DK9500009U3 - Body for improving the efficiency of a wind turbine - Google Patents
Body for improving the efficiency of a wind turbine Download PDFInfo
- Publication number
- DK9500009U3 DK9500009U3 DK9500009U DK9500009U DK9500009U3 DK 9500009 U3 DK9500009 U3 DK 9500009U3 DK 9500009 U DK9500009 U DK 9500009U DK 9500009 U DK9500009 U DK 9500009U DK 9500009 U3 DK9500009 U3 DK 9500009U3
- Authority
- DK
- Denmark
- Prior art keywords
- wind turbine
- efficiency
- improving
- wing
- blade
- Prior art date
Links
- 230000000694 effects Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 238000013016 damping Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 2
- 230000002349 favourable effect Effects 0.000 claims description 2
- 230000001427 coherent effect Effects 0.000 claims 1
- 239000004035 construction material Substances 0.000 claims 1
- 230000010355 oscillation Effects 0.000 description 5
- 239000011152 fibreglass Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/301—Cross-section characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/31—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/31—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
- F05B2240/311—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape flexible or elastic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Description
DK 95 00009 U3DK 95 00009 U3
Opfindelsen angår et organ til modifikation af en vindmøllevinge, så opdriften og stall-indfaldsvinklen kontrolleres, hvorved virkninsgraden forbedres.The invention relates to a means for modifying a wind turbine blade so that the buoyancy and stall angle of approach are controlled, thereby improving the efficiency.
5 Det kan ofte være en fordel at udføre vindmøllevinger som relativt slanke konstruktioner, hvor vingens projicerede areal kun udgør en lille del af det areal, vingen overstryger under sin rotation. Med det lille projicerede areal har slanke vinger den fordel, at de aerodynamiske 10 belastninger under stilstand i ekstrem vindhastighed bliver relativt små.5 It can often be advantageous to perform wind turbine blades as relatively slender structures, with the projected area of the blade constituting only a small portion of the area that the blade overlaps during its rotation. With the small projected area, slim wings have the advantage that the aerodynamic 10 loads during standstill at extreme wind speeds become relatively small.
Slanke vinger kan til gengæld have den ulempe, at effektkurven udviser et "knæk" ved middelhøje vind-15 hastigheder, så éffekten ved visse højere vindhastigheder bliver mindre end det forudses med aerodynamiske beregninger. Dette problem gør sig navnlig gældende, hvis vingen monteres på et rotornav med stor diameter (større end 8-10 % af rotordiameteren), f.eks udført med vinge-20 forlængere. Den generelle virkningsgrad af smalle vinger kan også til tider være skuffende i forhold til det beregnede. Endelig kan støjniveauet fra smalle vinger til tider være højere end forventet 25 Undersøgelser udført af opfinderen har vist, at disse ulemper på en slank vinge for en stor del forårsages af for tidligt indtruffet stall på dele af vingen. Ved at ændre opdriften på hele eller dele af vingen og forøge den indfaldsvinkel, hvor stall optræder, kan ulemperne 30 reduceres eller fjernes.Slender blades, on the other hand, may have the disadvantage that the power curve exhibits a "crack" at medium high wind speeds, so that the power at certain higher wind speeds becomes smaller than predicted by aerodynamic calculations. This problem is particularly true if the blade is mounted on a large diameter rotor hub (greater than 8-10% of the rotor diameter), for example, with wing extenders. The overall efficiency of narrow blades can also be disappointing at times compared to the calculated. Finally, the noise level from narrow blades can sometimes be higher than expected. 25 Investigations by the inventor have shown that these disadvantages of a slender blade are largely caused by premature stalling on parts of the blade. By changing the buoyancy of all or part of the blade and increasing the angle of incidence at which stall occurs, the disadvantages 30 can be reduced or removed.
Efter kendt teknik kan stall-indfaidsvinklen forøges ved brug af vortex generators på vingens sugeside. Vortex generators har imidlertid den ulempe, at de normalt bliver uvirksomme, hvis først stall når at indtræde, f.eks i en turbulenshvirvel. Desuden har de tendens til at give forøget aerodynamisk støj. Endelig forøger de ikke opdriften ved lavere indfaldsvinkler, og det har 35 2 DK 95 00009 U3 vist sig at være en væsentlig del af forudsætningerne for at opnå den ønskede virkning.By prior art, the stall infeed angle can be increased by using vortex generators on the suction side of the blade. However, the vortex generators have the disadvantage that they usually become inactive if the stall first enters, for example in a turbulence vortex. In addition, they tend to provide increased aerodynamic noise. Finally, they do not increase buoyancy at lower angles of incidence, and it has been found to be an essential part of the prerequisites for achieving the desired effect.
Stall-indfaldsvinklen kan også forøjges med en flap, som det kendes fra flyvemaskiner. Ulempen er her, at en flap af normal størrelse i det meste af driftsområdet vil medføre for stor profilmodstand og derved vil forringe virkningsgraden. Dette problem kan uhdgås ved en mekanisme, der styrer flappen, men den tilhørende forøgelse af vingens kompleksitet er ikke attraktiv.The stall approach can also be increased with a flap as known from airplanes. The disadvantage here is that a flap of normal size in most of the operating range will cause too much profile resistance and thereby reduce the efficiency. This problem can be overcome by a mechanism that controls the flap, but the associated increase in wing complexity is not attractive.
Det er også kendt, at noget af flap-virkningen kan opnås med en permanent monteret såkaldt gurney flap, et vinkelprofil med 90 grader vinkel, der anbringes på vingens trykside nær bagkanten. Gurney flaps udføres normalt med konstant sidelængde, typisk 1-2 % af korden. De kan i princippet give den ønskede virkning, men har tendens til at give forøget profilmodstand og forøget aerodynamisk støj, navnlig på større radier, hvor den resulterende vindhastighed er stor.It is also known that some of the flap effect can be achieved with a permanently mounted so-called gurney flap, a 90 degree angle profile which is applied to the pressure side of the blade near the trailing edge. Gurney flaps are usually performed at constant lateral length, typically 1-2% of the cord. They can, in principle, provide the desired effect, but tend to provide increased profile resistance and increased aerodynamic noise, especially at larger radii where the resulting wind speed is high.
Ved opfindelsen forøges opdriften på hele eller dele af vingen med en modifikation, der giver den ønskede forøgelse af opdriften, og hvor de ulemper, der knyttes til vortex generators og gurney flaps, er kraftigt reduceret eller helt fjernet.In the invention, the buoyancy of all or part of the blade is increased by a modification which gives the desired buoyancy increase and where the disadvantages associated with vortex generators and gurney flaps are greatly reduced or completely eliminated.
Dette opnås ifølge opfindelsen ved at montere et sammenhængende eller segmenteret legeme, en liftliste, på eller nær bagkanten af profilets trykside1. Denne liftliste er udformet med et tværsnit som en polygon, f.eks en retvinklet trekant, eventuelt med en eller flere krumme flader. Opfindelsens virkning beror på, at den på en særlig gunstig måde af bøj er luftstrømmen hen over vingens trykside, så den afbøjede luftstrøm får en retning væk fra vingens trykside og derved medfører en forsinket afløsning af luftstrømmen over vingéns sugeside. Sammenlignet med vortex generators er støjbidraget mindre, og virkningen ophører ikke, hvis der forbigående skulle 3 DK 95 00009 U3 optræde stall. Sammenlignet med en almindelig gurney flap kan flowretningen styres mere præcist med opfindelsen, og støjbidraget er mindre.This is achieved according to the invention by mounting a continuous or segmented body, a lifting strip, on or near the trailing edge of the print side1. This lift strip is designed with a cross-section such as a polygon, for example a right-angled triangle, possibly with one or more curved surfaces. The effect of the invention is that, in a particularly favorable manner of bending, it is the air flow across the pressure side of the wing, so that the deflected air flow gets a direction away from the pressure side of the wing, thereby causing a delayed release of the air flow over the suction side of the wing. Compared to vortex generators, the noise contribution is smaller, and the effect does not end if a temporary stall should occur 3 DK 95 00009 U3. Compared to an ordinary gurney flap, the flow direction can be controlled more precisely with the invention and the noise contribution is less.
5 I en særlig udførelsesform for liftlisten udføres den med aftagende profilhøjde og tværsnitsform ud ad vingen. Derved opnås, at listens virkning bedre tilpasses den lokale resulterende vindhastighed over vingen 10 I en anden særlig udførelsesform for liftlisten udføres den, så den passivt kan skifte form som funktion af den lokale resulterende vindhastighed over vingen. Derved opnås, at liftet automatisk kan tilpasses til de aktuelle vindhastigheder på en måde, som på fox*hånd kan beregnes 15 og tilpasses.5 In a particular embodiment of the lift strip, it is carried out with decreasing profile height and cross-sectional shape out of the wing. Thus, the effect of the strip is better adapted to the local resultant wind speed over the wing 10 In another particular embodiment of the lift strip it is carried out so that it can passively change shape as a function of the local resultant wind speed over the wing. This ensures that the lift can be automatically adjusted to the current wind speeds in a way that can be calculated and adjusted on the fox * hand.
Under bestemte driftsforhold kan vindmøllevinger have en tendens til at komme i kantvise svingninger. Disse svingninger kan blive af en betydelig størrelse, og kan 20 nedsætte levetiden for konstruktionen. Risikoen for kantvise svingninger øges bl.a af den lille strukturelle dæmpning af normale vingematerialer, f.eks glasfiberarmeret polyester eller epoxy. Hvis der kunne bibringes en større strukturel dæmpning af den del af vingen, som har 25 de største tøjninger under kantvise svingninger, nemlig bagkanten, ville risikoen for kantvise svingninger kunne reduceres.Under certain operating conditions, wind turbine blades may tend to get angular swings. These oscillations can be of considerable size and can reduce the service life of the construction. The risk of angular oscillations is increased, among other things, by the small structural damping of normal wing materials, for example fiberglass reinforced polyester or epoxy. If a greater structural damping could be imparted to the part of the blade which has the largest extensions during angular oscillations, namely the trailing edge, the risk of angular oscillations could be reduced.
I en tredie særlig udførelsesform for liftlisten udføres 30 den i et materiale med væsentligt større strukturel dæmpning end de materialer, der normalt anvendes i vindmøllevinger. Det kan f.eks være et gummimateriale. Herved opnås, at eventuelle kantvise svingninger hurtigt vil blive dæmpet ud.In a third particular embodiment of the lift strip, it is carried out in a material with substantially greater structural damping than the materials normally used in wind turbine blades. It may, for example, be a rubber material. This ensures that any angular oscillations will quickly be attenuated.
35 4 4DK 95 00009 U335 4 4GB 95 00009 U3
Karakteristiske udførelsesformer af opfindelsen forklares nærmere herunder. Der henvises til figurerne, hvorCharacteristic embodiments of the invention are explained in more detail below. Refer to the figures where
Fig.l. viser et tværsnit af en vindmøllevinge med en udførelse af opfindelsen, som den monteres på det aerodynamiske profil,Fig.l. shows a cross section of a wind turbine blade with an embodiment of the invention as it is mounted on the aerodynamic profile,
Fig.2 viser, hvordan opfindelsen kan udføres i praksis, ogFig. 2 shows how the invention can be practiced, and
Fig.3. viser to udgaver af, hvordan opfindelsen kan udføres, så den passivt kan skifte form som funktion af den lokale resulterende vindhastighed.Fig.3. shows two versions of how the invention can be carried out so that it can passively change shape as a function of the local resulting wind speed.
I fig.l ses et aerodynamisk profil 1, hvor liftlisten 2 er monteret nær bagkanten af tryksiden 3. Forskellige mulige former af liftlisten er vist, en retvinklet, ligesidet trekant 4, en lignende udgave med konkav trykside 5, og en uligesidet udgave med krum trykside 6.Figure 1 shows an aerodynamic profile 1, where the lift strip 2 is mounted near the trailing edge of the printing side 3. Various possible forms of the lift strip are shown, a right-angled, equilateral triangle 4, a similar version with concave pressure side 5, and an uneven-side version with curved print page 6.
I fig.2 ses en praktisk udførelse af liftlisten. En ydre kappe 1 udføres i tynd glasfiber, mens formen opretholdes under håndtering og i drift ved en kerne af et skummateriale 2.Figure 2 shows a practical embodiment of the lift list. An outer sheath 1 is made of thin fiberglass while the mold is maintained during handling and operation at a core of a foam material 2.
I fig.3 ses to udgaver af en udførelse, som skifter form som funktion af den lokale resulterende vindhastighed. I den ene udgave er liftlisten 1 udført med en læbe 2, som under normalt forhold danner en vis vinkel med vingens trykside. Ved større resulterende vindhastigheder deformeres listen passivt i retning af 3, hvorved dens aerodynamiske virkning reguleres. Fjedervirkningen kan opnås ved deformation af selve listens materiale, eller ved eksterne fjedre. I den anden udgave bidrager lift-listen 4 normalt ikke til en forøgelse af korden. Ved større resulterende vindhastigheder deformeres liftlisten, så dens læbe 2 indtager en ny stilling 3, der forøger korden men giver mindre opdrift.Figure 3 shows two versions of an embodiment that change shape as a function of the local resulting wind speed. In one version, the lift strip 1 is made with a lip 2 which, under normal conditions, forms a certain angle with the pressure side of the blade. At higher resulting wind speeds, the list is passively deformed in the direction of 3, thereby regulating its aerodynamic effect. The spring action can be achieved by deformation of the material of the molding itself, or by external springs. In the second edition, the lift list 4 does not normally contribute to the increase of the cord. At higher resulting wind speeds, the lift strip deforms, so that its lip 2 occupies a new position 3, which increases the cord but gives less buoyancy.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK9500009U DK9500009U3 (en) | 1995-01-10 | 1995-01-10 | Body for improving the efficiency of a wind turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK9500009U DK9500009U3 (en) | 1995-01-10 | 1995-01-10 | Body for improving the efficiency of a wind turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
DK9500009U3 true DK9500009U3 (en) | 1996-04-10 |
Family
ID=8155037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK9500009U DK9500009U3 (en) | 1995-01-10 | 1995-01-10 | Body for improving the efficiency of a wind turbine |
Country Status (1)
Country | Link |
---|---|
DK (1) | DK9500009U3 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1314885A1 (en) * | 2001-11-26 | 2003-05-28 | Bonus Energy A/S | Flexible serrated trailing edge for wind turbine rotor blade |
WO2007071249A1 (en) * | 2005-12-20 | 2007-06-28 | Lm Glasfiber A/S | Wind turbine rotor blade comprising a trailing edge section of constant cross section |
EP1845258A1 (en) * | 2006-04-10 | 2007-10-17 | Siemens Aktiengesellschaft | Wind turbine rotor blade |
WO2007118581A1 (en) | 2006-04-13 | 2007-10-25 | Repower Systems Ag | Rotor blade of a wind energy unit |
EP2343450A1 (en) | 2009-10-08 | 2011-07-13 | Lm Glasfiber A/S | Wind turbine blade with longitudinally extending flow guiding device having a plate-shaped element |
WO2011157849A3 (en) * | 2010-06-18 | 2012-03-15 | Suzlon Blade Technology B.V. | Rotor blade for a wind turbine |
DK178198B1 (en) * | 2011-10-06 | 2015-08-03 | Gen Electric | Wind turbine rotor blade with a passively modified trailing edge component |
EP2022979B1 (en) | 2006-05-31 | 2015-11-11 | Gamesa Innovation & Technology, S.L. | Wind generator blade with divergent trailing edge |
DK178389B1 (en) * | 2011-10-06 | 2016-01-25 | Gen Electric | Wind turbine rotor blade with passively modified trailing edge component |
EP2998571A1 (en) | 2014-09-19 | 2016-03-23 | Siemens Aktiengesellschaft | Lift influencing device for a rotor blade of a wind turbine |
WO2016055076A1 (en) * | 2014-10-10 | 2016-04-14 | Vestas Wind Systems A/S | Wind turbine blade having a trailing edge flap |
US9638164B2 (en) | 2013-10-31 | 2017-05-02 | General Electric Company | Chord extenders for a wind turbine rotor blade assembly |
EP2343451B1 (en) | 2009-10-08 | 2018-04-04 | LM Wind Power International Technology II ApS | Wind turbine blade with plurality of longitudinally extending flow guiding device parts |
WO2021028573A1 (en) | 2019-08-14 | 2021-02-18 | Power Curve Aps | Wind turbine blade with a gurney flap |
-
1995
- 1995-01-10 DK DK9500009U patent/DK9500009U3/en not_active IP Right Cessation
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1314885A1 (en) * | 2001-11-26 | 2003-05-28 | Bonus Energy A/S | Flexible serrated trailing edge for wind turbine rotor blade |
WO2007071249A1 (en) * | 2005-12-20 | 2007-06-28 | Lm Glasfiber A/S | Wind turbine rotor blade comprising a trailing edge section of constant cross section |
CN101341332B (en) * | 2005-12-20 | 2012-12-12 | Lm玻璃纤维有限公司 | Wind turbine rotor blade comprising a trailing edge section of constant cross section |
EP1845258A1 (en) * | 2006-04-10 | 2007-10-17 | Siemens Aktiengesellschaft | Wind turbine rotor blade |
WO2007115861A1 (en) * | 2006-04-10 | 2007-10-18 | Siemens Aktiengesellschaft | Wind turbine rotor blade |
US8568103B2 (en) | 2006-04-10 | 2013-10-29 | Siemens Aktiengesellschaft | Wind turbine rotor blade |
CN101711308B (en) * | 2006-04-13 | 2013-03-13 | 再生动力系统欧洲公司 | Rotor blade of a wind energy unit |
WO2007118581A1 (en) | 2006-04-13 | 2007-10-25 | Repower Systems Ag | Rotor blade of a wind energy unit |
US8052394B2 (en) | 2006-04-13 | 2011-11-08 | Repower Systems Ag | Rotor blade of a wind energy unit |
EP2022979B1 (en) | 2006-05-31 | 2015-11-11 | Gamesa Innovation & Technology, S.L. | Wind generator blade with divergent trailing edge |
EP2343450A1 (en) | 2009-10-08 | 2011-07-13 | Lm Glasfiber A/S | Wind turbine blade with longitudinally extending flow guiding device having a plate-shaped element |
CN102549258A (en) * | 2009-10-08 | 2012-07-04 | Lm玻璃纤维制品有限公司 | Wind turbine blade with longitudinally extending flow guiding device having a plate-shaped element |
EP2343451B1 (en) | 2009-10-08 | 2018-04-04 | LM Wind Power International Technology II ApS | Wind turbine blade with plurality of longitudinally extending flow guiding device parts |
WO2011157849A3 (en) * | 2010-06-18 | 2012-03-15 | Suzlon Blade Technology B.V. | Rotor blade for a wind turbine |
DK178198B1 (en) * | 2011-10-06 | 2015-08-03 | Gen Electric | Wind turbine rotor blade with a passively modified trailing edge component |
DK178389B1 (en) * | 2011-10-06 | 2016-01-25 | Gen Electric | Wind turbine rotor blade with passively modified trailing edge component |
US9638164B2 (en) | 2013-10-31 | 2017-05-02 | General Electric Company | Chord extenders for a wind turbine rotor blade assembly |
EP2998571A1 (en) | 2014-09-19 | 2016-03-23 | Siemens Aktiengesellschaft | Lift influencing device for a rotor blade of a wind turbine |
US10408192B2 (en) | 2014-09-19 | 2019-09-10 | Siemens Gamesa Renewable Energy A/S | Lift influencing device for a rotor blade of a wind turbine |
WO2016055076A1 (en) * | 2014-10-10 | 2016-04-14 | Vestas Wind Systems A/S | Wind turbine blade having a trailing edge flap |
US10830203B2 (en) | 2014-10-10 | 2020-11-10 | Vestas Wind Systems A/S | Wind turbine blade having a trailing edge flap |
WO2021028573A1 (en) | 2019-08-14 | 2021-02-18 | Power Curve Aps | Wind turbine blade with a gurney flap |
US11761418B2 (en) | 2019-08-14 | 2023-09-19 | Power Curve Aps | Wind turbine blade with a gurney flap |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK9500009U3 (en) | Body for improving the efficiency of a wind turbine | |
US9945357B2 (en) | Flexible flap arrangement for a wind turbine rotor blade | |
EP2394911B1 (en) | Wind turbine blades with controllable aerodynamic vortex elements | |
CN105863955B (en) | Vortex generator for a rotor blade | |
CN110094312B (en) | Trailing edge assembly | |
EP3597902B1 (en) | Vortex generator for a wind turbine | |
CN105992870B (en) | Wind turbine blade with deployable aerodynamic device | |
US6419187B1 (en) | Profile | |
US20060216153A1 (en) | Rotor blade for a wind power plant | |
MX2007016112A (en) | A blade with hinged blade tip. | |
AU2018211556B2 (en) | Fluid foil | |
EP3696402B1 (en) | Noise reducer for a wind turbine rotor blade | |
EP3453872B1 (en) | Methods for mitigating noise during high wind speed conditions of wind turbines | |
JP2018200049A (en) | Fan blade having flexible wing | |
US20230374969A1 (en) | Wind turbine blade with a gurney flap | |
CN103282652B (en) | The load mitigation device of wind turbine blade | |
DK2840256T3 (en) | Wind turbine blade | |
WO2011026495A2 (en) | Wind turbine rotor blade | |
JP3435540B2 (en) | Wind power generator | |
ITTO20110981A1 (en) | AERODYNAMIC PROFILE WITH VARIABLE SUSPENSION. | |
JP2004183531A (en) | Wind receiving blade for vertical axis wind turbine | |
CN111379660A (en) | Wind power blade and fan | |
CN118974396A (en) | Rotor blade active flap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
UUP | Utility model expired |