DE102019000796A1 - Wechselbare Prozesseinheit - Google Patents
Wechselbare Prozesseinheit Download PDFInfo
- Publication number
- DE102019000796A1 DE102019000796A1 DE102019000796.4A DE102019000796A DE102019000796A1 DE 102019000796 A1 DE102019000796 A1 DE 102019000796A1 DE 102019000796 A DE102019000796 A DE 102019000796A DE 102019000796 A1 DE102019000796 A1 DE 102019000796A1
- Authority
- DE
- Germany
- Prior art keywords
- functional unit
- printing
- printing device
- layer
- exchangeable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 230000008569 process Effects 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 claims abstract description 24
- 238000010146 3D printing Methods 0.000 claims description 87
- 238000010276 construction Methods 0.000 claims description 60
- 239000000463 material Substances 0.000 claims description 50
- 239000012530 fluid Substances 0.000 claims description 16
- 230000005855 radiation Effects 0.000 claims description 16
- 239000011236 particulate material Substances 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 10
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 238000009499 grossing Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 description 28
- 239000000843 powder Substances 0.000 description 22
- 239000002245 particle Substances 0.000 description 19
- 238000007639 printing Methods 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000004566 building material Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009699 high-speed sintering Methods 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000110 selective laser sintering Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/214—Doctor blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/218—Rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
- B29C64/291—Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
Abstract
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Herstellung von 3D-Formteilen mit mindesten einer Prozesseinheit, auch geeignet für eine Großserienproduktion von 3D-Formteilen wie Gießereikernen und -formen und anderen Artikeln, die in großen Stückzahlen benötigt werden.
Description
- Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Herstellung von 3D-Formteilen mit mindesten einer Prozesseinheit, auch geeignet für eine Großserienproduktion von 3D-Formteilen wie Gießereikernen und -formen und anderen Artikeln, die in großen Stückzahlen benötigt werden.
- In der europäischen Patentschrift
EP 0 431 924 B1 wird ein Verfahren zur Herstellung dreidimensionaler Objekte aus Computerdaten beschrieben. Dabei wird ein Partikelmaterial in einer dünnen Schicht mittels Beschichter (Recoater) auf eine Plattform aufgetragen und dieses selektiv mittels eines Druckkopfes mit einem Bindermaterial bedruckt. Der mit dem Binder bedruckte Partikelbereich verbindet und verfestigt sich unter dem Einfluss des Binders und gegebenenfalls eines zusätzlichen Härters. Anschließend wird die Bauplattform um eine Schichtdicke abgesenkt oder die Beschichter-/Druckkopfeinheit angehoben und eine neue Schicht Partikelmaterial aufgetragen, die ebenfalls, wie oben beschrieben, selektiv bedruckt wird. Diese Schritte werden wiederholt, bis die gewünschte Höhe des Objektes erreicht ist. Aus den bedruckten und verfestigten Bereichen entsteht so ein dreidimensionales Objekt (Formteil). - Dieses aus verfestigtem Partikelmaterial hergestellte Objekt ist nach seiner Fertigstellung in losem Partikelmaterial eingebettet und wird anschließend davon befreit. Dies erfolgt beispielsweise mittels eines Saugers. Übrig bleiben danach die gewünschten Objekte, die dann vom Restpulver, z.B. durch Abbürsten, weiter gesäubert werden.
- In ähnlicher Weise arbeiten auch andere Pulver-gestützte Rapid-Prototyping-Prozesse, wie z.B. das selektive Lasersintern oder das Elektron-Beam-Sintern bei denen jeweils ebenso ein loses Partikelmaterial schichtweise ausgebracht und mit Hilfe einer gesteuerten physikalischen Strahlungsquelle selektiv verfestigt wird.
- Im Folgenden werden alle diese Verfahren unter dem Begriff dreidimensionale Druckverfahren oder 3D-Druckverfahren zusammengefasst.
- Diese Verfahren nutzen zum Teil unterschiedliche Möglichkeiten des Schichtauftrags. Bei einigen Verfahren wird das für die gesamte Schicht benötigte Partikelmaterial einer dünnen Klinge vorgelegt. Diese wird anschließend über den Baubereich bewegt und streicht das vorgelegte Material aus und glättet es dabei. Eine weitere Art des Schichtauftrags ist das kontinuierliche Vorlegen eines geringen Volumens von Partikelmaterial während der Verfahrbewegung der Klinge. Dazu ist die Klinge üblicherweise an der Unterseite eines beweglichen Silos befestigt. Direkt über oder neben der Klinge ist ein einstellbarer Spalt vorgesehen, durch welchen das Partikelmaterial aus dem Silo ausfließen kann. Die Anregung des Ausflusses geschieht dabei durch das Einbringen von Schwingungen in das Silo-Klingen-System.
- Anschließen oder während des Schichtauftrages folgt die selektive Verfestigung mittels Flüssigkeitsauftrags und oder Strahlungseinwirkung. Vielfach ist es für die Qualität des Druckes notwendig, dass der Abstand der sich bewegenden Druckvorrichtung zur aktuellen Schichtebene möglichst konstant ist.
- Die Bauteile liegen üblicherweise nach dem Drucken in einem Baubehälter vor. Dieser Baubehälter stellt meist ein quaderförmiges Volumen dar. Dieses Volumen wird mit den verschiedensten Geometrien beladen, um die Maschine gut auszulasten.
- Drucker des Stands der Technik weisen zum Teil Baubehälter auf, die aus der Anlage entnehmbar sind und auch als Jobbox oder Baubehälter bezeichnet werden. Diese dienen als Begrenzung für das Pulver und stabilisieren so den Bauprozess. Durch das Wechseln des Baubehälters können Prozessschritte parallelisiert werden und die Anlage kann somit gut ausgelastet werden. Ebenso gibt es Anlagen, bei der auf eine Plattform gedruckt wird, die wie der Baubehälter aus der Anlage entnommen werden kann. Auch sind Verfahren bekannt, bei denen auf ein durchgehendes Förderband in einem bestimmten Winkel gedruckt wird. Die genannten Maschinenmerkmale konnten die Bauprozesse wirtschaftlicher machen und die Standzeiten reduzieren helfen. Allerdings weisen bekannte 3D-Drucker immer noch den Nachteil auf, dass erhebliche Standzeiten der Maschinen einem suboptimalen Auslastungsgrad bedeuten.
- Das 3D-Drucken auf Basis pulverförmiger Werkstoffe und Eintrag flüssiger Binder ist unter den Schichtbautechniken das schnellste Verfahren. Mit diesem Verfahren lassen sich verschiedene Partikelmaterialien, dazu zählen - nicht erschöpfend - natürliche biologische Rohstoffe, polymere Kunststoffe, Metalle, Keramiken und Sande, verarbeiten.
- Die verschiedenen Anlagenteile weisen dabei unterschiedlichen Verschleiß auf. Je nach Art des pulverförmigen Materials unterliegen z.B. alle mit dem Pulver in Kontakt stehenden Fördereinrichtungen, Klingen, Dichtungen und Leitungen einem spezifischen Abrieb. Dieser kann dazu führen, dass prozessrelevante Einrichtungen wie z.B. eine Beschichterklinge, deren geometrische Form für das Schichtauftragsergebnis von hoher Bedeutung ist, in regelmäßigem Abstand getauscht werden muss, um einem nicht tolerierbaren Qualitätsabfall oder sogar Ausfall des Anlagenteils zuvorzukommen. Gleiches gilt für den Druckkopf, dessen Düsen ebenfalls einem Verschleiß unterliegen, der einerseits zum Leistungsabfall der jeweiligen Düse bis andererseits hin zum Totalausfall führen kann. Die Druckköpfe weisen in der Regel eine Vielzahl an Düsen auf. Die Düsen befinden sich in der Regel nebeneinander in einer so genannten Düsenplatte. Für den 3D-Druck ist es zumeist tolerierbar, wenn einzelne Düsen eines Druckkopfes ausgefallen sind. Betrifft der Ausfall aber eine größere Zahl Düsen bzw. ist eine Mehrzahl an Düsen betroffen, die direkt nebeneinander liegen, ist es notwendig, den Druckkopf zu tauschen.
- Es ist hierbei wichtig, dass die Düsen beim Drucken des Binders den jeweils gleichen Abstand zum Baufeld aufweisen. Ist dies nicht der Fall, kann es zu ungewünschten Abweichungen des Druckbildes vom errechneten Schichtbild kommen. Damit der Abstand gleichbleibt, muss der Druckkopf bei der Überstreichung des Baufeldes während des Bedruckens parallel zur Baufeldebene bewegt werden und die Düsenplatte parallel zur Baufeldebene stehen.
- Gleiches gilt für eventuell eingebaute Strahlungsquellen zur Härtung oder Aufheizung des Pulvers. Auch diese müssen um einen gleichmäßigen Energieeintrag zu gewährleisten, parallel zur Baufeldebene angeordnet sein und sich parallel zur Baufeldebene bewegen.
- Die Baufeldebene wird hingegen von der mit dem Pulver in Berührung stehenden Beschichterklinge und deren Verfahrachse bestimmt.
- Wird nun eine oder mehrere der Komponenten Beschichterklinge, Druckkopf oder Strahlungsquelle getauscht, müssen die Ersatzteile und deren Aufnahmen entweder so genau gefertigt sein, dass die geforderte Parallelität wieder gegeben ist, oder es müssen Einrichtungen an einem der beiden Elemente vorhanden sein, die eine Justage zueinander ermöglichen.
- Üblicherweise reicht die Fertigungsgenauigkeit der Teile nicht aus, um den genannten Genauigkeits-Anforderungen gerecht zu werden. Aus diesem Grund erfordert der Tausch einer der Komponenten das Abschalten der Anlage für die Dauer des Wechsels und der Neujustage. Dies kann je nach Anlagentyp mehrere Stunden Anlagenstillstand erfordern. Zudem muss die Arbeit von einem versierten Techniker vor Ort an der Anlage durchgeführt werden.
- In der europäischen Patentanmeldung
EP 2 214 889 A1 wird eine Vorrichtung für einen 3D-Drucker beschrieben, die über eine Montageplattform verfügt, auf die alle Verfahreinrichtungen einschließlich der Z-Achse montiert werden. Der Vorteil einer solchen Vorgehensweise ist die Erzielung einer hohen Prozessgenauigkeit durch Fertigungsgenauigkeit verbunden mit weniger Justageaufwand. Zudem wird die geforderte Genauigkeit aus schwieriger zu bearbeitenden Vorrichtungsteilen, wie z.B. dem Gestell herausgenommen. In Bezug auf eine vereinfachte Wartung und einer erhöhten Verfügbarkeit der Vorrichtung bringt dieser Ansatz keine Vorteile, da sich ein Austausch der Montageplattform mit allen Anschlüssen und Aggregaten als extrem aufwändig darstellt. Die vorliegend beschriebene Erfindung nach der hier vorliegenden Offenbarung ist nicht nur neu, sondern auch erfinderisch gegenüber diesem Dokument des Sandes der Technik. - Die genannten Standzeiten der 3D-Druckanlagen implizieren erhebliche wirtschaftliche Nachteile und insbesondere bei 3D-Druckanlagen oder Anlagenstraßen, die drauf ausgelegt sind, einen hohen Fertigungsdurchsatz zu erzielen, sind die oben genannten Standzeiten problematisch oder sogar unvereinbar mit den erforderlichen Produktionszielen.
- Auch können vielfach 3D-Druckmaschinen nicht in Serienproduktionen eingebunden werden, da sie zu lange Standzeiten für Wartungsarbeiten benötigen.
- Es ist daher eine der Anmeldung zugrunde liegende Aufgabe eine Vorrichtung zur Verfügung zu stellen, mit der ein Austausch von Funktionsteilen einer 3D-Druckmaschine, wie z.B. Beschichter, Druckkopf oder Strahlungsquelle, am 3D-Drucker in kurzer Zeit möglich ist.
- Es ist eine weitere der Anmeldung zugrunde liegende Aufgabe eine Vorrichtung zur Verfügung zu stellen, mit deren Hilfe eine Justage der Funktionsteile in der 3D-Druckmaschine vermieden werden kann.
- Es ist eine weitere der Anmeldung zugrunde liegende Aufgabe eine 3D-Druckmaschine zur Verfügung zu stellen, die in Anlagenstraßen integriert werden kann und die sich durch verminderte Standzeiten für Wartungsarbeiten auszeichnet oder im allgemeinen nur geringe Standzeiten erfordert.
- Kurze Zusammenfassung der Offenbarung
- In einem Aspekt betrifft die Offenbarung eine wechselbare Funktionseinheit geeignet für ein 3D-Druckverfahren, umfassend oder bestehend aus mindestens zwei funktionellen Einheiten, umfassend mindestens ein Materialauftragsmittel zum Aufbringen eines Partikelmaterials und/oder Fluides und mindestens einem Mittel zum selektiven Verfestigen des aufgebrachten Materials, und die optional weitere Schichtbehandlungsmittel aufweist, wobei die funktionellen Einheiten jeweils einfach, zweifach, dreifach oder mehrfach vorhanden sind und wobei die funktionellen Einheiten mechanisch direkt miteinander oder mittels eines Verbindungsmittels miteinander verbunden sind.
- In einem weiteren Aspekt betrifft die Offenbarung ein Verfahren zum Wechseln einer Funktionseinheit in einer 3D-Druckmaschine durch das Ein- und Ausfahren einer wie oben beschriebenen wechselbaren Funktionseinheit.
- In einem weiteren Aspekt betrifft die Offenbarung eine 3D-Druckmaschine geeignet für wie oben beschriebene wechselbare Funktionseinheiten.
- Figurenliste
-
-
1a und1b : Darstellung von unterschiedlichen Typen beispielhafter wechselbarer Funktionseinheiten gemäß der Offenbarung. -
2 : Schematische Darstellung der Befestigungs- und Versorgungsmöglichkeiten einer wechselbaren Funktionseinheit gemäß der Offenbarung. -
3 : Schematische Darstellung einer betriebsbereiten wechselbaren Funktionseinheit in ihrer Zielposition gemäß der Offenbarung. -
4 : Schematische Darstellung einer Einfuhröffnung mit Verschlussmittel gemäß der Offenbarung. -
5 und6 : Schematische Darstellung des Schichtbauprozesses mittels verschiedener wechselbarer Funktionseinheiten gemäß der Offenbarung. -
7-9 zeigen die bereits oben beschriebenen Ausprägungen der Anordnung der wechselbaren Funktionseinheit auf einer Achsbrücke (gantry) mittels 4 kombinierter Aufnahme- und Sicherungsmitteln. -
10 bis12 zeigen eine weitere Ausprägung der Menge und Anordnung der Aufnahme- und Sicherungsmittel. -
13 und14 zeigen eine Ausprägung der Erfindung, bei der die Aufnahmemittel und Sicherungsmittel der wechselbaren Funktionseinheit getrennt voneinander ausgeführt sind. - Ausführliche Beschreibung der Offenbarung
- Im Folgenden werden einige Begriffe näher definiert. Andernfalls sind für die verwendeten Begriffe die dem Fachmann bekannten Bedeutungen zu verstehen.
- Im Sinne der Offenbarung sind „Schichtbauverfahren“ bzw. „3D-Druckverfahren“ alle aus dem Stand der Technik bekannten Verfahren, die den Aufbau von Bauteilen in dreidimensionalen Formen ermöglichen und mit den hier im Weiteren beschriebenen Verfahrenskomponenten und Vorrichtungen kompatibel sind.
- Unter „Binder-Jetting“ im Sinne der Offenbarung ist zu verstehen, dass schichtweise Pulver auf eine Bauplattform aufgebracht wird, jeweils die Querschnitte des Bauteils auf dieser Pulverschicht mit einer oder mehreren Flüssigkeiten bedruckt werden, die Lage der Bauplattform um eine Schichtstärke zur letzten Position geändert wird und diese Schritte solange wiederholt werden, bis das Bauteil fertig ist. Unter Binder-Jetting sind hier auch Schichtbauverfahren zu verstehen, die eine weitere Verfahrens-Komponente wie z.B. eine schichtweise Belichtung z.B. mit IR- oder UV-Strahlung benötigen und Verfahren, die auch als High Speed Sintering bezeichnet werden.
- „Formkörper“ oder „Bauteil“ oder „3D-Formteil““ oder „3D-Bauteil“ im Sinne der Offenbarung sind alle mittels 3D-Druckverfahren hergestellte dreidimensionale Objekte, die eine Formfestigkeit aufweisen.
- „3D-Drucker“ oder „Drucker“ im Sinne der Offenbarung bezeichnet das Gerät in dem ein 3D-Druckverfahren stattfinden kann. Ein 3D-Drucker im Sinne der Offenbarung weist ein Auftragsmittel für Baumaterial, z.B. ein Fluid wie ein Partikelmaterial, und eine Verfestigungseinheit, z.B. einen Druckkopf oder ein Energieeintragsmittel wie einen Laser oder eine Wärmelampe, auf. Weitere dem Fachmann bekannte Maschinenkomponenten und im 3D-Druck bekannte Komponenten werden je nach den speziellen Anforderungen im Einzelfall mit den oben erwähnten Maschinenkomponenten kombiniert.
- „Baufeld“ ist die Ebene oder in erweitertem Sinn der geometrische Ort, auf dem oder in dem eine Partikelmaterialschüttung während des Bauprozesses durch wiederholtes Beschichten mit Partikelmaterial wächst. Häufig wird das Baufeld durch einen Boden, die „Bauplattform“, durch Wände und eine offene Deckfläche, die Bauebene, begrenzt.
- „Prozesseinheit“ oder „Funktionseinheit“ bezeichnet im Sinne der Offenbarung ein Mittel oder ein Bauteil mit dessen Einsatz das Ergebnis der Vorgänge Beschichten und selektives Verfestigen verwirklichen werden kann; dazu können gehören Beschichter (Recoater), Druckkopf, Düsen, Lasereinheit, Wärmequelle, UV-Lichtquelle oder/und weitere Schichtbehandlungsmittel.
- Der Prozess „Drucken“ oder „3D-Drucken“ im Sinne der Offenbarung bezeichnet die Zusammenfassung der Vorgänge Materialauftrag, selektives Verfestigen oder auch Bedrucken und Arbeitshöhe verstellen und findet in einem offenen oder geschlossenen Prozessraum statt.
- Unter einer „Aufnahmeebene“ im Sinne der Offenbarung ist die Ebene zu verstehen, auf die Baumaterial aufgetragen wird. Offenbarungsgemäß ist die Aufnahmeebene immer in einer Raumrichtung durch eine lineare Bewegung frei zugänglich.
- „Verfahrachse“ im Sinne der Offenbarung ist eine Achse, die eine Prozesseinheit trägt oder die entlang dieser erstellt werden können, über den Baufeldwerkzeugen angeordnet ist und einen gegenüber den anderen Achsen im System weiten Verfahrweg aufweist. „Verfahrachse“ kann aber auch die Richtung angeben, in der z.B. ein Baufeldwerkzeug getaktet und in Koordination mit anderen Vorrichtungsteilen bewegt werden kann. Auch ein Druckkopf kann auf einer „Verfahrachse“ bewegt werden.
- „Baufeldwerkzeug“ oder „Funktionale Einheit“ im Sinne der Offenbarung sind alle Mittel oder Vorrichtungsteile, die für den Fluidauftrag, z.B. Partikelmaterial, und die selektive Verfestigung bei der Herstellung von Formteilen eingesetzt werden. So sind alle Materialauftragsmittel und Schichtbehandlungsmittel auch Baufeldwerkzeuge oder funktionale Einheiten.
- „Ausstreichen“ im Sinne der Offenbarung bedeutet jegliche Art und Weise, mit der das Partikelmaterial verteilt wird. Beispielsweise kann an der Startposition einer Beschichtungsfahrt eine größere Pulvermenge vorgelegt werden und durch eine Klinge oder eine rotierende Walze in das Schichtvolumen verteilt oder ausgestrichen werden.
- Als „Baumaterial“ oder „Partikelmaterial“ oder „Pulver“ im Sinne der Offenbarung können alle für den 3D-Druck bekannten fließfähigen Materialien verwendet werden, insbesondere in Pulverform, als Schlicker oder als Flüssigkeit. Dies können beispielsweise Sande, Keramikpulver, Glaspulver, und andere Pulver aus anorganischen oder organischen Materialien wie Metallpulver, Kunststoffe, Holzpartikel, Faserwerkstoffe, Cellulosen oder/und Laktosepulver sowie andere Arten von organischen, pulverförmigen Materialien sein. Das Partikelmaterial ist vorzugsweise ein trocken, frei fließendes Pulver, aber auch ein kohäsives schnittfestes Pulver kann verwendet werden. Diese Kohäsivität kann sich auch durch Beimengung eines Bindermaterials oder eines Hilfsmaterials wie z.B. einer Flüssigkeit ergeben. Die Beimengung einer Flüssigkeit kann dazu führen, dass das Partikelmaterial in Form eines Schlickers frei fließfähig ist. Als Baumaterialien im Sinne der Offenbarung kommen auch Kunstharze wie z.B. Epoxide oder Acrylate in Betracht. Generell können Partikelmaterial im Sinne der Offenbarung auch als Fluide bezeichnet werden.
- Die „Überschussmenge“ oder „Overfeed“ ist dabei die Menge an Partikelmaterial, die bei der Beschichtungsfahrt am Ende des Baufeldes vor dem Beschichter hergeschoben wird.
- „Beschichter“ oder „Recoater“ oder „Materialauftragsmittel“ im Sinne der Offenbarung ist die Einheit, mittels derer ein Fluid auf das Baufeld aufgebracht wird. Dieser kann aus einem Fluidvorratsbehälter und einer Fluidauftragseinheit bestehen, wobei gemäß der vorliegenden Erfindung die Fluidauftragseinheit einen Fluidauslass und eine „Rakeleinrichtung“ umfasst. Diese Rakeleinrichtung könnte eine Beschichterklinge sein. Es könnte aber auch jede andere erdenkliche geeignete Rakeleinrichtung verwendet werden. Denkbar sind beispielsweise auch rotierende Walzen oder eine Düse. Die Materialzufuhr kann über Vorratsbehälter frei fließend oder Extruderschnecken, Druckbeaufschlagung oder andere Materialfördereinrichtungen erfolgen,,
- Der „Druckkopf“ oder Mittel zum selektiven Verfestigen im Sinne der Offenbarung setzt sich üblicherweise aus verschiedenen Komponenten zusammen. Unter anderem können dies Druckmodule sein. Die Druckmodule verfügen über eine Vielzahl an Düsen, aus denen der „Binder“ in Tröpfchenform auf das Baufeld gesteuert ausgestoßen wird. Die Druckmodule sind relativ zum Druckkopf ausgerichtet. Der Druckkopf ist relativ zur Maschine ausgerichtet. Damit kann die Lage einer Düse dem Maschinenkoordinatensystem zugeordnet werden. Die Ebene in der sich die Düsen befinden wird üblicherweise als Düsenplatte bezeichnet. Ein weiteres Mittel zum selektiven Verfestigen kann auch ein oder mehrere Laser oder andere Strahlungsquellen oder eine Wärmelampe darstellen. Dabei kommen auch Arrays solcher Strahlungsquellen, wie z.B. Laserdiodenarrays in Betracht. Es ist im Sinne der Offenbarung zulässig, dass die Einbringung der Selektivität von der Verfestigungsreaktion getrennt erfolgt. So kann über einen Druckkopf oder eine oder mehrere Laser eine selektive Behandlung der Schicht erfolgen und durch andere Schichtbehandlungsmittel, die Verfestigung gestartet werden. Als Beispiel hierfür wäre das Bedrucken der Schicht mit UV reaktiven Harzen zu nennen, die anschließend über eine UV-Lichtquelle verfestigt werden. In einer anderen Ausführungsform wird das Partikelmaterial mit einem IR-Absorber bedruckt und anschließend mit einer Infrarotquelle verfestigt.
- „Schichtbehandlungsmittel“ im Sinne der Offenbarung sind alle Mittel, die geeignet sind, um einen bestimmten Effekt in der Schicht zu erzielen. Dies können die vorgenannten Einheiten wie Druckkopf oder Laser aber auch Wärmequellen in Form von IR-Strahlern oder andere Strahlungsquellen wie z.B. UV-Strahler sein. Denkbar sind auch Mittel zur De- oder Ionisierung der Schicht. Allen Schichtbehandlungsmitteln gemein ist, dass ihre Wirkungszone auf die Schicht linienförmig verteilt ist und dass sie wie die anderen Schichteinheiten wie Druckkopf oder Beschichter über das Baufeld geführt werden müssen, um die gesamte Schicht zu erreichen.
- „Aktorik“ im Sinne der Offenbarung sind alle technischen Mittel, die geeignet sind innerhalb einer wechselbaren Funktionseinheit die Bewegung von Schichtbehandlungsmitteln relativ zueinander auszulösen, oder innerhalb der Schichtbehandlungsmittel Bewegungen von Einzelteilen oder Baugruppen durchzuführen.
- „Einfuhröffnung“ im Sinne der Offenbarung ist der Bereich an einer 3D-Druckmaschine, an der die wechselbare Funktionseinheit in die 3D-Druckmaschine zum Wechseln ein- und ausgeschoben wird; diese Einfuhröffnung kann offen sein oder mit geeigneten Mitteln verschließbar sein wie einem Verschluss oder einer verschließbaren Klappe. Das Öffnen und Verschließen kann mit einer gesonderten Steuerung erfolgen oder durch das Ein- und Ausfahren der wechselbaren Funktionseinheit wird der Verschluss automatisch geöffnet und wieder verschlossen. Es kann auch eine Art Barriere an der Einfuhröffnung vorhanden sein, wie eine geschlitzteFolie oder Borsten, durch die die wechselbare Funktionseinheit hindurchgeschoben werden kann.
- Ein „geeignetes Aufnahmemittel“ im Sinne der Offenbarung ist ein an der Zielposition angeordnetes Mittel, das die Positionierung und die richtige Funktion der wechselbaren Funktionseinheit an der Zielposition unterstützt. Somit wird durch ein geeignetes Aufnahmemittel die Lagetoleranz einer wechselbaren Funktionseinheit innerhalb der 3D-Druckmaschine definiert, und damit auch die Lagetoleranz der Schichtbehandlungsmittel zum Baufeld.
- „Hebemittel“ im Sinne der Offenbarung ist ein geeignetes Mittel mit dessen Hilfe die ausgefahrene wechselbare Funktionseinheit aufgenommen wird und von der 3D-Druckmaschien weggefahren wird angehoben bzw. die wechselbare Funktionseinheit angehoben und an die 3D-Druckmaschien hingefahren wird und von der die wechselbare Funktionseinheit in die 3D-Druckmaschine eingebracht wird. Im Sinne der Offenbarung kann dies ein Hubwagen, ein Kran, ein spezielles Werkzeug aber auch ein Industrieroboter sein.
- Das „Einfahren“ bzw. „Ausfahren“ der wechselbaren Funktionseinheit im Sinne der Offenbarung ist der Vorgang, bei dem eine in der 3D-Druckmaschine befindliche wechselbaren Funktionseinheit von ihrer Position gelöst wird und aus der 3D-Druckmaschine herausgefahren wird und eine neu vorjustierte wechselbare Funktionseinheit in die 3D-Druckmaschine hineingefahren wird und an ihrer Zielposition vorzugsweise festgestellt wird. Das Ein- und Ausfahren der wechselbaren Funktionseinheit kann dabei in eine Richtung erfolgen, z.B. von einer Seite oder von oben in Bezug auf die Bauebene, direkt linear an die Zielposition. Das Ein- und Ausfahren kann aber auch in Form einer Bogenbewegung oder als ein Schwenken in der 3D-Druckmaschien in 45° bis 90° in bzw. aus der 3D-Druckmaschiene erfolgen. Das Ein- und Ausfahren der Funktionseinheit kann sowohl manuell als auch automatisiert erfolgen. Damit die Funktionseinheit während des Ein- oder Ausfahrens bei einem manuellen Wechsel nicht beschädigt wird, kann es zielführend sein, die Bewegung über geeignete Mittel zu führen. Dies kann z.B. mit Linearführungen erfolgen, die entweder fest in der Maschine oder am Hebemittel, oder an weiteren Hilfseinrichtungen verbaut sind. Bei einem automatisierten Wechsel kann es zielführend sein, dass an der Funktionseinheit eine geeignete Aufnahme für einen Industrieroboter vorhanden ist. Der Roboter greift dann durch die Öffnung in der Anlage hindurch die Funktionseinheit und führt diese in einer geeigneten Bewegung aus dem 3D-Drucker hinaus zu einer eventuell bereitgestellten Ablage. Auf einer weiteren definierten Ablage befindet sich dann eine weitere Funktionseinheit, die vom Roboter nun wiederum gegriffen und in die Position in dem 3D-Drucker verbracht werden kann.
- Das Ein- und Ausfahren der Funktionseinheit kann auch derart erfolgen, dass die Funktionseinheit beim Ausfahren direkt in eine Transportvorrichtung eingefahren wird. Dadurch wird die Zeit, während der die Funktionseinheit sich in einer undefinierten Position befindet und schädlichen Einflüssen ausgesetzt ist, minimiert. Die Führung der Hebemittel und der Funktionseinheit kann auch durch die Transportvorrichtung erfolgen. Das Einfahren der Funktionseinheit in die 3D-Druckmaschine erfolgt in umgekehrter Reihenfolge direkt aus der auf die 3D-Druckmaschine lagerichtig aufgesetzte Transportvorrichtung.
- „Transportvorrichtung“ im Sinne der Offenbarung ist ein geeignetes Mittel, welches die wechselbare Funktionseinheit und/oder die Schichtbehandlungsmittel während des Transports von und zur 3D-Druckmaschine mittels den in einer Industrieumgebung üblicherweise zur Verfügung stehenden Hebemitteln vor schädlichen äußeren Einflüssen wie z.B. mechanischer Beschädigung oder Verschmutzung schützt. Die Transportvorrichtung kann vorzugsweise so ausgeführt sein, dass die Lagerung der Prozesseinheit innerhalb der Transportvorrichtung über längere Zeit ermöglicht wird, ohne dass eine lagerzeitbedingte Degradierung oder Schädigung der wechselbaren Funktionseinheit und/oder der Schichtbehandlungsmittel auftritt. Wiederum vorzugsweise kann die Transportvorrichtung so ausgeführt sein, dass mehrere Transportvorrichtungen zur Lagerung von mehreren wechselbaren Funktionseinheiten stapelbar sind.
- „Justagevorrichtungen“ im Sinne der Offenbarung ist ein Mittel mit dem die funktionellen Einheiten der wechselbaren Funktionseinheit in Bezug auf Ihre Lage und Ausrichtung zueinander so voreingestellt werden können, dass nach dem Einschub der wechselbaren Funktionseinheit alle Funktionen des 3D-Druckvorganges in gewünschter und korrekter Weise ausführbar sind und keine weitere Nachjustierung in der 3D-Druckmaschine erforderlich ist. So können z.B. bei einem Schichtaufbauverfahren mit selektivem Verfestigen mit Druckkopf und Bindereintrag die Düsen des Druckkopfes und die Beschichtereinheit (Recoater) in ihrem Auftragswinkel voreingestellt werden sowie gegebenenfalls die Recoaterklinge. Beim Lasersintern kann z.B. die Optik, das Diodenarray und der Ionenlaser zum Beschichter mit Hilfe einer Justagevorrichtung ausgerichtet werden. Ebenso können in dieser Einrichtung auch andere Schichtbehandlungsmittel zu den vorgenannten Einrichtungen justiert werden. Die Justagevorrichtungen können fest an jeder Funktionseinheit montiert sein oder aber bei Bedarf getrennt herangezogen werden. Als Justagevorrichtung eignet sich jedes Mittel zur Einstellung einer genauen Position wie z.B. Feingewinde. Eine Justagevorrichtung verfügt vorzugsweise auch über geeignete Messmittel um die eingestellte Lage des jeweiligen Schichtbehandlungsmittels zu überprüfen. Dies können ohne Einschränkung z.B. mechanische oder optische Taster sein. Auch die Messmittel können an jeder Funktionseinheit fest verbaut oder bei Bedarf getrennt herangezogen werden.
- „Kinematik“ im Sinne der Offenbarung sind alle technischen Mittel, die geeignet sind innerhalb einer wechselbaren Funktionseinheit die relative Bewegung von Schichtbehandlungsmitteln zueinander oder innerhalb der Schichtbehandlungsmittel die relative Bewegung von Einzelteilen oder Baugruppen zueinander zu definieren, zu führen, zu tolerieren und/oder zu begrenzen.
- „Sicherungsmittel“ im Sinne der Offenbarung ist jedes Mittel, das zur temporären Sicherung der Lage der wechselbaren Funktionseinheit in der 3D-Druckmaschien geeignet ist, wie Clip oder eine Klemmbacke oder mehrere Schnellverschlüsse, Magnete, Schnappverschlüsse, Nullpunktspanner oder elektromagnetische Verschlüsse. Bei geeigneter Wahl der Beschleunigungskräfte bei der Verfahrbewegung während der Schichterzeugung im 3D-Drucker kann auch die Gewichtskraft ein geeignetes Sicherungsmittel sein. Zudem sind die Sicherungsmittel so ausgewählt und gestaltet, dass die Lage und Position der wechselbaren Funktionseinheit in Bezug auf den 3D-Drucker eindeutig definiert und wiederholgenau gefunden wird. Damit dies auch bei unterschiedlichen Temperaturen der Fall ist, sind entsprechende Maßnahmen zum Längenausgleich vorzusehen.
- „Verbindungsmittel“ im Sinne der Offenbarung können Schienen, Rahmen oder andere Teile sein, mit denen die funktionellen Einheiten der wechselbaren Funktionseinheit miteinander verbunden und in ihren drei Dimensionen angeordnet werden und die optional auch dazu dienen können das Ein- und Ausfahren der wechselbaren Funktionseinheit in bzw. aus der 3D-Druckmaschiene zu unterstützen. Die funktionellen Einheiten können in einer besonderen Ausführungsform auch direkt miteinander verbunden sein und zusätzlich können Mittel an dieser wechselbaren Funktionseinheit angebracht sein, die für das Ein- und Ausfahren bestimmt sind. Vorzugsweise sind die Verbindungsmittel so gestaltet, dass die einzelnen funktionellen Einheiten leicht zugänglich sind, um sie in Ihrer Lage zu justieren oder auszutauschen.
- „Verschlussmittel“ im Sinne der Offenbarung ist jedes Mittel, das zum Verschließen der Einfuhröffnung für die wechselbare Funktionseinheit dient, z.B. eine Klappe, Türe, ein Schieber, eine Bürstenreihe, etc.
- „Versorgung“ im Sinne der Offenbarung ist die Zufuhr von Energie, Baumaterial oder anderen Medien wie z.B. Druckluft oder Kühlwasser zu den einzelnen funktionalen Einheiten.Die Versorgung ist vorzugsweise durch geeignete Maßnahmen schnell kuppelbar ausgeführt. Die Kupplung erfolgt vorzugsweise an einer gemeinsamen Kuppelposition in Form einer Kupplungsleiste oder eines Kupplungsblockes. Die Versorgung lässt sich vorzugsweise ohne zusätzliche manuelle Interaktion z.B. nur durch das Ein- und Ausfahren kuppeln.
- „Voreingestellt“ im Sinne der Offenbarung bezeichnet, dass die in der wechselbaren Funktionseinheit enthaltenen funktionellen Einheiten in Lage und Position so aufeinander abgestimmt sind, dass ein einfaches Einfahren an die Zielposition, Nutzung der Sicherungsmittel und Herstellung der Versorgungausreicht, damit die 3D-Druckmaschiene sofort nach dem Einfahren wieder in Betrieb genommen werden kann, ohne dass im Wesentlichen eine Justierung oder Nachjustierung oder irgendwelche Einstellung in Bezug auf die wechselbare Funktionseinheit erforderlich ist.
- „Zielposition“ im Sinne der Offenbarung ist die Stelle in der 3D-Druckmaschine bis zu der die wechselbare Funktionseinheit eingeschoben wird und an der diese vorzugsweise mit den Sicherungsmitteln festgestellt wird.
- „Entnahmeposition“ im Sinne der Offenbarung ist die Stelle in der 3D-Druckmaschine an der die Funktionseinheit stehen muss, um sie aus dem Gerät auszufahren. Die Steuerung des 3D-Druckers verfügt entsprechend über einen Befehl, bei dem die Entnahmeposition von der wechselbaren Funktionseinheit mit hinreichender Genauigkeit angefahren wird.
- Vorteilhafterweise befindet sich diese Position über dem Baufeld. Noch vorteilhafterweise liegt die Entnahmeposition in etwa mittig über dem Baufeld. Weniger geeignet sind die beiden möglichen Endlagen der wechselbaren Funktionseinheit, da sich dort zumeist die Wartungseinheiten für die Baufeldwerkzeuge befinden und diese beim Ein- bzw. Ausfahren beschädigt werden könnten. Beim Wechseln der Funktionseinheit sollten die Baufeldwerkzeuge vorteilhafterweise nicht im Eingriff mit einer aktuellen Schicht stehen. Dies kann z.B. dadurch sichergestellt werden, in dem die Bauplattform vorher um einen entsprechenden Betrag abgesenkt wird. Auch dieser Vorgang kann in der Steuerung hinterlegt werden, so dass das Absenken der Bauplattform und das Anfahren der Entnahmeposition als kombinierte Abfolge zur Vorbereitung des Wechsels der Funktionseinheit erfolgt.
- Eine der Anmeldung zugrunde liegende Aufgabe wird gelöst durch eine Produktionsvorrichtung, z.B. eine 3D-Druckvorrichtung, deren Baufeldwerkzeuge, d.h. bei einer 3D-Druckvorrichtung die für den Druckvorgang nötigen funktionellen Einheiten, so miteinander verbunden und angeordnet sind, dass sie gemeinsam aus der Vorrichtung entnommen werden können und dabei ihre Justage zueinander und zu der Vorrichtung beibehalten bzw. die korrekte Justage der funktionellen Einheiten vor dem Einbau eingestellt werden kann.
- Weiterhin wird eine der Anmeldung zugrunde liegende Aufgabe dadurch gelöst, dass eine zweite Anordnung an Baufeldwerkzeugen in gleicher Weise zueinander justiert in die Vorrichtung eingebracht und mit dieser verbunden werden kann, so dass der Produktionsprozess in gleicher Weise fortgesetzt werden kann.
- Weiterhin wird eine der Anmeldung zugrunde liegende Aufgabe dadurch gelöst, dass für den Wechsel der Baufeldwerkzeuge zudem Hilfsmittel zur Verfügung gestellt werden, die einen schnellen Austausch und eine kurzfristige Wiederinbetriebnahme der Vorrichtung ermöglichen.
- Weiterhin wird eine der Anmeldung zugrunde liegende Aufgabe durch ein Verfahren gelöst, das die durch die Produktionsvorrichtung bzw. die wechselbare Funktionseinheit bereitgestellten Vorrichtungen nutzt.
- Weiterhin wird eine der Anmeldung zugrunde liegende Aufgabe insbesondere gelöst durch eine wechselbare Funktionseinheit geeignet für ein 3D-Druckverfahren, umfassend oder bestehend aus mindestens zwei funktionellen Einheiten, umfassend mindestens ein Materialauftrags- und/oder Glättungsmittel zum Aufbringen und/oder Glätten eines Fluides und mindestens einem Mittel zum selektiven Verfestigen des Fluides und optional umfassend weitere Schichtbehandlungsmittel, wobei die funktionellen Einheiten jeweils einfach, zweifach, dreifach oder mehrfach vorhanden sind und wobei die funktionellen Einheiten mechanisch direkt miteinander oder mittels eines Verbindungsmittels miteinander verbunden sind.
- Mit der erfindungsgemäßen Vorrichtung wird es vorteilhafter Weise möglich, die Standzeiten von 3D-Druckmaschinen verursacht durch Wartungsarbeiten oder den nötigen Austausch von verschleißanfälligen Teilen oder funktionellen Komponenten zu reduzieren bzw. zu vermeiden. Somit kann die Maschinenlaufzeit erhöht werden und es wird möglich eine oder mehrere 3D-Druckmaschinen, die mit derartigen wechselbaren Funktionseinheiten ausgestattet sind in einen Verbund von anderen Herstellungsanlagen, z.B. in der Serienfertigung, z.B. im Fahrzeugbau, einzubinden.
- Mit der Erfindung wird es somit erstmals möglich, 3D-Druckmaschinen in im Wesentlichen vollautomatisierte Produktionsabläufe einzubinden.
- Früher mussten bestimmte mit 3D-Druck hergestellte Bauteile vorproduziert werden und diese Teile stellten unter Umständen einen zeitlimitierenden Faktor bei anderen Produktionsprozessen dar. Außerdem waren mit der Lagerung und Anlieferung Organisationsaufwand und Kosten verbunden.
- Es wird mit der Erfindung möglich, 3D- Formteile direkt vor Ort und integriert in andere halb-automatisierte oder vollautomatisierte Herstellungsprozesse herzustellen. Damit wird eine Vereinfachung von komplexen Herstellungsprozessen möglich.
- Ein weiterer Vorteil ist, dass die Maschinenverfügbarkeit an sich erhöht wird und damit eine weitere Erhöhung des tatsächlichen und wirtschaftlichen Auslastungsgrades von mit erfindungsgemäßen wechselbaren Funktionseinheiten ausgestatteten 3D-Druckmaschinen erreicht werden kann.
- Die Erfindung trägt somit vorteilhafter Weise zu einer weiteren Automatisierung von 3D-Druckprozessen an sich sowie 3D-Druckverfahren nutzenden anderen Herstellungsverfahren und Serienproduktionen bei.
- Weiterhin können aufgrund der Kopplung von Druckkopf und Beschichter in einer Funktionseinheit bei einer Ausführungsform nach der vorliegenden Offenbarung die Arbeitsschritte Partikelmaterialauftrag und selektive Verfestigung bei einem Überfahren des Baufeldes durch die wechselbare Funktionseinheit vorgenommen werden. Sofern an beiden Seiten des Druckkopfs ein Recoater vorhanden ist oder jeweils für jede Überfahrrichtung eine Einheit umfassend Recoater und Druckkopf vorhanden ist, können in jeder der beiden Verfahrrichtungen jeweils beide Arbeitsschritte vorgenommen werden und so die Beschichtungsgeschwindigkeit und der Formteilaufbau beschleunigt werden. Es wird so die für die Herstellung der Formteile nötige Zeit im Wesentlichen halbiert gegenüber einer 3D-Druckmaschine, die nur in jeweils eine Richtung beide Arbeitsschritte ausführt.
- Weiterhin wird mit der erfindungsgemäßen wechselbaren Funktionseinheit eine Entkopplung von Justierung der funktionellen Einheiten und deren Einbau in die 3D-Druckmaschine erreicht. Die Erfindung erzielt zudem viele Prozess- und Kostenvorteile, da die Justierungen der auszutauschenden Teile nun außerhalb der 3D-Druckmaschine erfolgen kann.
- Die wechselbare Funktionseinheit nach der Offenbarung ist in weiteren Aspekten dadurch gekennzeichnet, dass das Materialauftrags- und/oder - Glättungsmittel mindestens ein Recoater, ein Extruder oder Rakel ist, das Mittel zum selektiven Verfestigen ein Inkjet Druckkopf, Düsen, eine Strahlungsquelle und/oder eine Energiequelle, das Fluid ein Partikelmaterial oder eine Flüssigkeit oder Mischungen aus beiden ist, dass ein optionales Schichtbehandlungsmittel ausgewählt ist aus Strahlungsquellen und/oder Energiequellen und Auftragsmitteln für Gase oder Flüssigkeiten, dass das Verbindungsmittel eine oder mehrere Verbindungsschienen, ein Rahmen, ein Verbindungsgitter oder eine Verbindungsplatte ist.
- Die hier offenbarte wechselbare Funktionseinheit ist vorgesehen für eine 3D-Druckmaschine und sie weist weitere vorteilhafte Ausgestaltungen auf, wobei die Funktionseinheit in eine Vorrichtung für den 3D-Druck ein- und ausfahrbar ist und wobei die Funktionseinheit oder die Schichtbauvorrichtung mindestens ein geeignetes Aufnahmemittel und/oder Sicherungsmittel aufweist, mit dem die Funktionseinheit in der 3D-Druckvorrichtung positionierbar ist.
- Die hier offenbarte wechselbare Funktionseinheit kann geeignete Aufnahmemittel und/oder Sicherungsmittel aufweisen und diese sind vorzugsweise ein oder mehrere Schnellverschlüsse, Magnete, Schnappverschlüsse, Nullpunktspanner oder elektromagnetische Verschlüsse.
- Ein großer Vorteil der hier offenbarten wechselbaren Funktionseinheit ist, dass diese außerhalb der 3D-Druckmaschine voreingestellt und vorjustiert werden kann. Vorteilhafter Weise können die funktionellen Einheiten in der Lage zueinander und auf die 3D-Druckvorrichtung voreingestellt sein.
- Ein weiterer Vorteil besteht in der verkürzten Standzeit bei Wartung oder Ausfall und Ersatz eines Schichtbehandlungsmittels durch das schnelle Wechseln der Funktionseinheit.
- Bei der hier offenbarten wechselbaren Funktionseinheit kann die Lage Voreinstellung über ein oder mehrere Justagevorrichtungen oder Fertigungstoleranzen erfolgen.
- Die funktionellen Einheiten können als wechselbare Funktionseinheit direkt miteinander oder über Verbindungsmittel verbunden sein. Insbesondere ist es vorteilhaft, wenn ein, mehrere oder alle der Materialauftragsmittel und Schichtbehandlungsmittel auf dem Verbindungsmittel zueinander beweglich ausgeführt sind.
- Dabei kann in einer wechselbaren Funktionseinheit wie hier offenbart die für die Relativbewegung der Materialauftrags- und/oder Schichtbehandlungsmittel benötigte Aktorik und Kinematik in die Funktionseinheit integriert sein und von der 3D-Druckvorrichtung mit der für die Bewegung nötigen Energie versorgt werden.
- In einem weiteren Aspekt betrifft die Offenbarung eine 3D-Druckvorrichtung umfassend eine wechselbare Funktionseinheit wie oben beschrieben, eine Einfuhröffnung, optional umfassend ein oder mehrere Leitbleche oder/und Schienen, und weitere bekannte Mittel einer 3D-Druckvorrichtung, optional ausgewählt aus der Gruppe bestehend aus Fördermitteln, Materialzu- und/oder Materialabfuhrmitteln.
- Eine derartige 3D-Druckmaschine weist die oben ausgeführten Vorteile auf und löst gleichermaßen die der Anmeldung zugrunde liegenden Aufgaben.
- Weiterhin kann eine hier offenbarte 3D-Druckvorrichtung eine Einfuhröffnung mit einem Verschlussmittel aufweisen, wobei das Verschlussmittel geöffnet und verschlossen werden kann oder das Verschlussmittel durch die Funktionseinheit nach einem der Ansprüche 1 bis 8 beim Ein- und Ausfahren geöffnet oder durchdrungen wird.
- In einem weiteren Aspekt betrifft die Offenbarung ein Verfahren zum Ein- oder/und Ausfahren, d.h. zum Wechseln bzw. Auswechseln, einer wechselbaren Funktionseinheit wie oben beschrieben in eine oder aus einer 3D-Druckvorrichtung, wobei die Funktionseinheit gegebenenfalls mit einem Hebemittel, optional ein Kran, eine Hebebühne oder ein Hebewagen, an die 3D-Druckvorrichtung herangefahren wird, die Funktionseinheit in die Einfuhröffnung eingefahren wird, an der Zielposition in der 3D-Druckvorrichtung positioniert wird und mittels einem oder mehreren Sicherungsmitteln festgestellt wird.
- Mit einem derartigen Verfahren wird es erstmals möglich, schnell und unkompliziert mehrere funktionelle Einheiten einfach auszuwechseln ohne dass komplizierte Justierarbeiten an der Maschine selbst während dem Auswechseln nötig sind mit den damit verbundenen beschriebenen Nachteilen. Vorteilhafter Weise wird eine wechselbare Funktionseinheit verwendet, die mehrere funktionelle Einheiten umfasst und die vorjustiert sind, sodass aufwendige und zeitintensive Einstellarbeiten an der Maschine selbst entfallen.
- Weitere Aspekte der Offenbarung sind im Folgenden dargestellt.
- Bei bekannten 3D-Druckmaschinen sind Druckköpfe und Beschichterklingen wesentliche Verschleißteile. Hinzukommen je nach Prozess Belichtungseinheiten und/oder Bestrahlungseinheiten.
- Diese Aggregate müssen für ein gutes Druckergebnis in einem bestimmten Rahmen zueinander ausgerichtet sein. Der Beschichter definiert die Lage der Schichtebene im Raum und der Druckkopf sollte in möglichst konstantem Abstand zur Schichtebene geführt werden.
- Tauscht man eine einzelne Komponente aus, muss diese je nach Ausführung anschließend zu den jeweils anderen Komponenten justiert werden. Aufgrund der Größe der Maschinen reicht die Fertigungsgenauigkeit der Teile zueinander in Regel nicht aus, um ohne Justage zum gewünschten Ergebnis zu kommen.
- Eine Justage in der Maschine kann außerdem aufwändig sein, da sie unter begrenzten Platzverhältnissen stattfindet und die Zugänglichkeit nicht gegeben ist. Zudem kann es sein, dass die Anlage zur Einrichtung in einem speziellen sicheren Einrichtbetrieb versetzt werden muss, damit ein Bediener an den Aggregaten hantieren kann. Nicht zuletzt befinden sich evtl. Prozessmedien in der Maschine, vor denen der Einrichter geschützt werden muss.
- Mit der hier offenbarten Lösung wird eine wechselbare Funktionseinheit zur Verfügung gestellt, bei der prozessrelevante Aggregate zusammen montiert aus der Anlage entnommen und durch eine andere vorjustierte Einheit ersetzt werden können, ohne dass eine Einrichtung der Aggregate in der Anlage zueinander erforderlich ist.
- Eine wechselbare Funktionseinheit kann bestehen mindestens aus einem Beschichter und einem oder zwei Druckköpfen, der evtl. über eine Versatzachse zusätzlich quer zur Beschichter Richtung verfahren werden kann.
- Der Beschichter ist ein Aggregat zur Abgabe von fluiden Medien wie Partikelmaterialien, Harzen, Schlicker oder Pasten in definierter Form auf eine Unterlage, so dass eine ebene Schicht dieses Mediums in vorbestimmter Stärke entsteht. Es kann ein Beschichter zum Auftrag von Pulver-/Partikelmaterialien verwendet werden.
- Der Beschichter könnte z.B. als Walze ausgebildet sein, die sich gegenläufig zur Beschichtungsrichtung dreht. Die Walze könnte um ein Partikelmaterialreservoir erweitert sein. Das Reservoir könnte z.B. über eine Zellradschleuse gesteuert Partikelmaterial vor die Walze dosieren.
- Eine weitere Ausführungsform betrifft einen Schwing-Beschichter mit einem schwingend aufgehängtem Pulverreservoir und einem baufeldbreiten Spalt im unteren Bereich an einer Seite des Pulverbehälters, die in Beschichtungsrichtung zeigt. Der Beschichter verfügt zudem über einen Antrieb, der das Reservoir in Schwingungen versetzt und dabei das Pulver aus dem Spalt rieseln lässt.
- Als Druckkopf können in einem Aspekt Geräte nach Art einer Tintenstrahlvorrichtung verwendet werden, es ist aber auch denkbar selektive Belichtungseinheiten wie Laser, Projektoren oder Spiegel zu verwenden, über die selektive Bestrahlungseinheiten auf das Baufeld projiziert werden können. Alternativ können auch andere Geräte zur Informationsabgabe zum Einsatz kommen, wie z.B. Toner oder Farb-Transferwalzen, die z.B. aus Laserdruckern oder Offsetdrucken bekannt sind.
- Daneben kann es sein, dass weitere Einheiten wie z.B. Belichtungseinheiten mitgeführt werden, die ähnlich wie der Beschichter auf die gesamte Breite der Einheit wirken. Diese Belichtungseinheiten können z.B. im UV Bereich aber auch im Wärmestrahlungsbereich Energie an das Baufeld abgeben. Es kann auch sein, dass Trocknungsaggregate mitgeführt werden, die z.B. über die Zu- und Abfuhr von Warmluft arbeiten.
- Neben diesen Komponenten in der wechselbaren Funktionseinheit ist aber auch denkbar, dass die wechselbaren Funktionseinheit aus Kombinationen aus mehreren Beschichtern, einem oder mehreren Druckköpfen und mehreren Bestrahlungseinheiten besteht.
- Beispielsweise kann die wechselbare Funktionseinheit aus einer Kombination aus zwei Beschichtern, die jeweils nur in eine Richtung beschichten und einem oder mehrere Druckköpfe dazwischen zur Erzeugung der Schichtinformation bestehen. Zudem kann sich je eine Strahlungsquelle an den Beschichtern befinden.
- Die wechselbare Funktionseinheit kann über einen Träger auf dem die verschiedenen Aggregate montiert und zueinander justiert werden verfügen. Der Träger kann über Mittel zur einfachen Aufnahme und Fixierung in der Schichtbau-Anlage verfügen.
- Alle Medien zur Versorgung der wechselbaren Funktionseinheit können in der Anlage einfach gekoppelt werden. Die Aufnahmen können so gestaltet sein, dass unterschiedliche wechselbare Funktionseinheiten ohne weiteren Aufwand-gegeneinander austauschbar sind.
- Der Austausch in der Anlage kann so gestaltet sein, dass die wechselbare Funktionseinheit über Hilfseinrichtungen aus der Anlage hinaus und in die Anlage hinein ohne Beschädigungsrisiko für die Schichtbauanlage wie auch die wechselbare Funktionseinheit erfolgen kann. Als Hilfseinrichtungen eignen sich z.B. Vollauszugsmechanismen oder Transportrahmen mit entsprechenden Aufnahmen. Die Hilfseinrichtungen können maschinenseitig fest verbaut sein oder aber nach Bedarf eingebracht werden. In einer weiteren Ausführungsform wird die wechselbare Funktionseinheit über einen Industrieroboter in den 3D-Drucker aus- und eingefahren.
- Die Hilfseinrichtungen oder Transportvorrichtungen sind so gestaltet, dass die Prozesseinheit nachdem sie aus der Schichtbauanlage entfernt wurde mit einfachen Beförderungsmitteln wie Rollwagen, Stapler oder Kran zur weiteren Verwendung bzw. Wartung bewegt werden kann.
- In der Anlage selbst sind Verfahrachsen so montiert, dass sie die wechselbare Funktionseinheit einfach aufnehmen können und diese über das Baufeld bewegen. Vorzugsweise ist dafür nur noch ein Achsenpaar nötig, das sich parallel zur Beschichtungsrichtung jeweils seitlich des Baufeldes befindet.
- In einer Ausführungsform wird die wechselbare Funktionseinheit von einer Umkehrposition zur jeweils anderen verfahren und stellt bei dieser Verfahrbewegung eine voll prozessierte Schicht her.
- Die Maschine kann zudem über Wartungseinheiten verfügen, die Teile der wechselbaren Funktionseinheit betreffen und die ebenfalls von Zeit zu Zeit angefahren werden müssen. Dies kann z.B. eine Druckkopfreinigungsstation und oder eine Recoaterreinigungsstation sein. Derartige Wartungseinheiten könnten in alternativen Ausführungsformen auch an der wechselbaren Funktionseinheit montiert sein und mit dieser gewechselt werden.
Die Anlage verfügt des Weiteren über Aggregate zur Versorgung der wechselbaren Funktionseinheit mit Medien, wie z.B. Pulvermaterialien, Tinten und Energie. - Die wechselbare Funktionseinheit kann auch über Datenverarbeitungseinheiten, Steuerungsbaugruppen und Sensoren wie z.B. einem Druckkopfcontroller, Signalschnittstellen/Feldbuselementen, elektrischen/pneumatischen Ventilen und unterschiedlichsten Sensoren zur Überwachung der Aggregats- und Prozesszustände verfügen.
- Die wechselbare Funktionseinheit kann z.B. über verschiedene Sensoren zur Überwachung des Schichtbauprozesses verfügen. Ein Sensor könnte z.B. eine Kamera in Zeilenform sein, bei der das Bild der prozessierten Schicht mit dem Verfahren der Prozesseinheit entsteht.
- Die Montage und Einstellung der wechselbaren Funktionseinheit erfolgt außerhalb der Schichtbauanlage. Hierzu werden vorzugsweise Vorrichtungen vorgehalten, mit denen die Montage, Demontage, Inspektion und insbesondere Justage der Aggregate auf dem Träger der wechselbaren Funktionseinheit leicht möglich wird. Insbesondere ist der Träger und sind die Baufeldwerkzeuge so gestaltet, dass sie sich unabhängig von den anderen Baufeldwerkzeugen einbauen bzw. austauschen lassen.
- In einem weiteren Aspekt kann die Materialbevorratung im Recoater für mindestens eine Schicht ausreichend bemessen sein.
- Zur Minimierung von Bauteilfehlern kann eineHorizontalversatzachse für den Druckkopf vorhanden sein, die Düsen quer zur Beschichtungsrichtung nach jeder oder nach mehreren Schichten in bestimmter oder zufälliger Weise verschiebt.
- Die Vorjustagemöglichkeiten können vielfältig gewählt werden je nach den Anforderungen der Verfahren und Materialien.
- Die Vorjustagemöglichkeiten kann beinhalten:
- - Justagemöglichkeit der Recoater zueinander,
- - Justagemöglichkeit der Prozesseinheit zum Maschinengestell der 3D-Druckmaschine,
- - ggf. Zeilenkamera zur Prozessüberwachung,
- - Justagemöglichkeiten innerhalb der Prozesseinheit,
- - der Druckkopf ist einstellbar senkrecht zur Auflagefläche,
- - der Recoater ist einstellbar in der Parallelität und Höhe zum Baufeld,
- - der Recoater ist einstellbar individuell und/oder im Winkel zum Baufeld,
- - einstellbar ist die Sensorik zur Überwachung von Aggregat und Prozess,
- - einstellbar ist die Lampe(n) zum Baufeld.
- Weiterhin können mit der wechselbaren Funktionseinheit Schnellkupplungen für alle Medien und Leitungen, , geeignete Absperrventile, um die Druckmedien zurückhalten zu können und adaptierbare Spannungsregler zur Anpassung der Druckmodulansteuerung kombiniert werden.
- Es kann weiterhin in vorteilhaften Toleranzen gearbeitet werden, z.B. Genauigkeit oder/und Parallelität von 0,01 bis 0,05, vorzugsweise von 0.03mm.
- In einem Aspekt kann eine wechselbare Funktionseinheit mit doppeltwirkendem Recoater in der Mitte und zwei Druckköpfen versehen sein. Der Recoater kann schwingungsentkoppelt in der wechselbaren Funktionseinheit befestigt sein.
- In einem Aspekt könnte der Recoater umgedreht (Recoaterspalt zeigt nach außen) angeordnet sein und dadurch könnte man erreichen, dass das Druck- und Recoatingbild jeder Schicht sichtbar wird und eine Qualitätssicherung vereinfacht wird. Zum Beispiel könnte man dann vo jeder Schicht ein Foto von Oben machen und mittels Bildverarbeitungssoftware auswerten. Der passive Recoater muss dann jeweils mittels geeigneter Aktorik anhebbar sein, damit die gerade gelegte Schicht nicht beschädigt wird.
- In einem Aspekt der vorliegenden Offenbarung kann die wechselbare Funktionseinheit auf einer Achsbrücke (gantry) mittels 4 kombinierter Aufnahme- und Sicherungsmittel angeordnet sein. Dadurch kann erreicht werden, dass die vormontierten Funktionseinheiten und insbesondere der Recoater und der oder die Druckköpfe nicht nur zueinander, sondern auch in Bezug auf die Bauebene eine vorteilhafte Ausrichtung einnehmen und so hohe Qualitätsanforderungen erfüllt werden.
- In einem Aspekt verhindern die Aufnahme- und Sicherungsmittel mit Freiheitsgraden zusammen mit einem Aufnahme- und Sicherungsmittel ohne Freiheitsgrade die statische Überbestimmung der Funktionseinheit in der Maschine und lassen außerdem Wärmedehnungseffekte zu. Somit wird einer Verspannung der Funktionseinheit und einer dadurch hervorgerufenen Lageänderung vorteilhafter Weise vorgebeugt.
- Zudem ermöglicht die symmetrische Anordnung der Aufnahmemittel gleiche Steifigkeiten sowohl in der Maschine als auch in der Funktionseinheit, um die Prozesskräfte möglichst verzugsfrei und damit lageänderungsfrei aufzunehmen.
- Die Freiheitsgrade können untereinander auch vertauscht werden und müssen nicht zwingend in dieser Konfiguration angeordnet/ausgeführt werden.
- In einem Aspekt sind mindestens 3 Aufnahmemittel zweckmäßig, um die positions- und lagerichtige Orientierung der Funktionseinheit in der Maschine zu gewährleisten. Zusätzlich kann mindestens 1 Sicherungsmittel verwendet werden, oder mindestens 1 der 3 Aufnahmemittel kann als kombiniertes Aufnahme- und Sicherungsmittel ausgeführt sein.
- In einem weiteren Aspekt können als Aufnahmemittel alle üblicherweise in der Mechanik verwendeten Zentrier- und Kraftaufnahmemittel dienen. Darunter zählen zum Beispiel, jedoch nicht exklusiv, Zentrierdorne, Lagerflächen, Stifte, Kugelzentrierung, Einführschrägen. Als Sicherungsmittel können alle üblicherweise in der Mechanik verwendeten Fixiermechanismen dienen, sowohl handbetätigt als auch automatisiert. Darunter zählen zum Beispiel, jedoch nicht exklusiv, Kniehebelspanner, Schwenkspanner, Riegel, Kugelsperrbolzen, Spannbuchsen.
- Insbesondere kann nach der vorliegenden Offenbarung erreicht werden, dass Verschleißteile leicht und ohne Standzeiten der 3D- Druckmaschine ausgewechselt werden können.
- In der wechselbaren Funktionseinheit (
1 ) nach der vorliegenden Offenbarung werden die Druckkopf- und die Recoaterachsen aufeinander voreingestellt, ohne dass dies nach dem Platzieren in der 3D-Druckmaschien weitere Einstellungen erfordert. Dabei werden vorteilhafter Weise die X- und Y-Achsen aufeinander außerhalb der 3D-Druckmaschine vorjustiert. - In einem Aspekt können bestimmte Maße und Verhältnisse der Maschinenbauteile vorteilhaft sein, die weiter unten beschrieben werden.
- Mit der wechselbaren Prozesseinheit nach der vorliegenden Offenbarung können auch vorteilhafte Zentriergenauigkeiten der Aufnahmemittel erreicht werden, die sich positiv auf den 3D-Druckprozess auswirken.
- Eine Mindestanforderung kann wie folgt sein:
- ±halbe Auflösung des Materialauftragsmittels; vorteilhaft kann sein: genauer als ±1/10 der Auflösung des Materialauftragsmittels, jedoch nicht genauer als ±1µm.
- Eine beispielhafte Maschine kann wie folgt arbeiten:
- Druckauflösung = 200 dpi = 127µm -> 1/10 von 127µm = 12,7µm. Damit ist eine bevorzugte Zentriergenauigkeit besser als ±12,7µm. Damit ergibt sich eine Zentriergenauigkeit der verwendeten Komponenten mit ±5µm.
- Beispielhafte Höhentoleranz der nivellierenden Beschichterelemente (Klinge, Walze oder Rakel) in Richtung der Baufeldnormalen an jedem beliebigen Messpunkt entlang der Beschichterbreite:
- Eine beispielhafte Mindestanforderung: <±33% der Schichtstärke. Vorteilhaft kann sein: <±20% der Schichtstärke, oder <±10% der Schichtstärke.
- Ein beispielhafter Abstand der nivellierenden Beschichterelemente mehrerer Beschichter in Richtung der Baufeldnormalen an jedem beliebigen Messpunkt entlang der Beschichterbreite innerhalb einer wechselbaren Funktionseinheit ist wie folgt:
- Eine Beispielhafte Mindestanforderung: <±20% der Schichtstärke Vorteilhaft kann sein: <±10% der Schichtstärke
- Eine beispielhafte Maschine kann wie folgt arbeiten:
- Schichtstärke 280µm -> senkrechte Maßtoleranz der Recoaterklingen zueinander an jedem beliebigen Messpunkt entlang der Klinge: ±20µm (entspricht 7% der Schichtstärke).
- Im Falle der Verwendung eines Druckkopfs als Materialauftragsmittel: Orthogonalität des Druckkopfs zur Bewegungsrichtung der Funktionseinheit (mit der Flächennormale des Baufelds als gedachte Drehachse).
- Eine beispielhafte Mindestanforderung: <±5‰ der Druckbreite. Vorteilhaft kann sein: <±1‰ der Druckbreite, oder <±0,1‰ der Druckbreite.
- Eine beispielhafte Maschine kann wie folgt arbeiten:
- Druckbreite = 1300mm -> erlaubte Verdrehung des Druckkopfes um die Senkrechte ±0,1mm/1300mm (entspricht 0,08‰).
- Beispielhafte Darstellung der Offenbarung
- Verschiedene Aspekte der Offenbarung werden im Folgenden beispielhaft beschrieben, ohne dass diese beschränkend verstanden werden sollen. Auch kann jeder Aspekt aus den unten dargestellten Beispielhaften Figuren in jeder Kombination nutzbar gemacht werden.
-
1 stellt eine wechselbare Funktionseinheit (1 ) in zwei verschiedenen Ausführungsformen dar. In1a verfügt die wechselbare Funktionseinheit (1 ) über zwei Recoater (2 ), die in Beschichtungsrichtung links und rechts eines Druckkopfes (3 ) montiert sind. Zudem verfügt die wechselbare Funktionseinheit über weitere Schichtbehandlungsmittel wie z.B. IR Strahler (4 ), die ebenfalls beidseits ausgeführt sind. Wenn der Druckkopf in dieser Anordnung über eine baufeldbreite Düsenverteilung verfügt, kann damit eine Schicht in einer Überfahrt prozessiert werden. Die in1b gezeigte Ausführungsform verfügt lediglich über einen Recoater (2 ) und einen Druckkopf (3 ). Auch in dieser Bauform lassen sich die Vorteile der wechselbaren Funktionseinheit nutzen. Weiterhin weist die wechselbare Funktionseinheit (1 ) als Schichtbehandlungsmittel (4 ) eine Strahlungsquelle auf. In beiden Ausführungsformen sind die Baufeldwerkzeuge mittels einer Platte als Verbindungsmittel (5 ) miteinander verbunden. An der Platte (5 ) sind Sicherungsmittel (7 ) angebracht, mit denen die wechselbare Funktionseinheit (1 ) in der 3D-Druckmaschine an der Zielposition eine definierte Lage und Position einnimmt. -
2 zeigt eine 3D-Druckmaschine (6 ) schematisch dargestellt. Es sind an der Zielposition Sicherungsmittel (7 ) für die wechselbare Funktionseinheit (1 ) gezeigt, an die die wechselbare Funktionseinheit (1 ) mit ihren Gegenstücken (7' ) angekoppelt werden kann. Die Verfahrachsen für die wechselbare Funktionseinheit sind bereits in die Entnahmeposition gebracht. Die wechselbare Funktionseinheit wird an (8) zur Energie- und Medienversorgung lösbar gekoppelt. - In
3 zeigt die wechselbare Funktionseinheit (1 ) festgestellt über Aufnahme- und Sicherungsmittel (7 ,7' ) in der Zielposition an die Energie- und Medienversorgung (8 ) gekoppelt. - In
4 ist schematisch das Einfahren der wechselbaren Funktionseinheit (1 ) in eine 3D-Druckmaschien (6 ) dargestellt. Dazu kann die wechselbare Funktionseinheit (1 ) über die Einfuhröffnung (9 ) in die 3D-Druckmaschine eingefahren werden. Dazu werden die Verschlussmittel (10 ) geöffnet und nach dem Einfahren wieder geschlossen. Die wechselbare Funktionseinheit (1 ) wird nach Erreichen der Zielposition mit Aufnahme- und Sicherungsmittel (7 ,7' ) in der Zielposition festgestellt. -
5 zeigt stellt eine wechselbaren Funktionseinheit (1b) bei einer Überfahrt in eine Richtung während des Druckprozesses dar. - In
6 ist schematisch eine Drucküberfahrt einer wechselbaren Funktionseinheit (1a) in eine Richtung (6a) und in die entgegengesetzte Richtung (6b) dargestellt. Deutlich ist der Aufbau einer Druckschicht zu sehen. -
7-9 zeigen die bereits oben beschriebenen Ausprägungen der Anordnung der wechselbaren Funktionseinheit auf einer Achsbrücke (gantry) mittels 4 kombinierter Aufnahme- und Sicherungsmitteln. - Insbesondere zeigt
9 die Freiheitsgrade die dabei in den 4 Aufnahme- und Sicherungsmitteln vorgesehen sind, damit jede beliebige Funktionseinheit immer positions- und lagerichtig aufgenommen werden kann. Dabei definiert das Aufnahme- und Sicherungsmittel ohne Freiheitsgrade (ohne Pfeile) die Position der Funktionseinheit in der Maschine. Das Aufnahme- und Sicherungsmittel mit einem Freiheitsgrad (1 Pfeil) verhindert die Verdrehung der Funktionseinheit um das erste Aufnahme- und Sicherungsmittel als Drehpunkt. Dieses zweite Aufnahme- und Sicherungsmittel definiert somit zum Teil die Lage der Funktionseinheit in der Maschine. Die beiden Aufnahme- und Sicherungsmittel mit 2 Freiheitsgraden (2 gekreuzte Pfeile) verhindern das Kippeln (die Verdrehung) der Funktionseinheit um die gedachte Achse zwischen erstem und zweitem Aufnahme- und Sicherungsmittel. Sie vervollständigen somit die Lagedefinition der Funktionseinheit in der Maschine. - Die Aufnahme- und Sicherungsmittel mit Freiheitsgraden zusammen mit einem Aufnahme- und Sicherungsmittel ohne Freiheitsgrade verhindern die statische Überbestimmung der Funktionseinheit in der Maschine und lassen außerdem Wärmedehnungseffekte zu. Somit wird einer Verspannung der Funktionseinheit und einer dadurch hervorgerufenen Lageänderung vorgebeugt.
- Zudem ermöglicht die symmetrische Anordnung der Aufnahmemittel gleiche Steifigkeiten sowohl in der Maschine als auch in der Funktionseinheit, um die Prozesskräfte möglichst verzugsfrei und damit lageänderungsfrei aufzunehmen.
- Die Freiheitsgrade können untereinander auch vertauscht werden und müssen nicht zwingend in dieser Konfiguration angeordnet/ausgeführt werden.
-
10 bis12 zeigen eine weitere Ausprägung der Menge und Anordnung der Aufnahme- und Sicherungsmittel. Es müssen nicht zwangsläufig 4 Stück verwendet werden. Mindestens3 Aufnahmemittel sind zweckmäßig, um die positions- und lagerichtige Orientierung der Funktionseinheit in der Maschine zu gewährleisten. Zusätzlich muss mindestens 1 Sicherungsmittel verwendet werden, oder mindestens 1 der 3 Aufnahmemittel kann als kombiniertes Aufnahme- und Sicherungsmittel ausgeführt sein. In den Abbildungen sind 3 kombinierte Aufnahme- und Sicherungsmittel zu sehen. -
13 und14 zeigen eine Ausprägung der Erfindung, bei der die Aufnahmemittel und Sicherungsmittel der wechselbaren Funktionseinheit getrennt voneinander ausgeführt sind. Die positions- und lagerichtige Orientierung der Funktionseinheit innerhalb der Maschine wird dabei durch die Aufnahmemittel gewährleistet. Die Sicherungsmittel sorgen anschließend dafür, dass diese positions- und lagerichtige Orientierung beibehalten wird, und nicht zum Beispiel durch die in der Maschine üblicherweise auf die Funktionseinheit während des Betriebs einwirkenden Beschleunigungskräfte und Vibrationen verändert wird. Als Aufnahmemittel können alle üblicherweise in der Mechanik verwendeten Zentrier- und Kraftaufnahmemittel dienen. Darunter zählen zum Beispiel, jedoch nicht exklusiv, Zentrierdorne, Lagerflächen, Stifte, Kugelzentrierung, Einführschrägen. Als Sicherungsmittel können alle üblicherweise in der Mechanik verwendeten Fixiermechanismen dienen, sowohl handbetätigt als auch automatisiert. Darunter zählen zum Beispiel, jedoch nicht exklusiv, Kniehebelspanner, Schwenkspanner, Riegel, Kugelsperrbolzen, Spannbuchsen. - Bezugszeichenliste
-
- 1
- Wechselbare Funktionseinheit
- 2
- Materialauftrags- und/oder Glättungsmittel
- 3
- Mittel zum selektiven Verfestigen
- 4
- Optionale Schichtbehandlungsmittel
- 5
- Verbindungsmittel
- 6
- Vorrichtung für den 3D-Druck
- 7
- Aufnahmemittel und/oder Sicherungsmittel
- 8
- Energieversorgung der wechselbaren Funktionseinheit
- 9
- Einfuhröffnung
- 10
- Verschlussmittel
- 11
- Translatorische Freiheitsgrade der Aufnahmemittel und/oder Sicherungsmittel
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- EP 0431924 B1 [0002]
- EP 2214889 A1 [0017]
Claims (10)
- Wechselbare Funktionseinheit geeignet für ein 3D-Druckverfahren, umfassend oder bestehend aus mindestens zwei funktionellen Einheiten, umfassend mindestens ein Materialauftrags- und/oder Glättungs-mittel zum Aufbringen und/oder Glätten eines Fluides und mindestens einem Mittel zum selektiven Verfestigen des Fluids und die optional weitere Schichtbehandlungsmittel aufweist, wobei die funktionellen Einheiten jeweils einfach, zweifach, dreifach oder mehrfach vorhanden sind und wobei die funktionellen Einheiten mechanisch direkt miteinander oder mit einem Verbindungsmittel miteinander verbunden sind.
- Funktionseinheit nach
Anspruch 1 , wobei das Materialauftrags- und/oder -Glättungsmittel mindestens ein Recoater, ein Extruder oder Rakel ist, das Mittel zum selektiven Verfestigen ein Inkjet Druckkopf, Düsen, eine Strahlungsquelle und/oder eine Energiequelle, das Fluid ein Partikelmaterialien oder Flüssigkeiten oder Mischungen aus beiden ist, das Schichtbehandlungsmittel ausgewählt ist aus Strahlungsquellen und/oder Energiequellen und Auftragsmitteln für Gase oder Flüssigkeiten, das Verbindungsmittel eine oder mehrere Verbindungsschienen, ein Rahmen, ein Verbindungsgitter oder eine Verbindungsplatte ist. - Funktionseinheit nach
Anspruch 1 oder2 , wobei die Funktionseinheit in eine Vorrichtung für den 3D-Druck ein- und ausfahrbar ist und wobei die Funktionseinheit oder die Schichtbauvorrichtung mindestens ein geeignetes Aufnahmemittel und/oder Sicherungsmittel aufweist, mit dem die Funktionseinheit in der 3D-Druckvorrichtung positionierbar ist. - Funktionseinheit nach
Anspruch 3 , wobei das geeignetes Aufnahmemittel und/oder Sicherungsmittel ein oder mehrere Schnellverschlüsse, Magnete, Schnappverschlüsse, oder elektromagnetische Verschlüsse ist. - Funktionseinheit nach einem der vorhergehenden Ansprüche, wobei die funktionellen Einheiten in der Lage zueinander und auf die 3D-Druckvorrichtung voreingestellt sind.
- Funktionseinheit nach einem der vorhergehenden Ansprüche, wobei die Lage Voreinstellung über ein oder mehrere Justagevorrichtungen oder Fertigungstoleranzen erfolgt.
- Funktionseinheit nach einem der vorhergehenden Ansprüche, wobei ein, mehrere oder alle der Materialauftragsmittel und Schichtbehandlungsmittel auf dem Verbindungsmittel zueinander beweglich ausgeführt sind.
- Funktionseinheit nach einem der vorhergehenden Ansprüche, wobei die für die Relativbewegung der Materialauftrags- und/oder Schichtbehandlungsmittel benötigte Aktorik und Kinematik in die Funktionseinheit integriert sind und von der 3D-Druckvorrichtung mit der für die Bewegung nötigen Energie versorgt werden.
- 3D-Druckvorrichtung umfassend eine Funktionseinheit nach
Anspruch 1 bis8 , eine Einfuhröffnung, optional umfassend ein oder mehrere Leitbleche oder/und Schienen, und weitere bekannte Mittel einer 3D-Druckvorrichtung, optional ausgewählt aus der Gruppe bestehend aus Fördermitteln, Materialzu- und/oder Materialabfuhrmitteln und/oder wobei die Einfuhröffnung ein Verschlussmittel aufweist, wobei das Verschlussmittel geöffnet und verschlossen werden kann oder das Verschlussmittel durch die Funktionseinheit nach einem derAnsprüche 1 bis8 beim Ein- und Ausfahren geöffnet oder durchdrungen wird. - Verfahren zum Ein- oder/und Ausfahren, z.B. zum Wechseln, einer Funktionseinheit nach einem der
Ansprüche 1 bis8 in eine oder aus einer 3D-Druckvorrichtung, wobei die Funktionseinheit gegebenenfalls mit einem Hebemittel, optional ein Kran, eine Hebebühne oder ein Hebewagen, an die 3D-Druckvorrichtung herangefahren wird, die Funktionseinheit in die Einfuhröffnung eingefahren wird, an der Zielposition in der 3D-Druckvorrichtung positioniert wird und mittels einem oder mehreren Sicherungsmitteln festgestellt wird.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019000796.4A DE102019000796A1 (de) | 2019-02-05 | 2019-02-05 | Wechselbare Prozesseinheit |
CN202080012635.7A CN113453871A (zh) | 2019-02-05 | 2020-02-04 | 可互换的处理单元 |
EP20708408.8A EP3921140A1 (de) | 2019-02-05 | 2020-02-04 | Wechselbare prozesseinheit |
PCT/DE2020/000016 WO2020160724A1 (de) | 2019-02-05 | 2020-02-04 | Wechselbare prozesseinheit |
US17/428,243 US11826958B2 (en) | 2019-02-05 | 2020-02-04 | Exchangeable process unit |
US18/381,732 US12122099B2 (en) | 2019-02-05 | 2023-10-19 | Exchangeable process unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019000796.4A DE102019000796A1 (de) | 2019-02-05 | 2019-02-05 | Wechselbare Prozesseinheit |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102019000796A1 true DE102019000796A1 (de) | 2020-08-06 |
Family
ID=69740064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102019000796.4A Pending DE102019000796A1 (de) | 2019-02-05 | 2019-02-05 | Wechselbare Prozesseinheit |
Country Status (5)
Country | Link |
---|---|
US (2) | US11826958B2 (de) |
EP (1) | EP3921140A1 (de) |
CN (1) | CN113453871A (de) |
DE (1) | DE102019000796A1 (de) |
WO (1) | WO2020160724A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019004342A1 (de) * | 2019-06-23 | 2020-12-24 | Voxeljet Ag | Anordnung einer 3D-Druckvorrichtung |
DE102019007595A1 (de) | 2019-11-01 | 2021-05-06 | Voxeljet Ag | 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0431924B1 (de) | 1989-12-08 | 1996-01-31 | Massachusetts Institute Of Technology | Dreidimensionale Drucktechniken |
EP2214889A2 (de) | 2007-10-23 | 2010-08-11 | VoxelJet Technology GmbH | Vorrichtung zum schichtweisen aufbau von modellen |
Family Cites Families (292)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4247508B1 (en) | 1979-12-03 | 1996-10-01 | Dtm Corp | Molding process |
DE3221357A1 (de) | 1982-06-05 | 1983-12-08 | Plasticonsult GmbH Beratungsgesellschaft für Kunststoff- und Oberflächentechnik, 6360 Friedberg | Verfahren zur herstellung von formen und kernen fuer giesszwecke |
US4665492A (en) | 1984-07-02 | 1987-05-12 | Masters William E | Computer automated manufacturing process and system |
US4575330A (en) | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
JPS62275734A (ja) | 1986-05-26 | 1987-11-30 | Tokieda Naomitsu | 立体形成方法 |
IL84936A (en) | 1987-12-23 | 1997-02-18 | Cubital Ltd | Three-dimensional modelling apparatus |
US4752352A (en) | 1986-06-06 | 1988-06-21 | Michael Feygin | Apparatus and method for forming an integral object from laminations |
US4944817A (en) | 1986-10-17 | 1990-07-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
EP0538244B1 (de) | 1986-10-17 | 1996-05-22 | Board Of Regents, The University Of Texas System | Verfahren und Vorrichtung zur Herstellung von gesinterten Formkörpern durch Teilsinterung |
US5155324A (en) | 1986-10-17 | 1992-10-13 | Deckard Carl R | Method for selective laser sintering with layerwise cross-scanning |
US5017753A (en) | 1986-10-17 | 1991-05-21 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US4752498A (en) | 1987-03-02 | 1988-06-21 | Fudim Efrem V | Method and apparatus for production of three-dimensional objects by photosolidification |
US5047182A (en) | 1987-11-25 | 1991-09-10 | Ceramics Process Systems Corporation | Complex ceramic and metallic shaped by low pressure forming and sublimative drying |
US5772947A (en) | 1988-04-18 | 1998-06-30 | 3D Systems Inc | Stereolithographic curl reduction |
CA1337955C (en) | 1988-09-26 | 1996-01-23 | Thomas A. Almquist | Recoating of stereolithographic layers |
AU4504089A (en) | 1988-10-05 | 1990-05-01 | Michael Feygin | An improved apparatus and method for forming an integral object from laminations |
US5637175A (en) | 1988-10-05 | 1997-06-10 | Helisys Corporation | Apparatus for forming an integral object from laminations |
GB2233928B (en) | 1989-05-23 | 1992-12-23 | Brother Ind Ltd | Apparatus and method for forming three-dimensional article |
US5248456A (en) | 1989-06-12 | 1993-09-28 | 3D Systems, Inc. | Method and apparatus for cleaning stereolithographically produced objects |
US5134569A (en) | 1989-06-26 | 1992-07-28 | Masters William E | System and method for computer automated manufacturing using fluent material |
JPH0336019A (ja) | 1989-07-03 | 1991-02-15 | Brother Ind Ltd | 三次元成形方法およびその装置 |
AU643700B2 (en) | 1989-09-05 | 1993-11-25 | University Of Texas System, The | Multiple material systems and assisted powder handling for selective beam sintering |
US5284695A (en) | 1989-09-05 | 1994-02-08 | Board Of Regents, The University Of Texas System | Method of producing high-temperature parts by way of low-temperature sintering |
US5156697A (en) | 1989-09-05 | 1992-10-20 | Board Of Regents, The University Of Texas System | Selective laser sintering of parts by compound formation of precursor powders |
DE3930750A1 (de) | 1989-09-14 | 1991-03-28 | Krupp Medizintechnik | Gusseinbettmasse, einbettmassenmodell, gussform und verfahren zur verhinderung des aufbluehens von einbettmassenmodellen und gussformen aus einer gusseinbettmasse |
US5136515A (en) | 1989-11-07 | 1992-08-04 | Richard Helinski | Method and means for constructing three-dimensional articles by particle deposition |
US5387380A (en) | 1989-12-08 | 1995-02-07 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
DE3942859A1 (de) | 1989-12-23 | 1991-07-04 | Basf Ag | Verfahren zur herstellung von bauteilen |
US5127037A (en) | 1990-08-15 | 1992-06-30 | Bynum David K | Apparatus for forming a three-dimensional reproduction of an object from laminations |
US5126529A (en) | 1990-12-03 | 1992-06-30 | Weiss Lee E | Method and apparatus for fabrication of three-dimensional articles by thermal spray deposition |
DE4102260A1 (de) | 1991-01-23 | 1992-07-30 | Artos Med Produkte | Vorrichtung zur herstellung beliebig geformter koerper |
US5740051A (en) | 1991-01-25 | 1998-04-14 | Sanders Prototypes, Inc. | 3-D model making |
US6175422B1 (en) | 1991-01-31 | 2001-01-16 | Texas Instruments Incorporated | Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data |
US5252264A (en) | 1991-11-08 | 1993-10-12 | Dtm Corporation | Apparatus and method for producing parts with multi-directional powder delivery |
US5342919A (en) | 1992-11-23 | 1994-08-30 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
US5352405A (en) | 1992-12-18 | 1994-10-04 | Dtm Corporation | Thermal control of selective laser sintering via control of the laser scan |
DE4300478C2 (de) | 1993-01-11 | 1998-05-20 | Eos Electro Optical Syst | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US6146567A (en) | 1993-02-18 | 2000-11-14 | Massachusetts Institute Of Technology | Three dimensional printing methods |
DE4305201C1 (de) | 1993-02-19 | 1994-04-07 | Eos Electro Optical Syst | Verfahren zum Herstellen eines dreidimensionalen Objekts |
US5433261A (en) | 1993-04-30 | 1995-07-18 | Lanxide Technology Company, Lp | Methods for fabricating shapes by use of organometallic, ceramic precursor binders |
DE4325573C2 (de) | 1993-07-30 | 1998-09-03 | Stephan Herrmann | Verfahren zur Erzeugung von Formkörpern durch sukzessiven Aufbau von Pulverschichten sowie Vorichtung zu dessen Durchführung |
US5398193B1 (en) | 1993-08-20 | 1997-09-16 | Alfredo O Deangelis | Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor |
US5518680A (en) | 1993-10-18 | 1996-05-21 | Massachusetts Institute Of Technology | Tissue regeneration matrices by solid free form fabrication techniques |
DE4400523C2 (de) | 1994-01-11 | 1996-07-11 | Eos Electro Optical Syst | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US5518060A (en) | 1994-01-25 | 1996-05-21 | Brunswick Corporation | Method of producing polymeric patterns for use in evaporable foam casting |
ATE225222T1 (de) | 1994-05-27 | 2002-10-15 | Eos Electro Optical Syst | Verfahren für den einsatz in der giessereitechnik |
DE4440397C2 (de) | 1994-11-11 | 2001-04-26 | Eos Electro Optical Syst | Verfahren zum Herstellen von Gußformen |
US5503785A (en) | 1994-06-02 | 1996-04-02 | Stratasys, Inc. | Process of support removal for fused deposition modeling |
US6048954A (en) | 1994-07-22 | 2000-04-11 | The University Of Texas System Board Of Regents | Binder compositions for laser sintering processes |
US5639402A (en) | 1994-08-08 | 1997-06-17 | Barlow; Joel W. | Method for fabricating artificial bone implant green parts |
US5717599A (en) | 1994-10-19 | 1998-02-10 | Bpm Technology, Inc. | Apparatus and method for dispensing build material to make a three-dimensional article |
US5555176A (en) | 1994-10-19 | 1996-09-10 | Bpm Technology, Inc. | Apparatus and method for making three-dimensional articles using bursts of droplets |
BR9607005A (pt) | 1995-02-01 | 1997-10-28 | 3D Systems Inc | Revestímento rápido de objetos tridimensionais formados em uma base transversal seccional |
GB9501987D0 (en) | 1995-02-01 | 1995-03-22 | Butterworth Steven | Dissolved medium rendered resin (DMRR) processing |
DE19511772C2 (de) | 1995-03-30 | 1997-09-04 | Eos Electro Optical Syst | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes |
DE29506204U1 (de) | 1995-04-10 | 1995-06-01 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE19514740C1 (de) | 1995-04-21 | 1996-04-11 | Eos Electro Optical Syst | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes |
DE19515165C2 (de) | 1995-04-25 | 1997-03-06 | Eos Electro Optical Syst | Vorrichtung zum Herstellen eines Objektes mittels Stereolithographie |
DE19528215A1 (de) | 1995-08-01 | 1997-02-06 | Thomas Dipl Ing Himmer | Verfahren zur Herstellung von dreidimensionalen Modellen und Formen |
DE19530295C1 (de) | 1995-08-11 | 1997-01-30 | Eos Electro Optical Syst | Vorrichtung zur schichtweisen Herstellung eines Objektes mittels Lasersintern |
US6305769B1 (en) | 1995-09-27 | 2001-10-23 | 3D Systems, Inc. | Selective deposition modeling system and method |
US5943235A (en) | 1995-09-27 | 1999-08-24 | 3D Systems, Inc. | Rapid prototyping system and method with support region data processing |
KR100450358B1 (ko) | 1995-09-27 | 2004-11-16 | 3디 시스템즈 인코오퍼레이티드 | 선택적피착모델링시스템에서의데이타조작및시스템제어방법및장치 |
US6270335B2 (en) | 1995-09-27 | 2001-08-07 | 3D Systems, Inc. | Selective deposition modeling method and apparatus for forming three-dimensional objects and supports |
US5749041A (en) | 1995-10-13 | 1998-05-05 | Dtm Corporation | Method of forming three-dimensional articles using thermosetting materials |
DE19545167A1 (de) | 1995-12-04 | 1997-06-05 | Bayerische Motoren Werke Ag | Verfahren zum Herstellen von Bauteilen oder Werkzeugen |
US5660621A (en) | 1995-12-29 | 1997-08-26 | Massachusetts Institute Of Technology | Binder composition for use in three dimensional printing |
EP0897745A4 (de) | 1996-02-20 | 2003-05-14 | Mikuni Kogyo Kk | Methode zur herstellung von körnigem material |
ATE220958T1 (de) | 1996-03-06 | 2002-08-15 | Guild Ass Inc | Vorrichtung zum herstellen eines dreidimensionalen körpers |
US6596224B1 (en) | 1996-05-24 | 2003-07-22 | Massachusetts Institute Of Technology | Jetting layers of powder and the formation of fine powder beds thereby |
GB9611582D0 (en) | 1996-06-04 | 1996-08-07 | Thin Film Technology Consultan | 3D printing and forming of structures |
US5824250A (en) | 1996-06-28 | 1998-10-20 | Alliedsignal Inc. | Gel cast molding with fugitive molds |
US7332537B2 (en) | 1996-09-04 | 2008-02-19 | Z Corporation | Three dimensional printing material system and method |
US5902441A (en) | 1996-09-04 | 1999-05-11 | Z Corporation | Method of three dimensional printing |
US6007318A (en) | 1996-12-20 | 1999-12-28 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
US7037382B2 (en) | 1996-12-20 | 2006-05-02 | Z Corporation | Three-dimensional printer |
US6989115B2 (en) | 1996-12-20 | 2006-01-24 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
DE29701279U1 (de) | 1997-01-27 | 1997-05-22 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung mit einer Prozeßkammer und einem in der Prozeßkammer hin und her bewegbaren Element |
US5934343A (en) | 1997-03-31 | 1999-08-10 | Therics, Inc | Method for dispensing of powders |
US5940674A (en) | 1997-04-09 | 1999-08-17 | Massachusetts Institute Of Technology | Three-dimensional product manufacture using masks |
DE19715582B4 (de) | 1997-04-15 | 2009-02-12 | Ederer, Ingo, Dr. | Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten |
NL1006059C2 (nl) | 1997-05-14 | 1998-11-17 | Geest Adrianus F Van Der | Werkwijze en inrichting voor het vervaardigen van een vormlichaam. |
DE19723892C1 (de) | 1997-06-06 | 1998-09-03 | Rainer Hoechsmann | Verfahren zum Herstellen von Bauteilen durch Auftragstechnik |
DE19727677A1 (de) | 1997-06-30 | 1999-01-07 | Huels Chemische Werke Ag | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten |
US5989476A (en) | 1998-06-12 | 1999-11-23 | 3D Systems, Inc. | Process of making a molded refractory article |
JP3518726B2 (ja) | 1998-07-13 | 2004-04-12 | トヨタ自動車株式会社 | 積層造形方法及び積層造形用レジン被覆砂 |
DE19846478C5 (de) | 1998-10-09 | 2004-10-14 | Eos Gmbh Electro Optical Systems | Laser-Sintermaschine |
US20030114936A1 (en) | 1998-10-12 | 2003-06-19 | Therics, Inc. | Complex three-dimensional composite scaffold resistant to delimination |
DE19853834A1 (de) | 1998-11-21 | 2000-05-31 | Ingo Ederer | Verfahren zum Herstellen von Bauteilen durch Auftragstechnik |
US6259962B1 (en) | 1999-03-01 | 2001-07-10 | Objet Geometries Ltd. | Apparatus and method for three dimensional model printing |
US6405095B1 (en) | 1999-05-25 | 2002-06-11 | Nanotek Instruments, Inc. | Rapid prototyping and tooling system |
US6165406A (en) | 1999-05-27 | 2000-12-26 | Nanotek Instruments, Inc. | 3-D color model making apparatus and process |
DE19928245B4 (de) | 1999-06-21 | 2006-02-09 | Eos Gmbh Electro Optical Systems | Einrichtung zum Zuführen von Pulver für eine Lasersintereinrichtung |
US6722872B1 (en) | 1999-06-23 | 2004-04-20 | Stratasys, Inc. | High temperature modeling apparatus |
US6658314B1 (en) | 1999-10-06 | 2003-12-02 | Objet Geometries Ltd. | System and method for three dimensional model printing |
DE19948591A1 (de) | 1999-10-08 | 2001-04-19 | Generis Gmbh | Rapid-Prototyping - Verfahren und - Vorrichtung |
EP1415792B1 (de) | 1999-11-05 | 2014-04-30 | 3D Systems Incorporated | Verfahren und Zusammenstellungen für dreidimensionales Drucken |
JP4624626B2 (ja) | 1999-11-05 | 2011-02-02 | ズィー コーポレイション | 材料システム及び3次元印刷法 |
GB9927127D0 (en) | 1999-11-16 | 2000-01-12 | Univ Warwick | A method of manufacturing an item and apparatus for manufacturing an item |
DE19957370C2 (de) | 1999-11-29 | 2002-03-07 | Carl Johannes Fruth | Verfahren und Vorrichtung zum Beschichten eines Substrates |
TWI228114B (en) | 1999-12-24 | 2005-02-21 | Nat Science Council | Method and equipment for making ceramic work piece |
DE19963948A1 (de) | 1999-12-31 | 2001-07-26 | Zsolt Herbak | Verfahren zum Modellbau |
US7300619B2 (en) | 2000-03-13 | 2007-11-27 | Objet Geometries Ltd. | Compositions and methods for use in three dimensional model printing |
US6423255B1 (en) | 2000-03-24 | 2002-07-23 | Rainer Hoechsmann | Method for manufacturing a structural part by deposition technique |
US20010050031A1 (en) | 2000-04-14 | 2001-12-13 | Z Corporation | Compositions for three-dimensional printing of solid objects |
JP2001334583A (ja) | 2000-05-25 | 2001-12-04 | Minolta Co Ltd | 三次元造形装置 |
DE10026955A1 (de) | 2000-05-30 | 2001-12-13 | Daimler Chrysler Ag | Materialsystem zur Verwendung beim 3D-Drucken |
SE520565C2 (sv) | 2000-06-16 | 2003-07-29 | Ivf Industriforskning Och Utve | Sätt och apparat vid framställning av föremål genom FFF |
US6619882B2 (en) | 2000-07-10 | 2003-09-16 | Rh Group Llc | Method and apparatus for sealing cracks in roads |
US6500378B1 (en) | 2000-07-13 | 2002-12-31 | Eom Technologies, L.L.C. | Method and apparatus for creating three-dimensional objects by cross-sectional lithography |
DE10047615A1 (de) | 2000-09-26 | 2002-04-25 | Generis Gmbh | Wechselbehälter |
DE10047614C2 (de) * | 2000-09-26 | 2003-03-27 | Generis Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE10049043A1 (de) | 2000-10-04 | 2002-05-02 | Generis Gmbh | Verfahren zum Entpacken von in ungebundenem Partikelmaterial eingebetteten Formkörpern |
DE10053741C1 (de) | 2000-10-30 | 2002-02-21 | Concept Laser Gmbh | Vorrichtung zum Sintern, Abtragen und/oder Beschriften mittels elektromagnetischer gebündelter Strahlung |
US20020111707A1 (en) | 2000-12-20 | 2002-08-15 | Zhimin Li | Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers |
US20020090410A1 (en) | 2001-01-11 | 2002-07-11 | Shigeaki Tochimoto | Powder material removing apparatus and three dimensional modeling system |
DE20122639U1 (de) | 2001-02-07 | 2006-11-16 | Eos Gmbh Electro Optical Systems | Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US6896839B2 (en) | 2001-02-07 | 2005-05-24 | Minolta Co., Ltd. | Three-dimensional molding apparatus and three-dimensional molding method |
DE10105504A1 (de) | 2001-02-07 | 2002-08-14 | Eos Electro Optical Syst | Vorrichtung zur Behandlung von Pulver für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts, Vorrichtung zum Herstellen eines dreidimensionalen Objekts und Verfahren zum Herstellen eines dreidimensionalen Objekts |
GB0103752D0 (en) | 2001-02-15 | 2001-04-04 | Vantico Ltd | Three-Dimensional printing |
GB0103754D0 (en) | 2001-02-15 | 2001-04-04 | Vantico Ltd | Three-dimensional structured printing |
US6939489B2 (en) | 2001-03-23 | 2005-09-06 | Ivoclar Vivadent Ag | Desktop process for producing dental products by means of 3-dimensional plotting |
DE10117875C1 (de) | 2001-04-10 | 2003-01-30 | Generis Gmbh | Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung |
US20020155254A1 (en) | 2001-04-20 | 2002-10-24 | Mcquate William M. | Apparatus and method for placing particles in a pattern onto a substrate |
GB0112675D0 (en) | 2001-05-24 | 2001-07-18 | Vantico Ltd | Three-dimensional structured printing |
US6572215B2 (en) | 2001-05-30 | 2003-06-03 | Eastman Kodak Company | Ink jet print head with cross-flow cleaning |
DE10128664A1 (de) | 2001-06-15 | 2003-01-30 | Univ Clausthal Tech | Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern |
JP2003052804A (ja) | 2001-08-09 | 2003-02-25 | Ichiro Ono | インプラントの製造方法およびインプラント |
US6841116B2 (en) | 2001-10-03 | 2005-01-11 | 3D Systems, Inc. | Selective deposition modeling with curable phase change materials |
JP2003136605A (ja) | 2001-11-06 | 2003-05-14 | Toshiba Corp | 製品の作成方法及びその製品 |
GB2382798A (en) | 2001-12-04 | 2003-06-11 | Qinetiq Ltd | Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon |
SE523394C2 (sv) | 2001-12-13 | 2004-04-13 | Fcubic Ab | Anordning och förfarande för upptäckt och kompensering av fel vid skiktvis framställning av en produkt |
US6713125B1 (en) | 2002-03-13 | 2004-03-30 | 3D Systems, Inc. | Infiltration of three-dimensional objects formed by solid freeform fabrication |
DE10216013B4 (de) | 2002-04-11 | 2006-12-28 | Generis Gmbh | Verfahren und Vorrichtung zum Auftragen von Fluiden |
DE10222167A1 (de) | 2002-05-20 | 2003-12-04 | Generis Gmbh | Vorrichtung zum Zuführen von Fluiden |
DE10224981B4 (de) | 2002-06-05 | 2004-08-19 | Generis Gmbh | Verfahren zum schichtweisen Aufbau von Modellen |
EP1513670A1 (de) | 2002-06-18 | 2005-03-16 | DaimlerChrysler AG | Lasersinterverfahren mit erh hter prozessgenauigkeit und par tikel zur verwendung dabei |
DE50309030D1 (de) | 2002-06-18 | 2008-03-06 | Daimler Ag | Partikeln und verfahren für die herstellung eines dreidimensionalen gegenstandes |
DE10227224B4 (de) | 2002-06-18 | 2005-11-24 | Daimlerchrysler Ag | Verwendung eines Granulates zum Herstellen eines Gegenstandes mit einem 3D-Binderdruck-Verfahren |
US6905645B2 (en) | 2002-07-03 | 2005-06-14 | Therics, Inc. | Apparatus, systems and methods for use in three-dimensional printing |
DE10235434A1 (de) | 2002-08-02 | 2004-02-12 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens |
US20040038009A1 (en) | 2002-08-21 | 2004-02-26 | Leyden Richard Noel | Water-based material systems and methods for 3D printing |
JP4069245B2 (ja) | 2002-08-27 | 2008-04-02 | 富田製薬株式会社 | 造形法 |
US7087109B2 (en) | 2002-09-25 | 2006-08-08 | Z Corporation | Three dimensional printing material system and method |
US20040112523A1 (en) | 2002-10-15 | 2004-06-17 | Crom Elden Wendell | Three dimensional printing from two dimensional printing devices |
US6742456B1 (en) | 2002-11-14 | 2004-06-01 | Hewlett-Packard Development Company, L.P. | Rapid prototyping material systems |
US7153454B2 (en) | 2003-01-21 | 2006-12-26 | University Of Southern California | Multi-nozzle assembly for extrusion of wall |
US7497977B2 (en) | 2003-01-29 | 2009-03-03 | Hewlett-Packard Development Company, L.P. | Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer |
WO2004073961A2 (de) | 2003-02-18 | 2004-09-02 | Daimlerchrysler Ag | Beschichtete pulverpartikel für die herstellung von dreidimensionalen körpern mittels schichtaufbauender verfahren |
EP1457590B1 (de) | 2003-03-10 | 2009-10-21 | Kuraray Co., Ltd. | Binderfasern aus polyvinylalkohol und diese fasern enthaltendes papier und vliesstoff |
KR101120156B1 (ko) | 2003-05-21 | 2012-02-22 | 제트 코포레이션 | 3d 인쇄 시스템으로부터의 외관 모형용 열가소성 분말물질 시스템 |
WO2004106041A2 (en) | 2003-05-23 | 2004-12-09 | Z Corporation | Apparatus and methods for 3d printing |
US7435072B2 (en) | 2003-06-02 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Methods and systems for producing an object through solid freeform fabrication |
US7807077B2 (en) | 2003-06-16 | 2010-10-05 | Voxeljet Technology Gmbh | Methods and systems for the manufacture of layered three-dimensional forms |
DE10327272A1 (de) | 2003-06-17 | 2005-03-03 | Generis Gmbh | Verfahren zum schichtweisen Aufbau von Modellen |
US20050012247A1 (en) | 2003-07-18 | 2005-01-20 | Laura Kramer | Systems and methods for using multi-part curable materials |
US7120512B2 (en) | 2003-08-25 | 2006-10-10 | Hewlett-Packard Development Company, L.P. | Method and a system for solid freeform fabricating using non-reactive powder |
US20050074511A1 (en) | 2003-10-03 | 2005-04-07 | Christopher Oriakhi | Solid free-form fabrication of solid three-dimesional objects |
US7220380B2 (en) | 2003-10-14 | 2007-05-22 | Hewlett-Packard Development Company, L.P. | System and method for fabricating a three-dimensional metal object using solid free-form fabrication |
US7455805B2 (en) | 2003-10-28 | 2008-11-25 | Hewlett-Packard Development Company, L.P. | Resin-modified inorganic phosphate cement for solid freeform fabrication |
US7348075B2 (en) | 2003-10-28 | 2008-03-25 | Hewlett-Packard Development Company, L.P. | System and method for fabricating three-dimensional objects using solid free-form fabrication |
US7381360B2 (en) | 2003-11-03 | 2008-06-03 | Hewlett-Packard Development Company, L.P. | Solid free-form fabrication of three-dimensional objects |
FR2865960B1 (fr) | 2004-02-06 | 2006-05-05 | Nicolas Marsac | Procede et machine pour realiser des objets en trois dimensions par depot de couches successives |
US7608672B2 (en) | 2004-02-12 | 2009-10-27 | Illinois Tool Works Inc. | Infiltrant system for rapid prototyping process |
DE102004008168B4 (de) | 2004-02-19 | 2015-12-10 | Voxeljet Ag | Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung |
DE102004014806B4 (de) | 2004-03-24 | 2006-09-14 | Daimlerchrysler Ag | Rapid-Technologie-Bauteil |
US7435763B2 (en) | 2004-04-02 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Solid freeform compositions, methods of application thereof, and systems for use thereof |
US20050280185A1 (en) | 2004-04-02 | 2005-12-22 | Z Corporation | Methods and apparatus for 3D printing |
DE102004020452A1 (de) | 2004-04-27 | 2005-12-01 | Degussa Ag | Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren |
DE102004025374A1 (de) | 2004-05-24 | 2006-02-09 | Technische Universität Berlin | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Artikels |
JP4239915B2 (ja) | 2004-07-16 | 2009-03-18 | セイコーエプソン株式会社 | マイクロレンズの製造方法およびマイクロレンズの製造装置 |
ITMI20050459A1 (it) | 2005-03-21 | 2006-09-22 | Montangero & Montangero S R L | Dispositivo di movimentazione al suolo di un corpo |
ITPI20050031A1 (it) | 2005-03-22 | 2006-09-23 | Moreno Chiarugi | Metodo e dispositivo per la realizzazione automatica di strutture di edifici in conglomerato |
US7357629B2 (en) | 2005-03-23 | 2008-04-15 | 3D Systems, Inc. | Apparatus and method for aligning a removable build chamber within a process chamber |
US7790096B2 (en) | 2005-03-31 | 2010-09-07 | 3D Systems, Inc. | Thermal management system for a removable build chamber for use with a laser sintering system |
US20080003390A1 (en) | 2005-04-27 | 2008-01-03 | Nahoto Hayashi | Multi-Layer Structure and Process for Production Thereof |
US20060254467A1 (en) | 2005-05-13 | 2006-11-16 | Isaac Farr | Method for making spray-dried cement particles |
DE102005022308B4 (de) | 2005-05-13 | 2007-03-22 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial |
US20060257579A1 (en) | 2005-05-13 | 2006-11-16 | Isaac Farr | Use of a salt of a poly-acid to delay setting in cement slurry |
US20070045891A1 (en) | 2005-08-23 | 2007-03-01 | Valspar Sourcing, Inc. | Infiltrated Articles Prepared by a Laser Sintering Method and Method of Manufacturing the Same |
DE102006040305A1 (de) | 2005-09-20 | 2007-03-29 | Daimlerchrysler Ag | Verfahren zur Herstellung eines dreidimensionalen Gegenstandes sowie damit hergestellter Gegenstand |
KR20080086428A (ko) | 2005-09-20 | 2008-09-25 | 피티에스 소프트웨어 비브이 | 3차원 아티클의 구축 장치 및 3차원 아티클의 구축 방법 |
US7296990B2 (en) | 2005-10-14 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Systems and methods of solid freeform fabrication with translating powder bins |
DE102005056260B4 (de) | 2005-11-25 | 2008-12-18 | Prometal Rct Gmbh | Verfahren und Vorrichtung zum flächigen Auftragen von fließfähigem Material |
US20070126157A1 (en) | 2005-12-02 | 2007-06-07 | Z Corporation | Apparatus and methods for removing printed articles from a 3-D printer |
EP1974838A4 (de) | 2005-12-27 | 2010-11-17 | Tomita Pharma | Verfahren zur herstellung eines musters |
WO2007114895A2 (en) | 2006-04-06 | 2007-10-11 | Z Corporation | Production of three-dimensional objects by use of electromagnetic radiation |
KR101436647B1 (ko) | 2006-05-26 | 2014-09-02 | 3디 시스템즈 인코오퍼레이티드 | 3d 프린터 내에서 재료를 처리하기 위한 인쇄 헤드 및 장치 및 방법 |
DE102006029298B4 (de) | 2006-06-23 | 2008-11-06 | Stiftung Caesar Center Of Advanced European Studies And Research | Materialsystem für das 3D-Drucken, Verfahren zu seiner Herstellung, Granulat hergestellt aus dem Materialsystem und dessen Verwendung |
DE102006030350A1 (de) | 2006-06-30 | 2008-01-03 | Voxeljet Technology Gmbh | Verfahren zum Aufbauen eines Schichtenkörpers |
US20080018018A1 (en) | 2006-07-20 | 2008-01-24 | Nielsen Jeffrey A | Solid freeform fabrication methods and systems |
US8187521B2 (en) | 2006-07-27 | 2012-05-29 | Arcam Ab | Method and device for producing three-dimensional objects |
DE102006038858A1 (de) | 2006-08-20 | 2008-02-21 | Voxeljet Technology Gmbh | Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen |
DE102006040182A1 (de) | 2006-08-26 | 2008-03-06 | Mht Mold & Hotrunner Technology Ag | Verfahren zur Herstellung eines mehrschichtigen Vorformlings sowie Düse hierfür |
DE202006016477U1 (de) | 2006-10-24 | 2006-12-21 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE102006053121B3 (de) | 2006-11-10 | 2007-12-27 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes mittels eines Beschichters für pulverförmiges Aufbaumaterial |
DE102006055326A1 (de) | 2006-11-23 | 2008-05-29 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zur Förderung von überschüssigem Partikelmaterial beim Aufbau von Modellen |
WO2008073297A2 (en) | 2006-12-08 | 2008-06-19 | Z Corporation | Three dimensional printing material system and method using peroxide cure |
WO2008086033A1 (en) | 2007-01-10 | 2008-07-17 | Z Corporation | Three-dimensional printing material system with improved color, article performance, and ease of use |
JP4869155B2 (ja) | 2007-05-30 | 2012-02-08 | 株式会社東芝 | 物品の製造方法 |
DE102007033434A1 (de) | 2007-07-18 | 2009-01-22 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Bauteile |
US20100279007A1 (en) | 2007-08-14 | 2010-11-04 | The Penn State Research Foundation | 3-D Printing of near net shape products |
DE102007040755A1 (de) | 2007-08-28 | 2009-03-05 | Jens Jacob | Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern |
ITPI20070108A1 (it) | 2007-09-17 | 2009-03-18 | Enrico Dini | Metodo perfezionato per la realizzazione automatica di strutture di conglomerato |
DE102007047326B4 (de) | 2007-10-02 | 2011-08-25 | CL Schutzrechtsverwaltungs GmbH, 96215 | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE102007049058A1 (de) | 2007-10-11 | 2009-04-16 | Voxeljet Technology Gmbh | Materialsystem und Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteils |
DE102007050679A1 (de) | 2007-10-21 | 2009-04-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen |
JP5146010B2 (ja) | 2008-02-28 | 2013-02-20 | 東レ株式会社 | セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法 |
EP2305454B1 (de) | 2008-05-26 | 2017-03-22 | Sony Corporation | Formvorrichtung und formverfahren |
DE102008058378A1 (de) | 2008-11-20 | 2010-05-27 | Voxeljet Technology Gmbh | Verfahren zum schichtweisen Aufbau von Kunststoffmodellen |
EP2202016B1 (de) | 2008-11-27 | 2012-04-25 | SLM Solutions GmbH | Pulverauftragvorrichtung für eine Anlage zur Herstellung von Werkstücken durch Beaufschlagen von Pulverschichten mit elektromagnetischer Strahlung oder Teilchenstrahlung |
US8545209B2 (en) | 2009-03-31 | 2013-10-01 | Microjet Technology Co., Ltd. | Three-dimensional object forming apparatus and method for forming three-dimensional object |
JP5364439B2 (ja) | 2009-05-15 | 2013-12-11 | パナソニック株式会社 | 三次元形状造形物の製造方法 |
DE102009030113A1 (de) | 2009-06-22 | 2010-12-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Zuführen von Fluiden beim schichtweisen Bauen von Modellen |
US20100323301A1 (en) | 2009-06-23 | 2010-12-23 | Huey-Ru Tang Lee | Method and apparatus for making three-dimensional parts |
ES2386602T3 (es) | 2009-08-25 | 2012-08-23 | Bego Medical Gmbh | Dispositivo y procedimiento para la producción continua generativa |
DE102009055966B4 (de) | 2009-11-27 | 2014-05-15 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102009056696B4 (de) | 2009-12-02 | 2011-11-10 | Prometal Rct Gmbh | Baubox für eine Rapid-Prototyping-Anlage |
US8211226B2 (en) | 2010-01-15 | 2012-07-03 | Massachusetts Institute Of Technology | Cement-based materials system for producing ferrous castings using a three-dimensional printer |
DE102010006939A1 (de) | 2010-02-04 | 2011-08-04 | Voxeljet Technology GmbH, 86167 | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010013733A1 (de) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010013732A1 (de) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010014969A1 (de) | 2010-04-14 | 2011-10-20 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010015451A1 (de) | 2010-04-17 | 2011-10-20 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte |
DE102010027071A1 (de) | 2010-07-13 | 2012-01-19 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtauftragstechnik |
US8282380B2 (en) | 2010-08-18 | 2012-10-09 | Makerbot Industries | Automated 3D build processes |
DE102010056346A1 (de) | 2010-12-29 | 2012-07-05 | Technische Universität München | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011007957A1 (de) | 2011-01-05 | 2012-07-05 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper |
DE202011003443U1 (de) | 2011-03-02 | 2011-12-23 | Bego Medical Gmbh | Vorrichtung zur generativen Herstellung dreidimensionaler Bauteile |
KR102021406B1 (ko) | 2011-06-01 | 2019-09-16 | 밤 분데스안슈탈트 퓌어 마테리알포르슝 운트-프뤼풍 | 성형체를 제조하기 위한 방법 및 장치 |
DE102011105688A1 (de) | 2011-06-22 | 2012-12-27 | Hüttenes-Albertus Chemische Werke GmbH | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011111498A1 (de) | 2011-08-31 | 2013-02-28 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE102011053205B4 (de) | 2011-09-01 | 2017-05-24 | Exone Gmbh | Verfahren zum herstellen eines bauteils in ablagerungstechnik |
DE102011119338A1 (de) | 2011-11-26 | 2013-05-29 | Voxeljet Technology Gmbh | System zum Herstellen dreidimensionaler Modelle |
DE102012004213A1 (de) | 2012-03-06 | 2013-09-12 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102012010272A1 (de) | 2012-05-25 | 2013-11-28 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen |
CN107856411B (zh) * | 2012-06-15 | 2019-10-01 | 海德堡印刷机械股份公司 | 用于将印刷液体间接施加到承印材料上的方法 |
DE102012012363A1 (de) | 2012-06-22 | 2013-12-24 | Voxeljet Technology Gmbh | Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter |
US9168697B2 (en) | 2012-08-16 | 2015-10-27 | Stratasys, Inc. | Additive manufacturing system with extended printing volume, and methods of use thereof |
US8888480B2 (en) | 2012-09-05 | 2014-11-18 | Aprecia Pharmaceuticals Company | Three-dimensional printing system and equipment assembly |
DE102012020000A1 (de) | 2012-10-12 | 2014-04-17 | Voxeljet Ag | 3D-Mehrstufenverfahren |
DE102013004940A1 (de) | 2012-10-15 | 2014-04-17 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf |
DE102012022859A1 (de) | 2012-11-25 | 2014-05-28 | Voxeljet Ag | Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen |
DE102012024266A1 (de) | 2012-12-12 | 2014-06-12 | Voxeljet Ag | Reinigungsvorrichtung zum Entfernen von an Bauteilen oder Modellen anhaftendem Pulver |
DE102013003303A1 (de) | 2013-02-28 | 2014-08-28 | FluidSolids AG | Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung |
US9403725B2 (en) | 2013-03-12 | 2016-08-02 | University Of Southern California | Inserting inhibitor to create part boundary isolation during 3D printing |
DE102013005855A1 (de) | 2013-04-08 | 2014-10-09 | Voxeljet Ag | Materialsystem und Verfahren zum Herstellen dreidimensionaler Modelle mit stabilisiertem Binder |
WO2015038072A1 (en) | 2013-09-12 | 2015-03-19 | Bio3D Technologies Pte Ltd | A 3d printer with a plurality of interchangeable printing modules and methods of using said printer |
DE102013018182A1 (de) | 2013-10-30 | 2015-04-30 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem |
DE102013019716A1 (de) | 2013-11-27 | 2015-05-28 | Voxeljet Ag | 3D-Druckverfahren mit Schlicker |
DE102013018031A1 (de) | 2013-12-02 | 2015-06-03 | Voxeljet Ag | Wechselbehälter mit verfahrbarer Seitenwand |
DE102013020491A1 (de) | 2013-12-11 | 2015-06-11 | Voxeljet Ag | 3D-Infiltrationsverfahren |
DE102013021091A1 (de) | 2013-12-18 | 2015-06-18 | Voxeljet Ag | 3D-Druckverfahren mit Schnelltrockenschritt |
US20150174824A1 (en) * | 2013-12-19 | 2015-06-25 | Karl Joseph Gifford | Systems and methods for 3D printing with multiple exchangeable printheads |
EP2886307A1 (de) | 2013-12-20 | 2015-06-24 | Voxeljet AG | Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen |
DE102013021891A1 (de) | 2013-12-23 | 2015-06-25 | Voxeljet Ag | Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren |
US10207363B2 (en) | 2014-03-24 | 2019-02-19 | James Eldon Craig | Additive manufacturing temperature controller/sensor apparatus and method of use thereof |
DE102014004692A1 (de) | 2014-03-31 | 2015-10-15 | Voxeljet Ag | Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung |
EP3145721B1 (de) * | 2014-05-20 | 2020-07-08 | Velox-Puredigital Ltd. | Systeme und verfahren zum drucken dreidimensionaler gegenstände |
DE102014007584A1 (de) | 2014-05-26 | 2015-11-26 | Voxeljet Ag | 3D-Umkehrdruckverfahren und Vorrichtung |
US10661501B2 (en) | 2014-06-20 | 2020-05-26 | Carbon, Inc. | Three-dimensional printing method using increased light intensity and apparatus therefor |
CN106573294B (zh) | 2014-08-02 | 2021-01-01 | 沃克斯艾捷特股份有限公司 | 方法和具体地用于冷铸造方法的铸造模具 |
DE102014011544A1 (de) | 2014-08-08 | 2016-02-11 | Voxeljet Ag | Druckkopf und seine Verwendung |
DE102014014895A1 (de) | 2014-10-13 | 2016-04-14 | Voxeljet Ag | Verfahren und Vorrichtung zur Herstellung von Bauteilen in einem Schichtbauverfahren |
DE102014018579A1 (de) | 2014-12-17 | 2016-06-23 | Voxeljet Ag | Verfahren zum Herstellen dreidimensionaler Formteile und Einstellen des Feuchtegehaltes im Baumaterial |
DE102015006533A1 (de) | 2014-12-22 | 2016-06-23 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik |
DE102015003372A1 (de) | 2015-03-17 | 2016-09-22 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater |
DE102015006363A1 (de) | 2015-05-20 | 2016-12-15 | Voxeljet Ag | Phenolharzverfahren |
US10786947B2 (en) | 2015-07-13 | 2020-09-29 | Stratasys Ltd. | Leveling apparatus for a 3D printer |
DE102015008860A1 (de) | 2015-07-14 | 2017-01-19 | Voxeljet Ag | Vorrichtung zum Justieren eines Druckkopfes |
CN114434791A (zh) | 2015-07-30 | 2022-05-06 | 惠普发展公司, 有限责任合伙企业 | 三维对象制造 |
DE102015011503A1 (de) | 2015-09-09 | 2017-03-09 | Voxeljet Ag | Verfahren zum Auftragen von Fluiden |
DE102015011790A1 (de) | 2015-09-16 | 2017-03-16 | Voxeljet Ag | Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile |
US10350824B2 (en) | 2015-09-16 | 2019-07-16 | Applied Materials, Inc. | Cantilever support of printhead module for additive manufacturing system |
EP3349969A4 (de) * | 2015-09-16 | 2019-05-22 | Applied Materials, Inc. | Anordnung von druckkopfmodulen für ein system zur generativen fertigung |
DE102015219866A1 (de) * | 2015-10-13 | 2017-04-13 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts |
DE102015014964A1 (de) | 2015-11-20 | 2017-05-24 | Voxeljet Ag | Verfahren und Vorrichtung für 3D-Druck mit engem Wellenlängenspektrum |
DE102015015353A1 (de) | 2015-12-01 | 2017-06-01 | Voxeljet Ag | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor |
DE102015016464B4 (de) | 2015-12-21 | 2024-04-25 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen |
DE102015122460A1 (de) * | 2015-12-21 | 2017-06-22 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zur Herstellung dreidimensionaler Objekte |
GB2548340A (en) | 2016-03-09 | 2017-09-20 | Digital Metal Ab | Manufacturing method and manufacturing apparatus |
DE102016002777A1 (de) | 2016-03-09 | 2017-09-14 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen |
DE102016110593A1 (de) * | 2016-06-08 | 2017-12-14 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte durch selektives Verfestigen eines schichtweise aufgebrachten Aufbaumaterials |
US11014286B2 (en) | 2016-10-19 | 2021-05-25 | Hewlett-Packard Development Company, L.P. | Three-dimensional object generation |
DE102016013610A1 (de) | 2016-11-15 | 2018-05-17 | Voxeljet Ag | Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken |
DE102017006860A1 (de) | 2017-07-21 | 2019-01-24 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler |
US9969122B1 (en) | 2017-11-07 | 2018-05-15 | Thermwood Corporation | Compression roller design and method for additive manufacturing |
EP3482912A1 (de) * | 2017-11-08 | 2019-05-15 | CL Schutzrechtsverwaltungs GmbH | Vorrichtung zur generativen fertigung dreidimensionaler objekte |
DE102018006473A1 (de) | 2018-08-16 | 2020-02-20 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung |
DE102019004122A1 (de) | 2019-06-13 | 2020-12-17 | Loramendi, S.Coop. | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik unter Verwendung einer Kernreinigungsstation |
DE102019004955A1 (de) | 2019-07-17 | 2021-01-21 | Voxeljet Ag | Verfahren zur Herstellung von 3D-Formteilen mit variablen Zieleigenschaften der gedruckten Bildpunkte |
DE102019007983A1 (de) | 2019-11-18 | 2021-05-20 | Voxeljet Ag | 3D-Druckvorrichtung mit vorteilhafter Bauraumgeometrie |
-
2019
- 2019-02-05 DE DE102019000796.4A patent/DE102019000796A1/de active Pending
-
2020
- 2020-02-04 EP EP20708408.8A patent/EP3921140A1/de active Pending
- 2020-02-04 US US17/428,243 patent/US11826958B2/en active Active
- 2020-02-04 WO PCT/DE2020/000016 patent/WO2020160724A1/de unknown
- 2020-02-04 CN CN202080012635.7A patent/CN113453871A/zh active Pending
-
2023
- 2023-10-19 US US18/381,732 patent/US12122099B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0431924B1 (de) | 1989-12-08 | 1996-01-31 | Massachusetts Institute Of Technology | Dreidimensionale Drucktechniken |
EP2214889A2 (de) | 2007-10-23 | 2010-08-11 | VoxelJet Technology GmbH | Vorrichtung zum schichtweisen aufbau von modellen |
Also Published As
Publication number | Publication date |
---|---|
EP3921140A1 (de) | 2021-12-15 |
US11826958B2 (en) | 2023-11-28 |
US20240042692A1 (en) | 2024-02-08 |
US12122099B2 (en) | 2024-10-22 |
CN113453871A (zh) | 2021-09-28 |
US20220288849A1 (en) | 2022-09-15 |
WO2020160724A1 (de) | 2020-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2391499B1 (de) | Rapid-prototyping-anlage aufweisend eine baubox | |
EP3349966A1 (de) | Vorrichtung und verfahren zum herstellen dreidimensionaler formteile | |
EP3068605B1 (de) | Vorrichtung zum schichtweisen herstellen eines dreidimensionalen objekts | |
DE102009056689B4 (de) | Beschichter für eine Rapid-Prototyping-Anlage | |
EP2552674B1 (de) | Vorrichtung zum herstellen dreidimensionaler modelle | |
WO2017152897A1 (de) | Verfahren und vorrichutng zum herstellen von 3d-formteilen mit baufeldwerkzeugen | |
DE102009036153A1 (de) | Vorrichtung zur generativen Herstellung dreidimensionaler Formteile | |
WO2016030405A1 (de) | 3d-drucker, 3d-druckeranordnung und generatives fertigungsverfahren | |
WO2013075696A1 (de) | System zum herstellen dreidimensionaler modelle | |
WO2002026420A1 (de) | Vorrichtung zum schichtweisen aufbau von modellen | |
DE102009056688A1 (de) | Rapid-Prototyping-Anlage mit einer Mischeinheit | |
US12122099B2 (en) | Exchangeable process unit | |
DE102009056695A1 (de) | Druckkopf-Reinigungsvorrichtung | |
WO2016083498A1 (de) | Vorrichtung zur ausbildung von volumenkörpern | |
DE102016119619A1 (de) | Dosierroboter sowie werkzeughalter dafür | |
AT518837B1 (de) | Vorrichtung zur Herstellung wenigstens eines dreidimensionalen Bauteils für die Bauindustrie | |
DE102009056694B4 (de) | Druckvorrichtung für eine Rapid-Prototyping-Anlage sowie Rapid-Prototyping-Anlage | |
DE102009056686B4 (de) | Baubereichsbegrenzung einer Rapid-Prototyping-Anlage | |
EP3986701A1 (de) | Anordnung einer 3d-druckvorrichtung | |
DE102022132006A1 (de) | Modularer 3D-Druckautomat | |
DE202020004011U1 (de) | Einrichtung zur Herstellung wenigstens eines Metallkörpers mittels 3D-Druck | |
DE102022134640A1 (de) | Druckkopfeinheit und Verfahren zum schichtweisen Aufbau von Formteilen | |
CH715621A1 (de) | Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Objekts. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R082 | Change of representative |
Representative=s name: HOEFER & PARTNER PATENTANWAELTE MBB, DE |