CN113209975A - 一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法 - Google Patents
一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法 Download PDFInfo
- Publication number
- CN113209975A CN113209975A CN202110525474.8A CN202110525474A CN113209975A CN 113209975 A CN113209975 A CN 113209975A CN 202110525474 A CN202110525474 A CN 202110525474A CN 113209975 A CN113209975 A CN 113209975A
- Authority
- CN
- China
- Prior art keywords
- cuo
- zno
- purity copper
- heterojunction
- purity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 18
- 239000010949 copper Substances 0.000 claims abstract description 81
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052802 copper Inorganic materials 0.000 claims abstract description 43
- 239000003792 electrolyte Substances 0.000 claims abstract description 18
- 238000004070 electrodeposition Methods 0.000 claims abstract description 15
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims abstract description 14
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 230000003647 oxidation Effects 0.000 claims abstract description 10
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 10
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims abstract description 7
- 239000004312 hexamethylene tetramine Substances 0.000 claims abstract description 7
- 239000007864 aqueous solution Substances 0.000 claims abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 14
- 239000011889 copper foil Substances 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 10
- 238000004140 cleaning Methods 0.000 claims description 10
- 239000012153 distilled water Substances 0.000 claims description 10
- 239000006260 foam Substances 0.000 claims description 9
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 239000011780 sodium chloride Substances 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 4
- 238000002791 soaking Methods 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims description 2
- 238000006386 neutralization reaction Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 5
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 239000005416 organic matter Substances 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 51
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 19
- 239000011787 zinc oxide Substances 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 8
- 239000002086 nanomaterial Substances 0.000 description 7
- 238000001000 micrograph Methods 0.000 description 6
- 239000002135 nanosheet Substances 0.000 description 5
- 239000005751 Copper oxide Substances 0.000 description 4
- 229910000431 copper oxide Inorganic materials 0.000 description 4
- 230000001699 photocatalysis Effects 0.000 description 4
- 238000002048 anodisation reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002120 nanofilm Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- -1 coatings Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/348—Electrochemical processes, e.g. electrochemical deposition or anodisation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Hybrid Cells (AREA)
Abstract
本发明属于涉及光电催化相关技术领域,公开了一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法,所述制备方法包括以下步骤:首先采用两电极体系阳极氧化法在高纯铜材表面生长垂直于基底密集排列的针、片状CuO/Cu2O纳米阵列,然后采用电沉积法,以硝酸锌和六亚甲基四胺的混合水溶液为电解液,在纳米阵列上原位生长ZnO颗粒,获得ZnO@CuO/Cu2O异质结纳米复合材料。根据本发明提供的P/N异质结ZnO@CuO/Cu2O纳米复合材料制备方法简单,可实现大面积制备,在光电催化和有机物降解方面具有潜在的应用价值。
Description
技术领域
本发明涉及光电催化相关技术领域,具体涉及一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法。
背景技术
两种不同的半导体相接处形成的界面区域称为异质结,异质结常具有两种半导体各自的P/N结都不能达到的优良的光电特性,被广泛的应用于发光器件、太阳能电池、传感器、光催化、生物医学等领域。
纳米异质结凭借纳米材料特有的小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应等特性较非纳米级异质结有诸多优势,并且可以有效地控制电子,空穴,激子传输,从而显示独特的属性,如库仑阻塞效应,欧姆接触性能,热电性能等。两种纳米结构半导体之间的异质结/界面在现代纳米器件的设计中起着至关重要的作用,它对集成纳米材料的性能有着重要的影响。
ZnO,是一种N型宽带隙金属氧化物半导体,无毒,具有宽禁带宽度(3.37eV),较高的激子束缚能(60meV)和载流子迁移率。在工业领域,ZnO粉末在陶瓷、玻璃、水泥、涂料、颜料等方面的应用受到人们的广泛关注。纳米氧化锌可作为抗菌剂,具有生物相容性、无毒、光化学稳定性等特点。由于其优良的成膜和粘附能力,吸附能力强,化学稳定性更好,耐腐蚀氧化,具有良好的导电性,非常适合开发快速、稳定、可靠的传感器器件。此外,良好的电子扩散率使得氧化锌可应用于太阳能电池。然而在光催化剂和光伏器件的氧化锌广泛应用面临的挑战是,在ZnO纳米材料中或其表面发生的光生电子空穴对的快速重组导致了低量子效率、窄的吸收光谱范围。最后,ZnO本身不能吸收和利用可见光,这极大地限制了ZnO在可见光区域的应用。
铜氧化物主要为CuO和Cu2O,都为P型窄带隙金属氧化物半导体(禁带宽度分别为1.4eV和2.17eV),具有良好的电化学性能,环境友好、储备丰富、成本较低和制备容易等优点,因此在医用除菌、传感器器件、超级电容器电极、催化剂等领域具有潜在的应用价值。在光催化方面。虽然铜氧化物光催化活性相对较低,但对可见光具有较大的吸收。
与单窄带隙半导体相比,一个窄带隙半导体与另一个具有宽带隙的半导体耦合会导致光生电子空穴对更有效的分离,从而产生更高的可见光诱导光催化活性。氧化锌可与铜氧化物形成P-N型纳米异质结,基于铜氧化物和ZnO之间匹配的能带结构,可以驱动正负载流子在P-N型异质界面上反向输运,防止了光生电子空穴对的复合,延长了载流子的寿命,可以改善ZnO的在可见光区域的应用。故P-N型ZnO@CuO/Cu2O异质结被认为是一种很有前途的功能材料。如何制备性能优异的P/N异质结ZnO@CuO/Cu2O纳米复合材料成为当务之急。
发明内容
本发明的目的在于提供一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法。
为实现上述目的,本发明的实施例以高纯铜材为基底材料,在基底材料上通过阳极氧化和电沉积两个步骤,制备获得ZnO颗粒均匀分布在针(或片)状CuO/Cu2O纳米阵列上的ZnO@CuO/Cu2O异质结纳米复合材料,所述制备方法包括以下步骤:
(1)采用双电极电化学体系,以高纯铜材(纯度大于99.99%)作为阳极,以高纯钛片(纯度大于99.6%)作为阴极,以碳酸钠(或氢氧化钠)、氯化钠和聚乙二醇20000的混合溶液为电解液,采用恒电流阳极氧化工艺,制得CuO/Cu2O针(或片)状纳米阵列。
(2)采用三电极电化学体系,工作电极为步骤(1)中制备的CuO/Cu2O针(或片)状纳米阵列,对电极为铂丝电极,参比电极为Ag/AgCl电极,以硝酸锌和六亚甲基四胺的混合水溶液为电解液,采用恒电位电沉积工艺,在制备的CuO/Cu2O针(或片)状纳米阵列的表面沉积ZnO,得到ZnO@CuO/Cu2O异质结纳米复合材料。
优选地,所述步骤(1)电解液成分为60~70g/L碳酸钠、40~60g/L氯化钠、0.5~1g/L聚乙二醇20000;或者40~60g/L氢氧化钠,120~150g/L氯化钠、0.5~1.5g/L聚乙二醇20000。
优选地,所述步骤(1)中阳极氧化温度为65~70℃时,恒定电流密度为0.5~1A/dm2,阳极氧化时间为30~90min。
优选地,所述步骤(1)中所述的高纯铜材为高纯铜板、高纯铜带、高纯铜箔、高纯泡沫铜中的一种。高纯铜材在使用前进行如下预处理:将高纯铜材用蒸馏水清洗后,在RY-522铜化学抛光液中室温下浸泡20-30s,然后取出用蒸馏水清洗,10g/L NaOH中和处理,蒸馏水超声波清洗干净后备用。
优选地,所述步骤(2)中电解液成分为硝酸锌为1~2mM(即mmol/L,毫摩尔每升),六亚甲基四胺为1~2mM。
优选地,所述步骤(2)中电沉积温度为70~80℃时,沉积电压为-0.7~-1.1V,时间为300~600s。
与现有技术相比,本发明的有益效果是:
采用本发明制备P/N异质结ZnO@CuO/Cu2O纳米复合材料,可以选择两种阳极氧化电解液分别获得纳米针状和纳米片状CuO/Cu2O双相阵列结构材料,直接无粘结生长于高纯铜材基体上,具有高导电性;并增加了高纯基材的比表面积,为后续电沉积提供了极大的支持区域,有利于后续氧化锌颗粒吸附形核,通过控制电沉积电压、时间和电压输出模式,可以调控氧化锌颗粒长大速率,形成ZnO颗粒均匀弥散分布的ZnO@CuO/Cu2O异质结纳米复合材料。
该方法可以实现大面积P/N异质结ZnO@CuO/Cu2O纳米复合材料制备,简单易行。相对于现有的粉末状纳米复合材料,本发明制备的异质结纳米复合材料,集合P型和N型半导体材料的特性,可应用于光、电催化和有机物降解等领域,便于回收、再利用,绿色环保。
附图说明
图1为本发明实施例1中泡沫铜基阳极氧化后CuO/Cu2O纳米薄膜材料形貌扫描电镜图。
图2为本发明实施例1中泡沫铜基阳极氧化后CuO/Cu2O纳米薄膜材料的XRD(X射线衍射)图谱。
图3为本发明实施例1中泡沫铜基ZnO@CuO/Cu2O异质结复合纳米材料形貌扫描电镜图。
图4为本发明实施例1中泡沫铜基ZnO@CuO/Cu2O异质结复合纳米材料EDS能谱图。
图5为本发明实施例1中泡沫铜基ZnO@CuO/Cu2O异质结复合纳米材料XPS全谱图。
图6为本发明实施例2中铜箔基阳极氧化后CuO/Cu2O纳米薄膜材料形貌扫描电镜图。
图7为本发明实施例2中铜箔基ZnO@CuO/Cu2O异质结复合纳米材料形貌扫描电镜图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1(以高纯泡沫铜作为高纯铜材)
(1)将高纯泡沫铜放入去离子水中超声清洗2~3遍,之后在RY-522铜化学抛光液中浸泡20s左右,然后取出用去离子水超声清洗2~3遍后,再用浓度为10%的NaOH中和处理,最后再用蒸馏水超声清洗干净后烘干备用。
采用60g/L碳酸钠、50g/L氯化钠和0.5g/L聚乙二醇20000的混合溶液作为电解液,以高纯泡沫铜作为阳极,以高纯钛片作为阴极,电极两端接上直流稳压电源,选择恒流模式;电解液在水浴中加热,待电解液温度达到70℃时,开通电源,调整电流密度为0.5A/dm2,阳极氧化时间为60min;时间到后关闭电源,取出样品清洗后,置于烘箱中,45℃烘干待用,制得铜基CuO/Cu2O纳米针状阵列样品,其形貌扫描电镜图如图1所示。从图1可以看出:在泡沫铜表面获得了生长密集的纳米针状阵列;产物的XRD图如图2所示,从图2可以看出获得的阵列为CuO和Cu2O两相共存。
(2)以1mM硝酸锌和1mM六亚甲基四胺的混合水溶液作为电解液,采用三电极体系电化学沉积ZnO纳米颗粒,其中,步骤(1)中制备的CuO/Cu2O纳米针状阵列样品为工作电极,铂丝为对电极、Ag/AgCl为参比电极。沉积电压为-0.9V,沉积时间为600s,电解液温度为80℃,待沉积时间结束后,拆除电路,取出样品,将试样在去离子水中反复清洗后置于烘箱中,45℃烘干。产物的形貌扫描电镜图如图3所示,从图3可以看出:电化学沉积后在纳米针状阵列上均匀附着有电化学沉积产物。
图4为电化学沉积法制备的样品的EDS能谱图,其中O、Zn、Cu元素所占原子比例分别为45.4%、33.9%、20.7%。
电化学沉积产物的XPS图谱如图5所示,结合能约为933.8eV的峰位对应于Cu 2p的电子结合状态,531.1eV的峰位对应于O1s的结合状态,结合能284.5eV处的峰对应于C1s,结合能为1021.8eV和1044.8eV的峰位分别对应于Zn 2p3和Zn 2p1的电子结合状态。
实施例2(以高纯铜箔作为高纯铜材)
(1)将高纯铜箔用蒸馏水清洗后,在RY-522铜化学抛光液中室温下浸泡30s,然后取出用蒸馏水清洗后,再用10g/L NaOH中和处理后,蒸馏水超声清洗干净后备用。
采用40g/LNaOH、150g/LNaCl和1g/L聚乙二醇20000的混合溶液作为电解液,以高纯铜箔作为阳极,以高纯钛片作为阴极,放入电解槽中,接上直流稳压电源,选择恒流模式;电解槽放入水浴中加热,待电解液温度达到65℃时,开通电源,调整电流达到所需要的值,其中,电流密度为1A/dm2,阳极氧化时间为30min;时间到后关闭电源,取出样品清洗后,置于烘箱中,45℃烘干待用,制得CuO/Cu2O纳米片阵列,其形貌扫描电镜图如图6所示,如图6所示,细小的纳米片均匀垂直地排列于铜箔表面。
(2)配制电沉积溶液,硝酸锌和六亚甲基四胺分别为2mM。采用三电极体系,工作电极为铜基CuO/Cu2O纳米片阵列,对电极为铂丝电极,参比电极为Ag/AgCl电极,电沉积温度为80℃时,沉积电压为-0.9V,时间为400s,制备得到ZnO@CuO/Cu2O异质结纳米复合材料,其形貌扫描电镜图如图7所示,短棒状ZnO均匀沉积在CuO/Cu2O纳米片阵列表面。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
Claims (7)
1.一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)采用双电极电化学体系,以高纯铜材作为阳极,以高纯钛片作为阴极,以碳酸钠或氢氧化钠、氯化钠和聚乙二醇20000的混合溶液为电解液,采用恒电流阳极氧化工艺,制得CuO/Cu2O针状或者片状纳米阵列;
(2)采用三电极电化学体系,工作电极为步骤(1)中制备的CuO/Cu2O针状或者片状纳米阵列,对电极为铂丝电极,参比电极为Ag/AgCl电极,以硝酸锌和六亚甲基四胺的混合水溶液为电解液,采用恒电位电沉积工艺,在制备的CuO/Cu2O针状或者片状纳米阵列表面沉积ZnO,得到P/N异质结ZnO@CuO/Cu2O纳米复合材料。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中电解液组分为60~70g/L碳酸钠、40~60g/L氯化钠以及0.5~1g/L聚乙二醇20000,或者为40~60g/L氢氧化钠,120~150g/L氯化钠以及0.5~1.5g/L聚乙二醇20000。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中阳极氧化温度为65~70℃时,恒定电流密度为0.5~1A/dm2,阳极氧化时间为30~90min。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中所述的高纯铜材为高纯铜板、高纯铜带、高纯铜箔、高纯泡沫铜中的一种。
5.根据权利要求4所述的制备方法,其特征在于:高纯铜材在使用前进行如下预处理:将高纯铜材用蒸馏水清洗后,在RY-522铜化学抛光液中室温下浸泡20-30s,然后取出用蒸馏水清洗,10g/L NaOH中和处理,蒸馏水超声波清洗干净后备用。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中电解液成分为硝酸锌为1~2mM,六亚甲基四胺为1~2mM。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中电沉积温度为70~80℃时,沉积电压为-0.7~-1.1V,时间为300~600s。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110525474.8A CN113209975A (zh) | 2021-05-13 | 2021-05-13 | 一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110525474.8A CN113209975A (zh) | 2021-05-13 | 2021-05-13 | 一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113209975A true CN113209975A (zh) | 2021-08-06 |
Family
ID=77095745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110525474.8A Pending CN113209975A (zh) | 2021-05-13 | 2021-05-13 | 一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113209975A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114686911A (zh) * | 2022-03-22 | 2022-07-01 | 浙江理工大学 | 一种泡沫CuOx-TNTs复合材料及其制备方法和应用 |
CN114717838A (zh) * | 2022-03-18 | 2022-07-08 | 中国科学院宁波材料技术与工程研究所 | 铜基纤维表面的CuO-Ag协同防污剂及其制法与应用 |
CN115094497A (zh) * | 2022-06-21 | 2022-09-23 | 重庆大学 | 一种金属基光热构件及其制备方法 |
CN116768261A (zh) * | 2023-05-16 | 2023-09-19 | 微集电科技(苏州)有限公司 | 一种Zn-CuO/Cu2O三元异质结复合气敏材料及其元件和制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008161854A (ja) * | 2006-12-05 | 2008-07-17 | Utsunomiya Univ | 半導体粒子及びその製造方法 |
CN101708471A (zh) * | 2009-11-09 | 2010-05-19 | 北京航空航天大学 | 氧化锌/氧化亚铜纳米异质结光催化材料及其制备方法 |
CN102732927A (zh) * | 2012-07-17 | 2012-10-17 | 西北工业大学 | 氧化锌/氧化亚铜异质结的制备方法 |
CN105568313A (zh) * | 2015-12-11 | 2016-05-11 | 苏州大学 | 3d分枝状半导体纳米异质结光电极材料及其制备方法 |
CN108043410A (zh) * | 2017-11-07 | 2018-05-18 | 国家纳米科学中心 | 顶端修饰Cu2O的ZnO纳米棒异质结及其制备方法与应用 |
US20200071186A1 (en) * | 2018-08-30 | 2020-03-05 | Petrochina Company Limited | Linear Porous Titanium Dioxide Material And Preparation And Use Thereof |
US20200207689A1 (en) * | 2016-02-16 | 2020-07-02 | Fundació Institut Català D'investigació Química (Iciq) | Methanol production process |
-
2021
- 2021-05-13 CN CN202110525474.8A patent/CN113209975A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008161854A (ja) * | 2006-12-05 | 2008-07-17 | Utsunomiya Univ | 半導体粒子及びその製造方法 |
CN101708471A (zh) * | 2009-11-09 | 2010-05-19 | 北京航空航天大学 | 氧化锌/氧化亚铜纳米异质结光催化材料及其制备方法 |
CN102732927A (zh) * | 2012-07-17 | 2012-10-17 | 西北工业大学 | 氧化锌/氧化亚铜异质结的制备方法 |
CN105568313A (zh) * | 2015-12-11 | 2016-05-11 | 苏州大学 | 3d分枝状半导体纳米异质结光电极材料及其制备方法 |
US20200207689A1 (en) * | 2016-02-16 | 2020-07-02 | Fundació Institut Català D'investigació Química (Iciq) | Methanol production process |
CN108043410A (zh) * | 2017-11-07 | 2018-05-18 | 国家纳米科学中心 | 顶端修饰Cu2O的ZnO纳米棒异质结及其制备方法与应用 |
US20200071186A1 (en) * | 2018-08-30 | 2020-03-05 | Petrochina Company Limited | Linear Porous Titanium Dioxide Material And Preparation And Use Thereof |
Non-Patent Citations (2)
Title |
---|
于晶晶等: "三维ZnO/CuO纳米树的制备及其光电化学性能的研究", 《稀有金属》 * |
舒霞等: "铜氧化物纳米阵列转化膜阳极氧化法制备及比电容特性", 《材料保护》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114717838A (zh) * | 2022-03-18 | 2022-07-08 | 中国科学院宁波材料技术与工程研究所 | 铜基纤维表面的CuO-Ag协同防污剂及其制法与应用 |
CN114686911A (zh) * | 2022-03-22 | 2022-07-01 | 浙江理工大学 | 一种泡沫CuOx-TNTs复合材料及其制备方法和应用 |
CN114686911B (zh) * | 2022-03-22 | 2023-10-13 | 浙江理工大学 | 一种泡沫CuOx-TNTs复合材料及其制备方法和应用 |
CN115094497A (zh) * | 2022-06-21 | 2022-09-23 | 重庆大学 | 一种金属基光热构件及其制备方法 |
CN115094497B (zh) * | 2022-06-21 | 2023-09-08 | 重庆大学 | 一种金属基光热构件及其制备方法 |
CN116768261A (zh) * | 2023-05-16 | 2023-09-19 | 微集电科技(苏州)有限公司 | 一种Zn-CuO/Cu2O三元异质结复合气敏材料及其元件和制备方法 |
CN116768261B (zh) * | 2023-05-16 | 2024-05-31 | 微集电科技(苏州)有限公司 | 一种Zn-CuO/Cu2O三元异质结复合气敏材料及其元件和制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113209975A (zh) | 一种P/N异质结ZnO@CuO/Cu2O纳米复合材料的制备方法 | |
Bai et al. | A Cu2O/Cu2S-ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting | |
CN102251266B (zh) | 一种脉冲电沉积制备纳米铂/二氧化钛纳米管电极的方法 | |
Xu et al. | Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting | |
Wei et al. | Cooperation effect of heterojunction and co-catalyst in BiVO 4/Bi 2 S 3/NiOOH photoanode for improving photoelectrochemical performances | |
CN111774057B (zh) | 一种高性能异质结材料Fe2O3/CuO光电极薄膜及其制备方法和应用 | |
Kim et al. | An enhanced electrochemical energy conversion behavior of thermally treated thin film of 1-dimensional CoTe synthesized from aqueous solution at room temperature | |
Huang et al. | Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (Ni x Co 1− x OOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction | |
CN108654658A (zh) | 一种高效水分解双功能电催化剂NiCoP及其制备方法 | |
CN105986292B (zh) | 一种钴、镍双层氢氧化物修饰的二氧化钛纳米管阵列的制备方法及光电化学水解制氢应用 | |
Li et al. | Se-induced underpotential deposition of amorphous CoSe2 ultrathin nanosheet arrays as high-efficiency oxygen evolution electrocatalysts for zinc–air batteries | |
Tsai et al. | Preparation of CoS 2 nanoflake arrays through ion exchange reaction of Co (OH) 2 and their application as counter electrodes for dye-sensitized solar cells | |
CN107761127B (zh) | 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法 | |
CN111359609A (zh) | 可见光响应的氧化铁/氧化亚铜光催化薄膜及其制备方法 | |
Chen et al. | A dual-heterojunction Cu2O/CdS/ZnO nanotube array photoanode for highly efficient photoelectrochemical solar-driven hydrogen production with 2.8% efficiency | |
Qiu et al. | Potent n-type nanostructured cruciate flower-like Cu/Cu2O films for photocathodic protection | |
Liu et al. | CaBi 6 O 10: a novel promising photoanode for photoelectrochemical water oxidation | |
CN108511198B (zh) | 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途 | |
CN108866563A (zh) | 一种硼化钴修饰的钒酸铋膜光电阳极、其制备方法与用途 | |
CN102965711B (zh) | 氧化亚铜纳米片状粉体材料的阳极氧化两步法制备方法 | |
CN106591914B (zh) | 一种电沉积法制备的铜铟硒硫薄膜太阳能电池吸收层 | |
Zhang et al. | Architecture lattice‐matched cauliflower‐like CuO/ZnO p–n heterojunction toward efficient water splitting | |
CN111111634B (zh) | 一种二氧化钛大孔微球/金属钛复合材料及其制备方法和应用 | |
CN114196985B (zh) | 一种BiVO4/NiF2光阳极在光催化水裂解方面的应用 | |
CN106975501B (zh) | 一种可见光响应型光催化薄膜及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210806 |