DE3011322C2 - Strahlungssonde für eine Einrichtung zur Mikrowellenbehandlung von Körpergewebe - Google Patents
Strahlungssonde für eine Einrichtung zur Mikrowellenbehandlung von KörpergewebeInfo
- Publication number
- DE3011322C2 DE3011322C2 DE3011322A DE3011322A DE3011322C2 DE 3011322 C2 DE3011322 C2 DE 3011322C2 DE 3011322 A DE3011322 A DE 3011322A DE 3011322 A DE3011322 A DE 3011322A DE 3011322 C2 DE3011322 C2 DE 3011322C2
- Authority
- DE
- Germany
- Prior art keywords
- radiation probe
- radiation
- rectum
- temperature
- inner conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005855 radiation Effects 0.000 title claims description 90
- 239000000523 sample Substances 0.000 title claims description 80
- 239000004020 conductor Substances 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000003989 dielectric material Substances 0.000 claims description 7
- 210000000664 rectum Anatomy 0.000 description 52
- 210000002307 prostate Anatomy 0.000 description 47
- 210000001519 tissue Anatomy 0.000 description 46
- 210000003708 urethra Anatomy 0.000 description 15
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 13
- 239000004810 polytetrafluoroethylene Substances 0.000 description 13
- 206010020843 Hyperthermia Diseases 0.000 description 12
- 230000036031 hyperthermia Effects 0.000 description 12
- 210000000436 anus Anatomy 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 210000003932 urinary bladder Anatomy 0.000 description 7
- 210000001072 colon Anatomy 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 235000015278 beef Nutrition 0.000 description 5
- 230000002977 hyperthermial effect Effects 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 210000003899 penis Anatomy 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 206010051482 Prostatomegaly Diseases 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 210000004534 cecum Anatomy 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 206010033675 panniculitis Diseases 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 238000009217 hyperthermia therapy Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 208000023958 prostate neoplasm Diseases 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 210000001177 vas deferen Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/1861—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation-Therapy Devices (AREA)
Description
- Die vorliegende Erfindung betrifft eine Strahlungssonde gemäß dem Oberbegriff des Patentanspruchs 1, insbesondere zur therapeutischen oder hyperthermischen Behandlung einer Drüse. Die Strahlungssonde eignet sich besonders für die Hyperthermie-Behandlung der Vorsteherdrüse, wofür ein unregelmäßig geformter, in das Rektum eines männlichen Patienten einführbarer Mikrowellenapplikator vorgesehen wird.
- Es ist bekannt, Karzinome durch Erhöhen ihrer Temperatur auf etwa 43°C zu behandeln. Diese Behandlung wird als "Hyperthermie" bezeichnet. Eine Art der Hyperthermie-Behandlung arbeitet mit Mikrowellenenergie. Die Temperatur von Gewebe, das mit Mikrowellenenergie bestrahlt wird, ist eine Funktion der Leistung oder Intensität des auf das Körpergewebe zur Einwirkung gebrachten Mikrowellensignals. Die Eindringtiefe von Mikrowellen im Gewebe ist im allgemeinen eine direkte Funktion des Gewebetyps und eine inverse Funktion der Frequenz der zur Einwirkung gebrachten Mikrowellen. Die Abmessungen und die Form des bestrahlten Volumens oder Bereiches des Gewebes hängen von diesen Parametern ab, also der Art des Gewebes und der Frequenz der Mikrowellen, ferner von der Strahlungsverteilung des Mikrowellensignals.
- Die Mikrowellenbestrahlung kann hinsichtlich der Erhöhung der Temperatur eines Gewebebereiches oder -volumens gesteuert werden. Man strebt dabei an, die Temperatur eines gewünschten, zu behandelnden Gewebebereiches in den Hyperthermie-Bereich zu erhöhen und gleichzeitig das keiner Behandlung bedürftige Gewebe in der Umgebung des zu behandelnden Gewebebereiches nach Möglichkeit wenigstens annähernd auf der normalen Körpertemperatur zu halten.
- Aus der DE-OS 28 27 003 ist eine Einrichtung zur Mikrowellenbehandlung von subkutanem Gewebe bekannt, bei der die Mikrowellen durch die Oberfläche des Körpers hindurch zur Einwirkung gebracht werden. Wenn das zu behandelnde subkutane Gewebe jedoch ein beträchtliches Volumen hat und sich im unteren Teil des Unterleibes des Körpers befindet, kann häufig nicht genügend Mikrowellenenergie durch die Körperoberfläche hindurch auf den zu behandelnden Gewebebereich, wie die Vorsteherdrüse oder Prostata, zur Einwirkung gebracht werden, um die Temperatur dieses Gewebebereiches auf den Hyperthermie-Bereich zu erhöhen.
- Man hat nun auch festgestellt, daß die gleichzeitige Anwendung einer Hyperthermie- und Radiotherapie-Behandlung von Vorteil sein kann.
- Es ist ferner aus der DE-OS 28 15 156 eine Strahlungssonde der eingangs genannten Art zum örtlichen Erwärmen von lebendem Gewebe durch elektromagnetische Wellen hoher Frequenz bekannt, welche ein Koaxialkabel, das einen Außenleiter und einen Innenleiter mit einem vorstehenden, unabgeschirmten Ende aufweist, und einen dieses Ende umgebenden kolbenförmigen Körper aus dielektrischem Material enthält. Die Länge des vorstehenden, unabgeschirmten Endes des Innenleiters entspricht größenordnungsmäßig der halben Wellenlänge der verwendeten Mikrowellenstrahlung. Das dielektrische Material kann Silicon sein.
- Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Strahlungssonde der im Oberbegriff des Patentanspruchs 1 angegebenen Art zu schaffen, die ein gerichtetes Abstrahlen der Mikrowellenenergie nach den zu bestrahlenden Gewebebereichen und damit eine Schonung der nicht zu bestrahlenden umgebenden Gewebebereiche ermöglicht.
- Diese Aufgabe wird bei der Strahlungssonde gemäß dem Oberbegriff des Patentanspruchs 1 durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Weiterbildungen und vorteilhafte Ausgestaltungen der Strahlungssonde sind Gegenstand der Unteransprüche.
- Die Strahlungssonde mit den beanspruchten Merkmalen bewirkt ein gerichtetes Abstrahlen der Mikrowellenenergie, so daß der zu behandelnde Gewebebereich gezielt bestrahlt werden kann, während die umgebenden Gewebebereiche geschont werden.
- Im folgenden werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die Zeichnung näher erläutert. Es zeigt
- Fig. 1 ein Blockschaltbild einer Einrichtung zur Mikrowellenbestrahlung und eine schematische Darstellung einer in den menschlichen Körper eingeführten Strahlungssonde gemäß einer Ausführungsform der Erfindung,
- Fig. 2 eine teilweise geschnittene Seitenansicht einer Strahlungssonde gemäß einer Ausführungsform der Erfindung,
- Fig. 2a und 2b Ansichten der Strahlungssonde gemäß Fig. 2 in Richtung von Pfeilen 2 a-2 a bzw. 2 b-2 b,
- Fig. 3 eine Stirnansicht der Strahlungssonde gemäß Fig. 2 mit bestimmten Bemessungsangaben,
- Fig. 4 eine Seitenansicht einer Ausführung der Strahlungssonde mit einem als Drossel wirkenden Teil und einem unabgeschirmten Leiterende, die zusammen als Strahler wirken,
- Fig. 5a und 5b Temperaturverteilungen, wie sie mittels der in
- Fig. 6 dargestellten Strahlungssonde in durchgetriebenem Rindfleisch erzeugt werden,
- Fig. 7 eine Schnittansicht, die die Position der Strahlungssonde im Rektum und in bezug auf die Vorsterdrüse zeigt, und
- Fig. 8 die Anwendung der Strahlungssonde bei einem mit einem männlichen Hund durchgeführten Versuch.
- Die symbolischen Darstellungen und relative Lage der in Fig. 1 dargestellten Organe eines menschlichen Körpers, wie der Vorsteherdrüse 66, des Penis 60, der Harnblase 68, des Rektum 48, des Anus 59, der Harnröhre 64 und der Samenleiter 62 sind nur grob schematisch zum Zwecke der Erläuterung der Erfindung dargestellt. Die tatsächlichen Verhältnisse können jedem Anatomiebuch entnommen werden, z. B. dem Buch von Henry Gray "Anatomy", 1977, Verlag Bounty Books, N.Y., V.St.A.
- Das Kolon 49 ist der Teil des Darmes, der sich vom Blinddarm (nicht dargestellt) bis zum Rektum 48 erstreckt. Die Vorsteherdrüse oder Prostata 66 ist das männliche Organ, das sich unten an der Harnblase 68 befindet und den oberen Teil eines Körperkanals umgibt, der als Harnröhre 64 bezeichnet wird. Die Harnröhre 64 leitet den Harn von der Harnblase 68 sowie die Samenflüssigkeit von den Samenleitern 62 aus dem Körper heraus. Der Arzt weiß, daß die Prostata durch den Anus 59 des Rektum 48 für eine Untersuchung zugänglich ist. Der untersuchende Arzt führt ein Instrument oder seinen Finger durch den Anus 59 ein und kann durch Palpation eines Teils der Prostata 66 feststellen, ob diese vergrößert ist oder nicht. Bei der vorliegenden Erfindung kann von der Zugänglichkeit der Prostata 66 durch den Anus 59, das Rektum 48 und das Kolon 49 Gebrauch gemacht werden, indem man eine Strahlungssonde 80 einführt, mit der die Prostata 66 durch eine entsprechende Abstrahlung der Mikrowellenenergie bevorzugt bestrahlt werden kann. Der Strahlungssonde 80 wird die abzustrahlende elektromagnetische Energie entsprechend einem Mikrowellensignal 16 von einer Mikrowellenquelle 10 zugeführt. Das Mikrowellensignal 16 wird in Richtung eines Pfeils 14 über einen Koaxialanschluß 12, ein Koaxialkabel 15 und einen Koaxialanschluß 18 zu einer Regel- oder Steueranordnung 20 übertragen. Von der Steueranordnung 20 wrid das Mikrowellensignal 16 in Richtung eines Pfeils 26 über einen Koaxialanschluß 22, ein Koaxialkabel 24 und einen Koaxialanschluß 86 zur Strahlungssonde 80 übertragen. Das Mikrowellensignal 16 wird dann von der Verbindung eines unabgeschirmten Endes 84 und einer Drossel 82 der Strahlungssonde 80 in Richtung auf die Prostata abgestrahlt, um dort Wärme für eine therapeutische und hyperthermische Behandlung der Prostata 66 zu erzeugen, wie noch genauer erläutert werden wird.
- Zum Messen der Erwärmung, die durch das Mikrowellensignal 16 in dem bestrahlten Bereich erzeugt wird, ist mindestens ein Temperaturfühler vorgesehen, z. B. Thermoelemente 100, 104 und 106, die jeweils über eine Leitung 70, 74 bzw. 76 und einen Anschluß 50, 52 bzw. 56 mit einem digitalen Thermometer 40, 42 bzw. 46 verbunden sind. Gewünschtenfalls kann, wie Fig. 1 zeigt, ein Thermoelement 102 durch den Penis 60 und die Harnröhre 64 in die Mitte der Prostata 66 eingeführt werden. Wie noch erläutert werden wird, kann die durch das bestrahlende Mikrowellensignal 16 erhöhte Temperatur der Prostata 66 mit vernünftiger Genauigkeit auch ohne Verwendung des über eine Leitung 72 und einen Anschluß 54 mit einem digitalen Thermometer 44 verbundenen Thermoelements 102 aus empirischen Daten ermittelt werden, welche bei Versuchen mit Thermoelementen 100, 104 und 106 gewonnen wurden, die auf bzw. in der Strahlungssonde 80 angeordnet sind. Zuerst soll jedoch die Anordnung des Thermoelements 102 im mittleren Teil der Prostata 66 beschrieben werden: Um das Thermoelement 102 in den mittleren Teil der Prostata 66 einzusetzen, wird ein üblicher Katheter 110 durch den Penis 60 bis zur Harnblase 68 in die Harnröhre 64 eingeführt. Der Katheter 110 wird in üblicher Weise durch die Harnröhre 64 in die Harnblase 68 eingesetzt. Der Ballon am Ende des Katheters wird dann mit 5 cm³ Luft mittels einer in Verbindung mit dem Katheter 110 verwendeten Spritze aufgeblasen. Dann wird der Katheter 110 bis zum Hals der Harnblase 68 zurückgezogen, bis der aufgeblasene Teil des Katheters 110 ein weiteres Zurückweichen in die Harnröhre 64 verhindert. Das Thermoelement 102 wird dann in den Katheter 110 bis zu einer Stelle im Abstand von 3 cm vom aufgeblasenen Teil des Katheters 110 eingeführt. Der Abstand von 3 cm gewährleistet, daß sich das Thermoelement 102 in der Mitte der Prostata 66 befindet und die Umgebungstemperatur der Prostata 66 mißt, die durch das von der Strahlungssonde 80 abgestrahlte Mikrowellensignal erhöht worden ist.
- Die Fig. 2, 2a und 2b zeigen verschiedene, teilweise geschnittene Ansichten des unregelmäßig geformten Endes der Strahlungssonde 80, die aus einem glatten dielektrischen Material 85, wie PTFE, besteht. Die Strahlungssonde 80 hat ein wulst- oder kolbenförmiges Ende 89 unregelmäßiger Form, wie die Seitenansicht in Fig. 2a und die Stirnansicht in Fig. 2b zeigen. Weitere Einzelheiten des unregelmäßig geformten Endes 89 der Strahlungssonde 80 sind aus Fig. 3 ersichtlich: Der unregelmäßig geformte Kolben 89 hat einen oberen Abschnitt 92 mit einem schmaleren Teil und einen unteren Abschnitt 93 mit einem weiteren Teil, Radien 98 (R&sub1;) und 96 (R&sub2;) sowie Durchmesser 94 (D&sub1;) und 95 (D&sub2;). Der Radius 98 hat einen typischen Wert von R&sub1;=0,635 cm, ein typischer Wert für den Radius 96 ist R&sub2;=1,270 cm. Die Höhenabmessung 94 (D&sub1;) hat einen typischen Wert von 2,54 cm, während der Durchmesser 95 (D&sub2;) in Breitenrichtung einen typischen Wert von etwa 2,29 cm hat. Die für die Radien 96 und 98 sowie die Durchmesser 94 und 95 angegebenen Werte gelten für einen Mann normaler Größe. Selbstverständlich können sie in der Praxis entsprechend den Abmessungen des Rektums 48 und Kolons 49 des einer Hyperthermie-Behandlung zu unterwerfenden Körpers abgeändert werden. Es sei ferner bemerkt, daß eine Verringerung der Abmessungen der Strahlungssonde die mögliche Belästigung verhindert, wenn die Strahlungssonde 80 in eine Körperhöhlung, wie das Rektum 48 und Kolon 49, eingeführt wird.
- Die Strahlungssonde 80 weist, wie am besten aus Fig. 4 ersichtlich ist, einen Anschluß 86 sowie ein Koaxialkabel 97 mit einem Außenleiter 88 und einem Innenleiter 90 auf. Der Außenleiter 88 hat einen typischen Außendurchmesser von 0,635 cm. Der Außenleiter 88 besteht aus einem halbstarren, elektrisch leitfähigen Material, wie Kupfer. Der Anschluß 86 ist ein geeigneter Mikrowellenanschluß, z. B. eine Koaxial-Schraub- oder Steckverbindung, z. B. ein Präzisions-Koaxialkabelverbinder. Zwischen dem Außenleiter 88 und dem Innenleiter 90 des Koaxialkabels befindet sich ein dielektrisches Material 87, wie PTFE. Als Koaxialkabel 97 kann ein übliches Mikrowellenkabel verwendet werden. Im Inneren des kolbenförmigen Teils 89 der Strahlungssonde befindet sich eine Drossel 82 und ein unabgeschirmtes Ende 84 des Innenleiters. Die Drossel 82 ist durch eine Lötung 83 fest mit dem Außenleiter 88 verbunden. Das unabgeschirmte Ende 84 erstreckt sich eine Strecke 114 von der Lötverbindung 83 in Richtung auf das distale oder vordere Ende des kolbenförmigen Körpers 89. Die Drossel 82 reicht von der Lötverbindung 83 eine Strecke 112 in Richtung auf das Anschlußende des Koaxialkabels 97 in den kolbenförmigen Teil 89 hinein. Der Außenleiter 88 des Koaxialkabels 97 ist von dem als Drossel 82 dienenden Leitungsabschnitt mit Ausnahme bei der Lötverbindung 83 durch ein dielektrisches Material 116, wie PTFE, isoliert, so daß die Drossel nur an der nicht isolierten Verbindungsstelle 83 mit dem Außenleiter 88 in Berührung steht. Das unabgeschirmte Ende 84, das sich längs des mittleren Teils des oberen Abschnittes 92 im Kolbenende 89 erstreckt, hat eine Länge entsprechend der Strecke 114, und die Drossel 82 hat eine Länge entsprechend der Strecke 112, derart, daß sie einen Halbwellen-Dipol-Strahler mit einer Speisestelle an der Verbindung 83 zum Abstrahlen des Mikrowellensignals 16 bilden. Die Strecken 112 und 114 sind gleich λ g /4, wobei λ g durch die folgende Gleichung definiert ist: &udf53;np30&udf54;&udf53;vu10&udf54;&udf53;vz2&udf54; &udf53;vu10&udf54;wobei c die Vakuumlichtgeschwindigkeit (3×10&sup8; m/s), f die Mikrowellenfrequenz in Hertz und ε die Dielektrizitätskonstante des Mediums 87, z. B. PTFE, ist, das sich zwischen dem Innenleiter 90 und dem Außenleiter 88 befindet. Aus der Gleichung (1) errechnet sich für einen typischen Wert der Mikrowellenfrequenz f=2,45 GHz eine Strecke 112 und 114 gleich jeweils 2,11 cm. Die Drossel 82 wird durch eine hohle Metallhülse gebildet, die bei einem Außendurchmesser des Außenleiters 88 von 0,635 cm einen Innendurchmesser von 0,704 cm haben kann und den Außenleiter umgibt. Der Außenleiter 88 reicht bei einer typischen Mikrowellenfrequenz von 2,45 GHz eine Strecke 115 von 3,33 cm in den kolbenförmigen Teil 89 aus PTFE hinein. Die Strecke, die sich der Außenleiter 88 zusammen mit dem unabgeschirmten Ende 84 des Innenleiters in den kolbenförmigen Teil 89 erstrecken, ist mit 117 bezeichnet und beträgt bei dem beschriebenen Ausführungsbeispiel 5,46 cm. Die longitudinale Abmessung 119 des aus PTFE bestehenden kolbenförmigen Teils 89 beträgt 6,35 cm. Der Wellenwiderstand Z&sub0; des Koaxialkabels 97 der Strahlungssonde 80 kann durch die folgende Gleichung ausgedrückt werden: &udf53;np30&udf54;&udf53;vu10&udf54;&udf53;vz2&udf54; &udf53;vu10&udf54;wobei ε die Dielektrizitätskonstante des sich zwischen dem Innenleiter 90 und dem Außenleiter 88 befindlichen Mediums 87 befindet und a bzw. b die Durchmesser des Innenleiters bzw. Außenleiters bedeuten. Für einen Wellenwiderstand von 50 Ohm und 1/√&udf53;lu,4,,100,5,1&udf54;&udf57;°Ke&udf56;&udf53;lu&udf54;=0,69 für PTFE sind a=0,1587 cm und b=0,533 cm.
- Wenn im Betrieb der anhand von Fig. 1 beschriebenen Einrichtung die durch das Thermoelement 100 gemessene Gewebetemperatur unter einer eingestellten Soll-Temperatur liegt, wird das Mikrowellensignal 16 durch einen in der Steueranordnung 20 enthaltenen Koaxialschalter auf die Strahlungssonde 80 gekoppelt. Das Mikrowellensignal 16 wird der Strahlungssonde 80 so lange zugeführt, bis die durch das Thermoelement 100 gemessene Temperatur gleich oder größer als der eingestellte Soll-Wert wird, dann schaltet der Koaxialschalter das Mikrowellensignal von der Strahlungssonde 80 ab und führt es einer künstlichen Antenne 30 zu. Die durch das Thermoelement 100 gemessene Gewebetemperatur wird durch eine Zweipunktregelung mittels des Koaxialschalters im wesentlichen konstant gehalten.
- Die digitalen Thermometer 42, 44 und 46 liefern eine visuelle Anzeige für die Überwachung der Temperatur des mit den Thermoelementen 104, 102 bzw. 106 in Berührung stehenden Gewebes. Wie noch erläutert werden wird, schaltet man die Mikrowellenquelle 10 von Hand ab, wenn die durch die Thermoelemente 104, 102 und 106 gemessenen Temperaturen bestimmte Grenzwerte überschreiten. Selbstverständlich kann gewünschtenfalls in der Steueranordnung 20 eine Schaltung vorgesehen sein, um das Mikrowellensignal 16 von der Strahlungssonde 80 abzuschalten, wenn die durch die Thermoelemente 100, 102, 104 und 106 gemessenen Gewebetemperaturen gleich oder größer als bestimmte Werte werden. Wie noch erläutert werden wird, ist eine automatische Abschaltung des Mikrowellensignals 16 von der Strahlungssonde nur für den Fall erforderlich, daß die durch das Thermoelement 100 gemessene Gewebetemperatur einen vorgegebenen Grenzwert erreicht oder überschreitet.
- Fig. 7 zeigt im Querschnitt die Lage der Strahlungssonde 80 im Rektum 48 bezüglich der Prostata oder Vorsteherdrüse 66. Das kolbenartige Teflon-Teil 89 ist durch den Anus 59 (Fig. 1) in das Rektum 48 eingeführt und gegenüber der zu behandelnden tumorösen Prostata angeordnet. Fig. 7 zeigt die Behandlung eines Prostatatumors, selbstverständlich lassen sich auf entsprechende Weise auch andere Tumore angrenzend an das Rektum 48 oder Kolon 49 behandeln. Der kolbenförmige Teil 89 aus PTFE ist so angeordnet, daß sein oberer Abschnitt 92 an den der Prostata 66 benachbarten Bereich der Wand des Rektums anliegt, während der untere Abschnitt 93 an dem der Prostata 66 diametral gegenüberliegenden Teil der Wand des Rektums anliegt. Wie unten noch erläutert werden wird, erfolgt die Abstrahlung der Mikrowellenenergie derart in einer bestimmten Richtung, daß die Vorsteherdrüse oder Prostata 66 im Vergleich zu dem Gewebe des Rektums 48, das der Prostata 66 diametral gegenüberliegt, bevorzugt erwärmt wird.
- Bei der Hyperthermie-Behandlung von Krebs, wie Prostatakrebs, wird das karzinöse Gewebe vorzugsweise auf eine Temperatur im Hyperthermie-Bereich, d. h. etwa 42,0-43,5°C, erwärmt und typischerweise für eine Zeitspanne von etwa einer halben bis einer Stunde auf einer Temperatur in diesem Bereich gehalten. Es ist dabei wünschenswert, daß das gesunde Gewebe während dieser Behandlung des Karzinoms auf einer Temperatur gehalten wird, die möglichst nahe bei der normalen Körpertemperatur liegt.
- Das kolbenförmige PTFE-Teil 89 erzeugt infolge der anhand von Fig. 3 erläuterten unregelmäßigen Gestalt mit dem Radius 98 (R&sub1;) und einem Kreissektor 124 von 180°, dessen Mittelpunkt mit der Achse des Mittelleiters 90 zusammenfällt, im Rektum 48 eine Strahlungsverteilung, die in dem 180°-Sektor 124 konzentriert ist. Wenn das kolbenförmige Teflon-Teil 89 in das Rektum 48 eingesetzt ist, wird die meiste Hochfrequenzenergie in Richtung auf die Vorsteherdrüse 66 abgestrahlt. Die Gründe für diese gerichtete Abstrahlung oder Strahlungsverteilung sind: 1. Wegen der birnenförmigen Konfiguration des aus PTFE bestehenden kolbenförmigen Teils 89 ist das sich innerhalb des Sektors 124 befindende Gewebe des Rektums 48 der Dipolantenne am nächsten benachbart und 2. da die Dielektrizitätskonstante des Gewebes, die z. B. in der Größenordnung von 50 liegt, ein Vielfaches der Dielektrizitätskonstante von Kunststoff, z. B. PTFE, das die Dielektrizitätskonstante 2,1 hat, ist und da sich ein Hochfrequenzfeld im Bereich der größten Dielektrizitätskonstante konzentriert, bekommt die Verteilung der Hochfrequenzstrahlung eine Neigung in Richtung auf das sich mit dem Sektor 124 in Berührung befindliche Gewebe. Das vom Strahler 81 in den Sektor 124 abgestrahlte Mikrowellensignal 16 durchläuft ferner die kleinste Strecke, d. h. den Radius 98 (R&sub1;) bis zum Eindringen in das Rektum 48. Das vom Strahler 81 in den außerhalb des Sektors 124 liegenden Bereich abgestrahlte Mikrowellensignal muß eine größere Strecke als den Radius 98 (R&sub1;) durchlaufen. Die Leistungsdichte des abgestrahlten Signals 16 nimmt ungefähr mit dem Quadrat des Abstandes von der strahlenden Sonde, also vom Strahler 81, ab. Die höchste Leistungsdichte hat das in das Rektum 48 eindringende Signal 16 daher innerhalb des Sektors 124 am oberen Abschnitt 92 des kolbenförmigen Teils 89. Umgekehrt hat das in das Rektum 48 eindringende Mikrowellensignal 16 die kleinste Leistungsdichte, wo es von der strahlenden Sonde 81 die größte Strecke zum Rektum durchlaufen muß, also im unteren Abschnitt 93 des kolbenförmigen Teils 89. Durch die irreguläre Form des kolbenförmigen Teils 89 wird also bewirkt, daß die maximale Energie in den 180°-Sektor des Rektums 48 abgestrahlt wird, der der Prostata 66 benachbart ist. Das Mikrowellensignal 16 maximaler Intensität durchdringt die Wand des Rektums 48 und breitet sich zur und durch die Prostata 66 aus, die dadurch erwärmt wird. Andererseits gewährleistet die irreguläre Form des kolbenförmigen Teils 89, daß die Intensität des in den übrigen Teil der Wand des Rektums 48 eindringenden Mikrowellensignals wesentlich geringer ist. Die durch das Mikrowellensignal 16 erzeugte Wärme ist der Intensität des übertragenen Signals 16 direkt proportional. Die meiste Wärme wird also an der Wand des Rektums 48 innerhalb des Sektors 124 der Strahlungssonde erzeugt, die der Prostata 66 benachbart ist, so daß die Prostata 66 eine bevorzugte Erwärmung erfährt. Die Wandteile des Rektums 48, die sich außerhalb des Sektors 124 in Berührung mit der Strahlungssonde 80 befinden, werden entsprechend dem Quadrat der Strecke, die vom Mikrowellensignal 16 vom Strahler 81 durchlaufen wurden, ungleichmäßig erwärmt. Je weiter die Strecke ist, die vom Mikrowellensignal 16 durchlaufen wurde, um so weniger intensiv ist die an den betreffenden Wandteilen des Rektums 48 erzeugte Wärme.
- Selbstverständlich kann der kolbenförmige Teil 89 aus PTFE oder einem anderen geeigneten Kunststoff niedriger Dielektrizitätskonstante so bemessen werden, daß sich andere Sektorwinkel 124 als 180° ergeben. Der Ort des Innenleiters 90 in dem kolbenförmigen Teil 89 ist der Ursprung des Radius 98 (R&sub1;). Der Radius 98 bestimmt die minimale Strecke, die das Mikrowellensignal 16 durchlaufen muß, bevor es aus dem Teil 89 austritt und das Gewebe bestrahlen kann. Die Form des Teils 89 und die Position des Innenleiters 90 können beispielsweise so gewählt werden, daß sich ein oberes Segment 92 ergibt, bei dem der Bogen mit dem Radius 98 (R&sub1;) einen 90°-Sektor bildet.
- In den Fig. 5a und 5b sind Temperaturverteilungen dargestellt, die mit der in durchgetriebenes oder gehacktes Rindfleisch (nicht dargestellt) eingebetteten Strahlungssonde 80 gemäß Fig. 6 erzeugt wurden. Der Temperaturanstieg an den in Fig. 6a dargestellten neun Stellen 1 bis 9 wurde durch Erwärmen des durchgetriebenen Rindfleisches mit einem Mikrowellensignal von 3 Watt und einer Frequenz von 2,45 GHz in sieben Minuten erzeugt. Fig. 5a zeigt die radiale Verteilung der Temperaturanstiege um die Strahlungssonde 80, die einen Radius 96 (R&sub2;) von 0,95 cm hatte, in einer Ebene, die senkrecht zur Hauptachse der Strahlungssonde 80 durch die Verbindung 83 geht. Das Mikrowellensignal 16, das von dem eine Dipolantenne bildenden Strahler 81 abgestrahlt wird (siehe Fig. 5b), erzeugt die relativ höchsten Temperaturanstiege bzw. höchsten Temperaturen in der Nähe des oberen Abschnittes 92. Die niedrigsten Temperaturanstiege oder niedrigsten Temperaturen, die durch das von der Dipolantenne abgestrahlte Mikrowellensignal erzeugt werden, befinden sich andererseits in der Nähe des unteren Abschnittes 93.
- Fig. 5b zeigt die Temperaturanstiege von 36 Stellen, bezogen auf den innersten Teil 91 des oberen Abschnittes 92 der in Fig. 6 dargestellten Strahlungssonde 80. Diese Temperaturanstiege wurden in durchgetriebenem Rindfleisch mit einem Mikrowellensignal 16 erzeugt, das eine Intensität von 3,0 Watt sowie eine Frequenz von 2,45 GHz hatte und vier Minuten lang von dem Dipolantennen-Strahler 81 abgestrahlt wurde. Die Y-Achse des Diagramms in Fig. 5b ist der Abstand λ in cm in vertikaler Richtung vom Punkt 91. Die X-Achse ist der in cm gerechnete Abstand W in horizontaler Richtung vom Punkt 91. Die Temperaturanstiege an den 36 Stellen sind in Fig. 5b in °C angegeben. Der maximale Temperaturanstieg längs der X-Achse ist 5,1°C, er tritt am Punkt 99 auf, der sich am oberen Abschnitt 92 befindet. Der Punkt 99 hat einen Abstand von ungefähr 2,5 cm vom Punkt 91.
- Die in Fig. 5a dargestellte Verteilung der Temperaturen um das kolbenförmige Teil 89 entspricht also einer bevorzugten Erwärmung des durchgetriebenen Rindfleisches innerhalb einer vorgegebenen Richtung, die durch den Sektor 124 bestimmt wird, im Vergleich zu einer weniger starken Erhitzung außerhalb des Sektors 124. Ferner tritt die höchste Temperatur längs des oberen Abschnittes 92 an der Stelle 99 auf, wie aus Fig. 5b ersichtlich ist. Wie im folgenden unter Bezugnahme auf Fig. 8 erläutert werden wird, werden die durch den Sektor 124 bewirkte bevorzugte Erwärmung und die bekannte Stelle 99, an der die höchste Temperatur längs des oberen Abschnittes 92 auftritt, dazu verwendet, das kolbenförmige Teil 89 so im Rektum 48 anzuordnen, daß die Temperatur der Prostata in den Hyperthermie- Bereich erhöht wird.
- Bei einer besonders vorteilhaften Ausführungsform der Strahlungssonde wird die Temperatur an der Grenzfläche zwischen der Strahlungssonde und dem behandelten Gewebe bemessen, man muß jedoch die Temperatur während der Behandlung nicht unbedingt regeln. Beispielsweise kann man die aus früheren Anwendungen ermittelten Daten dazu verwenden, die Zeit und Leistung der Bestrahlung durch die Strahlungssonde aufgrund dieser Erfahrungsdaten so zu steuern, daß sich die gewünschten Temperaturen ohne eine direkte Temperaturregelung ergeben.
- Unter Bezugnahme auf Fig. 1 soll nun die Anbringung der Thermoelemente 100, 104 und 106 an der Strahlungssonde erläutert werden. Die Thermoelemente 100, 104 und 106 sind um und in einer Ebene mit der Verbindung 83 angeordnet und in geeigneter Weise an der Peripherie des kolbenförmigen Teils 89 befestigt, bevor dieses durch den Anus 59 in das Rektum 48 eingeführt wird. Das Thermoelement 100 ist am oberen Abschnitt 92 des kolbenförmigen Teils 89 angeordnet und befestigt, so daß es sich bei dem der Prostata 66 benachbarten Teil der Wand des Rektums 48 befindet. Das Thermoelement 104 ist typischerweise in einem Winkelabstand von 120° vom Thermoelement 100 an der Peripherie des kolbenförmigen Teils 89 angeordnet und befestigt. Das Thermoelement 106 ist am unteren Abschnitt 92 des kolbenförnmigen Teils 89 angeordnet und befestigt, welcher sich bei dem Wandteil des Rektums 48befindet, der dem der Prostata 66 benachbarten Rektum-Wandteil diametral gegenüberliegt. Nachdem die Thermoelemente 100, 104 und 106 an der Strahlungssonde 80 befestigt sind, wird über die Strahlungssonde 80 ein geeignetes, dehnbares Gummimaterial, wie ein Gummi- Fingerling, gezogen, bevor die Strahlungssonde 80 durch den Anus 59 in das Rektum 48 eingeführt wird, so daß keine Körpersubstanzen in direkte Berührung mit der Strahlungssonde kommen und eine Reizung des Rektums und der Darminnenand durch die Thermoelemente 100, 104 und 106 beim Einführen des kolbenförmigen Teils 89 verhindert wird.
- Die Strahlungssonde 80 wird also durch den Anus 59 in das Rektum 48 des Patienten eingeführt. Das Rektum 48 ist das etwa 20-25 cm lange untere Ende des Dickdarms. Der Anus 59 ist, wie erwähnt, das Ende des Rektums 48, während das Kolon 49 der sich vom Blinddarm bis zum Rektum erstreckende Teil des Darmes ist. Die Strahlungssonde 80 ist im Rektum 48 so angeordnet, daß der obere Abschnitt 92 des kolbenförmigen Teils 89 in nächster Nähe der Prostata 66 an der Wand des Rektums 48 anliegt. Die Ausrichtung des oberen Abschnittes 92 des kolbenförmigen Teils 89 bezüglich der Vorsteherdrüse 66 und die erwähnte Positionierung des Thermoelements 102 in der Harnröhre 64 können durch eine Abtasteinrichtung mit Bilddarstellung überprüft werden, mit der der untere Teil des Leibes abgetastet wird. Nach der Verifikation der richtigen Positionierung der Strahlungssonde 80 im Rektum 48 und des Thermoelements 102 in der Harnröhre 64 wird das Mikrowellensignal 16 über das Koaxialkabel 24 und den Anschluß 86 dem Applikator 80 zugeführt.
- Die Mikrowellenquelle 10 wird für eine bestimmte Frequenz des Mikrowellensignals 16 gewählt oder eingestellt. Ein Mikrowellensignal mit einer Frequenz von 915 MHz dringt in bestimmtes Gewebe, wie Prostatagewebe, etwa 3 cm tief ein. Ein Mikrowellensignal mit einer Frequenz von 2,45 GHz ergibt eine Eindringtiefe von etwa 1,7 cm. Für die Hyperthermie-Behandlung einer Prostata 66 mit einem typischen Durchmesser von 2,5 cm wird gewöhnlich ein Mikrowellensignal 16 mit einer Leistung von 2,5 Watt verwendet.
- Es ist bereits erwähnt worden, daß das vom Strahler 81 der Strahlungssonde abgestrahlte Mikrowellensignal 16 seine größte Intensität im Sektor 124 am oberen Abschnitt 92 des kolbenförmigen PTFE-Teils 89 hat. Das Mikrowellensignal 16 durchdringt die Wand des Rektums 48 und die Prostata 66, wobei letztere und die ihr benachbarte Wand des Rektums 48 bestrahlt und erwärmt werden.
- Das Thermoelement 100 mißt die Temperatur am oberen Abschnitt 92 des kolbenförmigen Teils 89, der an dem der Prostata 66 benachbarten Bereich der Wand des Rektums 48 anliegt. Das Thermoelement 104 mißt die Temperatur des Gewebes, das sich mit dem mittleren äußeren Bereich des Teils 89 in Berührung befindet. Das Thermoelement 106 mißt die Temperatur des Wandbereiches des Rektums 48, der mit dem unteren Abschnitt 93 des kolbenförmigen Teils 89 in Berührung steht, der dem der Prostata 66 benachbarten Wandbereich des Rektums 48 diametral gegenüberliegt. Das Gummimaterial, mit dem die Außenseite der Strahlungssonde 80 überzogen ist und das sich daher zwischen dem Gewebe und den Thermoelementen 100, 104 und 106 befindet, beeinflußt die Ansprechgeschwindigkeit der Thermoelemente 100, 104 und 106 bei der Messung der Gewebetemperatur. Das Gummimaterial leitet beim Erwärmen die Wärme jedoch weiter, und die Thermoelemente 100, 104 und 106 werden daher, wenn auch mit einiger Verzögerung, die Temperatur des Gewebes messen, das ihnen benachbart ist. Das Thermoelement 102 mißt die Temperatur in der näheren Umgebung der Prostata 66. Die durch das Thermoelement 100 gemessene Temperatur liegt in repräsentativen Fällen etwa 4°C über der durch das Thermoelement 102 gemessenen Temperatur. Die durch das Thermoelement 102 gemessene Temperatur ist etwa 2°C höher als die durch das Thermoelement 104 gemessene Gewebetemperatur. Die Temperatur, die mit dem Thermoelement 104 gemessen wird, liegt schließlich etwa 2,5°C über der vom Thermoelement 106 gemessenen Temperatur.
- Wie bereits erwähnt wurde, schaltet die Steueranordnung 20 das Mikrowellensignal 16 von der Strahlungssonde 80 ab und verhindert dadurch eine weitere Bestrahlung des behandelten Gewebes, wenn die mittels des Thermoelements 100 gemessene Gewebetemperatur einen vorgegebenen Wert erreicht oder übersteigt. Der Sollwert wird typischerweise auf eine Temperatur von etwa 43°C eingestellt. Die Temperatur des mit dem Thermoelement 100 in Wärmekontakt stehenden Gewebes ist die maximale Temperatur, auf die das mit dem Mikrowellensignal 16 behandelte Gewebe angehoben wird und daher die kritische Temperatur, die automatisch geregelt wird. Die mittels der Thermoelemente 104, 102 und 106 gemessenen Gewebetemperaturen werden durch die digitalen Thermometer 42, 44 bzw. 46 angezeigt, und wenn eine dieser Temperaturen einen vorgegebenen Wert, typischerweise 43°C, überschreitet, wird die Mikrowellenquelle 10 von Hand abgeschaltet, um eine Gewebeschädigung zu vermeiden. Wenn keiner der vorgegebenen Grenzwerte überschritten wird, bestrahlt das Mikrowellensignal 16 das zu behandelnde Gewebe, insbesondere die Prostata 66, so daß dieses auf eine Temperatur im Hyperthermie-Bereich erwärmt und auf einer solchen Temperatur gehalten wird.
- Es sei bemerkt, daß die Verwendung der beschriebenen Strahlungssonde nicht auf die Hyperthermie-Behandlung der Prostata 66 beschränkt ist. Das Mikrowellensignal 16 kann vielmehr z. B. auch für eine therapeutische Behandlung der Prostata 66 verwendet werden. Eine therapeutische Behandlung mit Mikrowellensignalen ähnelt der bekannten Sitzbadbehandlung eines Patienten mit vergrößerter Prostata. Bei der therapeutischen Behandlung wird die Temperatur der Prostata 66 durch die Mikrowellensignale 16 etwas erhöht, um die vergrößerte Prostata wieder auf ihre normale Größe zurückzuführen. Bei normal großer Prostata ergibt sich wieder die normale Strömungsgeschwindigkeit des aus der Harnblase 68 durch die Harnröhre 64 entleerten Urins.
- Anhand von Fig. 8 sollen nun die Ergebnisse eines Experiments erläutert werden, das im Montefiore Hospital in Bronx, New York, mit einem betäubten männlichen Hund durchgeführt wurde. Der betäubte Hund wurde mit einer für Mikrowellenfrequenzen von 915 MHz und von 2450 MHz bemessenen Strahlungssonde 80 behandelt. Fig. 8 zeigt eine Skizze, die anhand einer Röntgenaufnahme des Hundes mit eingesetzter Strahlungssonde gemacht wurde, deren Abmessungen für eine Betriebsfrequenz von 2,45 GHz bemessen waren. Das Thermoelement 100 war außen an dem kolbenförmigen Teil 89 der Strahlungssonde an der erwähnten Stelle 99 befestigt. Der obere Abschnitt 92 des kolbenförmigen Teils 89 wurde an den der Prostata 66 benachbarten Bereich der Wand des Rektums 48 angelegt. Ein Thermoelement wurde in einem Katheter 110 angeordnet, der in die Harnröhre des Hundes eingeführt worden war. Die Temperaturen in der Harnröhre wurden längs des Katheters 110 gemessen, während die Temperatur des heißesten Fleckes, nämlich der Stelle 99 an der Wand des Rektums, mittels des Thermoelements 100 gemessen und auf 43,1°C gehalten wurde. Die bei Bestrahlung mit einem Mikrowellensignal von 915 MHz gemessenen und in Fig. 8 angegebenen Temperaturen wurden mit einem kolbenförmigen Teil 89 erzeugt, das den gleichen Durchmesser hatte, wie die für 2,45 GHz bemessene Strahlungssonde, jedoch eine für 915 MHz bemessene Dipolantenne enthielt, deren Länge 13,6 cm betrug. Die höchste Temperatur, die mittels der 2,45 GHz- Strahlungssonde in der Harnröhre erzeugt wurde, betrug 41,9°C und trat in einem Abstand von 1 bis 2 cm vom oberen Abschnitt 92 auf. In entsprechender Weise ergab sich bei Verwendung der 915 MHz- Strahlungssonde eine maximale Temperatur von 42°C in der Harnröhre an einer etwa 1 bis 2 cm vom oberen Abschnitt 92 entfernten Stelle. Die Temperaturdifferenz zwischen der Temperatur von 43,1°C, der heißesten Stelle an der Innenwand des Rektums, und der Temperatur der heißesten Stelle der Harnröhre des männlichen Hundes betrug für die 2,45 GHz-Strahlungssonde etwa 1,2°C und für die 915 MHz-Strahlungssonde etwa 1,1°C. Mit Frequenzen von 2,45 GHz und 915 MHz können also Tumore, die 1 bis 2 cm von der Wand des Rektums entfernt sind, bevorzugt und gezielt erhitzt werden. Die höchste Temperatur an der Innenwand des Rektums betrug dabei 43,1°C, so daß eine Schädigung des gesunden Körpergewebes an der Innenwand des Rektums nicht eintreten kann. Gewünschtenfalls kann jedoch eine Flüssigkeitskühlung der Strahlungssonde 80 vorgesehen sein, um die Temperatur der Wand des Rektums auf einem Wert zu halten, der näher bei der normalen Körpertemperatur von 37°C liegt. Man kann in diesem Fall eine Kühlflüssigkeit durch ein Kupferröhrchen kleinen Durchmessers am metallenen Koaxialleiter oder einem diesen enthaltenden Halterungsrohr anbringen.
- Die Anwendung der erfindungsgemäßen Strahlungssonde ist natürlich nicht auf die therapeutische oder hyperthermische Behandlung der Prostata 66 beschränkt. Man kann die vorliegende Strahlungssonde vielmehr auch für die Behandlung von Oberflächengewebe (Haut usw.) und internem Körpergewebe verwenden. Die Strahlungssonde 80 kann z. B. auch an der Körperoberfläche angeordnet werden, z. B. in der Achselhöhle zur Behandlung von oberflächlichem Gewebe unter dem Arm. Andererseits kann die Strahlungssonde 80 bei geeigneter Bemessung auch durch den Mund in den Körper eingeführt und mit einem anschließenden Körperkanal, wie der Luftröhre, zur Behandlung der Lungen angeordnet werden. Es sei ferner erwähnt, daß die Anwendung der Strahlungssonde auch nicht auf die Behandlung des männlichen Körpers beschränkt ist. Die Strahlungssonde 80 kann z. B. für die Einführung in den weiblichen Körper durch einen Körperkanal, wie die Vagina, bemessen sein, um den Uterus mit Mikrowellensignalen behandeln zu können. Schließlich läßt sich die Strahlungssonde auch für die Behandlung von Tieren verwenden.
Claims (5)
1. In eine Körperhöhle einführbare Strahlungssonde (80) für eine Einrichtung zum Erhitzen eines gewünschten Gewebebereiches (66) im Körper eines Patienten durch Bestrahlung mit Mikrowellenenergie bestimmter Frequenz und Amplitude, mit einem Koaxialkabel (97), das einen Außenleiter (88) und einen Innenleiter (90) mit einem vorstehenden, unabgeschirmten Ende (84) aufweist, und mit einem dieses Ende (84) umgebenden kolbenförmigen Körper (89) aus dielektrischem Material, dadurch gekennzeichnet, daß das vorstehende, unabgeschirmte Innenleiterende (84) zur Konzentration der Mikrowellenstrahlung auf den gewünschten Gewebebereich (66) unsymmetrisch im dielektrischen Körper (89) angeordnet ist.
2. Strahlungssonde nach Anspruch 1, dadurch gekennzeichnet, daß das unabgeschirmte Ende (84) des Innenleiters (90) eine Länge (114) hat, die gleich einem ganzen Vielfachen der halben Wellenlänge der Mikrowellen ist.
3. Strahlungssonde nach Anspruch 1, dadurch gekennzeichnet, daß der dem unabgeschirmten Ende des Innenleiters (84) benachbarte Endbereich des Außenleiters (88) mit einer als Drossel fungierenden leitfähigen hohlzylinderförmigen Anordnung (82) umgeben ist, deren distales Ende mit dem distalen Ende des Außenleiters (88) elektrisch verbunden ist und daß die hohlzylindrische Anordnung (82) und das unabgeschirmte Ende des Innenleiters dabei jeweils eine Länge (114, 115) entsprechend einem Viertel der Wellenlänge der verwendeten Mikrowellen haben.
4. Strahlungssonde nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der Querschnitt des kolbenförmigen Körpers (89) aus dielektrischem Material einen ersten und einen zweiten Abschnitt (92, 93) aufweist, von denen der erste (92) im Vergleich zum zweiten (93) verhältnismäßig schmal ist, und daß das vorstehende Innenleiterende (84) sich längs des ersten, schmaleren Abschnittes erstreckt, um eine bevorzugte Mikrowellenabstrahlung durch den ersten schmalen Abschnitt (92) zu bewirken.
5. Strahlungssonde nach Anspruch 4, dadurch gekennzeichnet, daß der kolbenförmige Körper (89) einen birnenförmigen Querschnitt mit einem schmalen Teil und einem dicken Teil hat und daß das Koaxialkabel (97) mit dem unabgeschirmten Innenleiterende (87) im mittleren Teil des schmaleren Teils verläuft.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/023,393 US4311154A (en) | 1979-03-23 | 1979-03-23 | Nonsymmetrical bulb applicator for hyperthermic treatment of the body |
Publications (2)
Publication Number | Publication Date |
---|---|
DE3011322A1 DE3011322A1 (de) | 1980-09-25 |
DE3011322C2 true DE3011322C2 (de) | 1987-05-14 |
Family
ID=21814822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE3011322A Expired DE3011322C2 (de) | 1979-03-23 | 1980-03-24 | Strahlungssonde für eine Einrichtung zur Mikrowellenbehandlung von Körpergewebe |
Country Status (5)
Country | Link |
---|---|
US (1) | US4311154A (de) |
JP (1) | JPS55133267A (de) |
DE (1) | DE3011322C2 (de) |
FR (1) | FR2451748A1 (de) |
GB (1) | GB2045620B (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3743578A1 (de) * | 1987-12-22 | 1989-07-13 | Andreas Dr Zeiher | Ballonkatheter zum rekanalisieren von stenosen in koerperkanaelen, insbesondere koronargefaessen und peripheren arteriellen gefaessen |
DE4207463A1 (de) * | 1992-03-10 | 1993-09-23 | Siemens Ag | Verfahren und anordnung zur therapie von gewebe mit ultraschall |
Families Citing this family (233)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56109752U (de) * | 1980-01-21 | 1981-08-25 | ||
US4557272A (en) * | 1980-03-31 | 1985-12-10 | Microwave Associates, Inc. | Microwave endoscope detection and treatment system |
JPS5725863A (en) * | 1980-07-23 | 1982-02-10 | Olympus Optical Co | Endoscope with microwave heater |
FR2505495A1 (fr) * | 1981-05-05 | 1982-11-12 | Centre Nat Rech Scient | Procede et dispositifs de mesure de temperature d'un corps en micro-ondes |
AT371326B (de) * | 1981-06-16 | 1983-06-27 | Wiener Innovationsges | Messonde zur ueberwachung eines kindes waehrend der geburt |
US4397314A (en) * | 1981-08-03 | 1983-08-09 | Clini-Therm Corporation | Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system |
JPS5892955U (ja) * | 1981-12-19 | 1983-06-23 | アロカ株式会社 | 体腔内挿入型加温治療用マイクロ波放射器 |
JPS58101654U (ja) * | 1981-12-28 | 1983-07-11 | 株式会社島津製作所 | 生体加温装置 |
FR2523450A1 (fr) * | 1982-03-16 | 1983-09-23 | Escosa Jose | Perfectionnements aux appareils de traitement par l'electromagnetisme |
JPS58173540A (ja) * | 1982-04-03 | 1983-10-12 | 銭谷 利男 | マイクロ波手術装置 |
US4554925A (en) * | 1982-07-07 | 1985-11-26 | Picker International, Ltd. | Nuclear magnetic resonance imaging method |
US5542915A (en) * | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Thermal mapping catheter with ultrasound probe |
US5370675A (en) * | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5435805A (en) * | 1992-08-12 | 1995-07-25 | Vidamed, Inc. | Medical probe device with optical viewing capability |
US5385544A (en) * | 1992-08-12 | 1995-01-31 | Vidamed, Inc. | BPH ablation method and apparatus |
US5421819A (en) * | 1992-08-12 | 1995-06-06 | Vidamed, Inc. | Medical probe device |
EP0105677B1 (de) * | 1982-09-27 | 1986-12-10 | Kureha Kagaku Kogyo Kabushiki Kaisha | Antennenvorrichtung zur Hyperthermiebehandlung von Hohlorganen |
EP0111386B1 (de) * | 1982-10-26 | 1987-11-19 | University Of Aberdeen | Ultraschallanlage zur Hyperthermie |
US4534347A (en) * | 1983-04-08 | 1985-08-13 | Research Corporation | Microwave coagulating scalpel |
JPS59225054A (ja) * | 1983-06-03 | 1984-12-18 | インタ−・ノバ株式会社 | 癌温熱治療方法及び装置 |
US4601296A (en) * | 1983-10-07 | 1986-07-22 | Yeda Research And Development Co., Ltd. | Hyperthermia apparatus |
JPS60190971A (ja) * | 1984-03-04 | 1985-09-28 | 菊地 眞 | ハイパーサーミア用加温装置 |
US4612940A (en) * | 1984-05-09 | 1986-09-23 | Scd Incorporated | Microwave dipole probe for in vivo localized hyperthermia |
US4638436A (en) * | 1984-09-24 | 1987-01-20 | Labthermics Technologies, Inc. | Temperature control and analysis system for hyperthermia treatment |
US4800899A (en) * | 1984-10-22 | 1989-01-31 | Microthermia Technology, Inc. | Apparatus for destroying cells in tumors and the like |
FR2582947B1 (fr) * | 1985-06-07 | 1988-05-13 | Cgr Mev | Dispositif de traitement par hyperthermie |
US4712559A (en) * | 1985-06-28 | 1987-12-15 | Bsd Medical Corporation | Local current capacitive field applicator for interstitial array |
US4669475A (en) * | 1985-06-28 | 1987-06-02 | Bsd Medical Corporation | Apparatus and method for hyperthermia treatment |
US4643186A (en) * | 1985-10-30 | 1987-02-17 | Rca Corporation | Percutaneous transluminal microwave catheter angioplasty |
IL78756A0 (en) * | 1986-05-12 | 1986-08-31 | Biodan Medical Systems Ltd | Catheter and probe |
FR2600531B1 (fr) * | 1986-06-27 | 1990-08-24 | Odam | Appareil pour le traitement d'etats pathologiques par stimulation de points d'acupuncture. |
US5097845A (en) * | 1987-10-15 | 1992-03-24 | Labthermics Technologies | Microwave hyperthermia probe |
US5143063A (en) * | 1988-02-09 | 1992-09-01 | Fellner Donald G | Method of removing adipose tissue from the body |
US4907589A (en) * | 1988-04-29 | 1990-03-13 | Cosman Eric R | Automatic over-temperature control apparatus for a therapeutic heating device |
US4960109A (en) * | 1988-06-21 | 1990-10-02 | Massachusetts Institute Of Technology | Multi-purpose temperature sensing probe for hyperthermia therapy |
US5220927A (en) * | 1988-07-28 | 1993-06-22 | Bsd Medical Corporation | Urethral inserted applicator for prostate hyperthermia |
US4967765A (en) * | 1988-07-28 | 1990-11-06 | Bsd Medical Corporation | Urethral inserted applicator for prostate hyperthermia |
US5344435A (en) * | 1988-07-28 | 1994-09-06 | Bsd Medical Corporation | Urethral inserted applicator prostate hyperthermia |
US5249585A (en) * | 1988-07-28 | 1993-10-05 | Bsd Medical Corporation | Urethral inserted applicator for prostate hyperthermia |
DE3831016A1 (de) * | 1988-09-12 | 1990-03-15 | Deutsches Krebsforsch | Interstitielle hyperthermie-mikrowellenapplikatoren mit optimierter verteilung des elektromagnetischen feldes |
US5191883A (en) * | 1988-10-28 | 1993-03-09 | Prutech Research And Development Partnership Ii | Device for heating tissue in a patient's body |
US4955377A (en) * | 1988-10-28 | 1990-09-11 | Lennox Charles D | Device and method for heating tissue in a patient's body |
FR2639238B1 (fr) * | 1988-11-21 | 1991-02-22 | Technomed Int Sa | Appareil de traitement chirurgical de tissus par hyperthermie, de preference la prostate, comprenant des moyens de protection thermique comprenant de preference des moyens formant ecran radioreflechissant |
FR2693116B1 (fr) * | 1992-07-06 | 1995-04-28 | Technomed Int Sa | Sonde urétrale et appareil de traitement thérapeutique de tissus de la prostate par thermothérapie. |
IL92332A0 (en) * | 1988-11-21 | 1990-07-26 | Technomed Int Sa | Apparatus for the surgical treatment of tissues by hyperthermia,particularly the prostate,equipped with heat-protection means preferably comprising means forming radioreflecting screen |
US5007437A (en) * | 1989-06-16 | 1991-04-16 | Mmtc, Inc. | Catheters for treating prostate disease |
CA2067110C (en) * | 1989-09-08 | 2001-07-31 | John E. Abele | Physiologic low stress angioplasty |
US5122137A (en) * | 1990-04-27 | 1992-06-16 | Boston Scientific Corporation | Temperature controlled rf coagulation |
US5409453A (en) * | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
WO1992019414A1 (en) * | 1991-04-26 | 1992-11-12 | Mmtc, Inc. | Thermostatically-controlled microwave cyclodestruction as a treatment for glaucoma |
US5272301A (en) * | 1991-04-26 | 1993-12-21 | Mmtc, Inc. | Thermostatically-controlled microwave used for treatment of internal tissue of the eye |
US5301687A (en) * | 1991-06-06 | 1994-04-12 | Trustees Of Dartmouth College | Microwave applicator for transurethral hyperthermia |
DE4123418C2 (de) * | 1991-07-15 | 1998-02-19 | Alfred Dipl Ing Boeckmann | Hyperthermie-Vorrichtung, insbesondere zur Behandlung von Prostataleiden |
IT1251997B (it) * | 1991-11-11 | 1995-05-27 | San Romanello Centro Fond | Dispositivo radiante per ipertermia |
US5413588A (en) * | 1992-03-06 | 1995-05-09 | Urologix, Inc. | Device and method for asymmetrical thermal therapy with helical dipole microwave antenna |
US5330518A (en) * | 1992-03-06 | 1994-07-19 | Urologix, Inc. | Method for treating interstitial tissue associated with microwave thermal therapy |
US5443470A (en) * | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Method and apparatus for endometrial ablation |
US5562720A (en) * | 1992-05-01 | 1996-10-08 | Vesta Medical, Inc. | Bipolar/monopolar endometrial ablation device and method |
US5277201A (en) * | 1992-05-01 | 1994-01-11 | Vesta Medical, Inc. | Endometrial ablation apparatus and method |
US5470308A (en) * | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5720719A (en) * | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Ablative catheter with conformable body |
US5542916A (en) * | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
US5667488A (en) * | 1992-08-12 | 1997-09-16 | Vidamed, Inc. | Transurethral needle ablation device and method for the treatment of the prostate |
US5630794A (en) * | 1992-08-12 | 1997-05-20 | Vidamed, Inc. | Catheter tip and method of manufacturing |
US5456662A (en) * | 1993-02-02 | 1995-10-10 | Edwards; Stuart D. | Method for reducing snoring by RF ablation of the uvula |
US5549644A (en) * | 1992-08-12 | 1996-08-27 | Vidamed, Inc. | Transurethral needle ablation device with cystoscope and method for treatment of the prostate |
US5484400A (en) * | 1992-08-12 | 1996-01-16 | Vidamed, Inc. | Dual channel RF delivery system |
US5720718A (en) * | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities |
US5514131A (en) * | 1992-08-12 | 1996-05-07 | Stuart D. Edwards | Method for the ablation treatment of the uvula |
US5672153A (en) * | 1992-08-12 | 1997-09-30 | Vidamed, Inc. | Medical probe device and method |
US5556377A (en) * | 1992-08-12 | 1996-09-17 | Vidamed, Inc. | Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe |
EP0597463A3 (en) * | 1992-11-13 | 1996-11-06 | Dornier Med Systems Inc | Thermotherapiesonde. |
US5733315A (en) * | 1992-11-13 | 1998-03-31 | Burdette; Everette C. | Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy |
US6537306B1 (en) | 1992-11-13 | 2003-03-25 | The Regents Of The University Of California | Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy |
US5335669A (en) * | 1993-04-21 | 1994-08-09 | American Medical Systems, Inc. | Rectal probe with temperature sensor |
US5628771A (en) * | 1993-05-12 | 1997-05-13 | Olympus Optical Co., Ltd. | Electromagnetic-wave thermatological device |
US5549639A (en) * | 1994-09-16 | 1996-08-27 | Sandia Corporation | Non-invasive hyperthermia apparatus including coaxial applicator having a non-invasive radiometric receiving antenna incorporated therein and method of use thereof |
SE505332C2 (sv) | 1995-05-18 | 1997-08-11 | Lund Instr Ab | Anordning för värmebehandling av kroppsvävnad |
US5628770A (en) * | 1995-06-06 | 1997-05-13 | Urologix, Inc. | Devices for transurethral thermal therapy |
US5769879A (en) | 1995-06-07 | 1998-06-23 | Medical Contouring Corporation | Microwave applicator and method of operation |
US5843144A (en) * | 1995-06-26 | 1998-12-01 | Urologix, Inc. | Method for treating benign prostatic hyperplasia with thermal therapy |
US6428538B1 (en) | 1995-10-20 | 2002-08-06 | United States Surgical Corporation | Apparatus and method for thermal treatment of body tissue |
US6016452A (en) * | 1996-03-19 | 2000-01-18 | Kasevich; Raymond S. | Dynamic heating method and radio frequency thermal treatment |
US5938692A (en) * | 1996-03-26 | 1999-08-17 | Urologix, Inc. | Voltage controlled variable tuning antenna |
US5921954A (en) * | 1996-07-10 | 1999-07-13 | Mohr, Jr.; Lawrence G. | Treating aneurysms by applying hardening/softening agents to hardenable/softenable substances |
US7022105B1 (en) * | 1996-05-06 | 2006-04-04 | Novasys Medical Inc. | Treatment of tissue in sphincters, sinuses and orifices |
US6077257A (en) * | 1996-05-06 | 2000-06-20 | Vidacare, Inc. | Ablation of rectal and other internal body structures |
WO1997041924A1 (en) | 1996-05-06 | 1997-11-13 | Thermal Therapeutics, Inc. | Transcervical intrauterine applicator for intrauterine hyperthermia |
US5861021A (en) * | 1996-06-17 | 1999-01-19 | Urologix Inc | Microwave thermal therapy of cardiac tissue |
US6106521A (en) * | 1996-08-16 | 2000-08-22 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US5792070A (en) * | 1996-08-30 | 1998-08-11 | Urologix, Inc. | Rectal thermosensing unit |
US8353908B2 (en) | 1996-09-20 | 2013-01-15 | Novasys Medical, Inc. | Treatment of tissue in sphincters, sinuses, and orifices |
US6464697B1 (en) * | 1998-02-19 | 2002-10-15 | Curon Medical, Inc. | Stomach and adjoining tissue regions in the esophagus |
US6073052A (en) * | 1996-11-15 | 2000-06-06 | Zelickson; Brian D. | Device and method for treatment of gastroesophageal reflux disease |
US6338726B1 (en) | 1997-02-06 | 2002-01-15 | Vidacare, Inc. | Treating urinary and other body strictures |
US6033399A (en) | 1997-04-09 | 2000-03-07 | Valleylab, Inc. | Electrosurgical generator with adaptive power control |
US6223085B1 (en) | 1997-05-06 | 2001-04-24 | Urologix, Inc. | Device and method for preventing restenosis |
US9023031B2 (en) * | 1997-08-13 | 2015-05-05 | Verathon Inc. | Noninvasive devices, methods, and systems for modifying tissues |
US5995875A (en) * | 1997-10-01 | 1999-11-30 | United States Surgical | Apparatus for thermal treatment of tissue |
US20100114087A1 (en) * | 1998-02-19 | 2010-05-06 | Edwards Stuart D | Methods and devices for treating urinary incontinence |
US6216703B1 (en) | 1998-05-08 | 2001-04-17 | Thermatrx, Inc. | Therapeutic prostatic thermotherapy |
US6740082B2 (en) * | 1998-12-29 | 2004-05-25 | John H. Shadduck | Surgical instruments for treating gastro-esophageal reflux |
SE521014C2 (sv) | 1999-02-04 | 2003-09-23 | Prostalund Operations Ab | Anordning för värmebehandling av prostata |
US20100042093A9 (en) * | 1998-10-23 | 2010-02-18 | Wham Robert H | System and method for terminating treatment in impedance feedback algorithm |
US20040167508A1 (en) * | 2002-02-11 | 2004-08-26 | Robert Wham | Vessel sealing system |
US7137980B2 (en) | 1998-10-23 | 2006-11-21 | Sherwood Services Ag | Method and system for controlling output of RF medical generator |
US7364577B2 (en) | 2002-02-11 | 2008-04-29 | Sherwood Services Ag | Vessel sealing system |
US7901400B2 (en) | 1998-10-23 | 2011-03-08 | Covidien Ag | Method and system for controlling output of RF medical generator |
US6348039B1 (en) | 1999-04-09 | 2002-02-19 | Urologix, Inc. | Rectal temperature sensing probe |
SE521275C2 (sv) | 1999-05-07 | 2003-10-14 | Prostalund Operations Ab | Anordning vid värmebehandling av kroppsvävnad |
US6306132B1 (en) * | 1999-06-17 | 2001-10-23 | Vivant Medical | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
US6488697B1 (en) * | 1999-07-13 | 2002-12-03 | Terumo Kabushiki Kaisha | Apparatus for thermotherapy |
US20040215235A1 (en) | 1999-11-16 | 2004-10-28 | Barrx, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US20060095032A1 (en) * | 1999-11-16 | 2006-05-04 | Jerome Jackson | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
WO2001035846A1 (en) * | 1999-11-16 | 2001-05-25 | Ganz Robert A | System and method of treating abnormal tissue in the human esophagus |
US6640138B1 (en) | 2000-08-04 | 2003-10-28 | Thermatrx, Inc. | Apparatus and method for heat treatment of tissue |
US7306591B2 (en) | 2000-10-02 | 2007-12-11 | Novasys Medical, Inc. | Apparatus and methods for treating female urinary incontinence |
US6740108B1 (en) | 2001-04-05 | 2004-05-25 | Urologix, Inc. | Thermal treatment catheter having preferential asymmetrical heating pattern |
US6878147B2 (en) | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
US7128739B2 (en) * | 2001-11-02 | 2006-10-31 | Vivant Medical, Inc. | High-strength microwave antenna assemblies and methods of use |
US6868290B2 (en) * | 2001-11-05 | 2005-03-15 | Prostalund Operations Ab | Thermotherapy catheter and method of prostate thermotherapy with improved guide and heat confinement |
US7197363B2 (en) * | 2002-04-16 | 2007-03-27 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
US6752767B2 (en) | 2002-04-16 | 2004-06-22 | Vivant Medical, Inc. | Localization element with energized tip |
JP4490807B2 (ja) | 2002-05-06 | 2010-06-30 | コヴィディエン アクチェンゲゼルシャフト | 電気外科処置中に血液を電気的に検出し発生器を制御するシステム |
US8361067B2 (en) | 2002-09-30 | 2013-01-29 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
US6907884B2 (en) | 2002-09-30 | 2005-06-21 | Depay Acromed, Inc. | Method of straddling an intraosseous nerve |
US7258690B2 (en) | 2003-03-28 | 2007-08-21 | Relievant Medsystems, Inc. | Windowed thermal ablation probe |
US7255694B2 (en) * | 2002-12-10 | 2007-08-14 | Sherwood Services Ag | Variable output crest factor electrosurgical generator |
US7044948B2 (en) | 2002-12-10 | 2006-05-16 | Sherwood Services Ag | Circuit for controlling arc energy from an electrosurgical generator |
EP1617776B1 (de) | 2003-05-01 | 2015-09-02 | Covidien AG | System zur programmierung und kontrolle eines elektrochirurgischen generatorsystems |
US20050021020A1 (en) * | 2003-05-15 | 2005-01-27 | Blaha Derek M. | System for activating an electrosurgical instrument |
US7311703B2 (en) * | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
EP1676108B1 (de) | 2003-10-23 | 2017-05-24 | Covidien AG | Schaltung für thermoelement-messsignalen |
WO2005048809A1 (en) | 2003-10-23 | 2005-06-02 | Sherwood Services Ag | Redundant temperature monitoring in electrosurgical systems for safety mitigation |
US7396336B2 (en) | 2003-10-30 | 2008-07-08 | Sherwood Services Ag | Switched resonant ultrasonic power amplifier system |
US7131860B2 (en) * | 2003-11-20 | 2006-11-07 | Sherwood Services Ag | Connector systems for electrosurgical generator |
US7300435B2 (en) | 2003-11-21 | 2007-11-27 | Sherwood Services Ag | Automatic control system for an electrosurgical generator |
US7150745B2 (en) | 2004-01-09 | 2006-12-19 | Barrx Medical, Inc. | Devices and methods for treatment of luminal tissue |
US7766905B2 (en) | 2004-02-12 | 2010-08-03 | Covidien Ag | Method and system for continuity testing of medical electrodes |
US7780662B2 (en) * | 2004-03-02 | 2010-08-24 | Covidien Ag | Vessel sealing system using capacitive RF dielectric heating |
US20060079872A1 (en) * | 2004-10-08 | 2006-04-13 | Eggleston Jeffrey L | Devices for detecting heating under a patient return electrode |
US7628786B2 (en) | 2004-10-13 | 2009-12-08 | Covidien Ag | Universal foot switch contact port |
US7156570B2 (en) * | 2004-12-30 | 2007-01-02 | Cotapaxi Custom Design And Manufacturing, Llc | Implement grip |
US20060161148A1 (en) * | 2005-01-13 | 2006-07-20 | Robert Behnke | Circuit and method for controlling an electrosurgical generator using a full bridge topology |
US7410485B1 (en) | 2005-01-14 | 2008-08-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Directional microwave applicator and methods |
US9474564B2 (en) | 2005-03-31 | 2016-10-25 | Covidien Ag | Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator |
US7799019B2 (en) | 2005-05-10 | 2010-09-21 | Vivant Medical, Inc. | Reinforced high strength microwave antenna |
US20090125018A1 (en) * | 2005-08-26 | 2009-05-14 | Ams Research Corporation | Heat Treatment System For Pelvic Support Tissue |
US8123705B2 (en) * | 2005-10-06 | 2012-02-28 | Boston Scientific Scimed, Inc. | Adjustable profile probe |
US8734438B2 (en) * | 2005-10-21 | 2014-05-27 | Covidien Ag | Circuit and method for reducing stored energy in an electrosurgical generator |
US7959627B2 (en) * | 2005-11-23 | 2011-06-14 | Barrx Medical, Inc. | Precision ablating device |
US7997278B2 (en) | 2005-11-23 | 2011-08-16 | Barrx Medical, Inc. | Precision ablating method |
US8702694B2 (en) | 2005-11-23 | 2014-04-22 | Covidien Lp | Auto-aligning ablating device and method of use |
US7947039B2 (en) * | 2005-12-12 | 2011-05-24 | Covidien Ag | Laparoscopic apparatus for performing electrosurgical procedures |
CA2574934C (en) * | 2006-01-24 | 2015-12-29 | Sherwood Services Ag | System and method for closed loop monitoring of monopolar electrosurgical apparatus |
US7513896B2 (en) | 2006-01-24 | 2009-04-07 | Covidien Ag | Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling |
US8685016B2 (en) | 2006-01-24 | 2014-04-01 | Covidien Ag | System and method for tissue sealing |
CA2574935A1 (en) * | 2006-01-24 | 2007-07-24 | Sherwood Services Ag | A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm |
US8147485B2 (en) | 2006-01-24 | 2012-04-03 | Covidien Ag | System and method for tissue sealing |
US20070173802A1 (en) * | 2006-01-24 | 2007-07-26 | Keppel David S | Method and system for transmitting data across patient isolation barrier |
US9186200B2 (en) | 2006-01-24 | 2015-11-17 | Covidien Ag | System and method for tissue sealing |
US20070173813A1 (en) * | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | System and method for tissue sealing |
EP1810634B8 (de) | 2006-01-24 | 2015-06-10 | Covidien AG | System zum Gewebeverschluss |
US8216223B2 (en) | 2006-01-24 | 2012-07-10 | Covidien Ag | System and method for tissue sealing |
US7651493B2 (en) * | 2006-03-03 | 2010-01-26 | Covidien Ag | System and method for controlling electrosurgical snares |
US7769468B2 (en) * | 2006-03-03 | 2010-08-03 | Bsd Medical Corporation | Transparent electromagnetic applicator and hyperthermia treatment method |
US7648499B2 (en) * | 2006-03-21 | 2010-01-19 | Covidien Ag | System and method for generating radio frequency energy |
US7651492B2 (en) * | 2006-04-24 | 2010-01-26 | Covidien Ag | Arc based adaptive control system for an electrosurgical unit |
US8753334B2 (en) * | 2006-05-10 | 2014-06-17 | Covidien Ag | System and method for reducing leakage current in an electrosurgical generator |
US20070282320A1 (en) * | 2006-05-30 | 2007-12-06 | Sherwood Services Ag | System and method for controlling tissue heating rate prior to cellular vaporization |
US7771339B2 (en) * | 2006-05-31 | 2010-08-10 | Ab Mimator | Method and system for radiotherapy treatment |
US7731717B2 (en) | 2006-08-08 | 2010-06-08 | Covidien Ag | System and method for controlling RF output during tissue sealing |
US8034049B2 (en) | 2006-08-08 | 2011-10-11 | Covidien Ag | System and method for measuring initial tissue impedance |
US7637907B2 (en) * | 2006-09-19 | 2009-12-29 | Covidien Ag | System and method for return electrode monitoring |
US7794457B2 (en) * | 2006-09-28 | 2010-09-14 | Covidien Ag | Transformer for RF voltage sensing |
US8068921B2 (en) | 2006-09-29 | 2011-11-29 | Vivant Medical, Inc. | Microwave antenna assembly and method of using the same |
US20080249523A1 (en) * | 2007-04-03 | 2008-10-09 | Tyco Healthcare Group Lp | Controller for flexible tissue ablation procedures |
US7998139B2 (en) | 2007-04-25 | 2011-08-16 | Vivant Medical, Inc. | Cooled helical antenna for microwave ablation |
WO2008137757A1 (en) | 2007-05-04 | 2008-11-13 | Barrx Medical, Inc. | Method and apparatus for gastrointestinal tract ablation for treatment of obesity |
US8777941B2 (en) * | 2007-05-10 | 2014-07-15 | Covidien Lp | Adjustable impedance electrosurgical electrodes |
US8353901B2 (en) * | 2007-05-22 | 2013-01-15 | Vivant Medical, Inc. | Energy delivery conduits for use with electrosurgical devices |
US9023024B2 (en) | 2007-06-20 | 2015-05-05 | Covidien Lp | Reflective power monitoring for microwave applications |
US8784338B2 (en) * | 2007-06-22 | 2014-07-22 | Covidien Lp | Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size |
US20090005766A1 (en) * | 2007-06-28 | 2009-01-01 | Joseph Brannan | Broadband microwave applicator |
CA2692669A1 (en) * | 2007-07-06 | 2009-01-15 | Barrx Medical, Inc. | Ablation in the gastrointestinal tract to achieve hemostasis and eradicate lesions with a propensity for bleeding |
US20090012518A1 (en) * | 2007-07-06 | 2009-01-08 | Utley David S | Method and Apparatus for Ablation of Benign, Pre-Cancerous and Early Cancerous Lesions That Originate Within the Epithelium and are Limited to the Mucosal Layer of the Gastrointestinal Tract |
US8251992B2 (en) | 2007-07-06 | 2012-08-28 | Tyco Healthcare Group Lp | Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation |
US9861424B2 (en) | 2007-07-11 | 2018-01-09 | Covidien Lp | Measurement and control systems and methods for electrosurgical procedures |
US7834484B2 (en) * | 2007-07-16 | 2010-11-16 | Tyco Healthcare Group Lp | Connection cable and method for activating a voltage-controlled generator |
US8152800B2 (en) | 2007-07-30 | 2012-04-10 | Vivant Medical, Inc. | Electrosurgical systems and printed circuit boards for use therewith |
US8646460B2 (en) * | 2007-07-30 | 2014-02-11 | Covidien Lp | Cleaning device and methods |
US8273012B2 (en) * | 2007-07-30 | 2012-09-25 | Tyco Healthcare Group, Lp | Cleaning device and methods |
US7645142B2 (en) * | 2007-09-05 | 2010-01-12 | Vivant Medical, Inc. | Electrical receptacle assembly |
US8216220B2 (en) * | 2007-09-07 | 2012-07-10 | Tyco Healthcare Group Lp | System and method for transmission of combined data stream |
US8747398B2 (en) | 2007-09-13 | 2014-06-10 | Covidien Lp | Frequency tuning in a microwave electrosurgical system |
US20090076505A1 (en) * | 2007-09-13 | 2009-03-19 | Arts Gene H | Electrosurgical instrument |
US8512332B2 (en) * | 2007-09-21 | 2013-08-20 | Covidien Lp | Real-time arc control in electrosurgical generators |
US8651146B2 (en) * | 2007-09-28 | 2014-02-18 | Covidien Lp | Cable stand-off |
US8292880B2 (en) * | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
US8226639B2 (en) * | 2008-06-10 | 2012-07-24 | Tyco Healthcare Group Lp | System and method for output control of electrosurgical generator |
US20090318914A1 (en) * | 2008-06-18 | 2009-12-24 | Utley David S | System and method for ablational treatment of uterine cervical neoplasia |
CA2737374C (en) | 2008-09-26 | 2017-03-28 | Relievant Medsystems, Inc. | Systems and methods for navigating an instrument through bone |
US10028753B2 (en) | 2008-09-26 | 2018-07-24 | Relievant Medsystems, Inc. | Spine treatment kits |
US8180433B2 (en) * | 2008-09-30 | 2012-05-15 | Vivant Medical, Inc. | Microwave system calibration apparatus, system and method of use |
US8242782B2 (en) | 2008-09-30 | 2012-08-14 | Vivant Medical, Inc. | Microwave ablation generator control system |
US8346370B2 (en) * | 2008-09-30 | 2013-01-01 | Vivant Medical, Inc. | Delivered energy generator for microwave ablation |
US8287527B2 (en) * | 2008-09-30 | 2012-10-16 | Vivant Medical, Inc. | Microwave system calibration apparatus and method of use |
US8174267B2 (en) * | 2008-09-30 | 2012-05-08 | Vivant Medical, Inc. | Intermittent microwave energy delivery system |
US20100082083A1 (en) * | 2008-09-30 | 2010-04-01 | Brannan Joseph D | Microwave system tuner |
US8248075B2 (en) * | 2008-09-30 | 2012-08-21 | Vivant Medical, Inc. | System, apparatus and method for dissipating standing wave in a microwave delivery system |
US9113924B2 (en) | 2008-10-17 | 2015-08-25 | Covidien Lp | Choked dielectric loaded tip dipole microwave antenna |
US8262652B2 (en) | 2009-01-12 | 2012-09-11 | Tyco Healthcare Group Lp | Imaginary impedance process monitoring and intelligent shut-off |
US8235981B2 (en) | 2009-06-02 | 2012-08-07 | Vivant Medical, Inc. | Electrosurgical devices with directional radiation pattern |
US8328801B2 (en) * | 2009-08-17 | 2012-12-11 | Vivant Medical, Inc. | Surface ablation antenna with dielectric loading |
US20110054457A1 (en) * | 2009-08-25 | 2011-03-03 | Tyco Healthcare Group Lp | System and Method for Performing an Electrosurgical Procedure Using an Imaging Compatible Electrosurgical System |
US8491579B2 (en) | 2010-02-05 | 2013-07-23 | Covidien Lp | Electrosurgical devices with choke shorted to biological tissue |
US9498278B2 (en) | 2010-09-08 | 2016-11-22 | Covidien Lp | Asymmetrical electrodes for bipolar vessel sealing |
US9204922B2 (en) | 2010-12-01 | 2015-12-08 | Enable Urology, Llc | Method and apparatus for remodeling/profiling a tissue lumen, particularly in the urethral lumen in the prostate gland |
US9375247B2 (en) | 2011-03-16 | 2016-06-28 | Covidien Lp | System and method for electrosurgical generator power measurement |
US10278774B2 (en) | 2011-03-18 | 2019-05-07 | Covidien Lp | Selectively expandable operative element support structure and methods of use |
US10390877B2 (en) | 2011-12-30 | 2019-08-27 | Relievant Medsystems, Inc. | Systems and methods for treating back pain |
US8403927B1 (en) | 2012-04-05 | 2013-03-26 | William Bruce Shingleton | Vasectomy devices and methods |
US8920410B2 (en) | 2012-05-04 | 2014-12-30 | Covidien Lp | Peripheral switching device for microwave energy platforms |
US10588691B2 (en) | 2012-09-12 | 2020-03-17 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
WO2014071161A1 (en) | 2012-11-05 | 2014-05-08 | Relievant Medsystems, Inc. | System and methods for creating curved paths through bone and modulating nerves within the bone |
US9872719B2 (en) | 2013-07-24 | 2018-01-23 | Covidien Lp | Systems and methods for generating electrosurgical energy using a multistage power converter |
US9636165B2 (en) | 2013-07-29 | 2017-05-02 | Covidien Lp | Systems and methods for measuring tissue impedance through an electrosurgical cable |
US9724151B2 (en) | 2013-08-08 | 2017-08-08 | Relievant Medsystems, Inc. | Modulating nerves within bone using bone fasteners |
US11103308B2 (en) | 2017-12-11 | 2021-08-31 | Covidien Lp | Reusable transmission network for dividing energy and monitoring signals between surgical devices |
US11246644B2 (en) | 2018-04-05 | 2022-02-15 | Covidien Lp | Surface ablation using bipolar RF electrode |
WO2021050767A1 (en) | 2019-09-12 | 2021-03-18 | Relievant Medsystems, Inc. | Systems and methods for tissue modulation |
US12082876B1 (en) | 2020-09-28 | 2024-09-10 | Relievant Medsystems, Inc. | Introducer drill |
IL303851A (en) | 2020-12-22 | 2023-08-01 | Relievant Medsystems Inc | Predicting candidates for spinal neuromodulation |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE419351A (de) * | 1934-03-13 | |||
NL44584C (de) * | 1934-12-06 | |||
US2126257A (en) * | 1935-12-26 | 1938-08-09 | Elizabeth Kauffman | Electromedical instrument |
US2407690A (en) * | 1941-05-16 | 1946-09-17 | Bell Telephone Labor Inc | Wave guide electrotherapeutic system |
US2814298A (en) * | 1953-11-18 | 1957-11-26 | Raytheon Mfg Co | Impedance matching pad for microwave heating and method of use |
GB862646A (en) * | 1957-03-22 | 1961-03-15 | Zeiss Jena Veb Carl | Improvements in therapeutic micro-wave systems |
DE1143937B (de) * | 1960-07-01 | 1963-02-21 | Mikrowellen Ges M B H Deutsche | Anordnung zur therapeutischen Behandlung von Geschwuelsten mit Mikrowellen |
DE1161362B (de) * | 1962-08-23 | 1964-01-16 | Robert Bosch Elektronik Ges Mi | Stabfoermiger Strahler zur Behandlung von Koerperhoehlen mit Mikrowellen |
US3527227A (en) * | 1965-09-17 | 1970-09-08 | Karl Fritz | Microwave electrodes for medical therapy |
GB1188110A (en) * | 1967-03-16 | 1970-04-15 | Karl Fritz | Electrodes for Microwave Therapy |
DE2452227A1 (de) * | 1974-11-04 | 1976-05-06 | Gernot Klaus Brueck | Vorrichtung zur strahlenbehandlung an lebenden koerpern |
FR2421628A1 (fr) * | 1977-04-08 | 1979-11-02 | Cgr Mev | Dispositif de chauffage localise utilisant des ondes electromagnetiques de tres haute frequence, pour applications medicales |
US4190053A (en) * | 1977-06-20 | 1980-02-26 | Rca Corporation | Apparatus and method for hyperthermia treatment |
US4154246A (en) * | 1977-07-25 | 1979-05-15 | Leveen Harry H | Field intensification in radio frequency thermotherapy |
US4204549A (en) * | 1977-12-12 | 1980-05-27 | Rca Corporation | Coaxial applicator for microwave hyperthermia |
-
1979
- 1979-03-23 US US06/023,393 patent/US4311154A/en not_active Expired - Lifetime
-
1980
- 1980-03-18 JP JP3568280A patent/JPS55133267A/ja active Granted
- 1980-03-20 GB GB8009424A patent/GB2045620B/en not_active Expired
- 1980-03-21 FR FR8006389A patent/FR2451748A1/fr active Granted
- 1980-03-24 DE DE3011322A patent/DE3011322C2/de not_active Expired
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3743578A1 (de) * | 1987-12-22 | 1989-07-13 | Andreas Dr Zeiher | Ballonkatheter zum rekanalisieren von stenosen in koerperkanaelen, insbesondere koronargefaessen und peripheren arteriellen gefaessen |
DE4207463A1 (de) * | 1992-03-10 | 1993-09-23 | Siemens Ag | Verfahren und anordnung zur therapie von gewebe mit ultraschall |
US5624382A (en) * | 1992-03-10 | 1997-04-29 | Siemens Aktiengesellschaft | Method and apparatus for ultrasound tissue therapy |
US5759162A (en) * | 1992-03-10 | 1998-06-02 | Siemens Aktiengesellschaft | Method and apparatus for ultrasound tissue therapy |
Also Published As
Publication number | Publication date |
---|---|
DE3011322A1 (de) | 1980-09-25 |
JPS55133267A (en) | 1980-10-16 |
GB2045620B (en) | 1983-08-17 |
GB2045620A (en) | 1980-11-05 |
FR2451748A1 (fr) | 1980-10-17 |
FR2451748B1 (de) | 1983-10-14 |
JPS572347B2 (de) | 1982-01-16 |
US4311154A (en) | 1982-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3011322C2 (de) | Strahlungssonde für eine Einrichtung zur Mikrowellenbehandlung von Körpergewebe | |
DE69434185T2 (de) | Urethrales gerät zur ablation mittels hochfrequenz | |
DE69328842T2 (de) | Transurethraler Katheter zur Ablation | |
DE69330947T2 (de) | Mikrowellen-dipol-antenne für die asymmetrische thermotherapie | |
DE69325797T2 (de) | Gamma angepasste wendeldipolantenne für mikrowellen | |
DE2815156C2 (de) | ||
DE60211479T2 (de) | Maschen-mikrowellenantenne mit miniaturisierter drossel für die hyperthermie in der medizin und chirurgie | |
DE69218619T2 (de) | Bestrahlungsvorrichtung zur hyperthermie | |
DE3012150C2 (de) | Endoskopvorrichtung mit medizinischer Instrumentenanordnung | |
DE69702213T2 (de) | Sonde, insbesondere Harnröhrensonde, zum Heizen mittels Mikrowellen von Gewebe, und zum Messen der Temperatur mittels Radiometrie | |
DE69432547T2 (de) | Antenne zur Heizung von Geweben durch Mickrowellen und Sonde mit einer oder mehrerer Antennen | |
US4825880A (en) | Implantable helical coil microwave antenna | |
DE60024968T2 (de) | Mikrowellensysteme zur medizinischen hyperthermie, thermotherapie und diagnose | |
US4204549A (en) | Coaxial applicator for microwave hyperthermia | |
DE69407598T2 (de) | Behandlungsgerät | |
DE69308167T2 (de) | Mikrowellenvorrichtung zur Induzierung von Hyperthermie in einem Körper | |
US5301687A (en) | Microwave applicator for transurethral hyperthermia | |
DE69630530T2 (de) | Vorrichtung zur ablation einer bestimmten masse | |
DE69918430T2 (de) | Mikrowellenapplikator | |
US5061267A (en) | Balloon catheter for rechanneling stenoses in body passages, in particular of coronary and peripheral arterial vessels | |
EP1044654B1 (de) | Anordnung zur elektro-thermischen Behandlung des menschlichen oder tierischen Körpers | |
DE69827270T2 (de) | Vorrichtung zur therapeutischen kauterisation von vorbestimmten volumen biologischen gewebes | |
DE8916291U1 (de) | Vorrichtung zur chirurgischen Behandlung von Geweben mit Hyperthermie, vorzugsweise der Prostata, versehen mit einer Hitzeabschirmung, vorzugsweise mit einer radioreflektiven Abschirmung | |
US6051018A (en) | Hyperthermia apparatus | |
DE2832466A1 (de) | Vorrichtung zur erzeugung eines starken hochfrequenzfeldes im koerper von menschen oder tieren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OAP | Request for examination filed | ||
OD | Request for examination | ||
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |