid is put together.
Durch dieses Verfahren lassen sich die sogenannten Flächenkosten bei der Herstellung von Solarzellen wesentlich reduzieren, da in den meisten Fällen das Deckglas schon ausreicht, um eine ausreichende mechanische Festigkeit zu gewährleisten. Die Verwendung des Deckglases hat außerdem den Vorteil, daß der UV-Anteil des einfallenden Lichtes von dem Deckglas herausgefiltert wird, so daß Schädigungen des Haftmittels auch bei längerer Gebrauchsdauer nicht zu befürchten sind.This process significantly reduces the so-called area costs in the production of solar cells, since in most cases the cover slip is sufficient to ensure sufficient mechanical strength. The use of the cover slip also has the advantage that the UV component of the incident light is filtered out of the cover slip, so that damage to the adhesive is not to be feared even after a long period of use.
In weiterer Ausgestaltung der Erfindung wird vorgesehen, daß das Unterteil eine Glasplatte enthält, auf der vorzugsweise unter Verwendung eines Haftvermittlers eine Unterlage aus Silber oder Zink aufgebracht wird, auf die die Cadmiumsulfid-Schicht aufgedampft wird. Die Verwendung einer Glasplatte in dem Unterteil hat den Vorteil, daß nicht nur die mechanische Festigkeit erhöit wird, sondern daß auch gleichmäßige Wärmeausdehnungen der gesamten Zelle gewährleistet sind, so daß ein Zerstören oder Beschädigen durch Wärmespannungen nicht zu erwarten ist, auch wenn die insbesondere für die terestrische Anwendung bestimmte Solarzelle in Gebieten aufgestellt wird, in denen beispielsweise sehr große Unterschiede zwischen den Tages- und Nachttemperaturen auftreten. Als Haftvermittler kann beispielsweise eine dünne aufgedampfte Schicht aus Chrom oder Titan dienen.In a further embodiment of the invention it is provided that the lower part contains a glass plate, on which, preferably using an adhesion promoter, a base made of silver or zinc is applied, onto which the cadmium sulfide layer is evaporated. The use of a glass plate in the lower part has the advantage that not only the mechanical strength is increased, but also that uniform thermal expansions of the entire cell are ensured, so that destruction or damage by thermal stresses is not to be expected, even if that is particularly the case specific solar cell is set up in areas where, for example, there are very large differences between day and night temperatures. A thin, vapor-deposited layer of chromium or titanium can serve as an adhesion promoter, for example.
In vorteilhafter Ausgestaltung der Erfindung wird vorgesehen, daß die Unterlage aus Silber oder Zink bei etwa 400°C aufgedampft wird. Dies führt zu dem Vorteil, daß einerseits vorhandener Wasserdanpf austreten kann, während andererseits die vorzugsweise aus Silber erstellte Unterlage besser auskristallisiert, was zu einer besseren kristallinen Struktur der als nächstes aufgebrachten Cadmiumsulfid-Schicht führt.In an advantageous embodiment of the invention it is provided that the base made of silver or zinc is evaporated at about 400 ° C. This leads to the advantage that, on the one hand, existing water vapor can escape, while, on the other hand, the base, which is preferably made of silver, crystallizes better, which leads to a better crystalline structure of the cadmium sulfide layer applied next.
Um eine möglichst homogene Cadmiumsulfid-Schicht su erhalten, wird in besonders vorteilhafter Ausgestaltung der Erfindung vorgesehen, daß die Cadmiumsulfid-Schicht durch eine Quarzfritte hindurch auf die Unterlage aufgedampft wird. Dies führt gegenäber den bekannten Verfahren, die Cadmiumsulfid durch eine Quarolle o.dgl. hindurch aufgedampften, zu einer wesentlichen Verbessonung der Homogenität. Dieses Aufdampfen von Cadmiumsulfid durch eine Quarzfritte hindurch eignet sich auch für die Erstellung von auf andere Weise aufgebauten Solarzellen.In order to obtain the most homogeneous cadmium sulfide layer possible, it is provided in a particularly advantageous embodiment of the invention that the cadmium sulfide layer is vapor-deposited onto the base through a quartz frit. This leads to the known method, the cadmium sulfide or the like through a quarolle. evaporated through it, to a substantial improvement in the homogeneity. This vapor deposition of cadmium sulfide through a quartz frit is also suitable for the production of solar cells constructed in a different way.
In weiterer Ausgestaltung der Erfindung wird vorgesehen,daß die Cadmiumsulfid-Schicht vorzugsweise durch Ätzen vor dem Erzeugen der Kupfersulfid-Schicht aufgerauht wird. Dadurch wird einerseits eine sich ggf. schädlich auswirkende Reflexion vermindert, während andererseits Korngrenzen ausgeätzt werden.In a further embodiment of the invention, it is provided that the cadmium sulfide layer is preferably roughened by etching before the copper sulfide layer is produced. This reduces, on the one hand, a potentially harmful reflection, while, on the other hand, grain boundaries are etched out.
In weiterer Ausgestaltung der Erfindung wird auf.die Schicht auf Kupfersulfid eine Kupferschicht aufgedampft, wonach das Unterteil auf ca. 180°C aufgeheizt wird. Dieses noch nachträglich aufgedampfte Kupfer führt dazu, daß durch Diffusion evtl. vorhandene Leerstellen in dem Kupfersulfid aufgefüllt werden können. Wenn dies bei Atmosphärenbedingungen erfolgt, bildet sich an der Oberfläche eine dünne Schicht Kupferoxydul (Cu2O) aus. Dies bewirkt, daß sich an der Oberfläche ein elektronenreflektierendes Potential ausbildet. Dadurch wird die Oberflächenrekombination der Minoritätsträger (Elektronen) im Kupfersulfid verringert.In a further embodiment of the invention, a copper layer is evaporated onto the layer on copper sulfide, after which the lower part is heated to approximately 180 ° C. This subsequently vapor-deposited copper means that any vacancies in the copper sulfide can be filled up by diffusion. If this is done under atmospheric conditions, a thin layer of copper oxide (Cu 2 O) forms on the surface. This causes an electron reflecting potential to be formed on the surface. This reduces the surface recombination of the minority carriers (electrons) in the copper sulfide.
In weiterer Ausgestaltung der Erfindung wird vorgesehen, daß auf das Deckglas des Oberteils ein Heißsiegelkleber aufgetragen wird, an dem zunächst eine Kupferfolie gehalten wird, aus der anschließend ein Gitter herausgeätzt wird, wonach Oberteil und Unterteil unter Vakuum mittels des Heißsiegelklebers des Oberteils heiß versiegelt werden. Der Heißsiegelkleber hat somit zunächst die Funktion, die Kupferfolie an dem Oberteil zu halten und anschließend die Verbindung zu dem Unterteil herzustellen.In a further embodiment of the invention it is provided that a heat seal adhesive is applied to the cover glass of the upper part, on which a copper foil is first held, from which a grid is then etched out, after which the upper part and lower part are heat sealed under vacuum by means of the heat seal adhesive of the upper part. The heat seal adhesive thus initially has the function of holding the copper foil on the upper part and then establishing the connection to the lower part.
In vorteilhafter Weise wird vorgesehen, daß der Heißsiegelkleber flüssig aufgetragen und anschließend im Vakuum und ggf. danach in Atmosphäre getrocknet wird. Durch das erste Trocknen unter Vakuum wird unter Abführen aller evtl. die elektrischen Eigenschaften der Solarzelle störenden Gase und Dämpfe eine Klebe- schicht erzeugt, die anschließend ein Heißsiegelkleben ermöglicht und deren Dicke etwas stärker als die Dicke des Gitters ist.It is advantageously provided that the heat seal adhesive is applied in liquid form and then dried in a vacuum and, if appropriate, thereafter in the atmosphere. The first drying under vacuum, while removing all gases and vapors that may interfere with the electrical properties of the solar cell, creates an adhesive layer that then enables heat sealing and whose thickness is somewhat thicker than the thickness of the grid.
Die ggf. durchzuführende anschließende Trocknung unter atmosphärischen Bedingungen führt zu einer in einigen Fällen zweckmäßigen Oxidation der Heißsiegelklebeschicht.The subsequent drying to be carried out under atmospheric conditions leads to an expedient oxidation of the heat-seal adhesive layer in some cases.
In zweckmäßiger Ausgestaltung wird vorgesehen, daß vor dem Zusammenfügen von Oberteil und Unterteil auf das Gitter zum Erzielen eines sperrschichtfreien Kontakts eine dünne Goldschicht galvanisch aufgetragen wird.In an expedient embodiment, it is provided that a thin gold layer is applied galvanically before the upper part and lower part are joined onto the grid in order to achieve a barrier-free contact.
Durch das erfindungsgemäße Verfahren läßt sich eine Solarzelle erstellen, bei welcher eine Grundplatte, die vorzugsweise aus Glas besteht, mit einer elektrisch leitenden Unterlage, einer Cadmiumsulfid-Schicht und einer Kupfersulfid-Schicht ein vorgefertigtes Unterteil bildet, das mit einem ein elektrisch leitendes Gitter tragenden und ein Oberteil bildenden Deckglas zu einer verkapselten Zelle zusammengefügt ist. Eine derartige Solarzelle ist gebrauchsfertig und besitzt eine erhebliche mechanische Festigkeit, die es erlaubt, eine derartige Solarzelle ohne weiteres mit anderen insbesondere bei terrestrischen Anwendung zu einer Solarbatterie zusammenzuschalten, ohne daß aufwendige zusätzliche mechanische Tragelemente vorgesehen werden müssen.By the method according to the invention, a solar cell can be created in which a base plate, which is preferably made of glass, with an electrically conductive base, a cadmium sulfide layer and a copper sulfide layer forms a prefabricated lower part, which has an electrically conductive grid and a cover glass forming an upper part is joined to form an encapsulated cell. Such a solar cell is ready for use and has a considerable mechanical strength, which allows such a solar cell to be easily connected together with others, particularly in terrestrial use, to form a solar battery, without the need for expensive additional mechanical support elements.
Bei einer vorteilhaften Ausführungsform der Erfindung sind das Deckglas mit dem Gitter und die Grundplatte mit der Unterlage derart seitlich zueinander versetzt, daß auf der einen Seite ein von der Unterlage und auf der anderen Seite ein von dem Gitter gebildeter Kontakt freiliegen. Eine derartige Solarzelle ist sehr einfach mit weiteren Solarzellen zu verschalten, da die notwendigen Kontakte geschaffen und frei zugänglich sind.In an advantageous embodiment of the invention, the cover glass with the grid and the base plate with the base are laterally offset from one another in such a way that a contact formed by the base and on the other side a contact formed by the grid are exposed. Such a solar cell is very easy to connect to other solar cells because the necessary contacts are created and freely accessible.
In vorteilhafter Ausgestaltung der Erfindung ist als Oberteil ein großflächiges Deckglas mit mehreren in einer Reihe angeordneten elektrisch leitenden Gittern vorgesehen, denen jeweils ein Unter- teil zugeordnet ist, die derart versetzt zu den Gittern angeordnet sind, daß die Unterlagen einseitig mit dem dem benachbarten Unterteil zugeordneten Gitter in Kontakt stehen, und daß an der einen Seite des Deckglases ein Rand des äußeren Gitters als Kontakt frei liegt, während auf der anderen Seite ein Rand der Unterlage des äußeren Unterteils als Kontakt freiliegt. Dadurch läßt sich in einfacher Weise eine fertig verschaltete Solarbatterie schaffen, bei der als Tragelement für mehrere Solarzellen ein einteiliges Deckglas dient. In weiterer Ausgestaltung der Erfindung kann vorgesehen werden, daß ein großflächiges Deckglas mit mehreren Reihen von Gittern und entsprechend mit mehreren Reihen von Unterteilen versehen ist. Dabei wird eine sehr rationelle Fertigung erhalten, wobei das etwas einfacher aufgebaute Oberteil eine große Fläche einnimmt, während die Unterteile als einzeln hergestellte Elemente ausgeführt sind, die eine für die Aufbringung der Cadmiumsulfid-Schicht günstige Größe besitzen.In an advantageous embodiment of the invention, a large cover glass with several in a row is arranged as the upper part electrically conductive grids are provided, each of which is assigned a lower part, which are arranged offset from the grids in such a way that the documents are in contact on one side with the grating associated with the adjacent lower part, and that on one side of the cover glass an edge of the outer Grid is exposed as a contact, while on the other side an edge of the base of the outer lower part is exposed as a contact. This makes it easy to create a fully connected solar battery, in which a one-piece cover glass serves as a supporting element for several solar cells. In a further embodiment of the invention it can be provided that a large cover glass is provided with several rows of grids and accordingly with several rows of lower parts. A very efficient production is obtained, the somewhat simpler upper part taking up a large area, while the lower parts are designed as individually manufactured elements which are of a size which is favorable for the application of the cadmium sulfide layer.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der in der Zeichnung dargestellten Ausführungsformen.Further features and advantages of the invention result from the following description of the embodiments shown in the drawing.
- Fig. 1 zeigt eine schematische Darstellung einer nach dem erfindungsgemäßen Verfahren hergestellten erfindungsgemäßen Solarzelle, bei welcher Unterteil und Oberteil noch gegetrennt sind,1 shows a schematic representation of a solar cell according to the invention produced by the method according to the invention, in which the lower part and the upper part are still separated,
- Fig. 2 eine Seitenansicht einer aus mehreren Zellen und einem einteiligen Deckglas gebildeten Solarbatterie,2 is a side view of a solar battery formed from a plurality of cells and a one-piece cover glass,
- Fig. 3 eine Ansicht der Solarbatterie der Fig. 2 in Richtung des Pfeiles III undFig. 3 is a view of the solar battery of Fig. 2 in the direction of arrow III and
- Fig. 4 eine schematische Darstellung einer Einrichtung zum Aufdampfen einer Cadmiunsulfid-Schicht.Fig. 4 is a schematic representation of a device for evaporating a cadmium sulfide layer.
Die in Fig. 1 dargestellte Solarzelle besitzt einen vorgefertigten Unterteil 1 und einen vorgefertigten Oberteil 2, die in einem anschließenden Arbeitsgang zu einer in sich gekapselten Zelle zusammengefügt werden.The solar cell shown in FIG. 1 has a prefabricated
Der Unterteil 1 besitzt eine Grundplatte 3, die vorzugsweise aus einem Substratglas besteht. Dieses Glas wird in einem Lösungsmittel mit Ultraschall gereinigt, bevor eine Haftvermittlungsschicht 4 einseitig aufgetragen wird, für die bevorzugt aufgedampftes Chrom (Cr) verwendet wird. Auf diesen Haftvermittler wird eine Schicht 5 aus Silber (Ag) ebenfalls durch Aufdampfen aufgetragen. Dieses Aufdampfen sowohl des Haftvermittlers als auch des Silbers erfolgt bei etwa 400°C, was einerseits zu einem Herauslösen von Wasserdanpf und andererseits zu einer guten Auskristallisierung der Silberschicht 5 führt, was für die nachfolgenden Arbeitsgänge von Vorteil ist.The
Auf die Schicht 5 aus Silber wird eine Schicht aus Cadmiumsulfid (CdS) von ca. 30 µ aufgedampft. Dieses Aufdampfen erfolgt in der in Fig. 4 dargestellten Vorrichtung, die später noch erläutert werden wird. Dabei wird der soweit vorgefertigte Unterteil 1 auf einer Temperatur von 200° gehalten.A layer of cadmium sulfide (CdS) of approximately 30 μ is evaporated onto the
Als nächstes wird die Cadmiusisulfid-Schicht 6 zur Verringerung von Reflexion und zum Herausätzen von Korngrenzen mit Hilfe einer wässrigen Salzsäure (HCl) aufgerauht. Auf der Cadmiumsulfid-Schicht 6 wird anschließend eine Kupfersulfid (Cu2S)-Schicht 7 erzeugt, was durch eine chemische Reaktion geschieht, indem der Unterteil kurzzeitig für ca 5 bis 10 Sekunden in eine einwertige Kupfer-Ionenlösung eingetaucht wird. Diese Kupfersulfid-Schicht soll eine Größenordnung von 0,2 µ Dicke besitzen.Next, the
Auf die Kupfersulfid-Schicht 7 wird noch eine Kupfer (Cu)-Schicht 8 aufgedampft, die eine Dicke von 30 bis 100 Å besitzt. Anschließend wird der Unterteil bei ca. 180° unter Atmosphäre aufgeheizt, wodurch ein Auffüllen von Leerstellen durch eindiffundierendes Kupfer in die Kupfersulfid-Schicht und eine Ausbildung einer Kupferoxydulschicht (Cu20) ermöglicht werden. Mit diesem Arbeitsgang ist die Herstellung des Unterteils 1 beendet. Wie aus Fig. 1 ersichtlich ist, sind die Schichten 6, 7 und 8 derart aufgetragen, daß in Fig. 1 rechts ein Randstreifen 9 der Unterlage 5 aus Silber freibleibt, die später als Kontakt ausgenutzt werden kann.A copper (Cu)
Der Oberteil 2 wird ebenfalls getrennt hergestellt. Er enthält ein Deckglas 10, das ebenfalls vor der Weiterbearbeitung mit Ultraschall in einem LösunGsmittel gereinigt wird. Auf dieses Deckglas 10 wird einseitig ein zunächst flüssiger Heißsiegelkleber 11 mit einer Schichtdicke von 120 bis 150 µ mittels eines Rakel o.dgl. aufgetragen. In der Praxis hat sich hier ein Kleber der Firma Kömmerling, Zweibrücker Landstrasse, 6780 Pirmasens, geeignet, der die Betriebskennzeichnung AK 543 trägt. Das Deckglas 10 und der zunächst flüssig aufgetragene Heißsiegelkleber 11 werden in einem Vakuumofen anschließend bei etwa 100°C für 4 bis 5 Stunden einer Trocknung unterzogen, so daß Dämpfe und Fase aus dem zunächst flüssigen Heißsiegelkleber entweichen könnon. Es hat sich gezeigt, daß eine anschließende Trocknung bei einer ebenfalls erhöhten Temperatur in der Atmosphäre zu Vorteilen führen kann, wobei wahrscheinlich eine Oxidation des Heißsiegelklebers 11 erfolgt. Bei diesem Trocknungsvorgang reduziert der Heißsiegelkleber seine Dicke auf etwa 25 % der ursprünglich 120 bis 150µ betragenden Auftragsdicke. Mit Hilfe des Heißsiegelklebers 11 wird auf dem Deckglas 10 anschließend eine Kupferfolie von einer Dicke von ca.35 µ bei etwa 170°bis 180° aufgesiegelt. Aus dieser Kupferfolie wird anschließend das in Fig. 1 dargestellte Gitter 12 herausgeätzt, wobei die bei der Herstellung von Leiterplatten bekannte Technik angewendet wird. Es wird zunächst ein Lackgitter im Siebdruckverfahren aufgetragen, das dem nachher stehenbleibenden Gitter 12 entspricht. Nachdem das Gitter 12 erstellt und der Lack wieder entfernt wurde, wird galvanisch auf das Gitter eine Schicht 13 aus Gold aufgetragen, um einen sperrschichtfreien Kontakt zu ermöglichen. Die Schichtstärke beträgt etwa 100 bis 1000 Å, vorzugsweise 250 Å.The
Der nunmehr fertige Oberteil 2 wird mit dem Unterteil 1 in einer Vakuumpresse bei ca. 170° bis 180° verbunden, wobei die Verbindung durch die Schicht 11 des Heißsiegelklebers erhalten wird, die eine Schichtdicke aufweist, die etwas größer als die Dicke des Gitters 12 ist. Das Gitter 12 legt sich mit seiner Goldschicht 13 an die Schicht 8 aus Kupfer an und stellt einen sicheren Kontakt her, während anschließend bei dem Aufheizen das Gitter 12 in die Schicht 11 eindringt, die außerdem noch eine haftende Verbindung zwischen dem Deckglas 10 und der Schicht 8 herstellt. Der Oberteil 2 wird dabei derart versetzt auf dem Unterteil 1 aufgebracht, das in der Zeichnung links, d.h. dem Kontaktstreifen 9 gegenüberliegend ein Streifen 14 des Gitters 12 freiliegt, der ebenfalls als Kontakt dient. Nach diesem Zusammenfügen von Oberteil und Unterteil liegt eine feste in sich geschlossene Zelle vor, die keiner weiteren Behandlung oder Verstärkung bedarf. Gegebenenfalls ist es zweckmäßig, die quer zu den Kontaktstreifen 9 und 14 verlaufenden Ränder abzudichten, was beispielsweise durch Verkleben, Verschweißen oder Verlöten der Deckplatte 10 und der Grundplatte 3 erfolgen kann.The now finished
Aus mehreren der in Fig. 1 dargestellten Solarzellen läßt sich eine Solarbatterie zusammensetzen, wobei dann die von den Randstreifen 9 und 14 gebildeten Kontakte der benachbaren Solarzellen miteinander ve-rbunden werden.A solar battery can be assembled from several of the solar cells shown in FIG. 1, the contacts of the adjacent solar cells formed by the edge strips 9 and 14 then being connected to one another.
Um bei der Erstellung einer Solarbatterie zusätzliche Trägerelemente einzusparen, kann für mehrere Solarzellen ein gemeinsames Deckglas 15 vorgesehen werden, wie dies in Fig. 2 und 3 dargestellt ist. Da- . bei werden Unterteile 1 verwendet, die entsprechend der vorausgegangenen Beschreibung hergestellt wurden. Diese Unterteile werden zweckmäßig in einer bestimmten Größe hergestellt, in der sie sich wirtschaftlich fertigen lassen. Dagegen bereitet es keine größeren Schwierigkeiten, das gemeinsame Deckglas 15 großflächig herzustellen und mit einer Vielzahl von Gittern 12 in der vorstehend beschriebenen Weise zu versehen. Die Kontakte zwischen den einzelnen Solarzellen werden entsprechend der zur Fig. 1 beschriebenen Weise hergestellt, die in Fig. 2 nur schematisch angedeutet sind. Dabei wird jeweils bei denen in einer Reihe liegenden Solarzellen ein Kontakt des Gitters 12 mit der als elektrisch leitenden Unterlage dienenden Schicht 5 aus Silber hergestellt. Wie in Fig. 3 zu'sehen ist, können selbstverständlich mehrere Reihen derartiger Zellen an dem gemeinsamen Deckglas befestigt wer-den. Die Befestigung erfolgt dann durch die Schicht 11 des Heißsiegelklebers in einem einzigen Arbeitsgang. In der Praxis ist es zweckmäßig, die Stirnseiten zwischen den Kontakten 14 und 9 sowie die Fugen zwischen den einzelnen Zellen abzudichten, was durch Vergießen mit einem Kleber o.dgl. zweckmäßig erfolgen kann. Ebenso ist ein Verlöten oder Verschweißen der Glasplatten möglich.In order to save additional support elements when creating a solar battery, a
In Fig. 4 ist schematisch eine Vorrichtung dargestellt, mit welcher eine homogene Schicht Cadmiumsulfid auf ein Unterteil 1 einer Solarzelle aufgedampft werden kann. Hierzu ist ein Graphitofen 16 vorgesehen, der von einer Graphitheizwendel 17 umgeben wird, an die eine Stromzuführung 18 angeschlossen ist. Außen wird die Graphitheizwendel 17 von einem Strahlungsreflektor 19 umschlossen. In den Graphitofen 16 ragt ein die Temperatur für eine Temperaturregelung messendes Thermoelement 20 hinein. Der Graphitofen sitzt auf einem isolierenden Keramikring 21. Der Graphitofen 16 besitzt die Gestalt eines Zylinders, in welchem durch einen Ringbund 22 eine nach oben offene Kammer 23 abgeteilt ist, in die Cadmiumsulfid in pulverförmigem Zustand eingefüllt wird. Die Kammer 23 wird nach oben von einer porösen Quarzfritte 24 verschlossen, die eng in den an den Ringbund 22 nach außen anschließenden zylindrischen Teil eingepaßt ist. Hierzu werden zweckmäßigerweise die Quarzfritte 24 und die Innenfläche des Graphitofens 16 geschliffen. Um ein einwandfreies Bearbeiten zu ermöglichen, ist es zweckmäßig, die Quarzfritte 24 in ein Quarzglasröhrchen einzuschmelzen, das dann außen geschliffen wird. Die Quarzfritte 24 wird in nicht näher dargestellter Weise durch einen oder mehrere Stifte in ihrer Lage gesichert. Die Quarzfritte 24 wird in einem ausreichenden Abstand zu dem Ende des Graphitofens 16 angeordnet, d.h. in etwa auf ein Drittel der Höhe, damit im Bereich der Quarzfritte eine so hohe Temperatur aufrechterhalten wird, daß ein Zudampfen und danit Undurchlässigwerden der Quarzfritte mit Sicherheit vermieden werden kann. An den Graphitofen schließt nach unten ein zylindrischer Ansatz 25 an, der auf dem Keramikring aufsitzt. Dieser Ansatz umhüllt das Thermoelement 20 über eine ausreichende Länge, so daß dadurch sichergestellt wird, daß die von dem Thermoelement 20 gemessene Temperatur möglichst genau der Temperatur der Kammer 23 entspricht.4 schematically shows a device with which a homogeneous layer of cadmium sulfide can be evaporated onto a
Über dem Auslaß des Graphitofens 16 ist eine verschiebbare Blende 26 angeordnet, mit der zunächst das ausdampfende Gas von dem Unterteil 1 der Solarzelle eingehalten werden kann. Dieser Unterteil 1 liegt auf einer Auflage 27 auf, die einen Ausschnitt von der Größe freiläßt, die auf dem Unterteil 1 mit Cadmiumsulfid zu bedampfen ist. Auf der gegenüberliegenden Seite ist ein als Graphitmäander ausgebildetes Heizteil 28 vorgesehen, das von einem Strahlungsreflektor 29 abgedeckt wird. Mit diesem Heizteil 28 wird sichergestellt, daß der Unterteil der Solarzelle bei dem Aufdampfen des Cadmiumsulfides eine Temperatur von ca. 200°C einhält.Arranged above the outlet of the
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2732933 | 1977-07-21 | ||
DE2732933A DE2732933C2 (en) | 1977-07-21 | 1977-07-21 | Process for the production of thin-film solar cells with pn heterojunction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0000715A1 true EP0000715A1 (en) | 1979-02-21 |
EP0000715B1 EP0000715B1 (en) | 1981-09-02 |
Family
ID=6014494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP78100452A Expired EP0000715B1 (en) | 1977-07-21 | 1978-07-20 | Method for manufacturing cadmium sulfide-copper sulfide solar cells and solar cells manufactured by this method |
Country Status (4)
Country | Link |
---|---|
US (1) | US4283590A (en) |
EP (1) | EP0000715B1 (en) |
AU (1) | AU519312B2 (en) |
DE (1) | DE2732933C2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0024615A2 (en) * | 1979-08-22 | 1981-03-11 | Ses, Incorporated | Electrode for photovoltaic cell and method of manufacturing it |
EP0121869A1 (en) * | 1983-04-02 | 1984-10-17 | Nukem GmbH | Method to prevent short circuits or shunts on a large-surface thin-layer solar cell |
WO1988003706A1 (en) * | 1986-11-12 | 1988-05-19 | Hughes Aircraft Company | Gallium arsenide solar cell system |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2926754A1 (en) * | 1979-07-03 | 1981-01-15 | Licentia Gmbh | SOLAR CELL ARRANGEMENT |
US4319258A (en) * | 1980-03-07 | 1982-03-09 | General Dynamics, Pomona Division | Schottky barrier photovoltaic detector |
US4400577A (en) * | 1981-07-16 | 1983-08-23 | Spear Reginald G | Thin solar cells |
EP0091998A1 (en) * | 1982-03-08 | 1983-10-26 | Prutec Limited | Cadmium sulphide solar cells |
DE3328869A1 (en) * | 1983-08-10 | 1985-02-28 | Nukem Gmbh, 6450 Hanau | PHOTOVOLTAIC CELL AND METHOD FOR PRODUCING THE SAME |
DE3328899C2 (en) * | 1983-08-10 | 1985-07-11 | Nukem Gmbh, 6450 Hanau | Photovoltaic cell |
US4616403A (en) * | 1984-08-31 | 1986-10-14 | Texas Instruments Incorporated | Configuration of a metal insulator semiconductor with a processor based gate |
US4673770A (en) * | 1985-10-21 | 1987-06-16 | Joseph Mandelkorn | Glass sealed silicon membrane solar cell |
IT1272665B (en) * | 1993-09-23 | 1997-06-26 | Eurosolare Spa | PROCEDURE FOR THE PREPARATION OF CRYSTALLINE SILICON-BASED PHOTOVOLTAIC MODULES |
JP3516156B2 (en) * | 1997-12-16 | 2004-04-05 | シャープ株式会社 | Method of manufacturing solar cell and material plate for protective cover |
US5972732A (en) * | 1997-12-19 | 1999-10-26 | Sandia Corporation | Method of monolithic module assembly |
US20090111206A1 (en) | 1999-03-30 | 2009-04-30 | Daniel Luch | Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture |
US8138413B2 (en) | 2006-04-13 | 2012-03-20 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US7507903B2 (en) * | 1999-03-30 | 2009-03-24 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US8076568B2 (en) | 2006-04-13 | 2011-12-13 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8222513B2 (en) | 2006-04-13 | 2012-07-17 | Daniel Luch | Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture |
US8664030B2 (en) | 1999-03-30 | 2014-03-04 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US7898053B2 (en) | 2000-02-04 | 2011-03-01 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US7898054B2 (en) | 2000-02-04 | 2011-03-01 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US8198696B2 (en) | 2000-02-04 | 2012-06-12 | Daniel Luch | Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
US9865758B2 (en) | 2006-04-13 | 2018-01-09 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8729385B2 (en) | 2006-04-13 | 2014-05-20 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US9236512B2 (en) | 2006-04-13 | 2016-01-12 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8822810B2 (en) | 2006-04-13 | 2014-09-02 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8884155B2 (en) | 2006-04-13 | 2014-11-11 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US9006563B2 (en) | 2006-04-13 | 2015-04-14 | Solannex, Inc. | Collector grid and interconnect structures for photovoltaic arrays and modules |
DE102012107100A1 (en) | 2012-08-02 | 2014-02-06 | Dynamic Solar Systems Inc. | Enhanced layered solar cell for use in control circuit of power source of e.g. portable, manually transportable apparatus, has upper side photovoltaic layer sequence connected to functional layer sequence of cell for improving current yield |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1446911A (en) * | 1964-09-18 | 1966-07-22 | Ass Elect Ind | Improvements to the production processes of a cadmium sulphide layer |
FR1562163A (en) * | 1968-02-16 | 1969-04-04 | ||
US3472690A (en) * | 1967-02-09 | 1969-10-14 | Kewanee Oil Co | Process of preparing a flexible rear wall photovoltaic cell |
FR2156924A1 (en) * | 1971-10-23 | 1973-06-01 | Licentia Gmbh |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3346419A (en) * | 1963-11-29 | 1967-10-10 | James E Webb | Solar cell mounting |
US3480473A (en) * | 1966-06-24 | 1969-11-25 | Kewanee Oil Co | Method of producing polycrystalline photovoltaic cells |
DE2112812C2 (en) * | 1971-03-17 | 1984-02-09 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Semiconductor component with lattice-shaped metal electrode and method for its production |
JPS5014116Y2 (en) * | 1971-06-04 | 1975-05-01 | ||
BE789331A (en) * | 1971-09-28 | 1973-01-15 | Communications Satellite Corp | FINE GEOMETRY SOLAR CELL |
US3888697A (en) * | 1971-10-23 | 1975-06-10 | Licentia Gmbh | Photocell |
GB1504854A (en) * | 1974-03-21 | 1978-03-22 | Int Research & Dev Co Ltd | Photodetectors and thin film photovoltaic arrays |
US4083097A (en) * | 1976-11-30 | 1978-04-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of making encapsulated solar cell modules |
US4127424A (en) * | 1976-12-06 | 1978-11-28 | Ses, Incorporated | Photovoltaic cell array |
US4084985A (en) * | 1977-04-25 | 1978-04-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for producing solar energy panels by automation |
-
1977
- 1977-07-21 DE DE2732933A patent/DE2732933C2/en not_active Expired
-
1978
- 1978-07-18 AU AU38108/78A patent/AU519312B2/en not_active Expired
- 1978-07-20 EP EP78100452A patent/EP0000715B1/en not_active Expired
- 1978-07-20 US US05/926,433 patent/US4283590A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1446911A (en) * | 1964-09-18 | 1966-07-22 | Ass Elect Ind | Improvements to the production processes of a cadmium sulphide layer |
US3472690A (en) * | 1967-02-09 | 1969-10-14 | Kewanee Oil Co | Process of preparing a flexible rear wall photovoltaic cell |
FR1562163A (en) * | 1968-02-16 | 1969-04-04 | ||
FR2156924A1 (en) * | 1971-10-23 | 1973-06-01 | Licentia Gmbh |
Non-Patent Citations (1)
Title |
---|
THIN SOLID FILMS, vol. 45, no. 1, August 1977, Lausanne (CH) G.H. HEWIG, W.H. BLOSS: "Technology of thin film solar cells", Seiten 1-7. Vorgelesen an der International conference on metallurgical coatings, San Francisco USA; 28 M{rz-1 April 1977 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0024615A2 (en) * | 1979-08-22 | 1981-03-11 | Ses, Incorporated | Electrode for photovoltaic cell and method of manufacturing it |
EP0024615A3 (en) * | 1979-08-22 | 1982-04-07 | Ses, Incorporated | Electrode for photovoltaic cell and method of manufacturing it |
EP0121869A1 (en) * | 1983-04-02 | 1984-10-17 | Nukem GmbH | Method to prevent short circuits or shunts on a large-surface thin-layer solar cell |
WO1988003706A1 (en) * | 1986-11-12 | 1988-05-19 | Hughes Aircraft Company | Gallium arsenide solar cell system |
Also Published As
Publication number | Publication date |
---|---|
EP0000715B1 (en) | 1981-09-02 |
DE2732933C2 (en) | 1984-11-15 |
AU519312B2 (en) | 1981-11-26 |
AU3810878A (en) | 1980-01-24 |
DE2732933A1 (en) | 1979-02-08 |
US4283590A (en) | 1981-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0000715B1 (en) | Method for manufacturing cadmium sulfide-copper sulfide solar cells and solar cells manufactured by this method | |
DE4132882C2 (en) | Process for the production of pn CdTe / CdS thin-film solar cells | |
DE2703831C2 (en) | Process for making a thermal battery | |
EP0715358B1 (en) | Process for fabricating a solar cell with a chalcopyrite absorbing layer and solar cell so produced | |
DE3686195T2 (en) | INTERCONNECTING SOLAR CELLS BY INTERRUPTED LEADING AREAS. | |
DE4415132C2 (en) | Process for shaping thin wafers and solar cells from crystalline silicon | |
DE4122845C2 (en) | Semiconductor photovoltaic device and manufacturing method therefor | |
DE3015706A1 (en) | SOLAR CELL WITH SCHOTTKY BARRIER | |
DE102011104159A1 (en) | METHOD FOR THE ELECTRICAL CONNECTION OF SEVERAL SOLAR CELLS AND PHOTOVOLTAIC MODULE | |
DE2917564A1 (en) | Continuous production of solar cells - by depositing small grain semiconductor material and recrystallisation | |
DE10020412A1 (en) | Method and appliance for applying metal foil to semiconductor wafer to form contact surface involves applying pressure to foil coated with fine grain paste | |
DE2314731B2 (en) | Semiconductor arrangement with hump-like projections on contact pads and method for producing such a semiconductor arrangement | |
DE1302005C2 (en) | USE OF A METALLIC COATING AS A LARGE AREA CONNECTION FOR PLENAR SEMICONDUCTOR ELEMENTS | |
DE3604546A1 (en) | THERMOELECTRIC ELEMENT AND MANUFACTURING METHOD THEREFOR | |
DE2340142C3 (en) | Process for the mass production of semiconductor devices with high breakdown voltage | |
DE2839038A1 (en) | METHOD FOR PRODUCING A SERIAL ARRANGEMENT OF BARRIER PHOTOCELLS, AND PHOTOCELL ARRANGEMENT OR BATTERY PRODUCED BY THIS METHOD | |
DE1614391A1 (en) | Multiple semiconductor device | |
DE1052572B (en) | Electrode system which contains a semiconducting single crystal with at least two parts of different types of conduction, e.g. B. crystal diode or transistor | |
DE69430286T2 (en) | Process for the production of photovoltaic modules from crystalline silicon | |
DE69915294T2 (en) | METHOD FOR PRODUCING A PHOTOVOLTAIC COMPONENT WITH A LIQUID ELECTROLYTE | |
EP1177584A2 (en) | Solar cell and method for producing a solar cell | |
EP3513425B1 (en) | Method for producing a crystalline silicon layer and silicon-based semiconductor component | |
DE3328899C2 (en) | Photovoltaic cell | |
DE2751393A1 (en) | INTEGRATED ARRANGEMENT AND METHOD OF MANUFACTURING IT | |
DE19814780A1 (en) | Photovoltaic solar module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE CH FR GB NL |
|
17P | Request for examination filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE CH FR GB NL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19840630 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19840711 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19840730 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19870731 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19890720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19890731 Ref country code: BE Effective date: 19890731 |
|
BERE | Be: lapsed |
Owner name: BLOSS WERNER H. Effective date: 19890731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19900201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19900330 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |