Nothing Special   »   [go: up one dir, main page]

CN113582250B - 层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法 - Google Patents

层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法 Download PDF

Info

Publication number
CN113582250B
CN113582250B CN202110852463.0A CN202110852463A CN113582250B CN 113582250 B CN113582250 B CN 113582250B CN 202110852463 A CN202110852463 A CN 202110852463A CN 113582250 B CN113582250 B CN 113582250B
Authority
CN
China
Prior art keywords
nitrogen
composite material
layered structure
graphene composite
containing graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110852463.0A
Other languages
English (en)
Other versions
CN113582250A (zh
Inventor
李岩
孙志鹏
孙蕾
李小飞
田雪
丁春瑞
丁煜玮
祁来芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute
Original Assignee
Guangdong University of Technology
Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology, Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute filed Critical Guangdong University of Technology
Priority to CN202110852463.0A priority Critical patent/CN113582250B/zh
Publication of CN113582250A publication Critical patent/CN113582250A/zh
Application granted granted Critical
Publication of CN113582250B publication Critical patent/CN113582250B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种层状结构钴酸镍‑含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法,属于超级电容器材料技术领域,层状结构钴酸镍‑含氮石墨烯复合材料,其原料包括:Co(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O、含氮还原氧化石墨烯、CH3COOH。本发明固相反应方法简单可靠、成本低廉,便于大规模生产,层状结构钴酸镍‑含氮石墨烯复合材料含有丰富的孔,具有多层分级核壳结构,粒径大小均匀,具有高导电性和优异的稳定电化学活性,能量密度高。

Description

层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超 级电容器中的应用与测试方法
技术领域
本发明属于超级电容器材料技术领域,涉及一种层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法。
背景技术
为了研究超级电容器的高电化学性能电极材料,人们对碳纳米管、石墨烯、导电聚合物、过渡金属氧化物和过渡金属硫等多种电极材料进行了广泛的研究。在众多碳质材料中,石墨烯因其独特的结构、非凡的表面积、优异的易加工性和导电性而成为分散活性金属纳米材料的理想基质。
然而目前的研究成本高、收率低,电容器的能量密度低,限制了其工业应用。开发一种简单、可伸缩、经济有效的制造方法仍然是一个关键的挑战。
发明内容
本发明的目的就在于为了解决上述问题而提供一种层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用。
根据本发明第一方面实施例的层状结构钴酸镍-含氮石墨烯复合材料的制备方法,包括以下步骤:
S1、将0.03mmolCo(CH3COO)2·4H2O、0.06mmolNi(CH3COO)2·4H2O、0.04g含氮还原氧化石墨烯在玛瑙砂浆中混合并研磨;
S2、混合研磨后加入0.15gCH3COOH,继续研磨,收集所得粉末,用去离子水洗涤;
S3、在真空烘箱中保存8h;
S4、收集到的沉淀物在350℃的空气中进一步退火,最后样品标记为NiCo2O4-N/rGO-1。
优选的,步骤S1中混合研磨时间为10min。
优选的,步骤S2中混合研磨时间为1h。
优选的,步骤S3中真空烘箱温度保持80℃。
优选的,步骤S4中退火时间为2h。
根据本发明第二方面实施例的层状结构钴酸镍-含氮石墨烯复合材料在超级电容器中的应用,所述的层状结构钴酸镍-含氮石墨烯复合材料由上述制备方法制备获得。
根据本发明第三方面实施例的层状结构钴酸镍-含氮石墨烯复合材料在超级电容器中的测试方法,包括如下步骤:
步骤一、室温条件下,将一片尺寸为1*4cm2的泡沫镍放入烧杯,依次用丙酮、0.5M的盐酸、蒸馏水、无水乙醇超声处理20分钟后,烘干后称量备用;
步骤二、将钴酸镍-含氮石墨烯复合材料、超导碳黑和聚偏氟乙烯置于研钵中反复研磨0.5h,滴加2滴N-甲基吡咯烷酮溶液再次研磨后将浆料均匀的涂抹在清洗烘干后的泡沫镍上;
步骤三、在60℃真空环境中干燥处理6h,得到正极工作电极并称量之后,用6M KOH作为电解液,铂电极作为对电极,饱和甘汞电极做为参比电极进行三电极的电化学测试。
优选的,钴酸镍-含氮石墨烯复合材料、超导碳黑和聚偏氟乙烯按重量百分比计分别为80%、10%、10%。
本发明的有益效果是:
本发明固相反应方法简单可靠、成本低廉,便于大规模生产;
层状结构钴酸镍-含氮石墨烯复合材料含有丰富的孔,具有多层分级核壳结构,粒径大小均匀,具有高导电性和优异的稳定电化学活性,能量密度高。
附图说明
图1为本发明的NiCo2O4-N/rGO-1复合材料的扫描电镜照片;
图2为本发明的NiCo2O4-N/rGO-1复合材料的透射电镜照片;
图3为本发明的NiCo2O4-N/rGO-1复合材料的X射线能谱图;
图4为本发明的对比材料的循环伏安曲线图;
图5为本发明的对比材料的充放电曲线图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
一种层状结构钴酸镍-含氮石墨烯复合材料,按重量份计包括:
0.03mmolCo(CH3COO)2·4H2O;
0.06mmolNi(CH3COO)2·4H2O;
0.04g含氮还原氧化石墨烯;
0.15gCH3COOH。
一种层状结构钴酸镍-含氮石墨烯复合材料的制备方法,包括以下步骤:
S1、将0.03mmolCo(CH3COO)2·4H2O、0.06mmolNi(CH3COO)2·4H2O、0.04g含氮还原氧化石墨烯在玛瑙砂浆中混合并研磨,混合研磨时间为10min;
S2、混合研磨后加入0.15gCH3COOH,继续研磨,混合研磨时间为1h,收集所得粉末,用去离子水洗涤;
S3、在真空烘箱中保存8h,真空烘箱温度保持80℃;
S4、收集到的沉淀物在350℃的空气中进一步退火,退火时间为2h,最后样品标记为NiCo2O4-N/rGO-1;
S5、为进行比较,以0.06mmolCo(CH3COO)2·4H2O、0.12mmolNi(CH3COO)2·4H2O和0.04gN-rGO为前驱体溶胶制备NiCo2O4-N/rGO-2样品,其他条件保持不变。
一种层状结构钴酸镍-含氮石墨烯复合材料在超级电容器中的应用:
室温条件下,将一片泡沫镍放入烧杯,泡沫镍尺寸为1*4cm2,依次用丙酮、0.5M的盐酸、蒸馏水、无水乙醇超声20分钟后,烘干后称量备用,钴酸镍-含氮石墨烯复合材料、超导碳黑和聚偏氟乙烯按重量百分比计分别为80%、10%、10%;
将钴酸镍-含氮石墨烯复合材料、超导碳黑和聚偏氟乙烯置于研钵中反复研磨0.5h,滴加2滴N-甲基吡咯烷酮溶液再次研磨后将浆料均匀的涂抹在清洗烘干后的泡沫镍上;
真空干燥6h,保持温度为60℃,得到正极工作电极并称量之后,用6MKOH作为电解液,铂电极作为对电极,饱和甘汞电极做为参比电极进行三电极的电化学测试。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (1)

1.一种层状结构钴酸镍-含氮石墨烯复合材料的制备方法,其特征在于,包括以下步骤:
S1、将0.03mmolCo(CH3COO)2·4H2O、0.06mmolNi(CH3COO)2·4H2O、0.04g含氮还原氧化石墨烯在玛瑙砂浆中混合并研磨,混合研磨时间为10min;
S2、混合研磨后加入0.15gCH3COOH,继续研磨,混合研磨时间为1h,收集所得粉末,用去离子水洗涤;
S3、在真空烘箱中保存8h,真空烘箱温度保持80℃;
S4、收集到的沉淀物在350℃的空气中进一步退火,退火时间为2h,获得NiCo2O4-N/rGO-1。
CN202110852463.0A 2021-07-27 2021-07-27 层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法 Active CN113582250B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110852463.0A CN113582250B (zh) 2021-07-27 2021-07-27 层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110852463.0A CN113582250B (zh) 2021-07-27 2021-07-27 层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法

Publications (2)

Publication Number Publication Date
CN113582250A CN113582250A (zh) 2021-11-02
CN113582250B true CN113582250B (zh) 2023-01-31

Family

ID=78250698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110852463.0A Active CN113582250B (zh) 2021-07-27 2021-07-27 层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法

Country Status (1)

Country Link
CN (1) CN113582250B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891016A (zh) * 2012-10-19 2013-01-23 常州大学 一种钴酸镍石墨烯复合材料及其用途和制备方法
CN103117389A (zh) * 2013-01-25 2013-05-22 浙江大学 镍钴氧化物/石墨烯复合材料及其制备方法和应用
CN106531457A (zh) * 2016-08-23 2017-03-22 宁波中车新能源科技有限公司 一种超级电容器用NiCo2O4/碳纳米管复合电极材料
CN109686585A (zh) * 2018-12-21 2019-04-26 山东大学 一种基于NiCo-LDH/rGO和rGO的水系非对称超级电容器及其制备方法
CN110189922A (zh) * 2019-06-07 2019-08-30 北京化工大学 蜂巢状纳米片阵列钴酸镍/rGO/泡沫镍及制备方法
CN110189921A (zh) * 2019-05-31 2019-08-30 上海应用技术大学 一种镍钴氧化物/氮掺杂石墨烯复合材料的制备方法
CN111048325A (zh) * 2019-12-03 2020-04-21 太原理工大学 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101683391B1 (ko) * 2015-08-17 2016-12-08 영남대학교 산학협력단 고성능 슈퍼커패시터 전극소재용 3차원 니켈폼/그래핀/니켈코발트산화물 복합체 및 이의 제조방법
TWI724715B (zh) * 2019-12-27 2021-04-11 財團法人工業技術研究院 導離子材料、包含其之核殼結構以及所形成的電極與金屬離子電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891016A (zh) * 2012-10-19 2013-01-23 常州大学 一种钴酸镍石墨烯复合材料及其用途和制备方法
CN103117389A (zh) * 2013-01-25 2013-05-22 浙江大学 镍钴氧化物/石墨烯复合材料及其制备方法和应用
CN106531457A (zh) * 2016-08-23 2017-03-22 宁波中车新能源科技有限公司 一种超级电容器用NiCo2O4/碳纳米管复合电极材料
CN109686585A (zh) * 2018-12-21 2019-04-26 山东大学 一种基于NiCo-LDH/rGO和rGO的水系非对称超级电容器及其制备方法
CN110189921A (zh) * 2019-05-31 2019-08-30 上海应用技术大学 一种镍钴氧化物/氮掺杂石墨烯复合材料的制备方法
CN110189922A (zh) * 2019-06-07 2019-08-30 北京化工大学 蜂巢状纳米片阵列钴酸镍/rGO/泡沫镍及制备方法
CN111048325A (zh) * 2019-12-03 2020-04-21 太原理工大学 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法

Also Published As

Publication number Publication date
CN113582250A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
Chen et al. Facile growth of nickel foam-supported MnCo2O4. 5 porous nanowires as binder-free electrodes for high-performance hybrid supercapacitors
Wang et al. A simple and universal method for preparing N, S co-doped biomass derived carbon with superior performance in supercapacitors
Kundu et al. Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors
RU2672675C2 (ru) Материал на вольфрамовой основе, супераккумулятор и суперконденсатор
CN108597893B (zh) 一种基于泡沫镍上的超级电容器复合电极材料的制备方法
Ye et al. In-situ growth of Se-doped NiTe on nickel foam as positive electrode material for high-performance asymmetric supercapacitor
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
Peng et al. Binary tungsten-molybdenum oxides nanoneedle arrays as an advanced negative electrode material for high performance asymmetric supercapacitor
CN113511647A (zh) 一种镍基金属有机框架衍生的二硒化镍/还原氧化石墨烯复合材料的制备方法
Liu et al. Preparation of stable composite porous nanofibers carried SnOx-ZnO as a flexible supercapacitor material with excellent electrochemical and cycling performance
Chen et al. High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower
Liang et al. Hemp straw carbon and Ni/NiO embedded structure composites as anode materials for lithium ion batteries
CN108492996A (zh) 一种氟、氮共掺杂的类石墨烯片层材料的制备方法
Kong et al. Three-dimensional network structured MnCo2S4/NiCo2S4 electrode materials assembled with two-dimensional nanosheets as basic building units for asymmetric supercapacitor applications
Zhao et al. Fabrication of 3D micro-flower structure of ternary Ni-Co-Cu hydroxide based on Co-MOF for advanced asymmetric supercapacitors
Sun et al. Preparation of N-doped biomass C@ SnO2 composites and its electrochemical performance
Wang et al. A novel three-dimensional hierarchical porous lead-carbon composite prepared from corn stover for high-performance lead-carbon batteries
Arulkumar et al. Improved electrochemical performances of CuCo2O4/CuO-based asymmetric device with ultra high capacitance and attractive cycling performance
CN112786853B (zh) 一种钠离子电池高倍率复合负极材料及其制备方法
CN106710891B (zh) 一种NiCo2O4/活性炭复合材料的制备方法
CN110642304B (zh) 一种超级电容器用三金属氮化物材料及其制备方法
Wang et al. Electrochemical performance of Fe x Mn 1− x-based metal–organic frameworks as electrode materials for supercapacitors
CN112467077A (zh) 有效增强多种过渡金属氧化物储电性能的普适性电化学改性制备方法
CN113582250B (zh) 层状结构钴酸镍-含氮石墨烯复合材料的制备方法及其在超级电容器中的应用与测试方法
CN109650456B (zh) 一种形貌可控的MnO2纳米材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant