CN1234092C - Predictive modelling method application to computer-aided medical diagnosis - Google Patents
Predictive modelling method application to computer-aided medical diagnosis Download PDFInfo
- Publication number
- CN1234092C CN1234092C CNB031321410A CN03132141A CN1234092C CN 1234092 C CN1234092 C CN 1234092C CN B031321410 A CNB031321410 A CN B031321410A CN 03132141 A CN03132141 A CN 03132141A CN 1234092 C CN1234092 C CN 1234092C
- Authority
- CN
- China
- Prior art keywords
- neural network
- training data
- symptom
- data set
- rule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000003745 diagnosis Methods 0.000 title claims abstract description 21
- 238000013528 artificial neural network Methods 0.000 claims abstract description 35
- 208000024891 symptom Diseases 0.000 claims abstract description 31
- 238000012549 training Methods 0.000 claims abstract description 24
- 239000013598 vector Substances 0.000 claims abstract description 20
- 238000005516 engineering process Methods 0.000 claims abstract description 11
- 201000010099 disease Diseases 0.000 claims description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 2
- 239000012141 concentrate Substances 0.000 claims 1
- 230000010354 integration Effects 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract description 2
- 230000036760 body temperature Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
Images
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本发明公开了一种适用于计算机辅助医疗诊断的预测建模方法,包括通过医学症状检测设备获取待诊对象的症状形成症状向量,经预测模型处理,即可得到预测结果,该方法包括以下步骤:(1)若预测模型未训练好,则执行步骤(2),否则转到步骤(6);(2)利用历史病例产生初始训练数据集;(3)利用初始训练数据集训练出一个神经网络集成;(4)利用神经网络集成对初始训练数据集进行处理以产生规则训练数据集;(5)利用规则学习技术从规则训练数据集中产生规则模型;(6)利用规则模型进行预测并给出结果及解释。本发明的优点是为计算机辅助医疗诊断装置提供了一种高精度、高可理解性的预测建模方法。
The invention discloses a predictive modeling method suitable for computer-aided medical diagnosis, which includes obtaining symptom vectors of symptoms of objects to be treated through medical symptom detection equipment, and obtaining predictive results through predictive model processing. The method includes the following steps : (1) If the prediction model is not trained well, then execute step (2), otherwise go to step (6); (2) Use the historical cases to generate the initial training data set; (3) Use the initial training data set to train a neural network Network integration; (4) use neural network integration to process the initial training data set to generate a rule training data set; (5) use rule learning technology to generate a rule model from the rule training data set; (6) use the rule model to predict and give Results and explanations. The invention has the advantage of providing a high precision and high comprehensibility predictive modeling method for a computer aided medical diagnosis device.
Description
一、技术领域1. Technical field
本发明涉及一种计算机辅助医疗诊断装置,特别涉及一种利用神经网络集成技术和规则学习技术的高精度、高可理解性预测建模方法。The invention relates to a computer-aided medical diagnosis device, in particular to a high-precision and high-understandability predictive modeling method using neural network integration technology and rule learning technology.
二、背景技术2. Background technology
随着计算机技术的发展,计算机辅助医疗诊断装置由于不受疲劳、情绪等因素的影响,已成为重要的辅助诊断手段。计算机辅助医疗诊断装置通常是利用一些预测建模方法对历史病例进行分析,从而建立预测模型,然后再用该预测模型来对新病例进行诊断,其结果提交给医学专家进行进一步的分析确诊,从而在一定程度上减轻医学专家的工作负担。因此,预测建模方法是计算机辅助医疗诊断装置的关键。一方面,由于医疗诊断务求精确,因此适用的预测建模方法必须具有很高的精度;另一方面,由于医疗诊断事关被诊者的身体健康和生命安全,因此适用的预测建模方法必须具有很高的可理解性,即在作出诊断结论之后还需要能提供对诊断的解释,这不仅是被诊者及其家属的需要,还是医学专家检查诊断过程的需要。然而,现有技术如神经网络等虽然具有高精度,但不具有高可理解性;而规则学习等虽然具有高可理解性,但却不具有高精度,这就对计算机辅助医疗诊断装置的性能造成了不利影响。With the development of computer technology, computer-aided medical diagnosis equipment has become an important auxiliary diagnosis method because it is not affected by factors such as fatigue and emotion. Computer-aided medical diagnosis devices usually use some predictive modeling methods to analyze historical cases to establish a predictive model, and then use the predictive model to diagnose new cases, and the results are submitted to medical experts for further analysis and diagnosis. Reduce the workload of medical experts to a certain extent. Therefore, predictive modeling methods are the key to computer-aided medical diagnosis devices. On the one hand, due to the precision of medical diagnosis, the applicable predictive modeling method must have high precision; It has high comprehensibility, that is, it is necessary to provide an explanation for the diagnosis after the diagnosis conclusion is made. This is not only the need of the patient and his family members, but also the need of medical experts to check the diagnosis process. However, although existing technologies such as neural networks have high precision, they do not have high comprehensibility; and rule learning, etc., have high comprehensibility, but do not have high precision, which affects the performance of computer-aided medical diagnosis devices. had an adverse effect.
三、发明内容3. Contents of the invention
本发明的目的是针对现有技术难以产生适用于计算机辅助医疗诊断装置的高精度、高可理解性预测模型的问题,提供一种高精度、高可理解性的预测建模方法,以辅助提高计算机辅助医疗诊断装置的性能。The purpose of the present invention is to provide a high-precision, high-understandability predictive modeling method to assist in improving the Performance of computer-aided medical diagnostic devices.
为实现本发明所述目的,本发明提供一种利用机器学习中的神经网络集成技术和规则学习技术进行预测建模的方法,该方法包括以下步骤:(1)若预测模型未训练好,则执行步骤2,否则转到步骤6;(2)利用历史病例产生初始训练数据集;(3)利用初始训练数据集训练出一个神经网络集成;(4)利用神经网络集成对初始训练数据集进行处理以产生规则训练数据集;(5)利用规则学习技术从规则训练数据集中产生规则模型;(6)利用规则模型进行预测并给出结果及解释;(7)结束。In order to achieve the stated purpose of the present invention, the present invention provides a method for predictive modeling using neural network integration technology and rule learning technology in machine learning, the method comprising the following steps: (1) if the predictive model is not well trained, then Execute step 2, otherwise go to step 6; (2) use historical cases to generate an initial training data set; (3) use the initial training data set to train a neural network ensemble; (4) use the neural network ensemble to perform an initial training data set Process to generate a rule training data set; (5) use rule learning technology to generate a rule model from the rule training data set; (6) use the rule model to predict and give results and explanations; (7) end.
本发明的优点是为计算机辅助医疗诊断装置提供了一种高精度、高可理解性的预测建模方法,以辅助提高计算机辅助医疗诊断装置的性能。The advantage of the present invention is that it provides a high-precision and high-understandability predictive modeling method for computer-aided medical diagnosis devices, so as to help improve the performance of computer-aided medical diagnosis devices.
下面将结合附图对最佳实施例进行详细说明。The preferred embodiment will be described in detail below with reference to the accompanying drawings.
四、附图说明4. Description of drawings
图1是计算机辅助医疗诊断装置的工作流程图。Fig. 1 is a working flow chart of the computer-aided medical diagnosis device.
图2是本发明方法的流程图。Figure 2 is a flow chart of the method of the present invention.
图3是用神经网络集成产生规则训练数据集的流程图。Fig. 3 is a flow chart of generating regular training data sets with neural network ensemble.
五、具体实施方式5. Specific implementation
如图1所示,计算机辅助医疗诊断装置利用医学症状检测设备例如体温、血压测量设备等获取待诊对象的症状例如体温、血压等,然后将症状进行量化以得到症状向量,例如[t1,t2,…,tn],其中t1表示第一个症状值,t2表示第二个症状值,依此类推。症状向量交给预测模型处理,即可得到预测结果及解释的数字化表示形式,经过文字化处理后,就产生了最后提交给用户的诊断结论及解释。As shown in Figure 1, the computer-aided medical diagnosis device uses medical symptom detection equipment such as body temperature, blood pressure measurement equipment, etc. to obtain the symptoms of the subject to be diagnosed, such as body temperature, blood pressure, etc., and then quantifies the symptoms to obtain a symptom vector, such as [t 1 , t2 ,..., tn ], where t1 represents the first symptom value, t2 represents the second symptom value, and so on. The symptom vector is handed over to the prediction model for processing, and the digital representation of the prediction result and explanation can be obtained. After text processing, the final diagnosis conclusion and explanation submitted to the user are produced.
本发明的方法如图2所示。步骤10是初始动作。步骤11判断预测模型是否已经训练好,若已训练好则可处理诊断任务,执行步骤16;否则需进行训练,执行步骤12。步骤12利用历史病例产生初始训练数据集,为叙述方便,称初始训练数据集为L0。L0中包含了每一历史病例所对应的症状向量及其类别,即诊断出的具体疾病类别(“没有疾病”也作为一种类别)。步骤13利用统计学中常用的可重复取样技术从L0中产生N个数据集,并用这N个数据集中的每一个训练出一个神经网络,这些神经网络就组成了神经网络集成。N是一个用户预设的整数值例如9,它确定了神经网络集成所包含的神经网络个数。这里使用的神经网络可以是任何类型的神经网络,只要可以执行预测任务即可,例如可以使用神经网络教科书中介绍的多层前馈BP网络。步骤14利用神经网络集成产生用于建立规则模型的规则训练数据集L1,该步骤将在后面的部分结合图3进行具体介绍。The method of the present invention is shown in FIG. 2 .
图2的步骤15利用L1训练出规则模型。规则模型是一个出很多条IF-Then或类似形式的规则组成的预测模型,它由某种规则学习方法从某个训练数据集(这里就是L1)中训练出来。这里可以使用任何类型的规则学习方法,只要其产生的模型可以执行预测任务即可,例如可以使用机器学习教科书中介绍的RIPPER、C4.5 Rule等。步骤16接收待诊断的症状向量。步骤17将症状向量提交给训练好的规则模型进行预测。步骤18给出规则模型产生的预测结果及预测过程中使用的规则,这些规则就组成了对该预测结果的解释。步骤19是结束状态。
由于本发明的方法建立的预测模型是规则模型,因此其具有高理解性;又由于该方法利用了具有高精度的神经网络集成来产生建立规则模型的训练数据集,这可以视为对初始数据集进行了去噪、增强等良性处理,因此建立的规则模型也具有高精度。Because the predictive model that the method of the present invention establishes is a regular model, it has high comprehension; and because the method utilizes the neural network integration with high precision to produce the training data set that establishes the regular model, this can be regarded as the initial data The set has undergone benign processing such as denoising and enhancement, so the established rule model is also of high precision.
图3详细说明了图2的步骤14,其作用是利用神经网络集成来产生用于建立规则模型的规则训练数据集L1。图3的步骤140是起始状态。步骤141将L1置为空集。步骤142从图2的步骤12产生的初始训练数据集L0中获取一个症状向量及其类别。步骤143为每个类别分别设置一个计数器,这些计数器用来记录有多少个神经网络给出的预测结果是该类别,这里的各类别分别对应了诊断出的具体疾病类别(“没有疾病”也作为一种类别)。步骤144将所有计数器清零。步骤145将控制参数k置为1,k是一个大于等于1但小于等于图2中步骤13的N的一个整数值,它用来指示当前考察的神经网络的序号。步骤146取得神经网络集成中第k个神经网络对待诊症状向量给出的预测结果,为叙述方便,称该结果为Fk。步骤147将Fk所对应的类别的计数器加一。步骤148将k加一。步骤149判断k是否小于等于神经网络集成中神经网络的个数,即图2中步骤13的N,如果是则表明还有其他神经网络尚未考察,转到步骤146;否则就执行步骤150。FIG. 3 illustrates
图3的步骤150对所有计数器中的值进行比较,找出值最大的计数器,并将其对应的类别作为当前症状向量的新类别;如果有多个计数器中的值均为最大值,则以这些计数器对应的类别中出现机会最大的疾病种类作为当前症状向量的新类别。步骤151将当前症状向量及其新类别加入L1。步骤152判断L0中是否还有未考察的症状向量,如果有则转到步骤142;否则就进入步骤153,即图3的结束状态。Step 150 of Fig. 3 compares the values in all counters, finds the counter with the largest value, and uses its corresponding category as the new category of the current symptom vector; if the values in multiple counters are all maximum values, then use The disease category with the greatest chance of occurrence in the category corresponding to these counters is used as a new category of the current symptom vector. Step 151 adds the current symptom vector and its new category to L 1 . Step 152 judges whether there are unexamined symptom vectors in L0, if so, go to step 142; otherwise, go to step 153, which is the end state of FIG. 3 .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031321410A CN1234092C (en) | 2003-07-01 | 2003-07-01 | Predictive modelling method application to computer-aided medical diagnosis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031321410A CN1234092C (en) | 2003-07-01 | 2003-07-01 | Predictive modelling method application to computer-aided medical diagnosis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1477581A CN1477581A (en) | 2004-02-25 |
CN1234092C true CN1234092C (en) | 2005-12-28 |
Family
ID=34154002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031321410A Expired - Fee Related CN1234092C (en) | 2003-07-01 | 2003-07-01 | Predictive modelling method application to computer-aided medical diagnosis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1234092C (en) |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935060A (en) | 1996-07-12 | 1999-08-10 | First Opinion Corporation | Computerized medical diagnostic and treatment advice system including list based processing |
US6206829B1 (en) | 1996-07-12 | 2001-03-27 | First Opinion Corporation | Computerized medical diagnostic and treatment advice system including network access |
USRE43433E1 (en) | 1993-12-29 | 2012-05-29 | Clinical Decision Support, Llc | Computerized medical diagnostic and treatment advice system |
US5660176A (en) | 1993-12-29 | 1997-08-26 | First Opinion Corporation | Computerized medical diagnostic and treatment advice system |
JP2002512712A (en) | 1997-03-13 | 2002-04-23 | ファースト オピニオン コーポレイション | Disease management system |
RU2286711C2 (en) | 2000-02-14 | 2006-11-10 | Фёрст Опинион Корпорэйшн | System and method for automatic diagnostics |
US7780595B2 (en) | 2003-05-15 | 2010-08-24 | Clinical Decision Support, Llc | Panel diagnostic method and system |
US9081879B2 (en) | 2004-10-22 | 2015-07-14 | Clinical Decision Support, Llc | Matrix interface for medical diagnostic and treatment advice system and method |
CN106384009A (en) * | 2016-09-28 | 2017-02-08 | 湖南老码信息科技有限责任公司 | Incremental neural network model-based HIV prediction method and prediction system |
CN106407693A (en) * | 2016-09-28 | 2017-02-15 | 湖南老码信息科技有限责任公司 | Hepatitis B prediction method and prediction system based on incremental neural network model |
CN106339605A (en) * | 2016-09-28 | 2017-01-18 | 湖南老码信息科技有限责任公司 | Colonitis prediction method and colonitis prediction system based on incremental nerve network model |
CN106446554A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Seborrheic dermatitis prediction method and prediction system based on incremental neural network model |
CN106446549A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Prediction method and prediction system for dyspepsia based on incremental type neural network model |
CN106407699A (en) * | 2016-09-28 | 2017-02-15 | 湖南老码信息科技有限责任公司 | Coronary heart disease prediction method and prediction system based on incremental neural network model |
CN106407696A (en) * | 2016-09-28 | 2017-02-15 | 湖南老码信息科技有限责任公司 | Prickly heat prediction method and prediction system based on incremental neural network model |
CN106407700A (en) * | 2016-09-28 | 2017-02-15 | 湖南老码信息科技有限责任公司 | Hyperthyroidism prediction method and prediction system based on incremental neural network model |
CN106407694A (en) * | 2016-09-28 | 2017-02-15 | 湖南老码信息科技有限责任公司 | Neurasthenia prediction method and prediction system based on incremental neural network model |
CN106384013A (en) * | 2016-09-28 | 2017-02-08 | 湖南老码信息科技有限责任公司 | Incremental neural network model-based type-II diabetes prediction method and prediction system |
CN106384011A (en) * | 2016-09-28 | 2017-02-08 | 湖南老码信息科技有限责任公司 | Incremental neural network model-based mite dermatitis prediction method and prediction system |
CN106384012A (en) * | 2016-09-28 | 2017-02-08 | 湖南老码信息科技有限责任公司 | Incremental neural network model-based allergic dermatitis prediction method and prediction system |
CN106407695A (en) * | 2016-09-28 | 2017-02-15 | 湖南老码信息科技有限责任公司 | Anxiety disorder prediction method and prediction system based on incremental neural network model |
CN106250713A (en) * | 2016-09-28 | 2016-12-21 | 湖南老码信息科技有限责任公司 | A kind of vesical calculus Forecasting Methodology based on increment type neural network model and prognoses system |
CN106446552A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Prediction method and prediction system for sleep disorder based on incremental neural network model |
CN106372442A (en) * | 2016-09-28 | 2017-02-01 | 湖南老码信息科技有限责任公司 | Dental ulcer prediction method and system based on incremental neural network model |
CN106650206A (en) * | 2016-09-28 | 2017-05-10 | 湖南老码信息科技有限责任公司 | Prediction method of high blood pressure based on incremental neural network model and prediction system |
CN106446560A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Hyperlipidemia prediction method and prediction system based on incremental neural network model |
CN106339606A (en) * | 2016-09-28 | 2017-01-18 | 湖南老码信息科技有限责任公司 | Alcohol liver prediction method based on incremental nerve network model and alcohol liver prediction system based on incremental nerve network model |
CN106446561A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Incremental neural network model based urticaria prediction method and system |
CN106407697A (en) * | 2016-09-28 | 2017-02-15 | 湖南老码信息科技有限责任公司 | Chronic fatigue syndrome prediction method and prediction system based on incremental neural network model |
CN106384007A (en) * | 2016-09-28 | 2017-02-08 | 湖南老码信息科技有限责任公司 | Incremental neural network model-based hemorrhoids prediction method and prediction system |
CN106295238A (en) * | 2016-09-28 | 2017-01-04 | 湖南老码信息科技有限责任公司 | A kind of hypertensive nephropathy Forecasting Methodology based on increment type neural network model and prognoses system |
CN106384008A (en) * | 2016-09-28 | 2017-02-08 | 湖南老码信息科技有限责任公司 | Incremental neural network model-based allergic rhinitis prediction method and prediction system |
CN106355035A (en) * | 2016-09-28 | 2017-01-25 | 湖南老码信息科技有限责任公司 | Pneumonia prediction method and prediction system based on incremental neural network model |
CN106250712A (en) * | 2016-09-28 | 2016-12-21 | 湖南老码信息科技有限责任公司 | A kind of ureteral calculus Forecasting Methodology based on increment type neural network model and prognoses system |
CN106446553A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Stomach illness prediction method and prediction system based on incremental neural network model |
CN106250715A (en) * | 2016-09-28 | 2016-12-21 | 湖南老码信息科技有限责任公司 | A kind of chronic pharyngolaryngitis Forecasting Methodology based on increment type neural network model and prognoses system |
CN106446556A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Prediction method and prediction system for epifolliculitis based on incremental type neural network model |
CN106250714A (en) * | 2016-09-28 | 2016-12-21 | 湖南老码信息科技有限责任公司 | A kind of renal calculus Forecasting Methodology based on increment type neural network model and prognoses system |
CN106339607A (en) * | 2016-09-28 | 2017-01-18 | 湖南老码信息科技有限责任公司 | Rheumatism prediction method and rheumatism prediction system based on incremental nerve network model |
CN106384005A (en) * | 2016-09-28 | 2017-02-08 | 湖南老码信息科技有限责任公司 | Incremental neural network model-based depression prediction method and prediction system |
CN106355034A (en) * | 2016-09-28 | 2017-01-25 | 湖南老码信息科技有限责任公司 | Sub-health prediction method and prediction system based on incremental neural network model |
CN106446557A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Prediction method and prediction system for hepatitis A based on incremental type neural network model |
CN106446558A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Diabetes insipidus prediction method based on incremental neural network model and prediction system |
CN106384006A (en) * | 2016-09-28 | 2017-02-08 | 湖南老码信息科技有限责任公司 | Incremental neural network model-based hepatitis C prediction method and prediction system |
CN106250716A (en) * | 2016-09-28 | 2016-12-21 | 湖南老码信息科技有限责任公司 | A kind of neurodermatitis Forecasting Methodology based on increment type neural network model and prognoses system |
CN106295239A (en) * | 2016-09-28 | 2017-01-04 | 湖南老码信息科技有限责任公司 | A kind of fatty liver Forecasting Methodology based on increment type neural network model and prognoses system |
CN106446551A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Incremental neural network model based chronic gastroenteritis prediction method and system |
CN106361288A (en) * | 2016-09-28 | 2017-02-01 | 湖南老码信息科技有限责任公司 | Summer dermatitis prediction method and system based on incremental neural network model |
CN106446562A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Gastric concretion prediction method and prediction system based on incremental neural network model |
CN106407698A (en) * | 2016-09-28 | 2017-02-15 | 湖南老码信息科技有限责任公司 | Vegetative nervous disorder prediction method and prediction system based on incremental neural network model |
CN106485065A (en) * | 2016-09-28 | 2017-03-08 | 湖南老码信息科技有限责任公司 | A kind of chronic bronchitis Forecasting Methodology based on increment type neural network model and forecasting system |
CN106446550A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Cold prediction method and system based on incremental neutral network model |
CN106202986A (en) * | 2016-09-28 | 2016-12-07 | 湖南老码信息科技有限责任公司 | A kind of tonsillitis Forecasting Methodology based on increment type neural network model and prognoses system |
CN106446563A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Incremental neural network model based constipation prediction method and system |
CN106446559A (en) * | 2016-09-28 | 2017-02-22 | 湖南老码信息科技有限责任公司 | Prediction method and prediction system for viral dermatitis based on incremental type neural network model |
CN106777966B (en) * | 2016-12-13 | 2020-02-07 | 天津迈沃医药技术股份有限公司 | Data interactive training method and system based on medical information platform |
CN106951917A (en) * | 2017-02-28 | 2017-07-14 | 思派(北京)网络科技有限公司 | The intelligent classification system and method for a kind of lymthoma histological type |
CN106934223A (en) * | 2017-02-28 | 2017-07-07 | 思派(北京)网络科技有限公司 | A kind of blood disease intelligent classification system and method based on big data |
CN107103182A (en) * | 2017-03-28 | 2017-08-29 | 南京医科大学 | A kind of heart disease Warning System and method based on deep learning algorithm |
CN107403061A (en) * | 2017-07-07 | 2017-11-28 | 中北大学 | User's medical assessment model building method and medical assessment server |
CN107705828A (en) * | 2017-09-20 | 2018-02-16 | 广西金域医学检验所有限公司 | Prejudge detection and processing method and processing device, terminal device, the storage medium of rule |
CN110164544A (en) * | 2018-02-11 | 2019-08-23 | 深圳欧德蒙科技有限公司 | A kind of method, apparatus and terminal device of illness information processing |
CN110009007A (en) * | 2019-03-18 | 2019-07-12 | 武汉大学 | An artificial intelligence surgical assistance system for multiple types of diseases |
CN115668393A (en) * | 2020-06-03 | 2023-01-31 | 富士通株式会社 | Diagnosis support program, device, and method |
CN113707326B (en) * | 2021-10-27 | 2022-03-22 | 深圳迈瑞软件技术有限公司 | Clinical early warning method, early warning system and storage medium |
-
2003
- 2003-07-01 CN CNB031321410A patent/CN1234092C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1477581A (en) | 2004-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1234092C (en) | Predictive modelling method application to computer-aided medical diagnosis | |
JP2821189B2 (en) | Learning type decision support system | |
EP0468229A2 (en) | A neural network with expert system functionality | |
CN107833605A (en) | A kind of coding method, device, server and the system of hospital's medical record information | |
Cheng et al. | Using neural networks to detect the bivariate process variance shifts pattern | |
CN107729241B (en) | An Evolutionary Generation Method for Software Variation Testing Data Based on Variant Grouping | |
CN110310740A (en) | Method and system for predicting medical re-seeking information based on cross-attention neural network | |
CN113012803B (en) | Computer device, system, readable storage medium and medical data analysis method | |
Wang et al. | Spatiotemporal non-negative projected convolutional network with bidirectional NMF and 3DCNN for remaining useful life estimation of bearings | |
Sheth et al. | Evolutionary computing for clinical dataset classification using a novel feature selection algorithm | |
Jemai et al. | FBWN: An architecture of fast beta wavelet networks for image classification | |
Putluri et al. | New exon prediction techniques using adaptive signal processing algorithms for genomic analysis | |
Sajedi et al. | Filter banks and hybrid deep learning architectures for performance-based seismic assessments of bridges | |
Bourgani et al. | A study on fuzzy cognitive map structures for medical decision support systems | |
Joseph et al. | A programmable approach to model compression | |
Liu et al. | Evolving deep convolutional neural networks by IP-based marine predator algorithm for COVID-19 diagnosis using chest CT scans | |
CN118430820B (en) | A method for constructing a depression risk prediction model | |
CN118507048A (en) | A method for cancer risk prediction based on deep learning | |
CN111081325B (en) | Medical data processing method and device | |
CN113158134A (en) | Method and device for constructing non-invasive load identification model and storage medium | |
CN118504614A (en) | Multichannel short-term power load prediction method and device based on VMD data decomposition | |
Naseem et al. | Reducing knowledge noise for improved semantic analysis in biomedical natural language processing applications | |
CN113392958B (en) | Parameter optimization and application method and system of fuzzy neural network FNN | |
CN1760881A (en) | Modeling method of forecast in device of computer aided diagnosis through using not diagnosed cases | |
Nayak et al. | Cognitive computing in software evaluation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20051228 |